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Abstract: For agents based on BDI theory, some problems remain open. These include parts of the interpretation of 

these systems that are nondeterministic in the original specifications, and finding methods for their 

determinism should lead to improved rationality of agent behaviour. These problems include the choice of a 

plan suitable for achieving the goal, then the choice of the intention to be pursued by the agent at any given 

time, and if a language based on predicate logic is used to implement such an agent, then there is also the 

problem of choosing variable substitutions. One such agent-based system is systems using the AgentSpeak(L) 

language, which will be the basis for this paper. We will introduce late binding into the interpretation of this 

language and show that they do not make the agent lose the possibility of achieving the goal by making 

unnecessary or incorrect substitutions in cases where such a decision is not necessary. We show that with late 

binding substitutions the agent operates with all possible substitutions given by the chosen plan to the goals 

in the plan structure, and that these substitutions are always valid with respect to the acts performed so far 

within this plan.

1. INTRODUCTION 

One way to create artificial agents is based on 
Bratman's theory of intentions (Bratman, Intention, 
Plans and Practical Reason, 1987). Intentions, as the 
mental states of agents, are persistent goals (Cohen & 
Levesque, 1990), which an agent decides to achieve 
at the moment some of its desires have been found 
attainable and are pursued until they are achieved or 
the agent finds them unachievable. Systems 
combining intentions with other mental states, 
namely beliefs and desires, known as BDI systems 
(Rao & Georgeff, Modeling Rational Agents within a 
BDI-Architecture, 1991), have gained popularity. 
Implementations of such systems include IRMA 
(Bratman, Israel, & Pollack, Plans and resource-
bounded practical reasoning, 1988), PRS (Georgeff & 
Lansky, 1987), dMars (d'Iverno, Kinny, Luck, & 
Wooldridge, 1998), 2APL (Dastani, 2008), CAN 
(Sardina & Padgham, 2011), as well as systems 
interpreting the AgentSpeak(L) language (Rao, 
AgentSpeak(L): BDI agents speak out in a logical 
computable language, 1996). The principle of these 
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systems is based on the choice of intentions from the 
desirec that the agent has, which may become 
intentions at an opportune moment based on the 
current state of the agent's beliefs. The plan then tries 
to fulfill this intention by executing a plan, or plans, 
that are hierarchically ordered. Each plan may declare 
goals to be achieved, and a subplan is chosen to 
achieve those goals. If the top-level plan that has been 
chosen to achieve the goal of an intention is achieved, 
that intention is also achieved.  

The problems that are still a matter of research are 
found in the non-deterministic parts of an agent's 
decision making. This involves both the selection of 
the appropriate means to achieve goals or subgoals in 
the form of plans, but it also involves, when a 
language based on predicate logic is used, the choice 
of appropriate substitutions. In addition, the agent, if 
pursuing multiple goals simultaneously, also has the 
dilemma of which goal to pursue at any given step.  

This text offers a solution for dealing with 
substitutions such that if a plan is chosen, then 
substitutions need not be applied immediately, but 
can be deferred until a decision needs to be made, 
typically before a particular action is taken. Poorly 



chosen substitutions during the practical reasoning 
phase may indicate the choice of the wrong resource, 
which may become apparent later during the 
execution of the plan thus instantiated. Several ways 
of handling substitutions during agent execution are 
currently proposed. The 2APL system (Dastani, 
2008) offers the possibility to create rules that specify 
decision processes including the handling of possible 
substitutions. For the CAN system (Sardina & 
Padgham, 2011), knowledge of the substitutions used 
is stored and, if a new plan has to be searched if a 
previous attempt to achieve the intentions failed with 
some substitutions, other possible substitutions can 
be chosen for the same plan.  

Our approach is based on trying to preserve all 
possible variable bindings and during the execution 
of a plan, it works with all of them. If some step (act) 
of the plan is executed, then the number of these 
options may be limited and only some of them survive 
on. However, if at least one of the options persists, 
then the plan can continue. We first introduced the 
principle that leads to late variable binding in (Zboril, 
Koci, Janousek, & Mazal, 2008) and later discussed 
it in (Zboril, Zboril, & Kral, Flexible Plan Handling 
using Extended Environment, 2013). In this paper, we 
give a more precise and modified form of the basic 
operations we need to create a late-binding 
AgentSpeak(L) interpreter and specify the use of each 
operation here.  

The individual sections are organized as follows. 
In Section 2, we briefly introduce the AgentSpeak(L) 
language and give the motivation for introducing late 
binding for its interpreter. Section 3 defines the 
operations that are necessary for such an 
interpretation, and in Section 4, we introduce the 
concept of weak plans and events, which we build on 
by introducing the execution of a single plan or a 
hierarchy of plans with a late binding approach. 

2. EXECUTION OF 

AGENTSPEAK(L) 

An agent that is executed according to some 
program written in AgentSpeak(L), is a tuple 
〈𝑃𝐵, 𝐸𝑄, 𝐵𝐵, 𝐴𝑆, 𝐼𝑆, 𝑆𝜀 , 𝑆𝛰, 𝑆𝛪〉 where PB is a plan base, 
EQ is an event queue, BB is a belief base, AS is a set 
of actions that are executable by the agent, IS is a set 
of intention structures and 𝑆𝜀 , 𝑆𝛰 , 𝑆𝛪 are functions for 
selections of events, options and intentions (Rao, 
AgentSpeak(L): BDI agents speak out in a logical 
computable language, 1996). The program itself 
written in this language defines knowledge as 
formulas of first-order predicate logic, for simplicity 
we will consider beliefs in the form of atomic 

formulas of this logic as facts are defined in PROLOG 
as a predicate.  Goals can be declared as achievement 
or test goals. In the first case, the predicate is given 
with the preposition ! and in the latter with the 
preposition ?. The core part of a program in 
AgentSpeak(L) is the plan of how to achieve some 
goal in the form of plans. This looks like the 
following 𝑡𝑒: Ψ ⟵ 𝑝𝑙𝑎𝑛  and consists of the 
triggering even 𝑡𝑒 , context conditions Ψ and plan’s 
body. Triggering events are written in the form 
+event or -event, where an event can be a test goal, 
an achievement or just a predicate. A plan is then 
relevant to some goal in the form of an event, when 
its triggering event is unifiable with that event, and it 
is further applicable if the context conditions are valid 
in the current state of the agent's BB. If we have a 
substitution for which the plan is relevant and 
applicable, then the plan is a possible means of 
achieving the goal.  

The interpretation of an agent programmed in 
AgentSpeak(L) is presented in the original paper 
(Rao, AgentSpeak(L): BDI agents speak out in a 
logical computable language, 1996), and the 
operational semantics is presented more formally in 
(Winikoff, 2005). The problem we address and offer 
a solution to is that if a plan is chosen, a substitution 
is chosen that may not be appropriate for the agent's 
next acts. As difficult as it is to predict which of the 
possible behaviors will lead to success in a dynamic 
environment, it is possible to either try to estimate 
these substitutions based on previous experience, or 
to defer the decision about substitutions until this 
becomes necessary.  We use the latter approach and 
now wish to demonstrate its potential appropriateness 
and usefulness. 

Let us return to the aforementioned interpretation 
of plan selection  for some goal in the form of an event 
e. Then there may exist one or more plans from 
agent’s plan base such that their triggering events are 
unifiable with e for some most general unifier (mgu) 
σ. Thus, let us have such plans 𝑡𝑒1: Ψ1 ⟵ 𝑝𝑙𝑎𝑛1  , 
𝑡𝑒2: Ψ2 ⟵ 𝑝𝑙𝑎𝑛2  … 𝑡𝑒𝑛: Ψ𝑛 ⟵ 𝑝𝑙𝑎𝑛𝑛  and 𝜎1 =
𝑚𝑔𝑢(𝑒, 𝑡𝑒1), 𝜎2 = 𝑚𝑔𝑢(𝑒, 𝑡𝑒2)… 𝜎𝑛 = 𝑚𝑔𝑢(𝑒, 𝑡𝑒𝑛) are 
the mgu for the event and individual triggering 
events. These plans are relevant but only applicable if 
𝐵𝐵| = Ψ1𝜎1  for the first plan, etc. Thus, again, we 
look for substitutions that unify the individual context 
conditions in the agent's BB, let’s denote them as 
𝜌1, 𝜌2 … 𝜌𝑛. Then the agent selects one of these plans 
to achieve the goal represented by event e, say plan j, 
and the agent is going to execute the body of this plan 
with the appropriate substitutions to achieve the 
event. 

Thus, only one option is chosen from all that can 
be found. Not only is it potentially possible to find 
multiple plans for a single goal, but also it is possible 



to find multiple substitutions for which these plans 
are relevant and applicable.  

By introducing the context as a set of possible 
substitutions, we generalize the execution of one plan 
to the execution of several possibilities found for that 
plan during practical reasoning.  We will refer to a 
plan as a structure given in the program, 
supplemented with context as a set of substitutions, as 
a weak instance of the plan. That is, if for the plan 
𝑡𝑒𝑖: Ψ𝑖 ⟵ 𝑝𝑙𝑎𝑛𝑖  it is possible to find multiple 
substitutions that unify this plan’s 𝑡𝑒𝑖 with the event 
𝑒𝑖 and for which this plan is applicable in the agent's 
BB, let’s say 𝑐𝑡𝑥 , then < 𝑒𝑖: Ψ𝑖 ⟵ 𝑝𝑙𝑎𝑛𝑖 , ctx >  is a 
weak instance of the plan 𝑒𝑖: Ψ𝑖 ⟵ 𝑝𝑙𝑎𝑛𝑖. The context 
𝑐𝑡𝑥  will allow to postpone the decision about 
substitutions until the moment when this is necessary. 
We therefore view this approach as a late binding for 
the interpretation of AgentSpeak(L).  The weak plan 
instance is executed using the operations we present 
in the next section. After introducing them, we will 
also show how the acts in the weak plan instance are 
interpreted and how subplans and transitions between 
plan levels are handled, which will allow us to 
conclude by showing that such an interpretation is 
done correctly and that it expands the decision-
making options for these types of agents. 

3. OPERATIONS AND 

FUNCTIONS FOR LATE BINDINGS 

The basic terms of the formal description of our 
approach are the sets of unifiers and substitutions. 
(Substitution is a set of tuples, in this text [t/x], where 
x is variable and t is term. Unifier is a substitution that 
unifies some two formulas). Sets of substitutions play 
an essential role in our interpretation, as they are 
created and modified during agent's interpretation. 
For a specification on how the corresponding 
operations work, we must write some definitions. 
First, we introduce broad unification as a function that 
creates a set of unifiers. 

Definition 1: Broad unification is denoted as 𝜌𝑈 is a 
function that maps the predicate p and predicates p’ 
from the BB to a set of all possible mgu without 
variables renaming. Using function 𝑚𝑔𝑢(𝑝, 𝑝′)  for 
finding the mgu of 𝑝  and 𝑝′  without variable 
renaming we define it formally as  
 

𝝆𝑼(𝒑, 𝑩𝑩) ≝ {𝒎𝒈𝒖(𝒑, 𝒑′): 𝒑′ ∈ 𝑩𝑩} (1) 
   

In this definition we say that BB is a set of 
predicates. Because beliefs are also in the form of 
predicates, then any BB is also a set of predicates. 

Variable renaming is important in the unification for 
making the formulas’ logical equivalent. However, in 
our case we need the unification just for specification 
of the predicate 𝑝 in such a way that it is valid in the 
BB in any interpretation. For this reason, we need not 
unify the name of the variables. However, even 
though such a function from Definition 1 does not 
unify the predicates in the correct sense, we will use 
the /term unification for this anyway. 

The result of the broad unification is a set of 
unifiers that we call to be a possible unifier set (in this 
text we write PUS). The set of predicates consists in 
this case of all beliefs that form the agent's BB. 
Further, in the text we will use a symbolic 
representation of the broad unification of a predicate 
p and a belief base BB in the simplified form 𝜌𝑈𝐵𝐵

𝑝
 
 , 

or when the parts are not necessary, we will write just 
𝜌𝑈. Second, we use in some further definitions when 
we refer to the set just as certain PUSs and we do not 
need a precise determination of the predicate and 
belief base.  

Conversely, an instance set is a set of predicates 
containing every predicate that rises, after the 
application of every unifier, from a PUS to a 
predicate.  

Definition 2: We denoted the instance set as 𝐼𝜎, 
and it is a function that maps a predicate and a PUS 
to a set of predicates. We define it in the following 
way: 𝐼𝜎(𝑝, 𝜌𝑈) ≝ {𝑝𝜎: 𝜎 ∈ 𝜌𝑈} 

Notice that an instance set is not inverse to the 
broad unification in the sense that if we have 𝜌𝑈𝐵𝐵

𝑝
, 

then 𝐼𝜎(𝑝, 𝜌𝑈𝐵𝐵
𝑝

) need not be equal to the BB and vice 
versa.  

Definition 3: Shorting is a function denoted by ≺ and 
we define it as: 

𝜌𝑈 ≺ 𝑝 ≝      (2) 

{𝜎: ∃𝜎′(𝜎′ ∈ 𝜌𝑈, 𝜎 ⊆ 𝜎′, ∀[𝑡/𝑥]

∈ 𝜎′ (𝑋 ∈ 𝑉𝑎𝑟(𝑝) → [𝑡/𝑥] ∈ 𝜎))} 

The resulting substitution set contains just those 
substitutions that substitute free variables from p. The 
Var function is used here in the usual way, which 
means that by using Var(p) we get a set of free 
variables in p. Then, only the variable substitutions 
from 𝜌𝑈  unifiers that substitute any of the Var(p) 
persist in  𝜌𝑈 ≺ 𝑝. 

The functions and operations that we call 
merging, restriction, shorting, and decision-making 
are used for the transformation of PUSs and play an 
essential role for late bindings. The purpose of the 
first operation, which we call ‛merging’, is to create 



substitution from two other substitutions. It unites the 
substitutions when every variable substituted in both 
of them is substituted for the same term. This means 
that there must not be a conflict where the 
substitutions map the same variable to two different 
terms. If this occurs, then the result of the merging is 
an empty set.  

Definition 4: We denote the merging by ⋉ and it 
is defined for a certain two unifiers as follows: 
 

𝜎1 ⋉ 𝜎2 ≝                                             (3) 
        𝜎1 ∪ 𝜎2 𝑖𝑓𝑓 ∀[𝑥1/𝑡] ∈ 𝜎1∀[𝑥2/𝑡] ∈ 𝜎2(𝑥1 = 𝑥2 → 𝑡1 = 𝑡2)            

        { }       𝑒𝑙𝑠𝑒                                    

 

Let the first substitution be a unifier for a 
predicate and a belief base, and the second unifies 
another predicate in another belief base. If the result 
of the merging of these unifiers is a nonempty set of 
substitutions, then this set of substitutions unify both 
predicates with some belief in the belief bases. If the 
result is an empty set, then the unifiers cannot be 
united. However, there can be another pair of unifiers  
for which the merging produces a non-empty set. For 
finding each such pair, we define the restriction 
operator. 

Definition 5: The restriction operator is denoted as  ⊓ 

and is defined for some two PUS 𝜌𝑈1 and 𝜌𝑈2 as 
 

              𝝆𝑼𝟏 ⊓ 𝝆𝑼𝟐 ≝ ⋃ 𝝈𝟏 ⋉ 𝝈𝟐𝝈𝟏∈𝝆𝑼𝟏,𝝈𝟐∈𝝆𝑼𝟐
  (4) 

Using the restriction, an agent obtains pairs of 
unifiers from both PUSs that work as extended 
unifiers for both pairs of predicate/belief bases for 
which it makes the original PUSs.  

The following Theorem 1 shows a key property 
of this operation, which is fundamental for the 
functionality of the late bindings. 

Theorem 1: The restriction of two PUSs created 
by some broad unifications 𝜌𝑈𝐵𝐵1

𝑝1  and 𝜌𝑈𝐵𝐵2

𝑝2 results 
in a set of unifiers that contains all the mgu that unify 
both 𝑝1  in belief base 𝐵𝐵1  and 𝑝2  in another belief 
base 𝐵𝐵2. 

Proof: First, we prove that all such unifiers work 
properly for both pairs of predicates and belief bases 
(1). Moreover, we need to show that they are in their 
most general form (2). Then we prove that there is no 
other mgu (3). 

Ad 1) Let 𝜎 ∈ 𝜌𝑈𝐵𝐵1

𝑝1 ⊓ 𝜌𝑈𝐵𝐵2

𝑝2  be a unifier that 
unifies  p1 in BB1 and p2 in BB2. From Definitions 4 
and 5 it follows that 𝜎  is a union of the original 
unifiers. If the predicates are unified to a ground 

belief, then every variable in p1 and p2 must be 
substituted in the same way as they were substituted 
in the original unifiers. There cannot be a conflict, 
because if both unifiers substitute the same variable, 
by definition of the merging operator, it follows that 
it was substituted in the same way. Even if it unifies 
them with a lighted predicate, then one unifier may 
cause the substitution of a variable that remained free 
in the second unification; this means that, for 
example, 𝜎  substitutes a variable in p1, but in the 
original 𝜌𝑈𝐵𝐵1

𝑝1  this variable remained free. However, 
this is just the specification in the predicate logic and 
by the rule of specification this substitution makes p1 
also valid in BB.  

ad 2) If  𝜎 is not the mgu for both unifications, then 
there must be a unifier 𝜎1 and a substitution 𝛿 where 
𝜎 = 𝜎1𝛿. Definition 5 says that every mapping of a 
variable in 𝛿 must also be in either 𝜌𝑈𝐵𝐵1

𝑝1 or 𝜌𝑈𝐵𝐵2

𝑝2 . If 
𝜎′ works for both unifications, then there must be a 
unifier 𝜎2 for the first or second unification which is 
more general, then a unifier from 𝑈𝐵𝐵1

𝑝1 and 𝜌𝑈𝐵𝐵2

𝑝2 , 
respectively. However, because these unifiers are 
mgu, this is not possible. From another point of view, 
because unifications produce ground predicates, then 
the number of variable substitutions in the unifier 
must be equal to the number of free variables in  𝑝1 
and  𝑝2 that is valid for the results of the restriction 
operation. 

ad 3) Let us consider that there is, a unifier, 𝜎 that is 
mgu for both predicates and belief sets and that this 
unifier is not included in the restricted set. Then there 
must be some other mgu unifiers 𝜎1 ⊆ 𝜎 and 𝜎2 ⊆ 𝜎 
which are equal to or more general than 𝜎 , which 
means 𝜎 ⊆ 𝜎1 ∧ 𝜎 ⊆ 𝜎2  and 𝑝1𝜎1 ∈ 𝐵𝐵1  and 𝑝2𝜎2 ∈
𝐵𝐵2 . However because 𝜌𝑈𝐵𝐵1

𝑝1 𝑎𝑛𝑑  𝜌𝑈𝐵𝐵2

𝑝2  contains 
every mgu for individual predicates and belief bases, 
then both 𝜎1 and 𝜎2 belong to these sets and because 
𝜎 ⊆ 𝜎1 ∪ 𝜎2

 then either 𝜎 or a more general unifier 𝜎 
must be included in the restriction.  

From Theorem 1 it follows that if a restriction is 
applied to 𝜌𝑈BB1

𝑝1 𝑎𝑛𝑑 𝜌𝑈𝐵𝐵2
𝑝2  then it results in every 

possible substitution that still fulfils both queries of 
𝑝1 to 𝐵𝐵1 and 𝑝2 to 𝐵𝐵2. 

We will add one more lemma to this definition, 
which we will use later. 

Lemma 1: If we obtain PUS by restriction 

𝜌𝑈 = 𝜌𝑈1⨅𝜌𝑈2, 

then it is valid that 

∀σ∃σ1(𝜎 ∈ 𝜌𝑈 ∧ 𝜎1 ∈ 𝜌𝑈1 ∧ 𝜎1 ⊆ 𝜎 ∧ 𝜎 ∈ {𝜎1}⨅𝜌𝑈2) 

Proof: We need to show that if a substitution 
arises by performing a restriction operation, then for 



every substitution σ in this result there is at least one 
substitution in the first operand 𝜎1, that is a subset of 
𝜎  such that the substitution 𝜎  would arise by 
performing the restriction even if the first operand 
were the set containing olny that substitution {𝜎1} . 
Since such a substitution must have arisen as a result 
of the merging operation 𝜎 = 𝜎1 ⋉ 𝜎2 and 𝜎1 ∈ 𝜌𝑈1. 
From Definition 4, this operation is performed as 
𝜎1 ∪ 𝜎2  and it is clear that 𝜎 ⊆ 𝜎1 ∪ 𝜎2 . But then 
since 𝜎2 ∈ 𝜌𝑈2  then {𝜎1}⨅𝜌𝑈2  will also perform 
merging 𝜎1 ⋉ 𝜎2 and its result will also be part of the 
resulting set of substitutions. 

An essential aspect of the BDI agents is that they 
build a hierarchy of plans. If the agent is about to go 
from one plan to another in the hierarchy, it must also 
transfer appropriate substitutions. For this purpose, 
we introduce the PUS intersection function.  

Definition 6: The intersection is a function 
denoted by the symbol  ∽ and is defined for one PUS  
𝜌𝑈 and two predicates  𝑝1 a 𝑝2 as follows: 

                   𝑝1, 𝜌𝑈 ∽ 𝑝2 ≝ 𝜌𝑈(𝑝2, 𝐼𝜎(𝑝1, 𝜌𝑈)) (5) 

Definition 7: The intersection function for two 
PUS 𝜌𝑈1  and 𝜌𝑈2  and two predicates  𝑝1  and 𝑝2  is 
defined as follows: 

          𝑝1, 𝜌𝑈1 ∽ 𝑝2, 𝜌𝑈2 ≝ (𝑝1, 𝜌𝑈1 ∽ 𝑝2) ⊓ 𝜌𝑈2        (6) 

The last function which we define is called 
decision-making. Contrary to the previous operations 
and functions, this one is defined abstractly. Here we 
only declare its structure without any further 
specification on how to realize it.  

Definition 8: Decision-making is a function 
denoted as Dec that for a PUS and a predicate p 
provides a ground substitution which is a subset of a 
substitution from the PUS. 

When we write that 𝐷𝑒𝑐(𝜌𝑈, 𝑝) = 𝜎  then it must be 

valid that  

          ∃𝜎1(𝜎1 ∈ 𝜌𝑈, 𝜎 ⊆ 𝜎1, 𝑉𝑎𝑟(𝑝) = 𝑑𝑜𝑚(𝜎))          (7) 

and 𝜎 is a ground substitution for p.  

So the agent decides on some substitution from 𝜌𝑈 

and from that determines the binding of the free 

variables in  𝑝. If this substitution is applied to 𝑝, then 

it makes 𝑝  a ground predicate. But in addition, this 

substitution is based on those substitutions that the 

agent keeps as possible. 

4. EXECUTING PLANS USING 

LATE BINDINGS 

We have already mentioned that we will be 
working with a set of substitutions, i.e. some PUS that 
will be stored during the execution of the agent's plan. 
The plan becomes part of the agent's intent when the 
reasoning process chooses it for some event. At that 
same moment, the plan is assigned a PUS that the 
agent operates on while executing the plan. These 
substitutions are made by the agent in the course of 
its practical reasoning. So, unlike other 
AgentSpeak(L) interpreter systems, in our case the 
plan variables do not have to be replaced 
immediately, but can be kept separately as PUSs, 
which we will now call the plan context. This context 
changes as the agent performs actions and achieves 
goals from the plan body. If such a PUS is assigned 
to an event, we will speak of an event context. This 
will arise from the actual context of the plan that 
triggered the event, and we explain this in more detail 
below. Further in this text, we will talk about weak 
instances of plans and events when plans and events 
have contexts and other information associated with 
them according to the following definitions. 

Definition 9: A weak plan instance is a triple  
〈𝑡𝑒, 𝒉, 𝑐𝑡𝑥〉 containing a plan trigger event 𝑡𝑒, a plan 
body h = ℎ1; ℎ2; … ℎ𝑚, and a plan context ctx. 

Similarly, we define weak event instances as 
tuples.  

Definition 10: A weak event instance is a tuple 
〈𝑒𝑣𝑡, 𝑐𝑡𝑥〉 where 𝑒𝑣𝑡 is an event, and ctx is a context. 

Its purpose is to represent an event that has arisen 
during the execution of a weak plan instance. It is 
necessary to have weak event instances because when 
an agent is pursuing a goal by a weakly instantiated 
plan, it need not know the exact substitution of the 
goal variables. Instead, the agent selects a single 
event with a context representing all possible goals 
that are sufficient to satisfy the declared goal. The 
agent decides how to proceed based on which goal or 
goals the agent subplan will achieve. It means, that it 
is sufficient to meet only one or a subset of these 
goals.  

Furthermore, we will use the abbreviations WEI 
for weak event instances and WPI for weak plan 
instances.  



4.1 Practical reasoning for weak 

instances  

What differs from the original interpretation is the 
way the applicability and relevance are recognized. 
When there are WEIs and a plan, then a plan is 
relevant to the WEIs when its triggering event and the 
WEI event are unifiable concerning the WEI context. 
At the beginning, the plan has no context that would 
play a role in the unification process. Then it is 
enough that the PUS intersection of the triggering 
event, the goal event, and its context create a set 
containing at least one substitution. This can be seen 
as a query by triggering event to the base, which is 
formed as a set of instantiations from the WEI. Notice 
that it is valid also when the substitution is an empty 
set, i.e. if the resulting set contains a single element, 
namely the empty set. This is what would happen if 
the plan’s triggering event were ground. Now let us 
define this formally. 

Definition 11: A plan 𝑡𝑒: 𝑏1 ∧ 𝑏2 ∧ … 𝑏𝑛 ← ℎ1; ℎ2; … ℎ𝑚 
is relevant to a WEI 〈𝑒𝑣𝑡, 𝑐𝑡𝑥〉 when (𝑒𝑣𝑡, 𝑐𝑡𝑥 ∽ 𝑡𝑒) ≠
{ } 

A plan is applicable when every of the plan's 
context conditions (here 𝑏1 … 𝑏𝑛 ) is satisfied in the 
actual state of the agent's belief base. This means that 
it is possible to find a PUS for every context condition 
and the belief base and consequently to make 
restrictions among them. From Theorem 1, it follows 
that if the restrictions result in a nonempty set, then 
there is at least one unifier for every context condition 
of the plan and an agent's belief in its belief base. 

Definition 12: A plan 𝑡𝑒: 𝑏1 ∧ 𝑏2 … 𝑏𝑛 ← ℎ1; ℎ2; … ℎ𝑚 is 
applicable in the actual agent’s belief base BB, when  
𝜌𝑈(𝑏1, 𝐵𝐵) ⊓ … ⊓ 𝜌𝑈(𝑏𝑛, 𝐵𝐵) ≠ { } 

Every plan which is both relevant and applicable 
can be considered as a means for the goal and the 
agent may choose it as its intended means. When the 
plan is both relevant and applicable, then the 
restriction of the PUS from Definition 11 and the PUS 
from Definition 12 must be also a non-empty PUS. 
Using the PUS intersection from Definition 7, we 
may write 𝑐𝑡𝑥1 = ((𝑒𝑣𝑡, 𝑐𝑡𝑥 ∽ 𝑡𝑒) ⊓  𝜌𝑈(𝑏1, 𝐵𝐵) ⊓ … ⊓
𝜌𝑈(𝑏𝑛, 𝐵𝐵)) ≠ { } and then 𝑐𝑡𝑥1 is an context which, 
together with the plan’s body ℎ1; ℎ2; … ℎ𝑚 , forms 
new WPI that can be an intended means for the WEI. 

We can think of a WEI as a specification of more 
than one goal in the form of an event. By creating a 
set of instances for a given predicate in a WEI and for 
all substitutions from a given context, we obtain all 
event instances that represent all reachable goals 

represented by that WEI. To satisfy a given WEI, it is 
sufficient for the agent to satisfy at least one of these 
goals. The following Lemma will show that for a WEI 
and a chosen plan, its default context contains all 
substitutions for which this plan is relevant and 
applicable to some WEI instance. In the remainder of 
this paper, when we refer to a WEI instance, we will 
mean a single instance created by applying the WEI 
context to a WEI predicate. By a WEI instance, we 
will then also mean one particular goal represented by 
this WEI. 

Lemma 2: The result of practical reasoning for 
some WEI 〈𝑒𝑣𝑡, 𝑐𝑡𝑥〉 , if a suitable plan is found, is a 
PUS that contains all the most general substitutions 
for which the chosen plan 𝑡𝑒: Ψ ⟵ 𝑝𝑙𝑎𝑛  is relevant 
with respect to a given some event instance 𝑒 ∈
𝐼𝜎(evt, ctx) and applicable in the current state of the 
agent's belief base. 

Proof: First consider a plan without the context 
conditions 𝑡𝑒 ⟵ 𝑝𝑙𝑎𝑛 . Then the result of practical 
reasoning is  Θ = (𝑒𝑣𝑡, 𝑐𝑡𝑥 ∽ 𝑡𝑒, ) . By Definition 6, 
(𝑒𝑣𝑡, 𝑐𝑡𝑥 ∽ 𝑡𝑒) = 𝜌𝑈(𝑡𝑒 , 𝐼𝜎(𝑒𝑣𝑡, 𝑐𝑡𝑥)) and further by 
Definition 1, Θ = {𝑚𝑔𝑢(𝑡𝑒 , 𝑝′): 𝑝′ ∈ 𝐼𝜎(𝑒𝑣𝑡, 𝑐𝑡𝑥)} . 
Assume that there is a substitution φ ∉ Θ, for which 
this plan is relevant with respect to some  𝑒 ∈
𝐼𝜎(evt, ctx) and applicable in the agent's BB. Since, 
due to the absence of context, every relevant plan is 
also applicable, then suppose that φ is mgu for some 
𝑡𝑒  and an event instance 𝑒 , but then φ ∉
{𝑚𝑔𝑢(𝑡𝑒 , 𝑝): 𝑝 ∈ 𝐼𝜎(𝑒𝑣𝑡, 𝑐𝑡𝑥)}  which is a 
contradiction. From a different perspective, we can 
view such inference as querying  𝑡𝑒  into the BB 
containing all instances of a given WEI, and the result 
of this query is all possible mgu for which this query 
is satisfied. Thus, in the first stage of practical 
reasoning, we obtain all the substitutions that make 
this plan relevant to some instance of the event. All 
these substitutions are mgu for all event instances of 
the WEI and the plan’s triggering event. Assume, that 
the context were non-empty Ψ = 𝑏1 ∧ … ∧ 𝑏𝑛 and we 
have φ which is a substitution for which the plan is 
relevant and applicable. Suppose now that φ ∉ Ξ 
where Ξ  is calculated, as we showed above, as 
intersection by ((𝑒𝑣𝑡, 𝑐𝑡𝑥 ∽ 𝑡𝑒) ⊓  𝜌𝑈(𝑏1, 𝐵𝐵) ⊓ … ⊓
𝜌𝑈(𝑏𝑛, 𝐵𝐵))  and we know that Θ = (evt, 𝑐𝑡𝑥 ∽ 𝑡𝑒 , ) 
provides all mgu for 𝑡𝑒 and the instance of WEI under 
consideration, φ must also be a superset of some such 
mgu of Θ . Furthermore, if we consider the first 
condition 𝑏1 of the context condition Ψ and perform 
Θ ⊓, 𝜌𝑈(𝑏1, 𝐵𝐵), then by Theorem 1 we obtain all 
substitutions for which they are valid both with 
respect to the relevance of the plan and with respect 
to the context condition 𝑏1 . Similarly, for Θ ⊓
, 𝜌𝑈(𝑏1, 𝐵𝐵), … ⊓ 𝜌𝑈(𝑏𝑛, 𝐵𝐵) , the result is all 
substitutions that make the plan relevant and all 



context conditions are satisfied, so the condition φ 
must be present in Ξ. 

 
Thanks to Lemma 2, we know that if a plan is 

adopted and a WPI containing that plan and some 
context is created, then that context contains all 
possible substitutions for which the execution of that 
plan is applicable and, in particular, valid against 
some WEI for which it was chosen. Again, this can 
be looked at from a different perspective. The 
selection of the appropriate plan can be seen as a 
successful query in which we use the plan’s triggering 
event and event instance set. The choice of the 
applicable plan is then seen as a series of queries for 
each part of the context conditions to the agent's BB. 
The resulting substitutions according to Theorem 1 
contain all substitutions that satisfy all these queries. 

Now we want to find out all the substitutions that, 
on the one hand, still satisfy that the plan is a relevant 
means for them to achieve some event instance, but 
also make all the acts of the plan, including possible 
subplans, feasible. We will do this sequentially. 

4.2 Plan body execution 

We start with the simplest example where the plan 
does not contain any act, and choosing it would 
already result in the event being fulfilled. Then the 
substitutions found during the practical reasoning 
provide the goals that have been achieved. 

 
Example 1: For some WEI, where the event 

predicate is ! transport_means(X, Y, M).  is to 
represent the location X from which someone or 
something is to be moved to location Y  and M is the 
means of transport and the WEI context may be 
{{[𝑏𝑒𝑟𝑙𝑖𝑛/𝑋]}, {[𝑝𝑟𝑎𝑔𝑢𝑒/𝑋]}}. The relevant plan is for 
example +! 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑚𝑒𝑎𝑛𝑠(X, Y, M): 𝑔𝑒𝑡_𝑡𝑚(𝑋, 𝑀) 
and this contains only one context condition and if the 
agent's belief base contains for example 
𝑔𝑒𝑡_𝑡𝑚(𝑝𝑟𝑎𝑔𝑢𝑒, 𝑐𝑎𝑟).  𝑔𝑒𝑡_𝑡𝑚(𝑏𝑒𝑟𝑙𝑖𝑛, 𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒).  
𝑔𝑒𝑡_𝑡𝑚(𝑏𝑒𝑟𝑙𝑖𝑛, 𝑡𝑟𝑎𝑖𝑛).  𝑔𝑒𝑡_𝑡𝑚(𝑝𝑎𝑟𝑖𝑠, 𝑏𝑢𝑠).  then for 
the given WEI the initial and resulting context is 
{{[𝑏𝑒𝑟𝑙𝑖𝑛/𝑋], [𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒/𝑀]}, {[𝑏𝑒𝑟𝑙𝑖𝑛/𝑋], [𝑡𝑟𝑎𝑖𝑛/
𝑀]}, {[𝑝𝑟𝑎𝑔𝑢𝑒/𝑋], [𝑐𝑎𝑟/𝑀]}}. 

In the following paragraphs, our focus will be on 
how the WPI changes from the moment of its creation 
to the moment of its successful execution. We won't 
even go into how the agent responds to situations 
where the WPI fails. This would occur when the 
context in the WPI transforms to an empty set. 
However, we will assume that each execution of an 
act in the body of the WPI plan will result in the 
transformation of its context into another context that 
is not an empty set. We will show specifically how 

this context will be transformed, one by one, by the 
possible acts that the agent can execute. 

First, we define the test goals and their 
interpretation. 

 
Definition 13: A test goal is executed for some 

WPI < 𝑡𝑒 , ? 𝑝(𝒕); 𝑝𝑙𝑎𝑛𝑏𝑜𝑑𝑦, 𝑐𝑡𝑥 >  and if successfully 
executed, then the new WPI is  

< 𝑡𝑒 , 𝑝𝑙𝑎𝑛𝑏𝑜𝑑𝑦, 𝑐𝑡𝑥 ⊓ 𝜌𝑈(𝑝(𝒕), 𝐵𝐵) > 

 
By executing one test goal ? 𝑝𝑖(𝒕) the context is 

changed to include all substitutions that match all 
previous queries and must now include this new 
query. Let us denote the result of the testing goal by 
𝜌𝑈  and this contains all mgu for 𝑝𝑖(𝒕)  and some 
belief from the agent's current BB. If we perform 
𝑐𝑡𝑥′ = 𝑐𝑡𝑥 ⊓ 𝜌𝑈 , then we get a new context 𝑐𝑡𝑥′ , 
which, by Theorem 1, contains all substitutions that 
are valid for all queries performed so far (including 
those performed during practical inference). 

 
Definition 14: Performing actions either external 

or internal transforms the context from  WPI                  
< 𝑡𝑒 , 𝑎(𝒕); 𝑝𝑙𝑎𝑛𝑏𝑜𝑑𝑦, 𝑐𝑡𝑥 >  so that the new WPI is        
< 𝑡𝑒 , 𝑝𝑙𝑎𝑛𝑏𝑜𝑑𝑦, 𝑐𝑡𝑥 ⊓ {𝐷𝑒𝑐(𝑐𝑡𝑥, 𝑎(𝒕))} >  

 
The agent can create a ground predicate for the 

action before executing it. Thus, all free variables 
must be bound to a specific atom. This is the case 
when the 𝐷𝑒𝑐 function of Definition 8 is used. This is 
a situation that causes non-determinism in the agent's 
behavior and we do not provide a concrete 
implementation of it in this text. Anyway, the agent 
performs the action described as 𝑎(𝒕)  where 𝒕  are 
terms (in our case we consider atoms or variables). 
After this action is performed, all variables from the 
terms 𝒕 are uniquely bound to the same variables in 
all context substitutions.  

 
Example 2: For an action 𝑔𝑜(𝐴, 𝐵) with context 

𝑐𝑡𝑥 = {{[𝑝𝑎𝑟𝑖𝑠/𝐴], [𝑐𝑎𝑟/𝐵], [𝑚𝑜𝑛/𝑋]}, {[𝑟𝑖𝑜/
𝐴], [𝑝𝑙𝑎𝑛𝑒/𝐵], [𝑡𝑢𝑒/𝑋]}, {[𝑏𝑟𝑛𝑜/𝐴]. [𝑏𝑦𝑐𝑖𝑐𝑙𝑒/𝐵], [𝑠𝑡𝑑/
𝑋]}, {[𝑏𝑟𝑛𝑜/𝐴]. [𝑏𝑦𝑐𝑖𝑐𝑙𝑒/𝐵], [𝑠𝑢𝑛/𝑋]}}   the agent can 
decide to perform one of 𝑔𝑜(𝑝𝑎𝑟𝑖𝑠, 𝑐𝑎𝑟) , 
𝑔𝑜(𝑝𝑎𝑟𝑖𝑠, 𝑝𝑙𝑎𝑛𝑒) or 𝑔𝑜(𝑏𝑟𝑛𝑜, 𝑏𝑦𝑐𝑖𝑐𝑙𝑒). The first action 
is created by performing the first substitution on the 
original action, the second action by performing the 
second, and the third action by performing the third 
or fourth. The resulting contexts are then 𝑐𝑡𝑥 =
{{[𝑝𝑎𝑟𝑖𝑠/𝐴], [𝑐𝑎𝑟/𝐵], [𝑚𝑜𝑛/𝑋]}  for the first action, 
𝑐𝑡𝑥 = {{[𝑟𝑖𝑜/𝐴], [𝑝𝑙𝑎𝑛𝑒/𝐵], [𝑡𝑢𝑒/𝑋]}  for the second 
action, and 𝑐𝑡𝑥 = {{[𝑏𝑟𝑛𝑜/𝐴], [𝑏𝑦𝑐𝑖𝑐𝑙𝑒/𝐵], [𝑠𝑡𝑑/
𝑋]}, {[𝑏𝑟𝑛𝑜/𝐴], [𝑏𝑦𝑐𝑖𝑐𝑙𝑒/𝐵], [𝑠𝑢𝑛/𝑋]}}  for the third 
action. 

The result of performing an action is to reduce the 
context to only those substitutions that are consistent 
with the action performed and the agent loses those 



options that do not match the action performed. From 
the above, we summarize the following Lemma. Its 
proof follows from the above definitions and their 
analysis. 

 
Lemma 3: Executing a plan. which contains only 

actions and test goals (i.e., does not invoke subplans 
by the act of achievement goal) the original WPI is 
transformed into another whose context contains all 
the substitutions for which this one is relevant to the 
original WEI that invoked it, was applicable with 
respect to the specified context conditions, and 
corresponds to all the executed acts of this plan. 

Before we move on to the implementation of the 
subplans, let's take a closer look at the relationship 
between the resulting context and the WEI that 
triggered the plan. We want to show that it is true that 
if the execution of a WPI succeeded, then for some 
event that can be instantiated from the predicate and 
context in that WEI, the plan would also succeed, it 
means that our approach sounds.  

 
Lemma 4: If the execution of a plan invoked by 

a WEI succeeds, then the execution of the plan would 
also succeed for at least one event instance from the 
WEI if used alone. 

 
Proof: The context is changed only by using the 

restriction operation in the case of both types of acts 
(testing, action). According to Lemma 1, we know 
that each substitution thus produced is a non-strict 
superset of a substitution from the previous context. 
The second operand in the restriction is given by the 
act performed. Since non-strict superset is a transitive 
relation, then every substitution in the resulting 
context is an non-strict superset to some mgu arising 
during the practical reasoning, which we denote by Θ 
in the proof of Lemma 2. Thus, if the context changes 
from Θ to Ξ = 𝑐𝑡𝑥0 and then by carrying out the acts 
of the plans to 𝑐𝑡𝑥1, 𝑐𝑡𝑥2 … 𝑐𝑡𝑥𝑛, then by Lemma 1 
for each 𝜎𝑛 ∈ 𝑐𝑡𝑥𝑛 there is a sequence 𝜎𝑟 ∈ Θ, 𝜎0 ∈
ctx0, 𝜎1 ∈ 𝑐𝑡𝑥1 … 𝜎𝑛−1 ∈ 𝑐𝑡𝑥𝑛−1  such that  𝜎𝑟 ⊆
𝜎0 ⊆ 𝜎1 ⊆ … 𝜎𝑛−1 ⊆ 𝜎𝑛. Furthermore, thanks to the 
same Lemma, this sequence would be replayed using 
the same actions, according to Definition 13 and 
Definition 14. That is, if some one mgu from Θ were 
taken during practical reasoning, above 𝜎𝑟, then the 
plan would be feasible. 

A corollary of this Lemma is that if the plan is 
successfully executed, the analysis of the resulting 
substitutions can determine for which all mgu of Θ 
the plan would be successfully executable. A simple 
way to determine this is that if an element from Θ  is 
a subset of some element from the resulting context, 
then this element determines the goal that will be 
achieved by the plan, since it is the mgu obtained 

during practical reasoning in the search for a relevant 
plan for some WEI. 

 
Example 3: For a WEI < ! 𝑔𝑜(𝑋, 𝑌, 𝑍), {{[𝑝𝑎𝑟𝑖𝑠/

𝑋]}. {[𝑟𝑖𝑜/𝑋]} >  the plan with triggering event 
+! 𝑔𝑜(𝐴, 𝐵, 𝐶) is chosen. The plan is relevant and the   
Θ = {{[𝑝𝑎𝑟𝑖𝑠/𝐴], [𝑟𝑖𝑜/𝐴]}}    contains all the mgu for 
the WEI and triggering event of the plan. The 
resulting context after such a plan is executed is for 
example {{[𝑝𝑎𝑟𝑖𝑠/𝐴], [𝑐𝑎𝑟/𝐵], [𝑚𝑜𝑛/𝐶]}, {[𝑝𝑎𝑟𝑖𝑠/
𝐴], [𝑡𝑟𝑎𝑖𝑛/𝐵], [𝑡𝑢𝑒/𝐶]}}. We can see, that this plan is 
feasible for the goal 𝑔𝑜(𝑝𝑎𝑟𝑖𝑠, 𝑌, 𝑍) because {[𝑝𝑎𝑟𝑖𝑠/
𝐴]} ⊆ {[𝑝𝑎𝑟𝑖𝑠/𝐴], [𝑐𝑎𝑟/𝐵], [𝑚𝑜𝑛/𝐶]}and {[𝑝𝑎𝑟𝑖𝑠/𝐴]} ⊆
{[𝑝𝑎𝑟𝑖𝑠/𝐴], [𝑡𝑟𝑎𝑖𝑛/𝐵], [𝑡𝑢𝑒/𝐶]}, but is not feasible for 
𝑔𝑜(𝑟𝑖𝑜, 𝑌, 𝑍). Moreover, we know that this plan could 
have been feasible if we had driven on Monday, or 
taken the train on Tuesday.  

The above example shows that plan execution 
could be used to find the answer as understood in 
(Sardina & Padgham, 2011). The answer-seeking 
principle is familiar from the execution of programs 
in PROLOG, and the process of querying and 
obtaining answers can be seen in the execution of the 
goals specified in the agent's plans. The query is given 
in the form of a predicate that need not be ground, and 
the answers are possibly bindings to variables for 
which such a predicate is valid in the database. Since 
we have shown that the resulting context contains all 
substitutions for which a plan is feasible for some 
WEI, these substitutions are also all possible answers 
to the queries, which can be considered as all the 
entities of a given WEI. The example above shows 
that these answers could be reached through the 
trigger event and final context of the plan. Creating 
the instance set from them creates a base, which we 
query with a predicate from the WEI. Thus, in 
Example 3, such a base would contain two predicates 
𝑔𝑜(𝑝𝑎𝑟𝑖𝑠, 𝑐𝑎𝑟, 𝑚𝑜𝑛)  and 𝑔𝑜(𝑝𝑎𝑟𝑖𝑠, 𝑡𝑟𝑎𝑖𝑛, 𝑡𝑢𝑒) 
which we obtained by applying substitutions {[𝑝𝑎𝑟𝑖𝑠/
𝐴], [𝑐𝑎𝑟/𝐵], [𝑚𝑜𝑛/𝐶]}  and {[𝑝𝑎𝑟𝑖𝑠/𝐴], [𝑡𝑟𝑎𝑖𝑛/𝐵], [𝑡𝑢𝑒/
𝐶]}  to the trigger event 𝑔𝑜(𝐴, 𝐵, 𝐶) . The question 
would be 𝑔𝑜(𝑋, 𝑌, 𝑍) , which will provide answers 
{{[𝑝𝑎𝑟𝑖𝑠/𝑋], [𝑐𝑎𝑟/𝑌], [𝑚𝑜𝑛/𝑍]}, {[𝑝𝑎𝑟𝑖𝑠/𝑋], [𝑡𝑟𝑎𝑖𝑛/
𝑌], [𝑡𝑢𝑒/𝑍]}. 

We summarize the above in the following 
Lemma, which we provide without proof, noting that 
we have demonstrated its validity above. 

 
Lemma 5: For some WEI and for a selected 

relevant and applied plan containing only actions or 
test goals, the interpreted system interpreting the 
program with late bindings will provide all possible 
answers with respect to the chosen actions. 

We can now consider plans that contain some 
achievement goals, and show that what is stated in the 
previous Lemma holds for them as well. But first we 
need how the achievement goal is implemented. 



 
Definition 15: Achievemnt goal is executed for 

some WPI < 𝑡𝑒 . ! 𝑝(𝒕); 𝑝𝑙𝑎𝑛𝑏𝑜𝑑𝑦, 𝑐𝑡𝑥 > such that  WEI 
< ! 𝑝(𝒕), 𝑐𝑡𝑥′ >  where 𝑐𝑡𝑥1 = 𝑐𝑡𝑥 ≺ 𝑝(𝒕)  is 
generated,  (see Definition 3). The execution of the 
WPI is suspended until the sub-plan is successfully 
executed, which ends up as < ! 𝑝(𝒕2), 𝑛𝑢𝑙𝑙, 𝑐𝑡𝑥2𝑓 > . 
The original WPI then continues as   

< 𝑡𝑒 . 𝑝𝑙𝑎𝑛𝑏𝑜𝑑𝑦, (𝑝(𝒕𝟐), 𝑐𝑡𝑥2𝑓 ∽ 𝑝(𝒕), 𝑐𝑡𝑥) > 

 
The change of context here is done according to 

Definitions 6 and 7, by which we can break this 
operation down as 

 
 𝑝(𝒕𝟐), 𝑐𝑡𝑥2𝑓 ∽ 𝑝(𝒕), ctx =

                      (𝑝(𝒕𝟐), 𝑐𝑡𝑥2𝑓 ∽ 𝑝(𝒕)) ⊓ ctx =
                                𝜌𝑈 (𝑝(𝒕), 𝐼𝜎(𝑝(𝒕𝟐), 𝑐𝑡𝑥2𝑓)) ⊓ ctx.  

 
Thus, the query 𝑝(𝒕) to the basis 𝐼𝜎(𝑝(𝒕𝟐), 𝑐𝑡𝑥2𝑓) 

is performed as a broad unification using the 
predicate of the original achievement goal ! 𝑝(𝒕). This 
query provides all answers according to the 
successfully executed chosen plan. These answers are 
then restricted by the context of the original plan and 
the result is the new context of the original WPI. 

 
Example 4: Suppose that there is a WPI  
< ! 𝑣𝑖𝑠𝑖𝑡(𝑉, 𝑋), ! 𝑔𝑜(𝑋, 𝑌, 𝑍);  𝑝𝑙𝑎𝑛𝑏𝑜𝑑𝑦, {{[𝑝𝑎𝑟𝑖𝑠/

𝑋], [𝑢𝑛𝑐𝑙𝑒/𝑉]}, {[𝑟𝑖𝑜/𝑋], [𝑓𝑟𝑖𝑒𝑛𝑑/𝑉]}} >  
which was generated for this WEI. Such a plan 

could be implemented for an agent who wants to go 
on a trip and visit someone at the same time. The 
context of this plan gives the possibilities of visiting 
an uncle in Paris, or a friend in Rio. The achievement 
goal ! 𝑔𝑜(𝑋, 𝑌, 𝑍)  is to find a means of getting to some 
place the agent would like to be. This plan in Example 
3 ended with the agent receiving the answers 
{{[𝑝𝑎𝑟𝑖𝑠/𝑋], [𝑐𝑎𝑟/𝑌], [𝑚𝑜𝑛/𝑍]}, {[𝑝𝑎𝑟𝑖𝑠/𝑋], [𝑡𝑟𝑎𝑖𝑛/
𝑌], [𝑡𝑢𝑒/𝑍]} . after obtaining all possible answers 
according to this plan. This is the result of the 
operation 𝑝(𝑔𝑜(𝐴, 𝐵, 𝐶)), {{[𝑝𝑎𝑟𝑖𝑠/𝐴], [𝑐𝑎𝑟/𝐵], [𝑚𝑜𝑛/
𝐶]}, {[𝑝𝑎𝑟𝑖𝑠/𝐴], [𝑡𝑟𝑎𝑖𝑛/𝐵], [𝑡𝑢𝑒/𝐶]}} ∽ 𝑔𝑜(𝑋, 𝑌, 𝑍).  By 
Definition 15, the restriction with the original WPI 
context which was {{[𝑝𝑎𝑟𝑖𝑠/𝑋], [𝑢𝑛𝑐𝑙𝑒/𝑉]}, {[𝑟𝑖𝑜/
𝑋], [𝑓𝑟𝑖𝑒𝑛𝑑/𝑉]}}  is to be made and then the new 
context is {{[𝑝𝑎𝑟𝑖𝑠/𝑋], [𝑐𝑎𝑟/𝑌], [𝑚𝑜𝑛/𝑍], [𝑢𝑛𝑐𝑙𝑒/
𝑉]}, {[𝑝𝑎𝑟𝑖𝑠/𝑋], [𝑡𝑟𝑎𝑖𝑛/𝑌], [𝑡𝑢𝑒/𝑍], [𝑢𝑛𝑐𝑙𝑒/𝑉]}}. 

 
Theorem 2: If for some WEI  〈𝑒𝑣𝑡, 𝑐𝑡𝑥〉 a plan is 

successfully executed, and the resulting WPI of this 
plan is < 𝑡𝑒 , 𝑛𝑢𝑙𝑙, 𝑐𝑡𝑥𝑓 > , then the result of executing 
the achievement goals according to the predicate 𝑒𝑣𝑡 
and the substitutions in the context of 𝑐𝑡𝑥 is a result 
encompassing all the goals achieved by the plan with 
respect to the selected actions and subplans. 

 

Proof: Thanks to the above Lemma 5, we know 
that if we have a WEI of the form 〈𝑒𝑣𝑡, 𝑐𝑡𝑥〉 and a WPI 
of some plan that does not contain an achievement 
goal is successfully executed, then all possible 
answers to the given goals that can be achieved by 
executing this WPI are obtained.  Thus, if we have an 
achievement goal ! 𝑝(𝒕) within some plan, then a WEI 
< ! 𝑝(𝒕), 𝑐𝑡𝑥′ >  wbere 𝑐𝑡𝑥′  is the actual context is 
created, and if this goal was achieved by the WPI of 
some plan without other achievement goals, then the 
agent would receive all possible answers to ! 𝑝(𝒕). 

According to the definition of the implementation 
of this type of goals, we know that the new context is 
given by these (all) answers and restrictions with the 
original context and thus, according to Theorem 1, 
contains all possible substitutions that agree with the 
original context and the answers received. Such a 
WPI, if successfully executed, will provide through 
the resulting context all possible substitutions that 
agree with the executed plans. By induction, if an 
agent would need more immersions in subplans for 
some goal, say up to level n, then we can prove that 
WPIs that need at most two levels of subplans achieve 
all possible substitutions, and then proceed similarly 
up to level n. 

5. CONCLUSIONS 

In this paper, we have presented an interpretation 

of the execution of a plan written in AgentSpeak(L) 

using late binding of variables. What this approach 

brings to the interpretation of this language is that the 

agent thus has available at any point in time all the 

substitutions that are valid with respect to all the acts 

it has performed with a given WPI. This in itself does 

not necessarily improve the rationality of the agent's 

behaviour. Still, at some points the agent has to decide 

for some substitutions when it has to perform an 

action. However, late binding of variables can help 

avoid premature erroneous choices of substitutions, 

because by delaying their selection, the agent has the 

opportunity to evaluate the situation when it must 

make the decision. Moreover, if the agent maintains 

all the ways it can still bind variables, this can be 

beneficial even when the agent is pursuing multiple 

goals and can look for synergies between plans for 

these goals, but also for synchronizing the actions of 

agents in a multi-agent group.  

Systems that have addressed this so far either do 

not work with variables at all, or consider variable 

binding as an alternative when the initially chosen 

binding fails (Sardina & Padgham, 2011) (Dastani, 

2008). When researchers do work with focuses and 

with the choice of plans for goals, they currently work 



with goal plan trees, in which formulas are written as 

propositional and thus do not consider predicates as 

such (Yao & Logan, Action-Level Intention Selection 

for BDI Agents, 2016) (Yao, Logan, & Thangarajah, 

Robust execution of BDI agent programs by 

exploiting synergies between intentions, 2016). We 

believe that a system that can handle multiple options 

at once by storing possible bindings until a decision 

must be made will yield an increase in agent 

behaviour in these respects. However, these are 

suggestions for our future research, in which we 

intend to use the principle of late bindings introduced 

in this paper.  
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