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Abstract—Industrial Control System (ICS) transmits control
and monitoring data between devices in an industrial environ-
ment that includes smart grids, water and gas distribution, or
traffic control. Unlike traditional internet communication, ICS
traffic is stable, periodical, and with regular communication
patterns that can be described using statistical modeling. By
observing selected features of ICS transmission, e.g., packet
direction and inter-arrival times, we can create a statistical
profile of the communication based on distribution of features
learned from the normal ICS traffic. This paper demonstrates
that using statistical modeling, we can detect various anomalies
caused by irregular transmissions, device or link failures, and
also cyber attacks like packet injection, scanning, or denial
of service (DoS). The paper shows how a statistical model is
automatically created from a training dataset. We present two
types of statistical profiles: the master-oriented profile for one-to-
many communication and the peer-to-peer profile that describes
traffic between two ICS devices. The proposed approach is fast
and easy to implement as a part of an intrusion detection
system (IDS) or an anomaly detection (AD) module. The proof-of-
concept is demonstrated on two industrial protocols: IEC 60870-
5-104 (aka IEC 104) and IEC 61850 (Goose).

Index Terms—anomaly detection, communication patterns,
industrial networks, IEC 104, monitoring, smart grid

I. INTRODUCTION

Security and safety of critical infrastructure that includes
substations, power plants, water and gas treatment facilities,
or traffic control systems become more and more important
due to the rising level of automation and intelligent control of
industrial processes as proposed by the Industry 4.0 initiative
[1]. Deployment of automation in industry induces a higher
risk of failures caused by device malfunctioning, lost packets,
communication delays, and also cyber attacks initiated from
infected machines [2]. To mitigate and prevent internal threats,
we need to monitor industrial communication and observe
irregularities or suspicious patterns that occur in the traffic.
How important this task is can be seen in cyber attacks
against Ukrainian power plants in 2016 [3] or more recently
on the ransomware attack against the Colonial Gas Pipeline
in the U.S. that happened in May 2021 [4]. Both attacks were
initiated from infected internal stations.

Industrial systems are well protected against external threats
using firewalls and IDS systems that filter communication
between ICS network and the internet. Thus, direct attacks

against ICS infrastructure are rare. However, an attacker can
gain an access to the system through a malware sent to a user
via infected e-mail attachment. To detect malware activity, we
need to observe internal ICS traffic and trace unusual behavior.

In this work, we study statistical properties of ICS traffic.
Previous research demonstrated that Industrial Control System
(ICS) and Supervisory Control and Data Acquisition (SCADA)
communication is more stable than traditional internet network
traffic in the sense that the number of communicating nodes
does not change too often [5], [6], end devices use a limited
number of communication protocols, and the frequency of
exchanged packets is predictable [7]. The regular behavior of
ICS communication is an important condition for generating
a stable statistical model that represents a distribution of
packet features like size, direction, inter-arrival time, etc. By
observing transmitted packets, we compare their distribution
with the learned models and raise an alarm if the behavior
significantly differs from the learned model. Unlike our pre-
vious work [8] where we modeled ICS command sequences
using probabilistic automata, in this work we focus on timing
properties of ICS communication.

Statistical properties of network communication can be
observed on different layers of the TCP/IP model. On the
IP layer, we can observe timestamps, packet size, direction,
delay, etc. On the transport layer, we can monitor flow
duration, segment size and inter-arrival time, round-trip time,
or retransmissions [6], [9]. Statistically interesting features can
be also extracted from the application layer, e.g., distribution
of IEC 104 commands or Modbus operations [10]. The main
advantage of the statistical approach is that it does not require
a deep packet analysis with high demands on processing, so
it can be applied for real-time detection. On the other hand,
a statistical model is sensitive to outliers which are particular
data with exceptionally low probability that may be incorrectly
marked as anomalies. The model assumes that underlying data
have a particular distribution that is stable over time.

Stability and regularity of ICS traffic was observed for
Modbus [11], IEC 104 [7], or DNP3 [6]. In this paper, we
closely examine statistical distribution of IEC 104 and Goose
traffic and show how it can be used for anomaly detection.



A. Contribution

The paper presents a technique for statistical modeling
of ICS communication. We split ICS communication into
regions based on packet inter-arrival times and direction. For
each region we create a statistical profile that represents ICS
communication. The main point of the method is to determine
split-points that divide the ICS traffic into regions for accurate
modeling of packet distribution. For detection, we employ
the three-sigma rule that gives minimum false positives. The
proposed technique successfully detects common anomalies
like connection loss, injection attack, rogue device, scanning
attack, or denial of service. In addition, our technique not only
detects an anomaly but is able to identify its type.

B. Structure of the Paper

The paper is structured as follows. Section II presents recent
works in the area of statistical anomaly detection in industrial
networks. Section III reviews the basics of the statistical
approach and describes the main features of IEC 104 and
GOOSE protocols later used in our experiments. Section IV
explains the core of our method that is how how split-points for
inter-arrival time distributions are automatically computed and
how statistical models are created. Section V presents results
of our experiments. The last section concludes the work.

II. STATE OF THE ART

Statistical properties of ICS communication were explored
by Barbosa, et al. in [5], [12] where the authors observed
periodicity, throughput, and topology changes. Their results
show that SCADA communication exhibits periodic behavior
at a smaller scale, it has constant throughput over a long
period of time, and keeps a stable number of connections. The
periodicity is caused by a polling mechanism used to retrieve
data from SCADA slaves [13]. The authors demonstrated that
attacks like scanning, denial of service, network protocol ma-
nipulation, or buffer overflow disturb the traffic periodicity and
can be detected. For modeling the SCADA communication,
Barbose et al. represented the number of packets belonging
to a specific flow by time series. During periodicity learning,
they generated a periodogram for each flow by Fast Fourier
Transform. For detection, they employed discrete-time Short-
Time Fourier Transform that created a spectrogram where
they detected changes. Our approach comes out of Barbosa’s
observations. Instead of monitoring the number of transmitted
packets we provide a more subtle modeling using arrival times
distribution which is precise and faster in computation.

Valdes and Cheung [11] presented pattern-based and flow-
based anomaly detection of ICS communication. Their patterns
included source and destination IP addresses and ports. During
detection, they observed previous n-occurrences of the pattern
and computed the historical probability of the pattern. If
the probability was less than the threshold, an alert was
generated. Their solution included periodic pattern updates and
pruning of rare patterns. The second technique presented by
Valdes and Cheung used flow records. Flow records included
more attributes: IP addresses, time of the last packet, the

average number of bytes per packet, the variance of bytes
per packet, mean and variance of packet inter-arrival time.
Similarly to pattern-based detection, they compared the traffic
with historical records and computed difference. If a record did
not exist or differed too much, an alert was raised. They tested
their approach on a MODBUS network with periodic data
retrieval. They were able to detect anomalies like scanning,
modified data, DoS attack, and system degradation. Unfortu-
nately, their paper does not give the number of false positives
or implementation details. Our approach does not observe
individual flows but creates a model for entire communication
between ICS nodes over a large period of time.

Lin and Nadjm-Tehrani [7] observed timing patterns of
spontaneous events in IEC 104 communication that are asyn-
chronously generated by a Remote Terminate Unit (RTU). The
authors modelled inter-arrival times using Probabilistic Suffix
Trees (PSTs) and analyzed phase transitions, predictability,
and frequent patterns. They describe inter-arrival times as
symbolic sequences that are further smoothed and used to
create a PST. Having the PST, they observe phase transitions,
i.e., a period of time during which the distribution of inter-
arrival times is stable. They define five groups of traffic
patterns: strongly cyclic, weakly cyclic, stable, bursty, and
transitional communication. Using the probability of com-
munication patterns, they also predict future behavior, i.e.,
an ability to state that a certain pattern appears in the next
segment. Their approach is, however, computationally very
intensive. We also deal with IEC 104 communication, but we
do not restrict to spontaneous events only and our computation
requirements are low comparing to PST.

In their other work, Lin et al. [14] proposes a timing-based
anomaly detection system for SCADA networks where they
employ inter-arrival time of packets similarly to our approach.
They build a statistical model for selected packets of three
ICS protocols: request and responses of S7, Modbus, and
IEC 104 spontaneous events. Their model includes sampling
distribution defined by the sample mean, standard deviation,
and Central Limit Theorem. For detection, they use a sliding
window where they calculate the sample mean and sample
range. They verified the model on normal traffic and on various
attacks including flooding, injection, and prediction (spoofing).
They reached a 99% detection rate with 1.4% false positives.
Unlike this approach, our statistical model divides packets into
several regions based on inter-arrival time and direction, which
produces more accurate model for anomaly detection.

III. PRELIMINARIES

A. Statistical Models

Statistical anomaly detection is grounded on the assumption
that normal data instances occur in high probability regions
of the stochastic model, while anomalies occur in the low
probability regions [15]. Statistical modeling is a popular
technique for anomaly detection because statistical methods
allow simple and fast outlier detection, especially in one-
dimensional space. They assume data points to be spread
out according to some distribution, e.g., normal distribution.



Then, a statistical test is performed in order to determine
if a particular data point belongs to the model or not. If
the probability of a particular data point generated from the
learned model is low, then the data point is declared as an
anomaly. For a given dataset is possible to define an interval
of normal values using the statistical model and applied test.

Based on the previous research [16], [17] and our own
experiments we approximate inter-arrival times of ICS com-
munication and the number of transmitted packets within a
time window with normal distribution.

A simple outlier detection technique called three sigma rule
says that for normal distribution roughly 99.7% of data points
lie within the interval 〈m − 3 ∗ σ,m + 3 ∗ σ〉, where m is
the mean and σ is a standard deviation [18]. Another useful
technique is the box plot rule [19] that defines an interval of
normal values using the Inter Quartile Range (IQR). Having
the lower quartile Q1 and upper quartile Q3 of the distribution,
the normal values are within the interval 〈Q1−1.5∗IQR,Q3+
1.5 ∗ IQR〉, where IQR = Q3−Q1. For normal distribution,
roughly 99.3% of data points lie within this interval.

We tested both approaches [20]. Because the IQR produces
more false positives we focused on the three sigma rule.

B. ICS Communication

This section briefly overviews IEC 104 and GOOSE proto-
cols, defines the inter-arrival time and introduces our datasets.

1) IEC 104 [21]: The protocol transmits data in the monitor
direction (from the controlled station) and in the control direc-
tion (from the controlling station) in the power grid. Data are
transmitted either over the link layer (IEC 101) or TCP/IP (IEC
104). IEC 104 communication includes data acquisition that
cyclically collects data from controlling stations, interrogation,
command transmission, etc.

For statistical modeling, we observe all IEC 104 packets.
The monitoring probe collects their inter-arrival times in each
direction. They are later used for creating a statistical model
(learning phase) and anomaly detection (testing phase).

2) GOOSE [22]: It is an Ethernet-based protocol used for
Intelligent Electronic Devices (IED) that transfers time-critical
events in substations. The communication model is based
on autonomous decentralization where substation events are
transported through multicast or broadcast services. GOOSE
uses a publish-subscribe communication model where the
publisher writes the values into a local buffer at the sending
side and the subscribe reads data from a local buffer on the
receiving side. GOOSE messages are regularly sent as keep-
alives with sending time locally configured. If there are no
changes on the publisher side, packets are almost identical.
Statistical model aggregates GOOSE packets based on the
destination multicast address.

3) Packet inter-arrival time: Packet inter-arrival time ∆t
is the amount of time between the arrival of two subsequent
packets. It is computed by a monitoring probe as a difference
between timestamps of these two packets. Its value depends
on the location of the probe in the network, see Fig. 1, but the
distribution stays the same regardless of a probe location.
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Fig. 1. Measuring inter-arrival times

In case of industrial communication, we can model the inter-
arrival time distribution for one direction or for bi-directional
traffic. This depends on the underlying ICS protocols. Bi-
directional distribution makes sense for IEC 104 master-slave
communication while the one-directional distribution model
better fits GOOSE publish-subscribe mechanism.

4) Datasets: For our experiments we used several datasets
with IEC 104 and GOOSE traffic, see Table I. The first
four datasets were created at our university1, datasets RTU
and RICS are from Linköping University, Sweden. GOOSE
communication was captured at GIGS Lab in Grenoble, FR.

The table contains the name of the dataset, number of
captured packets, number of packets of interest, duration of
capturing and the number of communicating ICS devices.

TABLE I
DATASETS WITH IEC 104 (I) AND GOOSE (G) TRAFFIC.

Packets
Dataset Total IEC/Goose Duration Dev.
10122018 (I) 102.971 62,676 4h 53 min 4
13122018 (I) 1,433,083 874,697 2 days 23h 14
14-12-18 (I) 35,905 14,342 15h 38min 2
17-12-18 (I) 150,273 58,929 2 days 20h 2
RTU8 (I) 5,788,789 3,117,663 6 days 18h 2
RTU11 (I) 3,491,020 1,828,733 6 days 18h 2
RICS (I) 4,477,807 882,957 12 days 21h 2
Goose (G) 200,583 83,966 19h 26 min 4

IV. STATISTICAL MODELING OF ICS TRAFFIC

In this section, we describe how to build a statistical model
of ICS communication using inter-arrival packet times and
packet direction. First, we discuss two types of ICS traffic
profiles that can be observed based on the underlying traffic.
Then we show how to automatically select split-points that
divide ∆t times of a given communication into regions where
∆t values are stable. Lastly, we describe the process of
computing the statistical model using the training data.

A. Network Traffic Profiles

Industrial communication is usually limited to a fixed num-
ber of communicating nodes connected to the ICS network.

1Available at https://github.com/matousp/datasets/scada-iec104 [May 2021].
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Fig. 2. Master-oriented traffic profiles.

In the master-slave communication model, a master station
communicates with one or more slaves, which is typical for
protocols like IEC 104, MMS, or Modbus. In the publish-
subscribe scheme, the publisher sends data to a set of receiving
stations. This model is implemented by GOOSE. Based on
the behavior, we define two kinds of profiles for statistical
modeling: master-oriented and peer-to-peer-oriented. Master-
oriented profile, see Fig. 2, corresponds to a master that
periodically communicates with a set of slaves. In this case,
we model all transmissions identified by master’s ID (e.g., IP
or MAC address). The statistical model represents inter-arrival
times of all packets sent or received by the master node.

A peer-to-peer-oriented profile represents communication
between two nodes, e.g., IEC 104 master and slave, or GOOSE
publisher, see Fig. 1. In this case, peer-to-peer traffic is
selected using peer IDs (a pair of MAC/IP addresses + ports)
or a multicast destination MAC address (in case of GOOSE).
The statistical model is created for each pair of communicating
devices. The number of pairs is determined during the learning
phase and is stable until a new device connects to the network.

B. Finding Split-Points

As mentioned in the previous research [14], [17], [23],
packet inter-arrival time ∆t is a useful feature for describing
network behavior. In our work, we observe the number of
transmitted packets within a time window. For accurate mod-
eling, we add ∆t distribution to the statistical model so that we
split observed packets into several regions based on ∆t values.
Then we create a statistical model for each region. As shown
later, such detailed modeling detects common anomalies and
identifies a particular anomaly that occurred in the network.
This is important for network administration. Here, we present
three possible ways how to determine split-points for the
statistical model.

a) Four equal regions: The first case represents a naive
solution that splits the range of inter-arrival times into four
equal regions based on the maximal and minimal values
observed in the training dataset. Unsurprisingly, this solution is
not much suitable for ICS traffic modeling, since ∆t values are
usually not uniformly distributed as seen in Table II. The table
shows inter-arrival time distribution of packets in direction
from master (fm) and to master (tm). This naive solution leads
to a situation where majority of observed ∆t values fall into
the first region, see Fig. 3 (b) and Tab. III.

b) The pre-defined split-points: The second approach aims
to give a simple recommendation how to determine suitable

TABLE II
INTER-ARRIVAL TIME DISTRIBUTION IN SELECTED DATASETS.

Dataset Dir. min Q1 Q2 Q3 max
13122018 fm 0.0000 0.0000 0.0003 0.0004 16.1905

tm 0.0000 0.0002 0.0004 0.0600 10.1331
17-12-18 fm 0.0000 1.9989 3.5909 5.6002 19.9873

tm 0.0001 1.0091 3.0332 6.0831 19.2696
RTU11 fm 0.0000 0.2109 0.3734 0.4792 2.4896

tm 0.0000 0.0060 0.0121 0.0145 1.4055
RICS fm 0.0000 0.0464 0.0830 3.8960 20.0577

tm 0.0000 0.0073 0.0124 0.1410 10.1876

TABLE III
DIFFERENT SPLIT-POINTS FOR DATASET 13122018.

Equal regions
fm 〈0; 4.05) 〈4.05; 8.1) 〈8.1; 12.14) ∆t ≥ 12.14

1300.5 5.2 0 1.0
tm 〈0; 2.53) 〈2.53; 5.07) 〈5.07; 7.6) ∆t ≥ 7.6.

365.1 32.5 1.2 1.0
Auto split-points

fm ∆t < 0.09 ∆t ≥ 0.09 - -
1217.8 89.6 - -

tm ∆t < 0.46 ∆t ≥ 0.46 - -
347.2 52.8 - -

split-points for each dataset and direction. Table II shows
significant differences in inter-arrival times distribution for
individual datasets and directions. It is obvious that reasonable
split-points cannot be defined ad-hoc or with some knowledge
obtained from the other datasets. Suitable split-points require
the analysis of inter-arrival times in the given learning dataset.
Due to this fact we reduced the number of split-points and
intervals of ∆t to simplify this task. We search for one
split-point for each direction that provides two additional
characteristics of the traffic. With inter-arrival time distribution
it seems reasonable to choose some percentile (e.g., median) as
a recommended split-point value. However, across our datasets
there is no single percentile which would give the best split-
point selection for each dataset and direction. The choice that
is suitable for one dataset and direction leads to a less stable
characteristics for another dataset or direction.

TABLE IV
SPLIT-POINT SELECTION IN DATASET 17-12-18 (from master).

Split-point ∆t < split− point ∆t ≥ split− point
∆t distr. value mean std mean std

Q1 2.00 12.66 3.80 36.82 8.08
Q2 3.60 25.29 8.34 24.19 3.94

mean 4.13 28.89 9.38 20.59 3.33
Q3 5.66 37.36 10.99 12.12 2.83

c) Split-points automatically derived from the learning
dataset: The third case employs the automated method that
finds suitable split-points for individual directions of the given
dataset. This approach utilizes distribution of ∆t times of
packets transmitted in the given direction together with the
standard deviation. We search for such split-points that filter
out the periodic behavior from at least one characteristic. Such
split-points are suitable for anomaly detection as they produce
stable characteristics, see Fig. 4. Instead of testing the value of
each percentile of inter-arrival times as a candidate split-point,
we approximate the inter-arrival times distribution with four
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Fig. 3. The number of packets transmitted in five minute windows in 13122018 dataset. (a) Communication of one pair of devices (additional characteristic
are produced with automatically selected split-point). (b,c) Master-oriented profile, where additional characteristics show the effect of using four equally large
intervals of inter-arrival time.

values: quartiles Q1, Q2, Q3 and the mean. We search for the
best split-point among these four candidates. Tables IV and V
show the candidate split-points for dataset 17-12-18 with
mean and standard deviation of the resulting characteristics.

TABLE V
SPLIT-POINT SELECTION IN DATASET 17-12-18 (to master).

Split-point ∆t < split− point ∆t ≥ split− point
∆t distr. value mean std mean std

Q1 1,01 6,04 2,33 16,78 2,23
Q2 3,03 10,92 3,13 11,90 2,86

mean 4,29 14,61 3,34 8,21 3,01
Q3 6,08 16,90 3,37 5,93 3,02

For from master direction, see Tab. IV, the value 5.66 (Q3)
produces a characteristic with the minimal standard deviation,
so it is the best candidate for the split-point. On the other
hand, for to master direction, see Tab. V, we obtain the most
stable characteristic for value 1.01 (Q1).

For some datasets the split-point with minimal deviation
divides packets in such way, that the stable characteristic
contains only few packets in each time window. If the mean
is close to zero, then the testing three sigma rule range would
go to negative values and such model would not be capable
to detect many types of anomalies. For this reason we put
an additional condition for selecting the split-point: we search
for (i) minimal standard deviation of the distribution, and (ii)
non-zero condition for the sigma rule, i.e., mean− 3 ∗σ > 0.

C. Modeling process

In this part, we provide a step-by-step description of the
ICS modeling process. Consider an input packet sequence
in master-oriented or peer-to-peer-oriented communication
model. We build the statistical profile of the traffic as follows:

1) Determine ∆ti+1 = ti+1 − ti for each incoming packet.
2) Partition ∆t times by direction to sets ∆T f and ∆T t.
3) For each direction d = {t, f}:

a) Select the best split-point spd.
b) Gather the characteristics for each time window: the total

number of transmitted packets, the number of packets
with ∆t < spd (lower region) and the number of packet
with ∆t ≥ spd (upper region).

c) Determine the mean and standard deviation for each
characteristic.

d) Find out the range of normal values for each character-
istic using the three sigma rule.

e) Statistical profile P d is (spd, 〈a1, a2〉, 〈l1, l2〉, 〈u1, u2〉)
where spd is the best split-point. Range 〈a1, a2〉 denotes
the total number of transmitted packet in the time win-
dow, 〈l1, l2〉 the number of packets in lower region and
〈u1, u2〉 the number of packets in upper region.

We select the best split-point for each set ∆T d as follows:
1) Compute candidate split points: Q1, Q2, Q3 and the mean of

the ∆T d distribution.
2) For each candidate:

a) Gather the characteristics for each time window.
b) Determine the mean and standard deviation.
c) The best split-point becomes a candidate with minimum

σ that satisfies condition m− 3 ∗ σ > 0.

Computational complexity of creating profiles depends on
sorting ∆T d set in order to compute quartiles. Based on the
sorting method, the complexity is O(n.log n) or O(n2). An
example of best-split points selection for dataset 17-12-18 is
in Tables IV and V.

V. ANOMALY DETECTION

We tested the stability of our model and detection against
common anomalies (failures, attacks) using datasets described
in Section III-B4. We employed two detection methods:
simple-detection and 3-value-detection. The simple-detection
method evaluates each time window independently and com-
pares the number of transmitted packets in this window with
the values defined by the statistical profile. An anomaly is
detected if a value does not fit the specified range. The 3-value-
detection method evaluates three consecutive time windows.
This method reduces false positives that occur due to outliers
in the dataset. 3-value-detection reports an anomaly only if it
is included in at least two of three subsequent time windows.

A. Evaluation of Statistical Profiles

We evaluated our method on datasets described in Section
III-B4. We used two-thirds of each dataset to build the profile.
The rest of the data was used for testing. Table VI shows the
number of false positives windows for each dataset and the
accuracy for both methods. It can be seen that the 3-value-
detection method provides better accuracy for all datasets.
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Fig. 4. The number of packets transmitted in five minute windows in 17-12-18 dataset, additional characteristics show the effect of using different
split-points (direction from master).

TABLE VI
VALIDATION - SUMMARY RESULTS.

simple-detection 3-value-detection
Dataset FP/all Acc FP/all Acc

10122018 1/20 95% 0/20 100%
13122018 2/285 99.30% 0/285 100%
14-12-18 0/63 100% 0/63 100%
17-12-18 4/273 98.53% 0/273 100%

RTU8 9/650 98.62% 5/650 99.23%
RTU11 16/650 97.54% 0/650 100%
RICS 37/1240 97.02% 11/1240 99.11%
Goose 4/78 94.87% 0/78 100%

TABLE VII
COMPARISON OF THE ANOMALY DETECTION BASED ON STATISTICAL

PROFILES AND PROBABILISTIC AUTOMATA.

Attack Statistical AD Probabilistic AD
Single DistrPT DistrAl

Connection loss X × X X
Injection attack X/× X X X

DoS attack X × × ×
Roque Device X X X X

Scanning attack X X X X
Switching attack X X X X

B. Anomaly Detection Using Statistical Profiles

For anomaly detection, we employed 3-value-detection
which is more precise. The statistical profile was created using
the whole 17-12-18 dataset with normal traffic. Then we
applied the profile on the datasets with anomalies.

Fig. 5 shows, how DoS, scanning and switching attacks
changed the characteristics of the traffic (see highlighted parts
of the graph with arrows).

Table VII summarizes capability of the proposed method to
detect the individual attacks and compares the results with our
previous research using probabilistic automata [24]. The table
shows that while the DoS attack was not properly detected by
probabilistic automata, it can be detected by statistical profiles.
On the contrary, statistical approach cannot detect an injection
attack, which is covered by the probabilistic approach.

The proposed method of statistical profiles based on inter-
arrival times and direction successfully detects common types
of ICS attacks. It did not correctly recognize only the first
injection attack that did not involve a sufficient number of
packets which would significantly differed from the profile.

The results also show that it is useful to build profiles
for each direction because some attacks that could be easily

hidden in the overall traffic, e.g., the second scanning attack
in Fig. 5 (b, e) and the switching attack in Fig. 5 (f). Fig. 5 (a)
also shows the benefit of using split-points. In this case, the
DoS attack is not detected by the main characteristic (the total
number of packets, blue line) but by additional characteristic
(∆t ≥ split− point, green line).

By observing differences from the profile in different re-
gions (total, lower, upper) and directions, we can also identify
a type of the attack as depicted in Fig. 6. Full description of
our experiments is available at [20].

VI. CONCLUSION

Industrial systems are attractive targets for attackers. There-
fore, their cyber security is of paramount importance. The
ICS traffic anomaly detection techniques can help identify
system malfunctions and even cyber attack activities by finding
irregularities in the monitored communication. This paper
presents a simple but accurate anomaly detection method
applied to IEC 104 and GOOSE traffic. The method builds
the statistical model of normal communication by exploiting
packet inter-arrival times. Based their statistical distribution,
packets are grouped into regions within a monitored window
that represent a statistical profile of the communication. The
different approaches to construct these ranges have been con-
sidered and tested in our experiments. Two important aspects
of anomaly detection were considered: fast computation and
the small number of false positives. We have identified that
false positives can be suppressed using the 3-value-detection
approach that compares three consecutive time windows of the
monitored traffic to the profile and raises an alert only if an
anomaly is detected in at least two of them. We demonstrated
that profiles built for each direction of ICS communication
could detect the most considered attacks. Finally, the detection
capabilities were compared to the AD method based on
probabilistic automata.

The conducted experiments demonstrated high accuracy of
the proposed method similar to more complex AD methods,
while the computation costs of building a profile and evaluat-
ing the monitored traffic are substantially lower.

The method was demonstrated on a variety of datasets con-
sisting of IEC 104 and GOOSE traffic. The future work aims
at the integration of the method in the ICS traffic monitoring
system in order to improve the accuracy and reduce false
positives by the combination of various detection methods.
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Fig. 5. DoS, scanning and switching attacks detection.
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ACKNOWLEDGMENT

This work is supported by the project “Security Monitor-
ing of ICS Communication (Bonnet)”, no. VI20192022138,
funded by Ministry of Interior of the Czech Republic.

REFERENCES

[1] K. Schwab, The Fourth Industrial Revolution. USA: Crown Publishing
Group, 2017.

[2] K. E. Hemsley and D. R. E. Fisher, “History of Industrial Control
System Cyber Incidents,” no. INL/CON-18-44411-Revision-2, 12 2018.
[Online]. Available: https://www.osti.gov/biblio/1505628

[3] Dragos, “CrashOverride. Analysis of the Threat of Electric Grid Oper-
ations.” Dragos Inc., Tech. Rep., June 2017.

[4] M.-A. Russon, “US fuel pipeline hackers ’didn’t mean to
create problems’,” BBC News, May 2021. [Online]. Available:
https://www.bbc.com/news/business-57050690

[5] R. R. R. Barbosa, R. Sadre, and A. Pras, “Difficulties in Modeling
SCADA Traffic: A Comparative Analysis,” in The 13th International
Conference on Passive and Active Measurement, 2012, pp. 126–135.

[6] D. Formby, A. Walid, and R. Beyah, “A case study in power substation
network dynamics,” vol. 1, no. 1, Jun. 2017.

[7] C.-Y. Lin and S. Nadjm-Tehrani, “Understanding IEC-60870-5-104
Traffic Patterns in SCADA Networks,” in The 4th ACM Workshop on
Cyber-Physical System Security, ser. CPSS ’18, 2018, pp. 51–60.
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