
This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90140).

2

1 int main(int argc, char** argv)

2 {

3 // Initialize MPI.

4 MPI_Init(&argc, &argv);

5

6 // Initialize error checker (static class).

7 ErrorChecker::init(MPI_COMM_WORLD, timeout);

8

9 // Protected block of the code.

10 try

11 {

12 // Any combination of local and MPI computation may appear here.

13 MPI_Bast(...);

14 foo();

15 MPI_Barrier(...);

16 ...

17 // The very last command of the try block sets a success flag.

18 ErrorChecker::setSuccess();

19 }// end of try

20 // Error handling.

21 catch (const std::exception& e)

22 {

23 // Find out whether any remote rank caused an exception and

24 // which rank is supposed to print out an error message.

25 const auto& distException = ErrorChecker::catchException(e);

26

27 // Check whether code has deadlocked due to a blocking MPI call

28 // or collective communication in progress. If so, find the rank

29 // which will report the error, otherwise leave if for root.

30 const int reportingRank = (distException.getDeadlockMode()

31 ? distException.getRank()) : rootRank;

32 if (reportingRank == myRank) reportError(distException);

33

34 // Print out error message and terminate or recover.

35 printErrorAndTerminate(distException);

36 }// end of catch

37

38 ErrorChecker::finalize();

39 terminateApplication(EXIT_SUCCESS);

40 }// end of main

Handling C++ Exceptions in MPI Applications

Jiri Jaros

Brno University of Technology, Faculty of Information Technology, Centre of Excellence IT4Innovations, Brno, CZ

3 Under the Hood

The ErrorChecker class creates a side channel for error propagation. If

no deadlock is detected, the root rank is informed about the problem and

the code can be terminated properly. Otherwise, the remaining alive ranks

vote the one to be responsible for reporting error and calling abort.

Minimalistic Interface and Simple Usage

The interface consists of two classes. The DistException class wraps all

exceptions derived from the base C++ class std::exception and

maintains information.

The ErrorChecker class is used to propagate and report exceptions. The

setSuccess()method indicates the code has passed a checkpoint at the

end of the try block. The checkException() method finds the faulty rank,

returns exception details and delegated reporting duties to a selected rank.

5 Conclusions

The code was tested under different MPI implementations such as IntelMPI

19.x and OpenMPI 4.x up to 1536 ranks. As external libraries heavily utilizing

collective communications, distributed version of the fast Fourier transform

(FFTW) and the HDF5 I/O libraries were chosen.

The code was tested with several injected errors into multiple ranks such as

non existing input file, disk quota exceeded, wrong rank in the MPI call, and

standard system exceptions such as out of memory problems, numerical

errors, etc. In all situations the code has worked properly.

In the future work, the code will be extended to protect of various

communicators, and allow sophisticated error recovery.

4 Integration into MPI applications

The proposed method adopts a minimalistic interface. In the simplest case, the

user can use only a single try-catch block to manage error reporting in

a sensible way. Nevertheless, the user is free to use as many try-catch blocks

as necessary.

The advantages of the proposed solution is that no dedicated rank for testing

the errors is necessary, a single reduce operation is only required to confirm

the application passed a check point, deadlock in application cannot interrupt

the error handling, and the application always terminates gracefully with

a proper error message. The necessary support for MPI exceptions to handle

MPI error states, not part of the default branch, may be seen as

a disadvantage, but it can be overcome by custom MPI error handlers.

The proposed solution works well with third party libraries since their

exceptions can either be propagated among ranks or the deadlock caused by

blocking point-to-point or collective operations can be detected.

1 Motivation and Goals

Handling error states in C++ applications is managed by exceptions. In

distributed MPI applications, it is often necessary to inform the other

processes (ranks), that something wrong happened, and that the application

should either recover from the faulty state, or report the error and terminate

gracefully. Unfortunately, the MPI standard does not provide any support for

distributed error handling.

This poster presents a new approach for exceptions handling in MPI

applications. The goals are to

(1) report any faulty state to the user in a nicely formatted way by just

a single rank,

(2) ensure the application will never deadlock,

(3) propose a simple interface and ensure interoperability with other C/C++

libraries.

+---+

| kspaceFirstOrder3D-MPI v1.0 |

+---+

| Reading simulation configuration: Done |

| Number of CPU cores / MPI processes: 576 |

| Processor name: Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz |

+---+

| Simulation details |

+---+

| Domain dimensions: 512 x 512 x 512 |

| Medium type: 3D |

| Simulation time steps: 1513 |

+---+

| Initialization |

+---+

| Memory allocation: Done |

| Data loading: terminate

 called after throwing an instance of 'std::bad_alloc'

 what(): std::bad_alloc

[cn20:01995] *** Process received signal ***

[cn20:01995] Signal: Aborted (6)

[cn20:01995] Signal code: (-6)

[cn20:01995] [0] /lib64/libc.so.6(+0x36450)[0x2b4f37dd9450]

[cn20:01995] [1] /lib64/libc.so.6(gsignal+0x37)[0x2b4f37dd93d7]

[cn20:01995] [2] /lib64/libc.so.6(abort+0x148)[0x2b4f37ddaac8]

[cn20:01995] [3]

/apps/all/GCCcore/10.2.0/lib64/libstdc++.so.6(+0xade3c)[0x2b4f37968e3c]

[cn20:01995] [4]

/apps/all/GCCcore/10.2.0/lib64/libstdc++.so.6(+0xb91d6)[0x2b4f379741d6]

[cn20:01995] [5]

/apps/all/GCCcore/10.2.0/lib64/libstdc++.so.6(+0xb9241)[0x2b4f37974241]

[cn20:01995] [6]

/apps/all/GCCcore/10.2.0/lib64/libstdc++.so.6(+0xb94d4)[0x2b4f379744d4]

[cn20:01995] [7] ./kspaceFirstOrder3D-MPI[0x40eadf]

[cn20:01995] [8]

/lib64/libc.so.6(__libc_start_main+0xf5)[0x2b4f37dc5555]

[cn20:01995] [9] ./kspaceFirstOrder3D-MPI[0x45983f]

[cn20:01995] *** End of error message ***

terminate called after throwing an instance of 'std::bad_alloc'

 what(): std::bad_alloc

[cn20:01993] *** Process received signal ***

[cn20:01993] Signal: Aborted (6)

[cn20:01993] Signal code: (-6)

... REPEATED 576 TIMES ...

[cn191:06270] [7] ./kspaceFirstOrder3D-MPI[0x40eadf]

[cn191:06270] [8]

/lib64/libc.so.6(__libc_start_main+0xf5)[0x2aed2c416555]

[cn191:06270] [9] ./kspaceFirstOrder3D-MPI[0x45983f]

[cn191:06270] *** End of error message ***

Primary job terminated normally, but 1 process returned

a non-zero exit code. Per user-direction, the job has been aborted.

--

mpirun noticed that process rank 28 with PID 0 on node cn20 exited on

signal 6 (Aborted).

--

+---+

| kspaceFirstOrder3D-MPI v1.0 |

+---+

| Reading simulation configuration: Done |

| Number of CPU cores / MPI processes: 576 |

| Processor name: Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz |

+---+

| Simulation details |

+---+

| Domain dimensions: 512 x 512 x 512 |

| Medium type: 3D |

| Simulation time steps: 1513 |

+---+

| Initialization |

| Memory allocation: Done |

| Data loading: Failed |

+---+

+---+

| !!! K-Wave experienced a fatal error !!! |

+---+

| std::bad_alloc |

+---+

| Type: System error |

| Rank: 26 |

| Comm: MPI_COMM_WORLD |

+---+

| Execution terminated |

+---+

MPI_ABORT was invoked on rank 26 in communicator MPI_COMM_WORLD

with errorcode 223.

NOTE: invoking MPI_ABORT causes Open MPI to kill all MPI processes.

You may or may not see output from other processes, depending on

exactly when Open MPI kills them.

--

Healthy rank
root

Healthy rank
 i

Faulty rank
j

Faulty rank
k

setSuccess()

reportOk(MAX_INT);

.
.
.
.
.
.

MPI_Wait();

firstFaultyRank = j;

DistException =
receiveException(j);

throw(DistException)

setSuccess()

reportOk(MAX_INT)

.
.
.
.
.
.

MPI_Wait()

firstFaultyRank = j;

DistException
(default);

throw(DistException)

checkException()

reportError(j)

.
.
.
.
.
.

MPI_Test();

firstFaultyRank = j;

SendException
(root)

MPI_Finalize();

exit();

checkException()

reportError(k)

.
.
.
.
.
.

MPI_Test();

firstFaultyRank = j

MPI_Finalize();

exit();

Everybody OK?
MPI_Iallreduce

MPI_MIN

checkException(e)

reportException
(errorMessage);

MPI_Finalize();

exit();

checkException(e)

MPI_Finalize();
exit();

Deadlock-free
situation

Healthy rank
root

Healthy rank
 i

Faulty rank
j

Faulty rank
k

checkException()

reportError(j)

.
.
.
.
.
.

MPI_Test();

deadlockDetected =
true

reportAlive(j);

MPI_Test();
MPI_Cancel(

deadlockedRank);

firstAliveRank = j;

reportException
(errorMessage);

MPI_Abort();

checkException()

reportError(k)

.
.
.
.
.
.

MPI_Test();

deadlockDetected
= true

reportAlive(k);

MPI_Test();
MPI_Cancel(

deadlockedRank);

firstAliveRank = j;

Everybody OK?
MPI_Iallreduce

MPI_MIN

try

…

…

try

…

…

MPI_* !Deadlock ! MPI_*

Anybody alive?
Custom

Iallgather

Deadlock
situation

Classic error handling in
MPI applications

Error handling with prosed
code

