
Submitted to:
NCMA 2022

© J. Hammer, Z. Křivka
This work is licensed under the
Creative Commons Attribution License.

Practical Aspects of Membership Problem of Watson-Crick
Context-free Grammars

Jan Hammer
Faculty of Information Technology

Brno University of Technology
Czech Republic

xhamme00@stud.fit.vutbr.cz

Zbyněk Křivka
Faculty of Information Technology

Brno University of Technology
Czech Republic

krivka@fit.vutbr.cz

This paper focuses on Watson-Crick languages inspired by DNA computing, their models and al-
gorithms of deciding the language membership. It analyzes a recently introduced algorithm called
WK-CYK and introduces a state space search algorithm which is based on regular Breath-first search
but uses a number of optimizations and heuristics to be efficient in practical use and able to analyze
inputs of greater lengths. The key parts are the heuristics for pruning the state space (detecting dead
ends) and heuristics for choosing the most promising branches to continue the search.

These two algorithms have been tested with 20 different Watson-Crick grammars (40 including
their Chomsky normal form versions). While WK-CYK is able to decide the language membership
in a reasonable time for inputs of length of roughly 30–50 symbols and its performance is very
consistent for all kinds of grammars and inputs, the state space search is usually (89–98 % of cases)
more efficient and able to do the computation for inputs with lengths of hundreds or even thousands
of symbols. Thus, the state space search has a potential to be a good tool for practical Watson-Crick
membership testing and is a good basis to further build on and further improve the efficiency of the
algorithm.

1 Introduction

The ability to read DNA, to understand it or even to modify it, is certainly one of the ways that many
people think will define the future. But in order to work with DNA, there needs to be a mathematical
model that can actually do calculations with such structures and that is prepared to be run on computers.
Moreover, working with this model must be efficient enough because the length of string representation
of genetic code is usually huge.

This works follows the work of M. Zulkufli et al. [7], [9], [8] who have studied models for work-
ing with Watson-Crick languages and introduced the WK-CYK algorithm, a modification of the CYK
algorithm, which works with Watson-Crick context-free grammars and is able to decide the membership
problem for these languages. The stated complexity of this algorithm is O(n6) with respect to the input
length. However, with this complexity the algorithm still does not seem to be useful for practical DNA
computations considering how long DNA code is.

Therefore this paper introduces the state space search algorithm. While its theoretical complexity is
not as good as in case of WK-CYK, it takes a more practical approach. In practice, thanks to various
heuristics, it is very often able to decide the membership in languages defined by Watson-Crick context-
free grammars of inputs far longer then what WK-CYK can handle on today’s computers.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Membership Problem of WK Context-free Grammars

2 Definitions

A number of models working with double-stranded sequences inspired by DNA ([10]) has been pro-
posed. The description here is focused on the Watson-Crick context-free grammars which is the model
that both the algorithms discussed in this paper work with.

2.1 Watson-Crick grammars

The first kind of Watson-Crick grammars (WK grammars) introduced were the WK regular grammars
[11]. The key features are shared with Watson-Crick automata (introduced in [3]). Specifically, it is the
complementarity relation ρ and the double-stranded strings that the grammar produces. The WK regular
grammars have been used as a basis for Watson-Crick linear grammars and Watson-Crick context-free
grammars introduced in [7].

A Watson-Crick context-free grammar is G = (N,T,ρ,P,S) where N is a finite set of non-termi-
nals, T is a finite set of terminals and N ∩ T = /0, S ∈ N is a starting non-terminal, ρ ⊆ T × T is a
symmetric complementarity relation, and P is a finite set of rules that have the form A → α where A ∈ N,
α ∈ (N ∪

(T ∗

T ∗

)
)∗.

(w1
w2

)
denotes simply a pair (w1,w2).

A Watson-Crick domain is a set WKρ(V) which denotes all valid double strands associated with a
given V = N ∪T and ρ . Formally:

WKρ(V) =
[V

V

]∗
ρ

where
[V

V

]
ρ
=
{[a

b

]
|a,b ∈V,(a,b) ∈ ρ

}
This implies that the both strands in a WK domain must have the same length.

The derivation of the grammar G starts with the starting symbol S. For x,y ∈ (N ∪
(T ∗

T ∗

)
)∗ x directly

derives y, denoted by x⇒ y, if and only if x= βAγ ∧ y= βαγ where A∈N ∧α,β ,γ ∈ (N∪
(T ∗

T ∗

)
)∗ ∧A→

α ∈ P. The language generated by the grammar G is: L(G) =
{

w1|S ⇒∗ [w1
w2

]
∈
[T ∗

T ∗

]
ρ

}
where ⇒∗ is a

reflexive and transitive closure of ⇒.
The symbol λ denotes the empty string. A λ -rule is a rule of the form A →

(
λ

λ

)
i.e. a rule that simply

removes the left-hand side non-terminal (while producing the empty string). A double stranded string
(DS-string) is a pair

(T ∗

T ∗

)
. A letter is a non-terminal or a DS-string A∪

(T ∗

T ∗

)
and a Watson-Crick word

(WK-word) is a string of letters
(
A∪

(T ∗

T ∗

))∗ where A ∈ N.

2.2 Expressing power of Watson-Crick models

The comparison of expressing power of WK language families in the context of the Chomsky hierarchy
has been studied in [7] and [9]. The main result is shown at Figure 2.2.

The Chomsky hierarchy is represented on the right (REG, LIN, CF, CS and RE denotes regu-
lar, linear, context-free, context sensitive and recursively enumerable languages, respectively) while the
Watson-Crick languages are on the left. WKREG are languages defined by a non-deterministic Watson-
Crick automata or a Watson-Crick regular grammars ([11] shows that these are equivalent). WKLIN
are languages defined by WK linear grammars and WKCF are languages defined by WK context-free
grammars (it has not been shown, yet, that WK pushdown automata [1] have the same power).

It has been shown in [6] that the type of complementary relation which is used does not increase the
expressing power of the Watson-Crick automata and grammars. Also [2] provides an algorithm how to
transform any WK automaton to an equivalent WK automaton with the relation being identity. Therefore,
many models and algorithms limit themselves to working with identity complementarity relation.

J. Hammer, Z. Křivka 3

3 Remarks on WK-CYK algorithm

Figure 1: Comparison of WK language families in
the context of the Chomsky hierarchy. The full ar-
rows denote proper inclusion, dotted arrows denote
inclusion and dotted lines denote incomparability.

So far, the WK-CYK algorithm introduced in [8]
(from where its detailed description is taken and
attached in appendix A) has been practically the
only algorithm explicitly designed to decide a
membership in Watson-Crick languages defined
by a WK context-free grammars. It is an enhance-
ment of the CYK algorithm [5] modified for WK
context-free languages.

This algorithm works with grammars in
Watson-Crick Chomsky normal form (WK-CNF),
a modification of the Chomsky normal form for
context-free grammars. All rules in WK-CNF
must be in one of the following forms:

• A →
(a

λ

)
• A →

(
λ

a

)
• A → BC

• S →
(

λ

λ

)
(this rule is used only to include

the empty string in the language)

where A, B and C are non-terminals, S is the
starting non-terminal and a is a terminal of the grammar. It is possible to transform any WK context-free
grammar to the WK-CNF grammar as described in detail in [8]. The WK-CYK algorithm is further
analyzed in [4] with the following two remarks worth noting.

1. The loop on the line 9 of the procedure SetsConstruction iterates β from 0 to n. In this context, β

represents the length of the lower strand while α represents the length of the upper strand of a particular
DS-string section and α = y−β where y is the length of the DS-string section. Part of the loop actually
calculates with nonsensical values. When calculating with a section that is shorter then one strand (i.e.
y < n), it includes the case when β > y and so α < 0. In other words, the algorithm splits the section of
length, for instance, 2, to two parts of lengths 3 and -1.

When calculating with a section that is longer than the input, it includes the case where β is too short
and so α is then longer then a strand length. In other words, if the input length is, for instance, 4 and the
section length is 8, it splits the section to lengths 7 and 1 which is not possible with the input length of 4.

This does not affect the correctness of the computation because the nonsensical values find no re-
sult. However, more precise and efficient solution would be to iterate β over the interval: ⟨max(y−
n,0),min(n,y)⟩ instead of interval ⟨0,n⟩.

2. The time complexity of WK-CYK is O(n6). As described in [8] (Section 6), the WK-CYK main
procedure has complexity of O(n4) and the nested procedure ComputeSet has complexity of O(n2). This
is true with respect to the input length. Possibly, more precise description of the complexity would be
O(n6×R) where n is the input length and R is the number of rules in the grammar. The description of the
procedure ComputeSet uses the operation of set union (∪), as if it has constant time complexity which,
in reality, it does not — it requires iterating over the rules of the grammar.

4 Membership Problem of WK Context-free Grammars

4 Testing membership by searching the state space

This section introduces the main algorithm of this paper for testing membership in WK context-free
languages. In the following sections it is referred to as the state space search or the tree search. Its core
is a standard Breadth-first search algorithm (BFS) with various optimizations added on top.

Standard BFS starts with a root node. In case of grammars, that is the starting non-terminal symbol of
the grammar. Then the tree is built by applying all possible rules to all possible non-terminals. Each rule
application generates a new node. The node contains a WK-word which consists of some non-terminals,
some terminals in the upper strand and some terminals in the lower strand.

The BFS algorithm always finds a solution if there is one. It finds the optimal solution which, in this
case, means the shortest sequence of rules that generate the input string from the starting non-terminal.
However, whether the solution is optimal or not is irrelevant for the membership problem. If there is
no solution, the algorithm will probably never stop, as the state tree is usually infinite. Also, such a
tree would grow very rapidly and the solution would usually not be found in a reasonable time frame.
Therefore, some optimizations need to be used. This work introduces two key kinds of optimizations.
Firstly, identifying dead ends in the search tree and removing them from the computation — this is
referred to as pruning. Secondly, choosing such nodes for the subsequent computation which seem to
be the most promising in leading to the solution. This is referred to as node precedence.

4.1 Key characteristics of the state space search

Besides pruning and node precedence heuristics, the algorithm keeps a set of states which have been
generated (added to the tree), in order to avoid analyzing the same WK-word repeatedly or even getting
stuck in a loop. Also, it considers leftmost derivation only. This means that a node which contains several
non-terminals can generate new nodes only by applying rules to the first non-terminal in the WK-word.

Figure 2: Example of a search tree

Figure 2 shows an example of a tree search
progress. The rules of its grammar in this example are
S → SS |ABC, A →

(a
a

)
|
(b

b

)
and some rules B → ...,

C → ... which are not important. S is the starting non-
terminal, therefore, S is the first node and there are two
possible rules that can be applied to S, so this node
has two successors. The node precedence heuristic will
choose one of the successors to be analyzed next —
perhaps the left one with the WK-word ABC. This
node, too, only has two successors, which are made
by the two rules that can be applied to the first non-
terminal — A. Even though there are some rules for B and C, these rules are not used to produce
successors, yet. The nodes created by rules applied on B would be successors of the WK-words

(a
a

)
BC

and
(b

b

)
BC which have the symbol B as the first non-terminal from the left.

In a WK-word of a WK grammar, the terminals are clustered together into DS-strings. If two DS-
strings appear next to each other in a WK-word, they are merged. These DS-strings, as well as non-
terminals, are referred to as letters because together they constitute words. For instance, a three-letter
WK-word:

(abc
λ

)
A
(b

b

)
after application of rule A →

(
λ

a

)
, will result in a WK-word with just one letter:(abcb

ab

)
.

The WK-word in a node that is the solution needs to meet the following criteria:

J. Hammer, Z. Křivka 5

1. It contains no non-terminals. Since neighboring DS-strings are always merged this implies that
there is only one letter — a DS string.

2. The upper and lower strands of the DS-string are of the same length.

3. Each pair of symbols from the upper and lower strands with the same index must be related by the
complementarity relation.

4. The upper strand must be equal to the input string.

If the criteria are met, the algorithm has found the right node and that means the input string is a part
of the language defined by the grammar. It has been accepted by the state space search algorithm. If the
whole state space has been searched (in case it is not infinite), there is no solution and the input has been
rejected by the state space search algorithm.

4.2 Identifying a dead end in the state tree

A blind BFS would stop searching a branch only when all non-terminals have been used to generate all
possible terminal WK-words (WK-words with terminals only). But sometimes it is possible to tell in
advance that a specific WK-word cannot lead to the desired solution. If that is the case, the node can
simply be removed and the whole branch which it would generate is skipped. The next section describes
various ways (heuristics) of recognizing the dead branches. These are referred to as pruning heuristics,
there are five of them and each one has an abbreviation which is used further on.

1. Detecting that one of the strands is already too long — SL

2. Detecting that the overall WK-word is already too long — TL

3. Matching the starting terminals in the upper strand to the input — WS

4. Checking the complementarity relation — RL

5. Comparing the input to a regular expression generated from the WK-word — RE

4.2.1 One of the strands is too long (SL)

A terminal symbol which appears both in the upper or lower strand can never disappear further in the
branch. That means that the count of all symbols in upper and in the lower strand must not be greater
than the length of the input string. Otherwise the solution can never be reached from that branch.

4.2.2 The WK-word including non-terminals is too long (TL)

Non-terminals present a more complex problem when dealing with the length of the WK-word. First of
all, the algorithm calculates in advance how many terminals each non-terminal produces at minimum. For
instance, if the grammar contains rules: A → AA |

(ab
cd

)
|BB and B →

(a
λ

)
, the non-terminal B produces

always one terminal, that means one terminal at minimum. The non-terminal A can produce various
number of terminals, but two at minimum — thanks to the rule A → BB and the fact that B has the
minimum of one. This value is than considered to be the length of the given non-terminal. This length
can be applied both to the upper or to the lower strand because, in general, it is not known which strand
will absorb the symbols generated from the non-terminal. This then leads to the following constraint on
the WK-word:

|upper|+ |lower|+ |nts| ≤ 2×|input|

6 Membership Problem of WK Context-free Grammars

where |upper| and |lower| are the counts of terminals in the upper and lower strands, |nts| is the
length of all non-terminals in the WK-word and |input| is the length of the input string. If this constraint
is broken, the WK-word cannot lead to the solution and the branch can be pruned.

If the grammar contains no λ -rule (rule of the form N →
(

λ

λ

)
), This constraint guarantees that the

algorithm will finish. Once all the WK-words within the given length limit have been generated and a
solution not found, the search will end.

If the grammar does contain λ -rules, the previous constraint can still be applied — the non-terminals
that can be erased are assigned the length of zero. In this case, it is not possible to guarantee that
the search will end, because the non-terminals of length zero can be combined infinitely many times.
However, it is possible to utilize the algorithm for removing λ -rules (which is described in [8]).

4.2.3 The beginning of the WK-word does not match the input (WS)

If a WK-word in a node begins with some terminal symbols in the upper strand, these symbols will
always stay at the beginning further in the given branch. Unlike the other terminals, these starting
terminals already have fixed indexes. If these symbols do not match the prefix of the input string of the
same length, the input string can never be generated from this branch. If, on the other hand, the WK-word
starts with a non-terminal, there is nothing to be said about what can be at the beginning of the WK-word
further in the branch.

It is possible to check the end of the WK-word in the same manner but the generation is performed
from the left to the right and so there is little benefit in checking the end.

4.2.4 Checking the complementarity relation (RL)

As previously described, the symbols in the upper and lower strands with the same indexes must be
related by the complementarity relation. Unfortunately, this can be checked only at the beginning of the
WK-word (Technically, it can be checked at the end as well, while indexes of these symbols are not yet
known, the last terminal symbol will always stay the last. But just like in the case of previous heuristic,
there is little benefit in checking the end when the generation is done from the left side.). Indexes of the
symbols in the middle part (anywhere after the first non-terminal) are not known. Thus this check can be
understood as an extension of the previous one — if the WK-word begins with some terminal symbols
and there are some symbols in both the upper and lower strands, these symbols can be tested whether
they adhere to the complementarity relation. But only to the length of the shorter of the two strands in
this letter.

4.2.5 The input matches a regular expression generated from the WK-word (RE)

It is possible to generate a regular expression that represents the current WK-word. Each non-terminal
serves as a wild card (.*). Each terminal in the upper strand stands for itself. Lower strand is ignored.
This expression must be matchable to the input string, otherwise it is not possible to generate it from the
current branch. For instance, if the WK-word is(abc

f

)
N1

(d
gh

)
N2

(e
i

)
N3

then the resulting regular expression will be: ^abc.*d.*e. The symbols abc must be at the beginning
(therefore the ^ denoting the beginning of the expression is placed at the start); then it is not known what
will be generated by the non-terminal N1 — therefore the wildcard is there next; then there will have to be

J. Hammer, Z. Křivka 7

a symbol d; another wildcard for non-terminal N2; symbol e; and then anything. The regular expression
might end with a wildcard generated from the last non-terminal N3 but that is not necessary. Wildcard
before and after the expression is implicit. A starting non-terminal can be represented by omitting the
symbol ^ which denotes the beginning of the string. An ending non-terminal can be represented by
omitting the symbol $ which denotes the end of the string.

The order in which the pruning heuristics are applied matters. It is good to first apply the heuristics
that are more likely to succeed and that require less computational power. If they are successful, the
more complex heuristic can be skipped.

It is possible to come up with some more checks that could identify a dead end in the search tree.
The disadvantage of any check is the computing power that has to be used for checking any node that is
generated and analyzed. If some checks are unlikely to significantly prune the tree and/or are complicated
to compute, it is not clear if they will improve the actual performance of the algorithm.

4.3 Heuristics for node precedence

The aim of the node precedence heuristics is to choose a path in the search tree, which is likely to lead
to the solution, the more promising nodes are taken before the others and their successors are gener-
ated sooner. The individual heuristic functions attempts to answer the question — which node is more
promising than the rest? It assigns each node a number — an evaluation of the node. The lower the node
evaluation, the higher priority the node has.

Such heuristics can only be effective if the answer of the search is positive — if there actually is a
solution. Unfortunately, if it is negative, it does not help that the algorithm eliminates the more promising
branches of the tree first. Eventually, it will have to search through all possible states anyway, in order to
make sure that there is no solution.

The following node precedence heuristics have been implemented. Each heuristic also has an abbre-
viation that will refer to it further on.

• No heuristic (NONE) — the evaluation of the WK-word is always 0. This is used for comparison
to the other heuristics.

• Aversion to non-terminals (NTA) — the evaluation is equal to the count of non-terminals in the
WK-word

• Weighted aversion to non-terminals (WNTA) — each non-terminal has a pre-calculated weight,
which is the minimum amount of rules that must be used in order to generate a terminal WK-word
from it. The evaluation is equal to the sum of the weights of all non-terminals in the WK-word.

• The terminal matching — there are three variants that differ slightly (TM1, TM2, TM3). Each
of them increases the priority (i.e. decreases the evaluation) for each upper strand non-terminal
(going from left to right) which matches the input string symbol on the same index.

– TM1 examines terminals going from the left while ignoring non-terminals, decreases evalua-
tion (i.e. increases priority) for each match and finishes when it discovers the first difference.

– TM2 is similar to TM1, but when it discovers a difference, it does not finish but increases the
evaluation and moves on

– TM3 evaluates the first item in the WK-word only. If it is a non-terminal, it returns zero.

• Combinations of NTA/WNTA and TM1/TM2/TM3 — There are six combinations because it
does not make sense to combine NTA and WNTA or TM1-3 together: NTA+TM1, NTA+TM2,
NTA+TM3, WNTA+TM1, WNTA+TM2, WNTA+TM3.

8 Membership Problem of WK Context-free Grammars

In summary, there are 12 node precedence heuristics considered in total (including the first, empty
heuristic). Unlike in case of pruning, where all methods can be applied at the same time, there can
be only one node precedence heuristic active at one time. Therefore Section 6 contains the tests and
comparison of the effectiveness of these heuristics.

4.4 Theoretical complexity of the state space search

The state space search algorithm uses Breadth-first search (BFS) as its basis. Both the time and space
complexity of BFS are O(bd) where b is the maximum number of successors of a node (branching factor)
and d is the depth of the tree. The branching factor is then equal to the maximum number of rules of
the given grammar that have the same non-terminal on the left-hand side. This is because always only
the first non-terminal in the WK-word is used to generate successors in the tree. The depth of the tree is
going to be different for different grammars and even for different inputs.

In general, the theoretical complexity of the state space search algorithm is not impressive, it is much
worse then WK-CYK’s O(n6) or O(n6 ×R). However, this is because it has been designed with a rather
practical approach, it relies heavily on the heuristics and optimizations so its performance is usually
much better.

5 Remarks on the implementation of the state space search

Regarding the current implementation of the state space search, the authors have used Python program-
ming language to keep the implementation simple. Ext, we emphasize several implementation aspects.

Pruning and node precedence should be flexible An important feature of the state space search is the
possibility to choose and switch node precedence functions and to turn on and off the pruning functions.
Therefore a suitable structure should be used. For the node precedence, a list of node precedence methods
and an index of the currently active one works well. The function that calculates the node precedence
simply calls the right method from the list on the current index. Switching the node precedence then
simply means changing the index. The pruning methods can have a dictionary with pruning functions
as keys and Boolean values that specify whether the given pruning is active. Then, the pruning function
iterates over this dictionary and calls all active pruning sub-functions.

Rules should be quickly accessible It is ineffective to store rules in a list. A usual use case is finding
all rules that have a specific non-terminal on the left-hand side. Therefore, a dictionary with a non-
terminal as a key and list of rules as a value is suitable. Similarly, if the grammar should have a more
complex complementarity relation, it may be suitable to create a dictionary with a terminal symbol as a
key and all related terminal symbols (in a list or a string) as a value.

Priority queue A suitable way to implement the queue of the open nodes of the BFS tree is a priority
queue (python PriorityQueue from the standard queue module). Every time a node is created, its node
precedence evaluation is calculated by the active function (lower result means higher priority).

Set of generated nodes It is important to keep track of all the nodes that have already been generated.
It is not necessary to remember the nodes themselves, their hash code is enough (unless the search should
reveal the path to the solution, if it is found). The hashes are not only smaller but also much faster to test

J. Hammer, Z. Křivka 9

for equality. Every time a node is to be added to the queue, it is first checked whether its hash is in the
set of all generated nodes hash codes. In negative case, the node is added to both, the priority queue and
this set.

The length of rules and non-terminals One of the most important pruning heuristics (TL) works with
lengths of non-terminals. This is the minimum amount of terminal symbols that can be generated from
a non-terminal. This should be calculated in advance for the whole grammar. Also, the length of rules
should be calculated in advance. The length of a rule indicates, how the length of a WK-word changes
after the rule is applied. The length of a rule is equal to the length of its right-hand side (number of all
terminal symbols plus length of all non-terminals) minus the length of the left-hand side non-terminal.
If this is pre-calculated, the length of new WK-words can be calculated as the length of its predecessor
plus the length of the rule being applied.

Pre-calculating non-terminal distances The WNTA node precedence works with distances of non-
terminals. This is a minimal number of rules that need to be used before the non-terminal is transformed
to a terminal string. This also can be pre-calculated in advance.

6 Testing the state space search and the WK-CYK algorithm

The state space search and the WK-CYK algorithms have been tested using 20 WK-context-free gram-
mars (see appendix). The grammars are used both in their basic form and after transformation to the
WK-CNF which effectively leads to 40 grammars. The testing has been done in the following stages:

1. comparison of the node precedence heuristics and analysis of their efficiency

2. comparison of the pruning heuristics and analysis of their efficiency

3. analysis of the time complexity based on the length of the input string

4. testing the WK-CYK algorithm with various grammars and comparison to the state space search

Throughout all these tests it is important to keep in mind the following caveats. The generation
of input strings contains random elements. They are generated in a way that can specify whether they
should be accepted by the grammar or not and that specify the input length but other than that, the inputs
are generally random. In case of some grammars, the specific input generated may have some impact on
the complexity of the search. And even with the same input, the search times has some volatility. This is
because it is not specified in what order the successors of a node should be generated (i.e. in what order
the rules of the grammar should be applied). In most cases, these differences are negligible.

6.1 Comparison of the node precedence heuristics efficiency

In Section 4.3, 12 node precedence heuristics have been described and only one of them can be active at
a time. In order to test their effectiveness one test has been run for all 40 grammars. It is not useful to
test the node precedence heuristics with inputs that are not within the given language as in such cases,
the whole space state needs to be searched and node precedence cannot help in any way. The input
strings have been chosen to have suitable lengths, so that the computation is finished (at least with some
heuristics) in a reasonable time, specifically within the time limit of ten seconds but the search also should

10 Membership Problem of WK Context-free Grammars

last some measurable amount of time. Each of the 40 tests consists of 12 runs, each with a different node
precedence heuristic active.

There are three metrics to observe:

• How many times the search timed out because of 10-second limit?

• What is the total time in which all 40 tests were completed for each of the heuristics. There should
be a kind of penalty involved if the test times out because the time needed for the computation is,
in that case, certainly greater then the time it actually ran before it was stopped by the time limit.
Therefore, for the sake of the comparison, the time of the search is in this case doubled.

• The total time normalized for each test — all the times are multiplied by a number n = 1/tmin

where tmin is the time of the fastest heuristic for the given test. This is probably the most telling
metric as each test has roughly the same impact on the final number.

It is interesting to notice how different heuristics are better in different test cases. This is illustrated
by selected test cases which are on Figure 3. There are some cases where the best heuristic is the empty
one which assigns zero to each node, like in the case of test 23. This is because this heuristic is the
simplest one to compute and if no heuristic is effective in a particular test case, this one wins. But
since it does not win by a large margin, these cases do not have a decisive impact on the overall result.
There was only one timeout of heuristic TM2 and the empty heuristic. The significant result differences
indicate that the state space search can be customized to fit a specific grammar and thus further improve
its performance.

In some cases, a certain heuristics do not work so well, but their combination does. This can be
seen in test 22 — NTA and WNTA have poor result, comparable to no heuristic. TM1, TM2, TM3 have
somewhat better result, but by far the best result is achieved by combination of NTA with any version of
TM.

Figure 3: Selected comparisons of node precedence heuristics

J. Hammer, Z. Křivka 11

Figure 4 shows the total result for all of 40 tests. The left bar of each heuristic shows the total
time for all 40 tests and the right bar shows the normalized time. It turns out that the best results are
achieved by the combination NTA+TM1. The best time overall was achieved by TM3 by very narrow
margin. The normalized results of all NTA+TM1, NTA+TM2 and NTA+TM3 heuristics are very close
but the narrow winner is NTA+TM1. Even if, in some cases, there are some faster heuristics, it is usually
close. Interestingly, even though TM2 turns out to have the worst results of them all, often worse than no
heuristic, with the combination of NTA the results are among the best. Anyway, for all of the following
tests, the winning node precedence heuristic NTA+TM1 will be used.

Figure 4: Comparison of the node precedence heuristic functions

6.2 Comparison of the pruning heuristics efficiency

Pruning has the advantage of being useful whether the input string is going to be accepted or rejected by
the tree search. Also, all of the pruning can be active at the same time. Each node can be tested by all
available checks to see whether it can be pruned or not.

The testing is performed over 80 tests — each of the 40 grammars is used for a positive test (where
the input will be accepted) and a negative test (the input will be rejected). Each test contains seven runs
of the tree search algorithm — one where all pruning heuristics are active, one where all are inactive, and
one for each heuristic where all are active except the given one.

Similarly to the node precedence heuristics comparison, the metrics that are important are the total
time needed to compute the 80 tests and a number of timeouts for each of the seven cases. The main goal
here is not to compare the heuristics to each other and find which one is the best — as they can be active
at the same time, it does not matter that much. Rather, the goal is to decide whether each of the pruning
heuristics improves the performance or if it is better to turn some off. Therefore the comparison between
the case where all heuristics are active and the case where a specific heuristic is inactive and the rest are

12 Membership Problem of WK Context-free Grammars

active is important. If the latter case is faster, the given heuristic cost (in terms of a computing power) is
greater than its contribution.

The summary of results is displayed Figure 5 which shows the amount of time for each of the seven
cases across 80 tests. The graph shows the sum of the measured times and also highlights penalties for
timeouts. The smaller the individual bars are, the better the result. But in case of the bars representing a
specific pruning heuristic being turned off, the bigger the bar, the more important the given heuristic is
because the result is that much worse without it.

Figure 5: The total time of all pruning tests

From these results it is clear that the tree pruning is the key feature of the tree search algorithm.
After turning off the pruning, the results are quite poor — 67 out of 80 tests timed out. The total time is
then not relevant at all. The middle bars, which represent the individual pruning heuristics being turned
off, need to be compared to the first one, where all heuristics are active, to see how important the given
heuristic actually is. Thus, Figure 5 suggests that the RL (complementarity relation) check is the most
important one because turning it off had the biggest impact on the result. This can be a bit misleading, as
some heuristics can be sometimes backed up by another one. This is the reason why the WS (match of
leftmost terminals to the input string) seem to have a rather small impact. If this heuristic is turned off,
the dead branch can be identified by the RE (regular expression) check and so the impact is not so big.
Similarly, turning off the SL (strands length) heuristic has smaller impact because it is backed up by TL
(total length) heuristic.

Nevertheless, all heuristics are useful according to this result because no other result is as good as in
the first case where all the heuristics are active. This finding is especially important in the case of the RE
heuristic. This one is quite demanding with regards to computational power — regular expression match
is performed each time this check is executed. It is the reason why it is the last check that is used, if
there is another heuristic able to prune the node, a lot of computational power is saved. However, Figure
5 shows clearly that RE heuristic contributes significantly to the overall performance. Still, some tests
cannot benefit from all heuristics and turning some off would improve the results. This, again, means that
there is some space for improving the performance by customizing the algorithm to specific grammars.

J. Hammer, Z. Křivka 13

6.3 The time complexity of the state space search

The previous sections showed that the best overall performance is achieved when using all of the tree
pruning heuristics and using the NTA+TM1 as the node precedence heuristic. This may not be the case
for every grammar or every input, but it is the case overall. Therefore, this will be the setting used in
the sections that follow — testing the tree search performance, analyzing the practical complexity and
comparison to the WK-CYK algorithm.

In order to test the complexity of the tree search, 80 test have been run, two for each of the 40
grammars — one with inputs that are going to be accepted by the tree search and one with inputs which
will be refused. Each test runs the tree search several times and increases the input length. It stops when
the computation takes longer than a limit of ten seconds or after 30 runs.

The performance for different grammars is quite different. In case of 11 of the 20 grammars (specif-
ically, grammars 2, 5–10, 12-14, 19), the resulting graph is a very regular parabola. Often a bit steeper
when transformed to the WK-CNF and often steeper when the inputs are going to be rejected. An ex-
ample is on Figure 6. The performance with these grammars allows at least hundreds, in most cases
thousands, of symbols on the input.

Figure 6: Grammar 12: rndnunrn

Occasionally, thanks to the pruning heuristics, the algorithm is able to tell practically immediately
that there is no solution. This is the case of grammar 3 (Figure 7) and grammar 4 (Figure 8) in basic
forms, making the complexity of this particular search constant. The grammar 3 has as the first rule,
which it has to use to proceed further, S → A

(abc
abc

)
. If the input string does not end with abc, the regular

expression check immediately detects that the input cannot be matched, it prunes the only branch and the
search is finished.

Similarly, in the case of grammar 4, any inputs that are longer than seven symbols need to end with
the symbol a and can be reached only by using S → Q

(a
a

)
as the first rule. The regular expression check

immediately prunes this branch. The rest of the tree is searched very quickly because the only other
possible starting rule is S → ABCDEFG, there are not many states that can be reached from it, so this
part of the tree is always small.

After conversion of the grammar to the WK-CNF, the complexity usually goes up. The transforma-
tion adds a lot more rules and so the state space expands more rapidly, there are also longer paths from
the starting non-terminal to the final string (containing only terminals) making the tree deeper. Also, the
node precedence heuristics and the pruning have harder time because many rules contain non-terminals
only and most of the heuristics work with terminals. The most extreme case is the grammar 3 8 where the
tree search is very effective for grammar in basic form (as discussed, in case of rejecting inputs the result
is immediate) but has very bad effectiveness for this grammar in the WK-CNF. The maximum length of

14 Membership Problem of WK Context-free Grammars

Figure 7: Grammar 3: (a+b+ c)∗abc with left recursive rules

Figure 8: Grammar 4: (a+b+ c)∗abc with right recursive rules

input it can answer within 10 second is about 13–14 symbols.
The worst results for grammar in the basic form are in the case of grammar 17 9. Here, the tree

search can handle only inputs with length of about 20 symbols within 10 seconds.

Figure 9: Grammar 17: w : |w|a = |w|b and for any prefix v of w: v : |v|a ≥ |v|b where |x|a denotes the
number of occurrences of symbol a in the string x

Some grammars manifest an interesting behavior — for some longer inputs the performance is actu-
ally better. This is the case of grammars 11 (Figure 10 on the left), 16 (Figure 11 on the middle right) and
18 (Figure 12 on the middle left and middle right). Some of these results may appear to be partly random,
simply the input generator might sometimes generate an input which is more complex and sometimes
less complex to compute. This is the case of the grammar 18, here, in fact, the shape of the randomly
generated input has a significant impact on the performance which is the reason for the irregular curves.

J. Hammer, Z. Křivka 15

However, repeated tests of the other two grammars confirmed that this happens always and the figure of
grammar 16 has a clear pattern, it is certainly not random.

Figure 10: Grammar 11: (ww)C

Figure 11: Grammar 16: anbman where 2n ≤ m ≤ 3n

Figure 12: Grammar 18: (lnrn)k where n does not increase for subsequent ks

The results of the three grammars which have not been yet mentioned, grammars 1, 15 and 20, are
mostly similar to the standard parabola of the majority of tests with some irregularities.

6.4 Testing the efficiency of WK-CYK

The WK-CYK algorithm has been tested in a similar manner as the tree search. This time not all gram-
mars can be used due to the limitations of WK-CYK. The grammars must be in the WK-CNF and

16 Membership Problem of WK Context-free Grammars

grammars 5, 19 and 20 cannot be used at all, since WK-CYK requires the complementarity relation to be
identity which is not the case of these three grammars. Therefore there are 17 grammars that can be used
— each is used for two tests, one with inputs that should be accepted and one with inputs that should be
rejected. Again, each test increases the input string length until the computation lasts more that the limit
of 10 seconds.

It turns out that the WK-CYK gives very similar performance in all tests — for all the grammars and
regardless whether the input is accepted or not. Figure 13 on the left shows a result for the first test which
is very similar to all the others. The limit of ten seconds is reached by WK-CYK when the input has
about 33 symbols. The graph also includes a regression curve x6/108. These results confirm the claim
made by the authors of WK-CYK that the complexity with regards to the input length is O(n6).

Figure 13: WK-CYK test results compared to the regression curve x6/108

When the results of the WK-CYK and state space search are compared, the advantage of state space
search is the actual speed in most cases. The results in the previous sections showed that of all the
grammars only one (grammar 17) was slower in the basic form when analyzed by tree search then when
analyzed by WK-CYK. After transformation to WK-CNF two more grammars (grammar 3 and 11) were
comparable or slower when analyzed by the tree search. Grammar 1 was slower for the negative inputs.

6.5 Conclusion and possibilities for improvements

It has been concluded in the previous section that the WK-CYK algorithm is able to compute within the
time limit of ten seconds results for inputs of length of approximately 33 symbols. I assume that this
will always be the case even for grammars that would have to be modified in order to be suitable for
WK-CYK (grammars 5, 19 and 20). If these results are compared with the results of state space search
over grammars in basic forms, only one of them is more efficient with WK-CYK. Other 19 are more
efficient with the state space search allowing hundreds of input symbols at minimum. That means that
state space search was more efficient in 38 out of 40 test cases (each grammar is tested with accepted
and rejected inputs) i.e. in 97.5 % of cases. In this comparison the state space search benefits from being
able to work with any WK grammar — there is no need to transform it to the WK-CNF.

If the state space search is compared to WK-CYK over all 40 grammars, WK-CYK has better effi-
ciency in case of grammars 3 and 11 (in the WK-CNF) and with the rejected inputs for grammar 1. That
is 9 test cases out of 80 (four test cases of grammar 17, two of grammars 3 and 11, one of grammar 1)
i.e. in 88,75 % of cases. However, this comparison assumes that there is a need to use the grammars in
the CNF.

J. Hammer, Z. Křivka 17

These results show some advantages and disadvantages of the two algorithms. An advantage of state
space search is the flexibility regarding the grammars. It does not require to work with grammars in the
WK-CNF. Also, it does not require the complementarity relation to be identity. Even though it is always
possible to transform any WK grammar to the WK-CNF and it is always possible to further transform
the grammar in order to use only the identity as the relation, this can significantly add to the grammar’s
complexity.

A useful feature of the state space search is the fact that it can be configured for the need of a specific
grammar. If the membership test will be performed repeatedly on a grammar, it is possible to find
out what node precedence heuristic works best and what pruning heuristics are useful in that particular
scenario by running tests analogous to those presented in Section 6.1. Thus the performance may be
further enhanced.

An advantage of WK-CYK, on the other hand, is its universality. It has roughly the same speed every
time, it does not significantly depend on the grammar (increasing number of rules adds a little bit) and it
does not matter, if the input is going to be accepted or not. For very complicated grammars, especially
with lots of rules or long derivations from the starting symbol to the final string, WK-CYK still might be
more practical.

The state space search is a suitable algorithm for parallelization. Several processes can take nodes
from the queue of open nodes and analyze different branches of the tree independently. This would be
a natural next step in the further development of the state space search. It is possible to come up with
other heuristics for both the pruning and node precedence. As for pruning, one possibility would be to
expand the regular expression matching (RE) heuristic also to consider the lower strand. Another idea for
pruning is to calculate how many terminals can be generated at minimum to the lower strand and to the
upper strand individually (currently, it is calculated how many terminals a non-terminal produces to both
strands) thus making the constraint of the WK-words stronger. As for the node precedence heuristics, it
may be worthwhile to use some of the grammars with which state space search is not efficient (in par-
ticular grammars 3 in the WK-CNF and grammar 17) and design or improve node precedence heuristics
with respect to these particular cases. Then it would be necessary to test all these new heuristics and see
if they contribute to the overall performance or not. Another promising improvement could be analyzing
the input from both sides at the same time. This could help with the cases, when the key part of the input
is at or near its end and the state space search may struggle to get there in a reasonable time frame.

References

[1] Kingshuk Chatterjee & Kumar S Ray (2017): Watson-crick pushdown automata. Kybernetika 53(5), pp.
868–876.

[2] Elena Czeizler & Eugen Czeizler (2006): A Short Survey on Watson-Crick Automata. Bull. EATCS 88.

[3] Rudolf Freund, Gheorghe Paun, Grzegorz Rozenberg & Arto Salomaa (1997): Watson-Crick finite automata.
In Harvey Rubin & David Harlan Wood, editors: DNA Based Computers, Proceedings of a DIMACS Work-
shop, Philadelphia, Pennsylvania, USA, June 23-25, 1997, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 48, DIMACS/AMS, pp. 297–328.

[4] Jan Hammer (2022): Watson-Crick models for formal language processing. Master’s thesis, Brno University
of Technology, Faculty of Information Technology.

[5] John E. Hopcroft, Rajeev Motwani & Jeffrey D. Ullman (2001): Introduction to automata theory, languages,
and computation, 2nd edition. SIGACT news 32(1), pp. 60–65.

18 Membership Problem of WK Context-free Grammars

[6] Dietrich Kuske & Peter Weigel (2004): The Role of the Complementarity Relation in Watson-Crick Automata
and Sticker Systems. In: Developments in Language Theory, Lecture Notes in Computer Science, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 272–283.

[7] Nurul Liyana Mohamad Zulkufli, Sherzod Turaev, Mohd Izzuddin Mohd Tamrin & Azeddine Messikh
(2016): Generative Power and Closure Properties of Watson-Crick Grammars. Applied computational intel-
ligence and soft computing 2016, pp. 1–12.

[8] Nurul Liyana Mohamad Zulkufli, Sherzod Turaev, Mohd Izzuddin Mohd Tamrin & Azeddine Messikh
(2018): Watson–Crick Context-Free Grammars: Grammar Simplifications and a Parsing Algorithm. The
Computer Journal 61(9), pp. 1361–1373, doi:10.1093/comjnl/bxx128.

[9] Nurul Liyana Mohamad Zulkufli, Sherzod Turaev, Mohd Izzuddin Mohd Tamrin & Azeddine Messikh
(2017): The Computational Power of Watson-Crick Grammars: Revisited. In: Bio-inspired Computing –
Theories and Applications, Communications in Computer and Information Science 681, Springer Singapore,
Singapore, pp. 215–225.

[10] Gheorghe Păun, Grzegorz Rozenberg & Arto Salomaa (1998): DNA Computing: New Computing Paradigms.
Texts in Theoretical Computer Science. An EATCS Series, Springer Berlin Heidelberg, Berlin, Heidelberg.

[11] K. G. Subramanian, S. Hemalatha & Ibrahim Venkat (2012): On Watson-Crick Automata. In: Pro-
ceedings of the Second International Conference on Computational Science, Engineering and Informa-
tion Technology, CCSEIT ’12, Association for Computing Machinery, New York, NY, USA, p. 151–156,
doi:10.1145/2393216.2393242.

http://dx.doi.org/10.1093/comjnl/bxx128
http://dx.doi.org/10.1145/2393216.2393242

J. Hammer, Z. Křivka 19

A The WK-CYK algorithm

Listing 1: Procedure SetsConstruction of WK-CYK
1 p r o c e d u r e S e t s C o n s t r u c t i o n :
2 I n p u t : s t r i n g [w/w] = [x11x12...x1n/x21x22...x2n]
3
4 f o r 1 ≤ i ≤ n do
5 Xi:i,0:0 = {A : A → (x1i/λ)}
6 X0:0,i:i = {A : A → (λ/x2i)}
7
8 f o r 2 ≤ y ≤ 2n do
9 f o r 0 ≤ β ≤ n do

10 α = y−β

11 i f α = 0 t h e n
12 i = j = 0
13 f o r 1 ≤ k ≤ n− y+1 do
14 l = k + y − 1
15 ComputeSet Xi: j,k:l
16 e l s e i f β = 0 t h e n
17 k = l = 0
18 f o r 1 ≤ i ≤ n− y+1 do
19 j = i + y − 1
20 ComputeSet Xi: j,k:l
21 e l s e
22 f o r 1 ≤ i ≤ n−α +1 do
23 f o r 1 ≤ k ≤ n−β +1 do
24 j = i + α − 1
25 l = k + β − 1
26 ComputeSet Xi: j,k:l
27
28 w ∈ L (G) i f f S ∈ X1:n,1:n

Listing 2: Procedure ComputeSet of WK-CYK
1 p r o c e d u r e ComputeSet :
2
3 i f i = j = 0 t h e n
4 X0:0,k:l =

{⋃
t∈[k,l−1] X0:0,k:tX0:0,t+1:l

}
5 e l s e i f k = l = 0 t h e n
6 Xi: j,0:0 =

{⋃
s∈[i, j−1] Xi:s,0:0Xs+1: j,0:0

}
7 e l s e
8 Xi: j,k:l =

{
Xi: j,0:0X0:0,k:l ∪X0:0,k:lXi: j,0:0

}
∪

9
⋃

s∈[i, j−1],t∈[k,l−1]
{

Xi:s,k:tXs+1: j,t+1:l
}
∪

10
⋃

s∈[i, j−1]
{

Xi:s,k:lXs+1: j,0:0 ∪Xi:s,0:0Xs+1: j,k:l
}
∪

11
⋃

t∈[k,l−1]
{

Xi: j,k:tX0:0,t+1:l ∪X0:0,k:tXi: j,t+1:l
}

20 Membership Problem of WK Context-free Grammars

B Grammars used for testing

For the testing of the tree search algorithm and the WK-CYK algorithm, the following Watson-Crick
grammars have been used. Unless stated otherwise, the set of non-terminals and the set of terminals is
defined simply by the symbols that appear in the rules—all the uppercase letters are non-terminals of the
grammar and all the lowercase letters and digits are terminals. The starting non-terminal is S and the
complementarity relation is identity. With these specifications in mind the grammar can be defined by
the rules only.

1.
S →

(a
a

)
|SSS

The accepted language is: a(aa)∗

2.
S →

(a
a

)
S |

(b
b

)
S |

(c
c

)
S |

(abc
abc

)
The accepted language is: (a+b+ c)∗abc
The aim of this example is to test inputs with the decisive part on the very end. This could prove
difficult since the tree search expands the non-terminals from left to right.

3.
S → A

(abc
abc

)
A → A

(a
a

)
|A

(b
b

)
|A

(c
c

)
|
(

λ

λ

)
The accepted language is: (a+b+ c)∗abc
The aim of this example is, again, to test inputs with the decisive part on the very end while, at the
same time, the rules are left recursive.

4.
S → Q

(a
a

)
|ABCDEFG

Q → QQ |ABCDEFG

A →
(a

a

)
|
(

λ

λ

)
B →

(b
b

)
|
(

λ

λ

)
C →

(c
c

)
|
(

λ

λ

)
D →

(d
d

)
|
(

λ

λ

)
E →

(e
e

)
|
(

λ

λ

)
F →

(f
f

)
|
(

λ

λ

)
G →

(g
g

)
|
(

λ

λ

)
The accepted language is: a?b?c?d?e? f ?g?+(a?b?c?d?e? f ?g?)∗a (x? denotes that the symbol x
is optional, i.e. (x+λ))
The problematic feature of this grammar may be the fact, that during the transformation of this
grammar to the WK-CNF (more specifically, when removing the λ -rules) the number of rules
increases rapidly.

J. Hammer, Z. Křivka 21

5.
S →

(a
t

)
S |

(t
a

)
S |

(g
c

)
S |

(c
g

)
A

A →
(c

g

)
A |

(a
t

)
S |

(g
c

)
S |

(t
a

)
B

B →
(c

g

)
A |

(a
t

)
S |

(t
a

)
S |

(g
c

)
C

C →
(a

t

)
C |

(t
a

)
C |

(g
c

)
C |

(c
g

)
C |

(
λ

λ

)
The terminals in this grammar refer to the actual nucleobases in the DNA and the complementarity
relation mirrors the relations among them: ρ = {(a, t),(t,a),(c,g),(g,c)}
The accepted language is: ({a, t,c,g}∗ctg{a, t,c,g}∗)∗

This grammar is taken from [7] and is a first step towards an actual analysis of the DNA. In this
case, it simply looks for the substring ctg.

6.
S →

(a
λ

)
S |

(a
λ

)
A

A →
(b

a

)
A |

(b
a

)
B

B →
(

λ

b

)
B |

(
λ

b

)
The accepted language is: anbn where n ≥ 1 (symbol xn denotes n occurrences of the symbol x)

The grammar is taken from [11].

7.
S →

(a
a

)
S
(a

a

)
|
(b

b

)
S
(b

b

)
|
(c

c

)
The accepted language is: wcwR where w ∈ {a,b}∗(wR is the reversal of the string w)

8.
S →

(a
a

)
S
(a

a

)
|
(b

b

)
S
(b

b

)
|
(

λ

λ

)
The accepted language is: wwR where w ∈ {a,b}∗

9.
S → BL |RB

L → BL |A

R → RB |A

A → BAB |
(2

2

)
B →

(0
0

)
|
(1

1

)
The accepted language is: x2y : x,y ∈ {0,1}∗∧ |x| ̸= |y|
The grammar is taken from 1.

1Emanuele Viola (2016): Context-Free Languages. https://www.ccs.neu.edu/home/viola/classes/slides/

slides-context-free.pdf. Accessed: 2022-10-05.

https://www.ccs.neu.edu/home/viola/classes/ slides/slides-context-free.pdf
https://www.ccs.neu.edu/home/viola/classes/ slides/slides-context-free.pdf

22 Membership Problem of WK Context-free Grammars

10.
S → T |T

(p
p

)
S

T → F |FT

F →
(e

e

)
|W |

(o
o

)
T
(p

p

)
S
(c

c

)
|X

(s
s

)
|
(o

o

)
Y
(c

c

)(s
s

)
X →

(e
e

)
|
(l

l

)
|
(0

0

)
|
(1

1

)
Y → T

(p
p

)
S |F

(d
d

)
T |X

(s
s

)
|
(o

o

)
Y
(c

c

)(s
s

)
|ZZ

W →
(l

l

)
|Z

Z →
(0

0

)
|
(1

1

)
|ZZ

The accepted language includes regular expressions over symbols 0 and 1 with parentheses (o for
opening and c for closing parenthesis), operators + (p), ∗ (s), · (d) and symbols /0 (e), ε (l)
The grammar is taken from 2.

11.
S → A |B |AB |BA

A →
(a

a

)
|
(a

a

)
A
(a

a

)
|
(a

a

)
A
(b

b

)
|
(b

b

)
A
(b

b

)
|
(b

b

)
A
(a

a

)
B →

(b
b

)
|
(a

a

)
B
(a

a

)
|
(a

a

)
B
(b

b

)
|
(b

b

)
B
(b

b

)
|
(b

b

)
B
(a

a

)
The accepted language is: {a,b}∗ \ww where w ∈ {a,b}∗ — i.e. the complement of the copy
language.

12.
S →

(r
λ

)
S |

(r
λ

)
A

A →
(d

r

)
A |

(d
r

)
B

B →
(u

d

)
B |

(u
d

)
C

C →
(r

u

)
C |

(r
u

)
D

D →
(

λ

r

)
D |

(
λ

r

)
The accepted language is: rndnunrn where n ≥ 1
The grammar is taken from [11].

13.
S →

(a
λ

)
S
(b

λ

)
|
(a

λ

)
A
(b

λ

)
A →

(c
a

)
A |

(
λ

c

)
B
(

λ

b

)
B →

(
λ

c

)
B
(

λ

b

)
|
(

λ

λ

)
The accepted language is: ancnbn where n ≥ 1
The grammar is taken from [7].

2Jeff Erickson (2018): Context-Free Languages and Grammars. https://jeffe.cs.illinois.edu/teaching/

algorithms/models/05-context-free.pdf. Accessed: 2022-10-05.

https://jeffe.cs.illinois.edu/ teaching/algorithms/models/05-context-free.pdf
https://jeffe.cs.illinois.edu/ teaching/algorithms/models/05-context-free.pdf

J. Hammer, Z. Křivka 23

14.
S →

(a
λ

)
S |

(a
λ

)
A

A →
(b

λ

)
A |

(b
λ

)
B

B →
(c

a

)
B |

(c
a

)
C

C →
(d

b

)
C |

(d
b

)
D

D →
(

λ

c

)
D |

(
λ

d

)
D |

(
λ

λ

)
The accepted language is: anbmcndm where n,m ≥ 1
The grammar is taken from [7].

15.
S →

(a
λ

)
S |

(b
λ

)
S |

(c
λ

)
A

A →
(a

a

)
A |

(b
b

)
A |

(
λ

c

)
B

B →
(

λ

a

)
B |

(
λ

b

)
B |

(
λ

λ

)
The accepted language is: wcw where w ∈ {a,b}∗

The grammar is taken from [7].

16.
S →

(a
λ

)
S
(a

a

)
|
(a

λ

)
A
(a

a

)
A →

(bb
a

)
A |

(bbb
a

)
A |

(
λ

b

)
B

B →
(

λ

b

)
B |

(
λ

λ

)
The accepted language is: anbman where 2n ≤ m ≤ 3n
The grammar is taken from [7].

17.
S → SS |

(a
a

)
S
(b

b

)
|
(a

λ

)
S |

(a
λ

)
A

A →
(b

a

)
A |

(b
a

)
B |

(b
a

)
B →

(
λ

b

)
B |

(
λ

b

)
|BB |

(a
a

)
S
(b

b

)
|
(a

λ

)
S |

(a
λ

)
A

The accepted language is: w : |w|a = |w|b and for any prefix v of w: v : |v|a ≥ |v|b where |x|a
denotes the number of occurrences of symbol a in the string x
The grammar is taken from [8].

18.
S →

(l
λ

)
S |

(l
λ

)
A

A →
(r

l

)
A |

(r
l

)
B

B →
(l

r

)
B |

(
λ

r

)
B |

(
λ

λ

)
|A

The accepted language is: (lnrn)k where n does not increase for subsequent k. For instance:
lllrrrlrlr is within the language, llrrlllrrr is not.
The grammar is taken from [7] (where it is stated that the language of this grammar is (lnrn)k for
n,k ≥ 1 which is not correct). The original symbols for opening and closing parenthesis have been
replaced by letters l (left parenthesis) and r (right parenthesis).

24 Membership Problem of WK Context-free Grammars

19. The grammar is identical to the grammar 13 with a difference in the complementarity relation.
The relations between symbols a,b and symbols a,c are added. This means that the relation is:
ρ = {(a,a),(b,b),(c,c),(a,b),(b,a),(a,c),(c,a)}
The accepted language is: anbmcn where n,m ≥ 1

20. The grammar is identical to the grammar 14 with a difference in the complementarity relation. The
relation between symbols a,b is added making the relation ρ = {(a,a),(b,b),(c,c),(d,d),(a,b),(b,a)}
The accepted language is: ambncodp where m,n,o, p ≥ 1∧m+n = o+ p

	Introduction
	Definitions
	Watson-Crick grammars
	Expressing power of Watson-Crick models

	Remarks on WK-CYK algorithm
	Testing membership by searching the state space
	Key characteristics of the state space search
	Identifying a dead end in the state tree
	One of the strands is too long (SL)
	The WK-word including non-terminals is too long (TL)
	The beginning of the WK-word does not match the input (WS)
	Checking the complementarity relation (RL)
	The input matches a regular expression generated from the WK-word (RE)

	Heuristics for node precedence
	Theoretical complexity of the state space search

	Remarks on the implementation of the state space search
	Testing the state space search and the WK-CYK algorithm
	Comparison of the node precedence heuristics efficiency
	Comparison of the pruning heuristics efficiency
	The time complexity of the state space search
	Testing the efficiency of WK-CYK
	Conclusion and possibilities for improvements

	The WK-CYK algorithm
	Grammars used for testing

