
Smart Cities Symposium Prague 2023

979-8-3503-2162-3/23/$31.00 ©2023 IEEE

Abstract—IoT devices are becoming more prevalent yearly due

to their relatively low cost and high maintainability. Their use
cases are often varied–from industry (e.g., devices intended for
quality control) to their application in smart cities, where they
can help supervise day-to-day operations. With the increase in
popularity comes the need to effectively store, query and process
the data produced by such devices. This problem can seem
relatively easy at first glance, but often, the solutions are not as
straightforward. In real-world applications, multiple device types
are needed to accomplish each task. This typically results in large
streams of incoming data, each with its own structure and data
representation. Due to the large amounts of devices, it may be
necessary to distribute the workload or use serverless computing
to tackle fluctuations in incoming requests. This paper provides a
study of some options that can be used to achieve this goal,
focusing on the efficiency and ease of use of both SQL and
NoSQL databases currently available regarding deployment on
both local devices and serverless functions like AWS Lambda.
Document or relational databases are often used to store data
from such devices. However, features of Time Series databases
could be used to improve the entire system’s performance and
reduce storage requirements. One of the systems that could
benefit from this improvement is a Smart City system developed
by Logimic. The cost of the proposed smart city platform is
essential because a high running cost can result in the system
being more expensive than the cost reduction from using efficient
IoT devices.

Index Terms— IoT, Smart City, Database, NoSQL, Time
Series, AWS, Serverless computing

I. INTRODUCTION

oT devices have been rising in popularity in recent years.
Currently, there are estimated 10 – 11 million IoT devices

[1, 2] in use. Their low cost and high practicality can be
considered the main reason for this rise in popularity. One of
the examples can be seen in Smart Cities, where such devices
can significantly improve the day-to-day experience of their

First submitted 17. 2. 2023.
This work was supported by project Smart information technology for a

resilient society, FIT-S-23-8209, funded by Brno University of Technology.
Petr John is a doctoral student at Brno University of Technology, Brno,

612 00 Czechia, (e-mail: ijohn@fit.vutbr.cz)
Jiří Hynek is with the Brno University of Technology (e-mail:

hynek@fit.vutbr.cz)
Tomáš Hruška is with the Brno University of Technology (e-mail:

hruska@fit.vutbr.cz)
Michal Valný is a CEO of Logimic, Jiříkovice, 664 51 Czechia (e-mail:

michal.valny@logimic.com)

inhabitants. This can range from smart bin management [3] to
measure the amounts of dangerous oxides in urban areas [4].
IoT devices in cities might become necessary to keep up with
the rise in world population and urbanization. Currently, 55%
of the population lives in urban areas, and the United Nations
estimates the rise to be 68% [5, 6]. Both India and China are
investing heavily to sustain their rising population, with China
currently funding more than 200 smart city pilots [7] and India
announced 100 smart cities [8]. Both trends result in large
amounts of data that must be stored and effectively queried.
Due to the amount of incoming data, choosing a database
system that can store them efficiently is necessary to create a
solution with sustainable storage requirements. Sometimes, it
may be possible to delete older samples and reduce the storage
space. However, there may be situations where downsampling
or entirely deleting old measurements may not be possible –
for example, due to non–functional legal requirements or
SLAs [9].

On the other hand, in many cases, the user may want to get
aggregated data. An example of this situation is when the user
wants to display a large segment of data. Loading the raw data
without aggregating them can result in the user UI taking too
long to load, which can cause the user to stop using the page
entirely [10]. A correctly selected aggregation function can
reduce the number of points with no or acceptable accuracy
loss [9]. This can create a significant requirement for the
storage used to handle the data and the API providing access
to this data. Some database types provide tools to run
aggregation functions directly in the database, but in other
cases, the API needs to be able to run the appropriate function
efficiently. This can be achieved by third-party software like
Apache Spark [11], or any other distributed map-reduce
method [12].

Another concern is the performance of the storage, which
needs to be able to handle the stream of incoming data and the
option to distribute the same database between multiple
network nodes, to reduce the load on each node. This creates a
problem for relation databases, which must keep all of the data
stored consistent [13]. NoSQL and NewSQL databases often
allow the creation of multiple nodes by either not requiring a
strong consistency (often NoSQL) or by not sharing data
between the nodes (some NewSQL databases). This depends
on the selected database system, but attaining both
simultaneously is impossible due to the CAP theorem [14].
The data from smart cities can be classified as time series data,

Application of Time Series Database for IoT

Smart City Platform

Petr John, Jiří Hynek, Tomáš Hruška, Michal Valný

I

as they are repeated measurements over time, with regular or
irregular time intervals. Optimizations and special database
systems currently exist to handle such data, but other database
types are often preferred for data storage.

All of those requirements combined can result in situations
where a custom server can be inefficient from a monetary and
practical standpoint. Due to this, the solution should be ready
to run in a cloud or serverless environment. Differences
between deployment options can restrict us from using some
database technologies, as many database systems created by
cloud providers are either only available on their respective
cloud solutions or behave differently when used locally.

Logimic is one of the companies attempting to overcome all
the mentioned obstacles and create a platform that would not
only allow the efficient storage and querying of the data from
IoT devices but also allow the user to display and analyze both
the current state and historical data. Specialized time series
databases or databases with time series optimizations could
bring both performance and monetary improvements, thanks
to the possible reduction in storage requirements or increased
performance due to specialized queries. Time series
optimizations are commonly implemented in NoSQL systems
rather than traditional relational databases.

The use of such databases could result in the reduction of
costs, electricity, and resource requirements. In the case of
cloud installations, systems are often charged for using the
software as a service (SaaS) model. Due to this, using a more
efficient database system does not directly translate to cost
reduction, as software providers often charge for different
metrics (e.g., amount of data stored, number of queries,
transferred data). While cities can reduce their electricity
spending by installing IoT devices (e. g. smart lamp posts), an
inefficient platform can result in the city paying more than
before the transition. Due to this, the effectiveness of the smart
city platform is paramount to its success.

This paper outlines available database options, the
practicality of their use for storing the data from IoT devices,
the performance of the selected database systems, the pros and
cons of using time series databases, and the monetary
difference between DynamoDB and InfluxDB. The proposed
solution was tested on a real smart city platform developed by
Logimic and resulted in a 40% savings in running costs,
increased storage efficiency, and added support for new
functionality that was not previously supported.

II. CURRENT SOLUTIONS

Database systems are typically used to store data efficiently.
Database systems evolved from older file system databases to
commonly used relational databases, lately very popular
NoSQL databases to new NewSQL database systems that
combine features of both NoSQL and relational databases
[15].

Relational databases currently represent the most often used
solution [16] for effectively and persistently storing data.
Relational databases use the relational algebra outlined by
Edgar F. Codd [17] to describe the structure and relations.
Most of the time, the data is also normalized [18] to increase

the querying speed and reduce the size of stored data by
removing duplicates, which is necessary to keep the data
consistent without propagating the changes manually.

While relational databases represent an often and easy
solution to storing traditional data, the scalability and speed of
modern NoSQL databases proved to be a more than adequate
alternative in situations, where the performance of relational
databases isn’t sufficient, or the data need to be distributed
between multiple nodes. Another key difference is the ability
of NoSQL databases to store data with loose or no predefined
structure. This can be beneficial when working with Big Data
or data with an unknown structure, as can be the case in many
IoT applications [19, 20]. Due to those limitations, relational
databases are typically used to store and manage metadata [21]
or require a use of architecture, allowing the data to be split
into multiple database instances [22]. One of the most popular
[16] relational databases, often famed for its performance, is
PostgreSQL, which was used during testing.

Key-value databases may be considered the simplest
NoSQL database type. DynamoDB, developed by Amazon
and heavily integrated into AWS. The main advantage of key-
value databases is their ability to quickly store elements
without the need to keep or define the data structure.
However, they often do not allow querying by non-primary
fields and do not provide support for native aggregation
functions. Due to the availability and scalability, the database
can be used for storing metadata [23] or as the primary data
storage used [24] to store information about railway tickets.
DynamoDB is further analyzed since it was previously used
by Logimic.

A very similar type to key-value databases are document
databases. Document databases often allow users to create
indexes over more fields or support more robust querying
languages. MongoDB is a good representative of this database
type. It can be considered the most popular NoSQL database
[16]. It is often used in smart city systems such as the system
presented in [25], which uses MongoDB time series mode
(introduced in version 5) or other Big Data situations [26]. Not
all document databases support querying languages like
MongoDB, but they are still considered and used in Smart
Cities. An example could be CouchDB coupled with Apache
Spark over a distributed file system [27]. MongoDB was
further analyzed due to its popularity.

Not all NoSQL databases can be used for general purposes.
Some of them are directly specialized for one task only. In this
case, time series databases are directly optimized for work
with time series, like the data from IoT sensors. The most
popular of these databases is InfluxDB [28]. InfluxDB,
similarly to many time series databases, uses delta encoding
[29], which significantly reduces the size of numerical series,
that contain intervals where the parameter value is similar.
InfluxDB is aimed at both cloud deployments, where it can be
used as SaaS or local deployment with its Open-Source
version. It was previously used in Smart City pilot projects
related to Water quality monitoring [30, 31].

III. TESTING METHODOLOGY

Using time series databases to replace relational and
document NoSQL databases must first be tested in a
controlled environment. While data from IoT devices can be
generally classified as time series data (always dependent on
time and being stored in rising order), general-use databases
could handle the data more efficiently.

A three-step testing methodology was selected. In the first
step, all of the selected database systems were subjected to
some everyday situations: insertion of a new value, querying a
time segment without an aggregation, querying a time segment
with an aggregation, and querying the last element currently
stored. These operations represent some of the commonly used
queries. For example, aggregation and selecting raw data are
needed when the data needs to be visualized for the user.
Insertion is needed to store the incoming data. Querying the
last inserted element can be used in cases where the current
state of the connected IoT devices needs to be visualized or
KPIs need to be re-evaluated.

 A small test file (with a raw size of around 30 MB) was
selected to filter out database systems that are very slow and
thus unsuitable. All tests were run 20 times, and individual
results were averaged. All tests were run on an Intel i5
7500HQ CPU with 16 GB of RAM.

The second step used the same scenarios described in the
previous step but with a more extensive test file (more than
500 thousand records with a total size of around 350 MB). The
space required to store the database was also measured to filter
out databases with large storage requirements. While this
dataset does not represent the most common structure, it can
be used to emulate a worst-case scenario, as it contains many
fields with much larger sample sizes than is typical for IoT
devices in smart cities.

In the last step, a different dataset was used, this time more
representative of the traditional data from smart cities. The
dataset was created from multiple RHF1S001 sensors obtained
over a year. The dataset was supplied by Logimic with a total
size of 163 MB with around 670 thousand items.

IV. RESULTS

The results of the first step show the disadvantages of
DynamoDB and PostgreSQL. The performance of DynamoDB
suffers due to the lack of a query language and the need to
query the database repeatedly to get all of the queried items,
resulting in low performance. On the other hand, DynamoDB
excelled at querying and inserting a single item. MongoDB
and InfluxDB fared much better, providing significantly more
performance than both DynamoDB and PostgreSQL. While
the speed of inserting a single item is essential due to the
number of incoming items, computing the average can be a
more significant obstacle as it directly impacts the user
experience. The results of the first step are mentioned in
Figure 1.

Figure 1: Results of the first step

This left only two viable database systems-InfluxDB and
MongoDB. Both of those systems performed adequately.
Generally, MongoDB performed better when the new time
series mode was not enabled. The time series mode increased
the time needed to perform each operation. For example, in
the case of selecting a 5-minute average, the time needed to
complete the query changed from 2699 ms to 4338 ms in the
case of Mongo DB version 5 without and with time series
mode, respectively. InfluxDB performed less favorably than
MongoDB, completing the same 5-minute average in 4165
ms. InfluxDB only proved to be faster in the 5-minute average
of 60 days. See Figure 2 for more details.

Figure 2: Results of the second step

MongoDB, in default document mode, often offered better
performance than InfluxDB. The MongoDB time series mode
performed similarly to the previous dataset. MongoDB version
6 often performed worse than MongoDB version 5. This could
be due to a different default caching policy between versions.
The performance of InfluxDB is often similar to or very close
to MongoDB. The difference is often in the tens of
milliseconds. In the case of 60-minute average of the last 120
days this difference was 12 ms between the InfluxDB and
MongoDB in both versions.

Figure 3: Results of the additional benchmark.

Another important metric is the size of the resulting
database. The total size of the bucket data stored on disc1 was
selected because the InfluxDB Open-Source version does not
currently support estimating the database size. Few of the
available metrics were selected for MongoDB, as many of
them (mainly the MognoDB 6 Series) differ from the actual
disc space used. A comparison of the space required to store
both datasets can be seen in Figure 4 and Figure 5.

Figure 4: Size of the 350 MB data set in different databases.

 The combination of performance and storage efficiency
makes InfluxDB an interesting choice for smart city
installations. Both MongoDB and InfluxDB show remarkable
storage efficiency when compared to PostgreSQL. In the case
of the 350 MB dataset, the total database size was 787 MB in
the case of PostgreSQL, which is more than double the size of
uncompressed MongoDB version 5 at 265 MB. InfluxDB was
able to store the dataset on 69 MB. This reduction highlights
the advantages of using specialized compression.

Figure 5: Size of the temperature data set in different

databases.

V. CASE STUDY: LOGIMIC

The effectiveness of InfluxDB was demonstrated in a case
study that was done in cooperation with Logimic, where
InfluxDB replaced the existing DynamoDB database. While
MongoDB was strongly considered, InfluxDB was chosen in
the end for the combination of good performance and storage
efficiency.

Logimic develops several IoT applications, many of them
aimed at smart cities. These platforms range from general-use

1 This metric was selected because the InfluxDB Open-Source version 2.1

does not provide any other metric to measure the bucket size. This size
corresponds to the total size of /var/lib/influxdb/engine/data on traditional
Linux distributions.

smart cities to specific platforms aimed at smart lamp posts,
temperature sensors used in freezers in vaccination centers,
water retention, and others. The AWS cloud solution,
combined with The Things Network, is used for such
solutions. This architecture was chosen because the company
mainly uses MQTT-based devices. Data from these devices
are sent to TTN, decoded from vendor-specific formats to
more standardized ones, and then sent to AWS, where lambda
handlers store the incoming data in databases. Logimic used a
combination of DynamoDB for time series and metadata that
needs to be accessed quickly and PostgreSQL for relational
data and sensor metadata. Stored data are then used to evaluate
any relevant KPIs. KPIs and raw data can be displayed in one
of the frontend applications developed by Logimic.

Before the switch from DynamoDB to InfluxDB Logimic
used a single AWS Lambda function to handle all the
interaction with statistics stored in DynamoDB. During the
switch, a new RESTful API was developed to accommodate
the new database system and multiple new operations offered.

The switch resulted in a positive change in both
performance and costs. While the operating costs of
DynamoDB were constantly rising (due to the increasing
amount of data that needed to be stored), InfluxDB doesn’t
display such behavior. The spike at 10. 3. 2022 in Figure 6
was caused by copying data stored in DynamoDB to
InfluxDB. DynamoDB currently continues to be used for
managing configurations and other metadata. The cost of
InfluxDB and DynamoDB combined was reduced to around
40% of the cost of DynamoDB in at 1. January 2022.

Figure 6: Cost of database systems used by Logimic during

the transition.

VI. DISCUSION

In the final decision, InfluxDB was selected as a storage of
the incoming data from IoT devices. This choice was a
compromise between performance and used storage space.
This choice can be a limiting factor, when compared to
MongoDB. For example, InfluxDB does not allow mixing
numerical and string data types in a single field or storing
nested documents and provides no optimizations for accessing
the last inserted element. MongoDB is better suited for
applications where this proves to be a typical operation. While
accessing the last element can be sped up by keeping the item
in a different database, likely the same as the one used to keep
sensor metadata, this creates added complexity. On the other
hand, InfluxDB provides tools to easily request downsample

data, such as Telegraf, Tasks, and MQTT plugins.
The combination of AWS Lambda functions and RESTful

API can result in a sub-optimal performance caused by cold
starts. This could be mitigated by reducing the number of
endpoints. On the other hand, this solution is better from the
scalability and practical standpoints as it is easier to manage
due to other aspects like caching and authorization. Cold starts
can be an obstacle, primarily on systems and endpoints with
low traffic. In these cases, deploying the application using a
different solution, like self-hosting a server or deploying a
docker container instead of serverless functions, may be
beneficial.

Logimic currently stores metadata of the sensors in
PostgreSQL. Moving them to a NoSQL database like
DynamoDB or MongoDB could be beneficial to improve
performance. Another solution to this problem may be caching
or using the CQRS pattern. The current architecture may cause
the UI to be slow as the sensor device eui needs to be queried
from the relational database before querying the time series
data. On the other hand, it may be possible to include the
relational data directly in the response from InfluxDB thanks
to InfluxDB’s SQL integration options.

Both optimizations mentioned above can be explored in the
future, as they represent a significant performance
improvement when the number of connected devices and users
rises. Another point that should be considered is data locality.
While storing the data on the cloud is a convenient solution, it
may be beneficial to distribute the data between data centers
or self-hosted instances. Another possible disadvantage of a
cloud-based solution may be internet outages in remote
installations.

VII. CONCLUSION

This study outlines the practicality of using time series
databases, especially InfluxDB, in smart city platforms. This
approach was first tested in a controlled environment and then
in a smart city platform developed by Logimic. InfluxDB
performed similarly to MongoDB, which is often used in
smart city platforms. Both databases often provide comparable
performance and outperform traditional relational databases.
The use of DynamoDB as primary storage is very limited.

On the other hand, it is an excellent choice for storing
metadata or as a cache due to its high performance when
inserting or retrieving a single item. The solution was
deployed to a smart city platform, which resulted in reduced
costs and increased performance. This development can aid
Logimic provide an efficient platform by reducing both
runtime and storage costs. Coupled with smart devices like
smart street lightning, the platform can provide a simple and
convenient way to save electricity by utilizing it only when
needed.

REFERENCES
[1] State of iot 2021: Number of connected iot devices growing 9% to 12.3

billion globally, cellular iot [online] Available: https://iot-
analytics.com/number-connected-iot-devices

[2] A. Holst. Iot connected devices worldwide 2019-2030, Oct 2021.

[3] F. Annie Lincy and T. Sasikala. Smart dustbin management using iot
and blynk application. In 2021 5th International Conference on Trends
in Electronics and Informatics (ICOEI), pages 429–434, 2021.

[4] M. Schiavon, M. Redivo, G. Antonacci, E. C. Rada, M. Ragazzi, D.
Zardi, and L. Giovannini. Assessing the air quality impact of nitrogen
oxides and benzene from road traffic and domestic heating and the
associated cancer risk in an urban area of verona (italy). Atmospheric
Environment, 120:234–243, 2015.

[5] H. Ritchie and M. Roser. Urbanization. Our world in data, 2018.
[6] United Nations Publications. World Urbanization Prospects: The 2018

Revision. UN, 2019.
[7] P. Liu and P. Zhenghong. China’s smart city pilots: A progress report.

Computer, 47:72–81, 10 2014.
[8] S. Madakam and R. Ramaswamy. 100 new smart cities (india’s smart

vision). In 2015 5th National Symposium on Information Technology:
Towards New Smart World (NSITNSW), pages 1–6, 2015.

[9] J. Poncela, P. Vlacheas, R. Giaffreda, S. De, M. Vecchio, S. Nechifor, R.
Barco, M. C. Aguayo-Torres, V. Stavroulaki, K. Moessner, et al. Smart
cities via data aggregation. Wireless personal communications,
76(2):149–168, 2014.

[10] K. Eaton. How one second could cost amazon $1.6 billion in sales - fast
company, Mar 2012 [online] Available:
https://www.fastcompany.com/1825005/how-one-second-could-cost-
amazon-16-billion-sales.

[11] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J.
Freeman, DB Tsai, M. Amde, S. Owen, et al. Mllib: Machine learning in
apache spark. The Journal of Machine Learning Research, 17(1):1235–
1241, 2016.

[12] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, Jan 2008.

[13] M. Rys. Scalable sql: How do large-scale sites and applications remain
sql-based? Queue, 9(4):30–37, apr 2011.

[14] S. Gilbert and N. Lynch. Perspectives on the cap theorem. Computer,
45(2):30–36, 2012.

[15] C. Coronel and S. Morris. Database Systems: Design, Implementation,
& Management. Cengage Learning, 2016.

[16] Db-engines ranking [online] Available: https://db-
engines.com/en/ranking_trend.

[17] E. F. Codd. A Relational Model of Data for Large Shared Data Banks,
pages 263–294. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

[18] H. Köhler and S. Link. Sql schema design: foundations, normal forms,
and normalization. Information Systems, 76:88–113, 2018.

[19] B. Silva, M. Khan, C. Jung, J. Seo, M. Diyan, J. Han, Y. Yoon, and K.
Han. Urban planning and smart city decision management empowered
by real-time data processing using big data analytics. Sensors, 18:2994,
09 2018.

[20] M. Ahmed, O. Shahat. A novel big data analytics framework for smart
cities. Future Generation Computer Systems, 91:620–633, 2019.

[21] K. Takahashi, S. Yamamoto, A. Okushi, S. Matsumoto, and M.
Nakamura. Design and implementation of service api for large-scale
house log in smart city cloud. In 4th IEEE International Conference on
Cloud Computing Technology and Science Proceedings, pages 815–820,
2012.

[22] F. G. Brundu, E. Patti, Anna O., M. Del Giudice, N. Rapetti, A.
Krylovskiy, M. Jahn, V. Verda, E. Guelpa, L. Rietto, and A. Acquaviva.
Iot software infrastructure for energy management and simulation in
smart cities. IEEE Transactions on Industrial Informatics, 13(2):832–
840, 2017.

[23] M. Krämer, S. Frese, and A. Kuijper. Implementing secure applications
in smart city clouds using microservices. Future Generation Computer
Systems, 99:308–320, 2019.

[24] G. M. D’silva, A. K. Scariah, L. R. Pannapara, and J. J. Joseph. Smart
ticketing system for railways in smart cities using software as a service
architecture. In 2017 International Conference on I-SMAC (IoT in
Social, Mobile, Analytics and Cloud) (I-SMAC), pages 828–833, 2017.

[25] M. Colosi, F. Martella, G. Parrino, A. Celesti, M. Fazio, and M. Villari.
Time series data management optimized for smart city policy decision.
In 2022 22nd IEEE International Symposium on Cluster, Cloud and
Internet Computing (CCGrid), pages 585–594, 2022.

[26] Y., I. Park, J. Rhee, and Y. Lee. Mongodb-based repository design for
iot-generated rfid/sensor big data. IEEE Sensors Journal, 16(2):485–497,
2016.

[27] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs. Building a big
data platform for smart cities: Experience and lessons from santander. In
2015 IEEE International Congress on Big Data, pages 592–599, 2015.

[28] Timeseries db-engines ranking [online] Available: https://db-
engines.com/en/ranking_trend/time+series+dbms

[29] J. Xiao, Y. Huang, C. Hu, S. Song, X. Huang, and J. Wang. Time series
data encoding for efficient storage: A comparative analysis in apache
iotdb. Proc. VLDB Endow., 15(10):2148–2160, sep 2022.

[30] Y. Chen and D. Han. Water quality monitoring in smart city: A pilot
project. Automation in Construction, 89:307–316, 2018.

[31] K. Shanmugam, M. E. Rana, D. T. Z. Xuen, and S. Aruljodey. Water
quality monitoring system: A smart city application with iot innovation.
In 2021 14th International Conference on Developments in eSystems
Engineering (DeSE), pages 571–576, 2021.

