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Abstract—IoT devices are becoming more prevalent yearly due 

to their relatively low cost and high maintainability. Their use 
cases are often varied–from industry (e.g., devices intended for 
quality control) to their application in smart cities, where they 
can help supervise day-to-day operations. With the increase in 
popularity comes the need to effectively store, query and process 
the data produced by such devices. This problem can seem 
relatively easy at first glance, but often, the solutions are not as 
straightforward. In real-world applications, multiple device types 
are needed to accomplish each task. This typically results in large 
streams of incoming data, each with its own structure and data 
representation. Due to the large amounts of devices, it may be 
necessary to distribute the workload or use serverless computing 
to tackle fluctuations in incoming requests. This paper provides a 
study of some options that can be used to achieve this goal, 
focusing on the efficiency and ease of use of both SQL and 
NoSQL databases currently available regarding deployment on 
both local devices and serverless functions like AWS Lambda. 
Document or relational databases are often used to store data 
from such devices. However, features of Time Series databases 
could be used to improve the entire system’s performance and 
reduce storage requirements. One of the systems that could 
benefit from this improvement is a Smart City system developed 
by Logimic.  The cost of the proposed smart city platform is 
essential because a high running cost can result in the system 
being more expensive than the cost reduction from using efficient 
IoT devices. 
 

Index Terms— IoT, Smart City, Database, NoSQL, Time 
Series, AWS, Serverless computing 
 

I. INTRODUCTION 

oT devices have been rising in popularity in recent years. 
Currently, there are estimated 10 – 11 million IoT devices 

[1, 2] in use. Their low cost and high practicality can be 
considered the main reason for this rise in popularity. One of 
the examples can be seen in Smart Cities, where such devices 
can significantly improve the day-to-day experience of their 
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inhabitants. This can range from smart bin management [3] to 
measure the amounts of dangerous oxides in urban areas [4]. 
IoT devices in cities might become necessary to keep up with 
the rise in world population and urbanization. Currently, 55% 
of the population lives in urban areas, and the United Nations 
estimates the rise to be 68% [5, 6]. Both India and China are 
investing heavily to sustain their rising population, with China 
currently funding more than 200 smart city pilots [7] and India 
announced 100 smart cities [8]. Both trends result in large 
amounts of data that must be stored and effectively queried. 
Due to the amount of incoming data, choosing a database 
system that can store them efficiently is necessary to create a 
solution with sustainable storage requirements. Sometimes, it 
may be possible to delete older samples and reduce the storage 
space. However, there may be situations where downsampling 
or entirely deleting old measurements may not be possible – 
for example, due to non–functional legal requirements or 
SLAs [9].  

On the other hand, in many cases, the user may want to get 
aggregated data. An example of this situation is when the user 
wants to display a large segment of data. Loading the raw data 
without aggregating them can result in the user UI taking too 
long to load, which can cause the user to stop using the page 
entirely [10]. A correctly selected aggregation function can 
reduce the number of points with no or acceptable accuracy 
loss [9]. This can create a significant requirement for the 
storage used to handle the data and the API providing access 
to this data. Some database types provide tools to run 
aggregation functions directly in the database, but in other 
cases, the API needs to be able to run the appropriate function 
efficiently. This can be achieved by third-party software like 
Apache Spark [11], or any other distributed map-reduce 
method [12].  

Another concern is the performance of the storage, which 
needs to be able to handle the stream of incoming data and the 
option to distribute the same database between multiple 
network nodes, to reduce the load on each node. This creates a 
problem for relation databases, which must keep all of the data 
stored consistent [13]. NoSQL and NewSQL databases often 
allow the creation of multiple nodes by either not requiring a 
strong consistency (often NoSQL) or by not sharing data 
between the nodes (some NewSQL databases). This depends 
on the selected database system, but attaining both 
simultaneously is impossible due to the CAP theorem [14]. 
The data from smart cities can be classified as time series data, 
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as they are repeated measurements over time, with regular or 
irregular time intervals. Optimizations and special database 
systems currently exist to handle such data, but other database 
types are often preferred for data storage. 

All of those requirements combined can result in situations 
where a custom server can be inefficient from a monetary and 
practical standpoint. Due to this, the solution should be ready 
to run in a cloud or serverless environment. Differences 
between deployment options can restrict us from using some 
database technologies, as many database systems created by 
cloud providers are either only available on their respective 
cloud solutions or behave differently when used locally.  

Logimic is one of the companies attempting to overcome all 
the mentioned obstacles and create a platform that would not 
only allow the efficient storage and querying of the data from 
IoT devices but also allow the user to display and analyze both 
the current state and historical data. Specialized time series 
databases or databases with time series optimizations could 
bring both performance and monetary improvements, thanks 
to the possible reduction in storage requirements or increased 
performance due to specialized queries. Time series 
optimizations are commonly implemented in NoSQL systems 
rather than traditional relational databases.  

The use of such databases could result in the reduction of 
costs, electricity, and resource requirements. In the case of 
cloud installations, systems are often charged for using the 
software as a service (SaaS) model. Due to this, using a more 
efficient database system does not directly translate to cost 
reduction, as software providers often charge for different 
metrics (e.g., amount of data stored, number of queries, 
transferred data). While cities can reduce their electricity 
spending by installing IoT devices (e. g. smart lamp posts), an 
inefficient platform can result in the city paying more than 
before the transition. Due to this, the effectiveness of the smart 
city platform is paramount to its success. 

This paper outlines available database options, the 
practicality of their use for storing the data from IoT devices, 
the performance of the selected database systems, the pros and 
cons of using time series databases, and the monetary 
difference between DynamoDB and InfluxDB.  The proposed 
solution was tested on a real smart city platform developed by 
Logimic and resulted in a 40% savings in running costs, 
increased storage efficiency, and added support for new 
functionality that was not previously supported.  

II. CURRENT SOLUTIONS 

Database systems are typically used to store data efficiently. 
Database systems evolved from older file system databases to 
commonly used relational databases, lately very popular 
NoSQL databases to new NewSQL database systems that 
combine features of both NoSQL and relational databases 
[15].  

Relational databases currently represent the most often used 
solution [16] for effectively and persistently storing data. 
Relational databases use the relational algebra outlined by 
Edgar F. Codd [17] to describe the structure and relations. 
Most of the time, the data is also normalized [18] to increase 

the querying speed and reduce the size of stored data by 
removing duplicates, which is necessary to keep the data 
consistent without propagating the changes manually. 

While relational databases represent an often and easy 
solution to storing traditional data, the scalability and speed of 
modern NoSQL databases proved to be a more than adequate 
alternative in situations, where the performance of relational 
databases isn’t sufficient, or the data need to be distributed 
between multiple nodes. Another key difference is the ability 
of NoSQL databases to store data with loose or no predefined 
structure. This can be beneficial when working with Big Data 
or data with an unknown structure, as can be the case in many 
IoT applications [19, 20]. Due to those limitations, relational 
databases are typically used to store and manage metadata [21] 
or require a use of architecture, allowing the data to be split 
into multiple database instances [22]. One of the most popular 
[16] relational databases, often famed for its performance, is 
PostgreSQL, which was used during testing. 

Key-value databases may be considered the simplest 
NoSQL database type. DynamoDB, developed by Amazon 
and heavily integrated into AWS. The main advantage of key-
value databases is their ability to quickly store elements 
without the need to keep or define the data structure. 
However, they often do not allow querying by non-primary 
fields and do not provide support for native aggregation 
functions. Due to the availability and scalability, the database 
can be used for storing metadata [23] or as the primary data 
storage used [24] to store information about railway tickets. 
DynamoDB is further analyzed since it was previously used 
by Logimic. 

A very similar type to key-value databases are document 
databases. Document databases often allow users to create 
indexes over more fields or support more robust querying 
languages. MongoDB is a good representative of this database 
type. It can be considered the most popular NoSQL database 
[16]. It is often used in smart city systems such as the system 
presented in [25], which uses MongoDB time series mode 
(introduced in version 5) or other Big Data situations [26]. Not 
all document databases support querying languages like 
MongoDB, but they are still considered and used in Smart 
Cities. An example could be CouchDB coupled with Apache 
Spark over a distributed file system [27]. MongoDB was 
further analyzed due to its popularity. 

Not all NoSQL databases can be used for general purposes. 
Some of them are directly specialized for one task only. In this 
case, time series databases are directly optimized for work 
with time series, like the data from IoT sensors. The most 
popular of these databases is InfluxDB [28]. InfluxDB, 
similarly to many time series databases, uses delta encoding 
[29], which significantly reduces the size of numerical series, 
that contain intervals where the parameter value is similar. 
InfluxDB is aimed at both cloud deployments, where it can be 
used as SaaS or local deployment with its Open-Source 
version. It was previously used in Smart City pilot projects 
related to Water quality monitoring [30, 31]. 



III. TESTING METHODOLOGY 

Using time series databases to replace relational and 
document NoSQL databases must first be tested in a 
controlled environment. While data from IoT devices can be 
generally classified as time series data (always dependent on 
time and being stored in rising order), general-use databases 
could handle the data more efficiently. 

A three-step testing methodology was selected. In the first 
step, all of the selected database systems were subjected to 
some everyday situations: insertion of a new value, querying a 
time segment without an aggregation, querying a time segment 
with an aggregation, and querying the last element currently 
stored. These operations represent some of the commonly used 
queries. For example, aggregation and selecting raw data are 
needed when the data needs to be visualized for the user. 
Insertion is needed to store the incoming data. Querying the 
last inserted element can be used in cases where the current 
state of the connected IoT devices needs to be visualized or 
KPIs need to be re-evaluated. 

 A small test file (with a raw size of around 30 MB) was 
selected to filter out database systems that are very slow and 
thus unsuitable. All tests were run 20 times, and individual 
results were averaged. All tests were run on an Intel i5 
7500HQ CPU with 16 GB of RAM. 

The second step used the same scenarios described in the 
previous step but with a more extensive test file (more than 
500 thousand records with a total size of around 350 MB). The 
space required to store the database was also measured to filter 
out databases with large storage requirements. While this 
dataset does not represent the most common structure, it can 
be used to emulate a worst-case scenario, as it contains many 
fields with much larger sample sizes than is typical for IoT 
devices in smart cities. 

In the last step, a different dataset was used, this time more 
representative of the traditional data from smart cities. The 
dataset was created from multiple RHF1S001 sensors obtained 
over a year. The dataset was supplied by Logimic with a total 
size of 163 MB with around 670 thousand items. 

IV. RESULTS 

The results of the first step show the disadvantages of 
DynamoDB and PostgreSQL. The performance of DynamoDB 
suffers due to the lack of a query language and the need to 
query the database repeatedly to get all of the queried items, 
resulting in low performance. On the other hand, DynamoDB 
excelled at querying and inserting a single item. MongoDB 
and InfluxDB fared much better, providing significantly more 
performance than both DynamoDB and PostgreSQL. While 
the speed of inserting a single item is essential due to the 
number of incoming items, computing the average can be a 
more significant obstacle as it directly impacts the user 
experience. The results of the first step are mentioned in 
Figure 1. 

 

 
Figure 1: Results of the first step 

 

This left only two viable database systems-InfluxDB and 
MongoDB. Both of those systems performed adequately. 
Generally, MongoDB performed better when the new time 
series mode was not enabled. The time series mode increased 
the time needed to perform each operation. For example, in 
the case of selecting a 5-minute average, the time needed to 
complete the query changed from 2699 ms to 4338 ms in the 
case of Mongo DB version 5 without and with time series 
mode, respectively. InfluxDB performed less favorably than 
MongoDB, completing the same 5-minute average in 4165 
ms. InfluxDB only proved to be faster in the 5-minute average 
of 60 days. See Figure 2 for more details. 

 

 
Figure 2: Results of the second step 

 

MongoDB, in default document mode, often offered better 
performance than InfluxDB. The MongoDB time series mode 
performed similarly to the previous dataset. MongoDB version 
6 often performed worse than MongoDB version 5. This could 
be due to a different default caching policy between versions. 
The performance of InfluxDB is often similar to or very close 
to MongoDB. The difference is often in the tens of 
milliseconds. In the case of 60-minute average of the last 120 
days this difference was 12 ms between the InfluxDB and 
MongoDB in both versions. 
 

 
Figure 3: Results of the additional benchmark. 

 



Another important metric is the size of the resulting 
database. The total size of the bucket data stored on disc1 was 
selected because the InfluxDB Open-Source version does not 
currently support estimating the database size. Few of the 
available metrics were selected for MongoDB, as many of 
them (mainly the MognoDB 6 Series) differ from the actual 
disc space used. A comparison of the space required to store 
both datasets can be seen in Figure 4 and Figure 5. 
 

 
Figure 4: Size of the 350 MB data set in different databases. 

 

 The combination of performance and storage efficiency 
makes InfluxDB an interesting choice for smart city 
installations. Both MongoDB and InfluxDB show remarkable 
storage efficiency when compared to PostgreSQL. In the case 
of the 350 MB dataset, the total database size was 787 MB in 
the case of PostgreSQL, which is more than double the size of 
uncompressed MongoDB version 5 at 265 MB. InfluxDB was 
able to store the dataset on 69 MB. This reduction highlights 
the advantages of using specialized compression. 
 

 
Figure 5: Size of the temperature data set in different 

databases. 

V. CASE STUDY: LOGIMIC 

The effectiveness of InfluxDB was demonstrated in a case 
study that was done in cooperation with Logimic, where 
InfluxDB replaced the existing DynamoDB database. While 
MongoDB was strongly considered, InfluxDB was chosen in 
the end for the combination of good performance and storage 
efficiency. 

Logimic develops several IoT applications, many of them 
aimed at smart cities. These platforms range from general-use 

 
1 This metric was selected because the InfluxDB Open-Source version 2.1 

does not provide any other metric to measure the bucket size. This size 
corresponds to the total size of /var/lib/influxdb/engine/data on traditional 
Linux distributions. 

smart cities to specific platforms aimed at smart lamp posts, 
temperature sensors used in freezers in vaccination centers, 
water retention, and others. The AWS cloud solution, 
combined with The Things Network, is used for such 
solutions. This architecture was chosen because the company 
mainly uses MQTT-based devices. Data from these devices 
are sent to TTN, decoded from vendor-specific formats to 
more standardized ones, and then sent to AWS, where lambda 
handlers store the incoming data in databases. Logimic used a 
combination of DynamoDB for time series and metadata that 
needs to be accessed quickly and PostgreSQL for relational 
data and sensor metadata. Stored data are then used to evaluate 
any relevant KPIs. KPIs and raw data can be displayed in one 
of the frontend applications developed by Logimic. 

Before the switch from DynamoDB to InfluxDB Logimic 
used a single AWS Lambda function to handle all the 
interaction with statistics stored in DynamoDB. During the 
switch, a new RESTful API was developed to accommodate 
the new database system and multiple new operations offered. 

The switch resulted in a positive change in both 
performance and costs. While the operating costs of 
DynamoDB were constantly rising (due to the increasing 
amount of data that needed to be stored), InfluxDB doesn’t 
display such behavior. The spike at 10. 3. 2022 in Figure 6 
was caused by copying data stored in DynamoDB to 
InfluxDB. DynamoDB currently continues to be used for 
managing configurations and other metadata. The cost of 
InfluxDB and DynamoDB combined was reduced to around 
40% of the cost of DynamoDB in at 1. January 2022. 

 

 
Figure 6: Cost of database systems used by Logimic during 

the transition. 

VI. DISCUSION 

In the final decision, InfluxDB was selected as a storage of 
the incoming data from IoT devices. This choice was a 
compromise between performance and used storage space. 
This choice can be a limiting factor, when compared to 
MongoDB. For example, InfluxDB does not allow mixing 
numerical and string data types in a single field or storing 
nested documents and provides no optimizations for accessing 
the last inserted element. MongoDB is better suited for 
applications where this proves to be a typical operation. While 
accessing the last element can be sped up by keeping the item 
in a different database, likely the same as the one used to keep 
sensor metadata, this creates added complexity. On the other 
hand, InfluxDB provides tools to easily request downsample 



data, such as Telegraf, Tasks, and MQTT plugins. 
The combination of AWS Lambda functions and RESTful 

API can result in a sub-optimal performance caused by cold 
starts. This could be mitigated by reducing the number of 
endpoints. On the other hand, this solution is better from the 
scalability and practical standpoints as it is easier to manage 
due to other aspects like caching and authorization. Cold starts 
can be an obstacle, primarily on systems and endpoints with 
low traffic. In these cases, deploying the application using a 
different solution, like self-hosting a server or deploying a 
docker container instead of serverless functions, may be 
beneficial.  

Logimic currently stores metadata of the sensors in 
PostgreSQL. Moving them to a NoSQL database like 
DynamoDB or MongoDB could be beneficial to improve 
performance. Another solution to this problem may be caching 
or using the CQRS pattern. The current architecture may cause 
the UI to be slow as the sensor device eui needs to be queried 
from the relational database before querying the time series 
data. On the other hand, it may be possible to include the 
relational data directly in the response from InfluxDB thanks 
to InfluxDB’s SQL integration options. 

Both optimizations mentioned above can be explored in the 
future, as they represent a significant performance 
improvement when the number of connected devices and users 
rises. Another point that should be considered is data locality. 
While storing the data on the cloud is a convenient solution, it 
may be beneficial to distribute the data between data centers 
or self-hosted instances. Another possible disadvantage of a 
cloud-based solution may be internet outages in remote 
installations. 

VII. CONCLUSION 

This study outlines the practicality of using time series 
databases, especially InfluxDB, in smart city platforms. This 
approach was first tested in a controlled environment and then 
in a smart city platform developed by Logimic. InfluxDB 
performed similarly to MongoDB, which is often used in 
smart city platforms. Both databases often provide comparable 
performance and outperform traditional relational databases. 
The use of DynamoDB as primary storage is very limited.  

On the other hand, it is an excellent choice for storing 
metadata or as a cache due to its high performance when 
inserting or retrieving a single item. The solution was 
deployed to a smart city platform, which resulted in reduced 
costs and increased performance. This development can aid 
Logimic provide an efficient platform by reducing both 
runtime and storage costs. Coupled with smart devices like 
smart street lightning, the platform can provide a simple and 
convenient way to save electricity by utilizing it only when 
needed. 
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