
20
21

 2
4t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

D
es

ig
n

an
d

D
ia

gn
os

tic
s

o
f E

le
ct

ro
ni

c
C

irc
ui

ts
 &

 S
ys

te
m

s
(D

D
E

C
S

)
| 9

78
-1

-6
65

4-
35

95
-6

/2
0/

$3
1.

00
 ©

20
21

 I
E

E
E

 |
D

O
I:

10
.1

10
9/

D
D

E
C

S
52

66
8.

20
21

.9
41

70
60

2021 24th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)

High-speed stateful packet classifier based on TSS
algorithm optimized for off-chip memories

Michal Orsák
iorsak@fit.vutbr.cz*
orsak@cesnet.cz!

Tomás Benes
benesto3@fit.cvut.cz!

tomas.benes@cesnet.cz!

* Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic

! Faculty of Information Technology !CESNET, a.l.e.
Czech Technical University Prague, Czech Republic

Prague, Czech Republic

Abstract—We present a modular out-of-order architecture
for stateful packet classification. The architecture uses DDR4
SDRAM memory to store rules and their state information to
support millions of rules. The memory access pattern generated
by network traffic significantly degrades the performance of
the DDR4. Our architecture contains a cache and aggregation
queues to negate this effect. Additionally, the memory subsystem
supports a read cancellation and uses an out-of-order pipeline
to maximize the main memory’s effectiveness further. The rule
set update is implemented as a non-blocking operation and can
be interleaved with lookup operations without any performance
decrease, leading to the same execution time for rule update and
rule lookup. The architecture is optimized for the modern data
center’s network traffic and a small on-chip memory footprint,
making it suitable as an accelerator for the Open vSwitch. As
a result, our novel architecture configured with 1 million exact
match rules can process traffic up to 202 Gbit/s (300Mp/s) in
average case and 51 Gbit/s (76 Mp/s) in the worst case with the use
of a common dual-channel 64 bit DDR4-2666 MHz. It uses fewer
FPGA resources (excluding cache memory) than the well-known
de facto industry standard Xilinx MIG DDR4 controllers. Our
proposed architecture enables commodity FPGA cards commonly
equipped with DDR4 to process 100 Gbit/s which results in
a significant cost reduction of a 100G SmartNICs.

Index Terms—Open vSwitch, OpenFlow, networking, TSS,
external memory, 100G, FPGA, SmartNIC, Out-of-Order, cache,
LSU, packet classfication

I. I n t r o d u c t i o n

Complexity and flexibility of the modern networks used,
e.g., in data centers, were first introduced by a Software-
Defined Networking (SDN) concept. The concept is based
on highly configurable devices controlled and configured by
an external network controller, usually using OpenFlow (OF)
protocol [1]. The OF specifies 47 packet header fields, which
can be matched in up to 255 tables by rules with up to 232 — 1
priorities [2]. As the rules might overlap, the potential match
complexity can be theoretically enormous. An OF rule also
contains per-rule statistics and per-rule actions, which need to
be updated/performed for each packet match. Additionally, the
rule update rate is much faster than traditional core networks
as rule-set changes with every reconfiguration of any service
in the network.

978-1-6654-3595-6/21/$31.00 ©2021 IEEE

Open vSwitch (OvS) [3] is an open-source reference
and a widely used software switch supporting SDN con
cept. However, for a 100 Gbit/s networks, it requires at least
16 cores [4] and causes cache spoiling and thus largely
degrades the machine’s performance.

The OvS utilizes an OpenFlow classifier and two, optionally
three levels of software-based caching strategy. The lowest
OvS cache level is called Exact Match Cache (EMC), which
caches fully expanded rules. The EMC’s size is usually set to
match the CPU’s L1 cache’s size and may contain approxi
mately hundreds of items. The second level of cache is called
Mega Flow Cache (MFC), and it caches the cross produced
OpenFlow rules. The size of this cache is also configurable,
and it usually contains tens of hundreds of records in a simple
setup. The accelerator API in OvS allows the accelerator to
be connected as an EMC or MFC. The EMC is a table with
a single key mask, and MFC supports multiple key masks
and priorities. The offload of MFC results in fewer up-calls to
software as a rule in MFC cover more potential variants of a
record for EMC.

For OvS applications, the accelerator needs to store only
some rules as it works as a cache. However, the memory
capacity requirements are higher than the available FPGAs’
internal resources. Additionally, it is also necessary to use
some additional internal memory resources for the classifi
cation process, such as rule statistics.

We have analyzed data-sets of OvS rules from large data
centers and identified minimal requirements of 1 million OF
rules. Even though external memories (DDR) can solve the
capacity issue, they have many characteristics that complicate
their usage. The external memory bandwidth significantly
degrades with a random access pattern, and it has a large and
non-deterministic latency. Therefore, it is challenging to design
a network packet processing architecture, which uses external
DDR memories.

This paper presents a novel architecture based on FPGA
technology that solves the issues with external memories.
Therefore, it provides enough memory capacity (for about
2 millions rules including the counters) with high-performance
processing (up to 202 Gbit/s) that is required in a real environ
ment. The proposed architecture can significantly accelerate

151

Authorized licensed use limited to: Rutgers University. Downloaded on May 17,2021 at 02:38:26 UTC from IEEE Xplore. Restrictions apply.

the OvS application, enabling the deployment of a 100 Gbit/s
networking and potential cost reductions.

II. Re q u i r e m e n t s

Computer networks generally differ in their configurations
and traffic. This variability affects requirements on the system
design. We have explored existing solutions and analyzed
available SDN configurations from real data-centers to esti
mate the optimal solution for a typical target environment. The
OpenFlow matching scheme is designed for flexibility. The
current version of OpenFlow (1.5.1) does support 255 tables,
each rule has 32b priority, and the matching key may contain
up to 47 fields. The complexity of the rule match and the
overall number of rules depend on the chosen schema and the
network infrastructure. Although there are recommendations
on the design of OpenFlow tables [5], the table schema is
nearly always a user-specific. Therefore we have reached an
large data center operators VMware, Inc and eBay, Inc for their
OpenFlow dumps. Based on the provided data from 2015-2020
and example configuration for various data-center software, we
identified the four configuration categories, which are shown
in Table I. Event thought the number of rules might seem low,
each rule may be translated to multiple rules for an accelerator
resulting even in several order of magnitude difference.

One of the critical requirement is the maximal network
speed supported by the accelerator. However, its performance
is measured in packets-per-seconds (PPS). The transition from
PPS to network throughput depends on the packet sizes in
the deployment. The accelerator used in a data center with
larger packets (such as multimedia content streaming) would
naturally require lower performance than the datacenter with
mainly shorter ones. The Benson et al. [6] focused on the
traffic patterns inside the datacenters. Their result shows that
the network packet sizes follow a heavy-tail distribution with
peaks at 200 B and 1440 B. Therefore, we can assume that the
average packet length falls into the interval of the mentioned
peaks.

In general, there are four assumptions that our architecture
must fulfil to be worth enough compared to the existing
solutions:

1) Packet classifier must be capable of handling at least
100 Gbit/s at half of the average packet size in the
worst case. The current software solution capable of such
speed requires at least 16 CPu cores. We estimate that a
reasonable CPu load would use maximally two cores.

2) The system must support frequent incremental rule-
set update, because the longer update significantly de
creases overall performance of the Open vSwitch caches.

3) The rule statistic update collisions must not cause
drops in throughput, because such a events are common
in real deployment.

4) The system must support at least 1 million Open-
Flow rules. This and previous requirements makes use
of the traditional hardware architectures for a packet
classification infeasible because they rely on on-chip
memory which does not have sufficient capacity.

III. Re l a t e d w o r k

The packet classification is a well-explored area that can
be solved with multiple different approaches. Generally, there
are four types of algorithms: 1) dimensional decomposition
(such as HSM [7], and BV algorithm [8]), 2) geometric space
partition (such as Efficuts [9] or HyperSplit [10] algorithm),
3) Trie tree structures (such as Quad-Trie algorithm [11]), and
4) the predefined filter matching (such as TSS algorithm [12]).
unfortunately, almost no algorithm satisfies the requirements
presented in Section II. The algorithms usually require a large
number of memory accesses, which precludes their implemen
tation with external memory. Or the principle of algorithm
functionality does not allow fast or incremental updates of
a rule-set. Among the four presented approaches, only the filter
matching based algorithms are suitable for our use-case.

The acceleration of the filter matching based classification
algorithm is usually targeted as a part of a software imple
mentation of a virtual switch. Wanf et al. [13] used a Cuckoo
hashing principles [14] and achieved a 3.5 times improvement
in throughput compared to the previous solution implemented
in the openvswitch.

Tseng et al. [15] focused on accelerating the classification
by offloading the search algorithm to GPu. By balancing
between GPu and CPu, they achieved three times higher
throughput of OvS than the optimized CPu only implementa
tion. Similarly, Qiu et al. [16] proposed a GFlow algorithm
for GPu based acceleration.

However, all software-based implementations require sig
nificant CPu resources for reaching 100 Gbit/s (more than
16 cores in a dpdk based OvS [4]). Allocation of such a high
amount of resources only for network stack is expensive;
therefore research community focused also on hardware accel
eration of packet classification. These architectures could (un
der certain circumstances) even exceed our defined 100 Gbit/s
threshold [17-19]. However, all of the mentioned papers
achieve the speed for the price of using only the internal FPGA
resources (Bloom Filters, a pipeline of unwrapped decision
trees), which unfortunately are very limited and do not support
large rule-set.

The support of a large number of rules requires the usage
of external memory. Nonetheless, the throughput of external
memories usually limits the whole architecture; thus, it does
not reach the 100Gbit/s limit [20, 21]. Unfortunately, the ar
chitectures that do achieve 100 Gbit/s [22-24] do not support
a fast update of a rule-set. The updates cause a pause in
their functionality in order of seconds, which is unthinkable in
a production environment. Besides, these architectures require
SRAM, TCAM memories, which are more expensive than
DRAM. Therefore, we are not aware of any architecture that
clams to meet all requirements defined in Section II, which
ensures the architecture applicability in modern data centers
production environment.

IV. OUR ARCHITECTURE

In order to satisfy the requirements mentioned in Section II
we designed an out-of-order hardware architecture for an TSS

152

Authorized licensed use limited to: Rutgers University. Downloaded on May 17,2021 at 02:38:26 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Parameters of real word rule-sets

Category name Number of rules Number of OF tables OF table pass-through graph Match complexity
Generic ACL 10K-1M eta 30 Linear pass-through Mostly exact match

VM Hypervisor 1K - 10K <30 Small tree LPM for L4 ports
Service Hypervisor 10K <30 Small tree Exact match
Network monitor 30K - 50K eta 100 DAG with high number of edges LPM anywhere

classification algorithm utilizing FPGA with an external DDR4
memory. The following sections describe the most important
aspects that had to be considered.

A. External Memory

The DDR4 SDRAM is commonly present on cheap com
modity FPGA cards, and the usage of this type of memory is
essential for a supporting millions of rules on such a cards.
These memories provide gigabytes of a memory space and
high throughput (64b DDR4-2666 170 Gbit/s). However, it has
a relatively large latency (70-100 cycles [25]). Additionally,
the random access pattern together with switching between
read and write mode degrades the throughput to a 24% [25].
Unfortunately, the hash table lookup does have a random
access patterns, and the content maintenance is also a read-
modify-write operation. This requires either using multiple
memory channels for a single 100G Ethernet port or integrat
ing a large enough cache to filter pattern repetitions. Flow-
based traffic analysis [26] suggests that the window between
packets in a flow can be overlapped by a cache with a high
probability for achievable cache size.

Storing of stateful rule information on-chip can eliminate
the need for the frequent write to a memory, which signifi
cantly improves the overall performance, and just two DDR4-
2666 memory channels are required to satisfy the packet-
rate of 100G Ethernet in the worst case. If the rule stateful
information is stored in DDR, the four DDR4-2666 channels
are required.

B. Classification Algorithm

Our architecture implements packet classification algorithm
Tuple Space Search (TSS) [12]. It has a small number of
memory accesses for the classification of SDN-like traffic and
a very fast update. It is using hash tables that are easily
implemented in hardware architecture. The other alternatives
either require a large number of memory operations for its
operation or do not support incremental update.

The TSS uses a list of hash tables sorted by the maximum
rule priority. Each table is associate with a rule mask, which
is used for a key comparison and hashing. The lookup starts
at the first table and ends once the next table may not contain
the rule with larger priority, or there is no other table. The rule
with the highest priority is returned as a result of the lookup
operation.

C. Hashing options

The primary parameters of a hash table data structure is
a hashing scheme and a hash function. The hashing schemes
with a high memory efficiency like Cuckoo hashing or Double
hashing are traditionally used for on-chip memories where
the memory size is limited. In our application, we need to
pay close attention to the number of memory transactions as

the main limitation. The more memory efficient hash schemes
require more memory accesses (e.g. direct hashing [27] vs
Cuckoo hashing [14]). The collision probability of direct hash
ing is approximated by equation PCoiiision = 1 — e(2n)
where k is number of occupied items and N is a total size of
the table. That implies that the probability of hash collision
for a 1GB of memory filled with a 147 thousands of rules
is 50%. The memory of hash tables can be shared between
the hash tables if the key stored in a hash table is extended
with a unique id. Sharing table memories results in a more
uniform memory load and better overall memory efficiency in
the multi-table scenario. Note that the small on-chip memories
may still be utilized to reduce the problem of hash collisions.
In our architecture, the hash function is used to distribute rules
in the main memory, and it is unrelated to the efficiency of
the cache. The work of Hua [28] suggests that the CRC-32
hash function also works for network flows and has efficient
hardware implementation as it is LFSR based. Due to the
previously mentioned reasons, we decide to use CRC-32 as
a main hash function.

D. Main parts of our architecture

Our architecture implements packet classification using ex
ternal memories and TSS algorithm with a per rule statistical
counters stored inside the external memory. The architecture
is configured for a OvS use-case, where the mostly used rules
are offloaded into an accelerator. The rest of the rules may
then applied to the unclassified traffic by the software.

Fig. 1: Diagram of our architecture

Our architecture depicted in Fig. 1 contains parser and
deparser, out-of-order TSS pipeline (inside Match Action En
gine), Cache, Load/Store queues and DDR memory subsystem.
The whole design is non-blocking and pipelined.

The Match Action Engine (MAE) is a component imple
menting the TSS algorithm and rule statistic handling. The
packet classification may finish out-of-order and the memory
transactions may also finish out-of-order for a single lookup.
The pipelined design presents a large number of hazards and
issues which we will address in this section. The inner design
and data flow is depicted in Fig. 2.

153

Authorized licensed use limited to: Rutgers University. Downloaded on May 17,2021 at 02:38:26 UTC from IEEE Xplore. Restrictions apply.

The functional design of the MAE can be separated into
several parts. Input handler, Memory subsystem (including
Cache and Load/Store queues) and the main Action Pipeline.

Fig. 2: Diagram of Match Action Engine datapath

The MAE has an input traffic interfaces which always
executes Look-up instruction for the first table of the TSS.
It also has a service interface that is used for managing
the table and monitoring statistics by the application plane.
The management of the tables inside the external memory
of the accelerator does have many corner cases and hazards
that can severely degrade the performance and are costly to
remove. One of the examples is an atomic copy of all counters
to a software. The pipeline does support of concurrently
running updates and the slowdown is caused only by limited
throughput of the DDR4. The AMBA AXI4 interface is used
for a memory access.

Look-up operation consists of several steps: 1) A computa
tion of the hash from selected fields according to a specifica
tion of actually selected table. 2) The read transaction is issued
into external memory. 3) The the result of the read transaction
is processed inside the Action pipeline. If the key is not found
inside the table the action pipeline selects next table according
the TSS table chain and recirculates the input to the first step.
If the key is found the counters are modified and written back
into the memory subsystem and classified packet is dispatched
on the output interface.

1) Input Handler: The input handler identifies and parses
instructions from both of the interfaces. It computes the hash
according to the actually selected table for a transaction. The
hash is used to initiate read transactions from the table inside
the memory subsystem. When the transaction is dispatched the
session with an information for later statistic update is stored
in Allocated Storage which also manages the allocation of the
tags for a communication over the main bus.

The id of read transaction received from memory subsystem
loads a session state from Allocated storage in to a action
pipeline, which then computes the state update and potentially
deallocates the session from its storage upon operation com
petition. This allows the action pipeline to process transac
tion out-of-order thus significantly reducing delays on cache
misses.

2) Memory subsystem: Our memory subsystem is designed
to increase the possibility that memory transactions will be
merged before dispatching to DDR4 SDRAM chip, to max
imize the possibilities for Memory-level parallelism (MLP)
and to fully utilize memory chips in the 1 0 0 % cache miss

scenario. Compare to a common cache subsystems widely
found in CPUs. It has several unique features. It is designed for
latency insensitive applications and to minimize the need for
a buffering. Note that the increase of MLP and minimization of
buffering are contradictory. We minimize buffer requirements
by moving management of transaction context and collision
handling to the MAE and Load/Store queues, where we can
improve MLP at a much smaller cost.

3) Cache: The cache is an optional part of our architecture.
We utilize unused resources inside the FPGA to increase the
throughput of our design. The cache works in write-allocate
mode and utilizes Tree-PLRU as a cacheline replacement
policy. The write-allocate is used to minimize memory access
to a cache memory as our application always writes the
cacheline because of rule statistics update. The read cancel
lation happens when a cache line is invalidated by a write
transaction, it is forwarded to a Load queue, and it marks all
read from selected address to be invalidated. This means that
the cache does not need to store information about pending
transactions or buffer them. Also, it makes only MAE and
Load/Store queue responsible for maintenance of correct store
order. As the MAE and Store queue already has the out-of
order infrastructure, the additional resource requirements are
minimal, and the cache is significantly simplified.

4) Load/Store queues: The Load/Store queues are essential
parts of our architecture. The components are simple from
an algorithmic point of view. It only merges transactions that
are working with a same address. It implements read and write
bypass and write forwarding. The CAMs used to detect address
collisions as well as leading zero/one detectors used to allocate
in out-of-order transaction logic have high latency, and thus
the architecture needs to have a high degree of pipelining.

During the synchronization between write (Store) and read
(Load) channel queues, the ongoing read transaction may be
canceled by write into the cache. This event causes the pending
read transaction to be invalidated, and thus it must be re
executed from the action pipeline. As the read cancellation was
caused by cache write and the cache works in write-allocate
mode, the cacheline should be present in the cache, and thus,
the next read should execute immediately.

5) Action pipeline: Action pipeline is the most complicated
part of the parts. It needs to resolve hazards that can occur
during the processing by the pipeline itself in an out-of-order
manner.

The pipeline receives Out-of-Order read transactions from
memory with the attached tag. It then reads the appropriate
session from the allocated storage and starts processing the
read data. It compares the result with the searched key using
a specified mask. In case of a match, it then updates the
appropriate statistics of the rule and writes the updated values
into the cache. This writing transaction’s latency should be
minimal because potential cache line flushing uses LSQ, which
has minimal write latency. Afterward, the result is sent to the
output in case of match. In case of mismatch, the instruction
is recirculated to search the next table given by the TSS

154

Authorized licensed use limited to: Rutgers University. Downloaded on May 17,2021 at 02:38:26 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Overview of similar solutions for packet
classification

Name Rule Size Rule Storage Memory Mpps
Our architecture 64 B 16 GB off-chip 300

Rozhko [20] 50B 536 Mbit off-chip 22.4
Jiang [18] 20 B 4896 kbit on-chip 112
Qu [19] 50B 729 kbit on-chip 462
DPDK 4-core [4] 64 B+ 512 kbit L1 cache 36

io3 104 105
Number of flows

Fig. 3: The worst case performance of our architecture
with increasing number of flows

io6

algorithm. If the engine reaches the last table, it outputs the
packet as unclassified to be handled by the application plane.

Hazards introduced by searching the same keys in a span of
few clocks are solved by implementing write forwarding for
the rule statistics, which is enabled by comparing the address
and record move and match flags inside the current stage of
the pipeline with stages containing previously written data.

V. Pe r f o r m a n c e a n a l y s i s

The external memories limit the performance of our archi
tecture. Two 64b DDR4-2666 memory channels are sufficient
for a classification of 100G traffic, but it can be scaled up to
4 channels.

uniform distribution of incoming packets for given number
of flows. Realistically, this scenario is improbable to happen
due to the nature of internet traffic. This worst-case scenario
shows that after the number of flows exceeds the cache size
the performance is decreased to the performance of the DDR
channels. Our architecture on high-end FPGA card can handle
even the case of the shortest packet lengths. On mid-tier FPGA
cards, our architecture can handle « 50% of the worst case,
« 80% of the packets with median packet lengths, and 100%
of the packets with half of average packet lengths, which
satisfies requirements defined in II.

B. Resources

The design has been implemented on X i l in x xcvu9p
FPGA. The Load and Store buffer is configured to have space
for 64 items and the rule contains 64 B packet and byte counter
and the last timestamp and a main pipeline with 8 stages. It
achieved a frequency of over 300 MHz. The platform has
2x100 Gbit/s Ethernet port, 2x64 bit DDR4-2666 8 GB and
it uses OpenFlow 1.5.1-like rule format (64 B in size). The
data width of main bus was 512 bit, and the 4-set associative
cache can store 16K cachelines. The main cache memory is
implemented using Xilinx UltraRAM, the BRAM memories
of the cache are used to store tags and LRU flags. Resources
are displayed in Table III. The sum of logical resources used
is just a fraction of resources consumed by the memory
controllers. The cache is configured to perform 1 write and
1 read in a single clock, which result in classification per
formance of 300Mp/s with minimal read and write latency
of 4 and 5 clock cycles.

TABLE III: Resource utilization and frequency.
Implemented for Xilinx Virtex Ultrascale+.

A. Results

Table II shows a comparison of our architecture with other
similar packet classification solutions. This comparison is
the general and optimal use-case where the number of rules
does not exceed the caches configured for each solution. The
only solutions also using external memories for a networks
of similar speeds we are aware of are Rozhko and AccelNet.
The AccelNet does not provide similar information as the
other architectures. However, it is designed for 40 Gbit/s.
Our architecture outperforms all of the previous architectures
in terms of rule storage and all of the solutions using external
memories in terms of throughput.

To analyze the effectiveness of memory subsystem of our
architecture, we simulate the whole architecture with max
imal feasible size of the cache (16K cache-lines) for our
FPGA chip. Our architecture is mostly limited by the number
of DDR channels available. Figure 3 shows an evaluation
of the performance for incoming number of flows depending
on the number of DDR channel used. In the graph there
are also approximate thresholds for shortest, median and half
of average packet lengths for 100 Gbit/s network [29, 30].
The simulations implement the worst case scenario of using

Component LUTs FFs BRAMs URAMs F [MHz]
MAE 3525 5989 8 0 300
Cache 1152 3656 23.5 32 300
Load queue 1668 2508 0 0 300
Store queue 4189 4862 17 0 300
Interconnect 331 164 0 0 300
Sum 10865 17179 48.5 32 -
Mem controllers 30462 37172 51 0 300

VI. Co n c l u s i o n s

Modern network infrastructures have tremendous demands
on flexibility and configurability. Therefore, developers of
network devices are forced to support a high capacity memory
storage capacity that can contain a sufficient number of
configuration rules. Such rules are internally used for packet
classification and define the behavior of the network.

Additionally, as the network traffic increases its volume,
required throughput grows, and it is becoming usual in large
infrastructures and data-centers to deploy 100 Gbit/s technolo
gies. It is challenging to design a solution with sufficient
performance parameters and a high memory capacity.

This paper presented a novel hardware architecture that
allows usage of external high capacity memory for above

155

Authorized licensed use limited to: Rutgers University. Downloaded on May 17,2021 at 02:38:26 UTC from IEEE Xplore. Restrictions apply.

100G applications. Using our proposed hardware design, it is
possible to perform packet classification, which is an essential
process of OVS, using up to 1.9 million rules. Meanwhile,
the design itself is ready for up to 200Gbit/s processing up
to 300 millions packets per second. The comparison of our
architecture with previous solutions shows significant improve
ments for real-world applications. These results seem very
promising, and, based on our analysis of available datasets,
the performance is sufficient for deployment into the real
environment.

Our architecture allows us to continue our research in mul
tiple directions in the future. We believe the performance of
our architecture can be further improved by utilizing multiple
memory ports on our cache. Additionally, the future work can
be focused on the application plane and optimal arrangement
of the tables of rules.

Ac k n o w l e d g m e n t

This work was supported by Technology Agency of
the Czech Republic, project Acceleration platform for virtual
switches [TH04010193], and also by the Grant Agency
of the Czech Technical University in Prague, grant No.
SGS20/210/OHK3/3T/18.

Re f e r e n c e s

[1] P. Goransson et al., Software defined networks: a comprehensive
approach, Second edition. Amsterdam; Singapore: Morgan Kaufmann,
2017, 409 pp., ISBN: 978-0-12-804555-8.

[2] Open Networking Foundation, “OpenFlow switch specification version
1.5.1,” [Online]. Available: https://opennetworking.org/wp-content/
uploads/2014/10/openflow-switch-v1.5.1.pdf (visited on 02/08/2021).

[3] Open vSwitch, [Online]. Available: https://www.openvswitch.org/
(visited on 01/24/2021).

[4] Intel Corporation, “Intel® open network platform release 2.1 perfor
mance test report,” [Online]. Available: https://download.01.org/
packet-processing/ONPS2.1/Intel_ONP_Release_2.1_Performance_
Test_Report_RevL0.pdf.

[5] M. A. Finlayson, “OpenFlow table type patterns,” manual, Aug. 15,
2014, [Online]. Available: https://opennetworking.org/wp-content/
uploads/2013/04/OpenFlow % 20Table % 20Type % 20Patterns% 20v1.0.
pdf.

[6] T. Benson et al., “Understanding data center traffic characteristics,”
ACM SIGCOMM Computer Communication Review, vol. 40, no. 1,
pp. 92-99, Jan. 7, 2010, DOI: 10.1145/1672308.1672325.

[7] Bo Xu et al., “HSM: A fast packet classification algorithm,” in 19th
International Conference on Advanced Information Networking and
Applications (AINA’05) Volume 1 (AINA papers), vol. 1, Mar. 2005,
987-992 vol.1, DOI: 10.1109/AINA.2005.200.

[8] T. Srinivasan et al., “Scalable and parallel aggregated bit vector packet
classification using prefix computation model,” in International Sympo
sium on Parallel Computing in Electrical Engineering (PARELEC’06),
Sep. 2006, pp. 139-144, DOI: 10.1109/PARELEC.2006.71.

[9] B. Vamanan et al., “EffiCuts: Optimizing packet classification for
memory and throughput,” ACM SIGCOMM Computer Communication
Review, vol. 40, no. 4, pp. 207-218, Aug. 16, 2010, DOI: 10.1145/
1851275.1851208.

[10] Y. Qi et al., “Packet classification algorithms: From theory to practice,”
in IEEE INFOCOM 2009, Apr. 2009, pp. 648-656, DOI: 10.1109/
INFCOM.2009.5061972.

[11] H. Lim et al., “A quad-trie conditionally merged with a decision tree
for packet classification,” IEEE Communications Letters, vol. 18, no. 4,
pp. 676-679, Apr. 2014, DOI: 10.1109/LCOMM.2014.013114.132384.

[12] V. Srinivasan et al., “Packet classification using tuple space search,”
ACM SIGCOMM Computer Communication Review, vol. 29, no. 4,
pp. 135-146, Oct. 1999, DOI: 10.1145/316194.316216.

[13] Y. Wang et al., “Optimizing open vSwitch to support millions of
flows,” in GLOBECOM 2017 - 2017 IEEE Global Communications
Conference, Dec. 2017, pp. 1-7, DOI: 10.1109/GLOCOM.2017.
8254754.

[14] R. Pagh et al., “Cuckoo hashing,” Journal of Algorithms, vol. 51, no. 2,
pp. 122-144, May 1, 2004, DOI: 10.1016/j.jalgor.2003.12.002.

[15] J. Tseng et al., “Accelerating open vSwitch with integrated GPU,” in
Proceedings of the Workshop on Kernel-Bypass Networks, Los Angeles
CA USA: ACM, Aug. 9, 2017, pp. 7-12, DOI: 10.1145/3098583.
3098585.

[16] K. Qiu et al., “GFlow: Towards GPU-based high-performance table
matching in OpenFlow switches,” in 2015 International Conference
on Information Networking (ICOIN), Jan. 2015, pp. 283-288, DOI:
10.1109/ICOIN.2015.7057897.

[17] W. Jiang et al., “Large-scale wire-speed packet classification on
FPGAs,” in Proceeding of the ACM/SIGDA international symposium
on Field programmable gate arrays - FPGA '09, Monterey, California,
USA: ACM Press, 2009, p. 219, DOI: 10.1145/1508128.1508162.

[18] W. Jiang et al., “Scalable packet classification on FPGA,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20,
no. 9, pp. 1668-1680, Sep. 2012, DOI: 10.1109/TVLSI.2011.2162112.

[19] Y. R. Qu et al., “High-performance and dynamically updatable packet
classification engine on FPGA,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 1, pp. 197-209, Jan. 2016, DOI: 10.
1109/TPDS.2015.2389239.

[20] D. Rozhko et al., “Packet matching on FPGAs using HMC memory:
Towards one million rules,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Mon
terey California USA: ACM, Feb. 22, 2017, pp. 201-206, DOI: 10.
1145/3020078.3021752.

[21] D. Firestone et al., “Azure accelerated networking: SmartNICs in the
public cloud,” in Proceedings of the 15th USENIX conference on
networked systems design and implementation, ser. NSDI’18, USA:
USENIX Association, 2018, pp. 51-64.

[22] V. Pus et al., “Fast and scalable packet classification using perfect hash
functions,” in Proceedings of the ACM/SIGDA international symposium
on field programmable gate arrays, ser. FPGA ’09, New York, NY,
USA: Association for Computing Machinery, 2009, pp. 229-236, DOI:
10.1145/1508128.1508163.

[23] S. Dharmapurikar etal., “Fast packet classification using bloom filters,”
in 2006 Symposium on Architecture For Networking And Communica
tions Systems, Dec. 2006, pp. 61-70, DOI: 10.1145/1185347.1185356.

[24] S. Pontarelli et al., “FlowBlaze: Stateful packet processing in hard
ware,” in 16th USENIX symposium on networked systems design and
implementation (NSDI 19), Boston, MA: USENIX Association, Feb.
2019, pp. 531-548, [Online]. Available: https://www.usenix.org/
conference/nsdi19/presentation/pontarelli.

[25] Xilinx, Inc., “UltraScale architecture-based FPGAs memory IP v1.4
LogiCORE IP product guide,” 2020, [Online]. Available: h ttps://
www.xilinx.com/support/documentation/ip_documentation/ultrascale_
memory _ip/v1_4/pg150-ultrascale-memory- ip.pdf.

[26] M. Zadnik, “OPTIMIZATION OF NETWORK FLOW MONITOR
ING,” Brno, 2013, [Online]. Available: https://www.vutbr.cz/www/
_base/zav/_prace/_soubor/_verejne.php?file%5C_id= 136992 (visited
on 10/07/2020).

[27] C. Zhiruo et al., “Performance of hashing-based schemes for internet
load balancing,” in Proceedings IEEE INFOCOM 2000., vol. 1, Mar.
2000, 332-341 vol.1, DOI: 10.1109/INFC0M.2000.832203.

[28] N. Hua et al., “Non-crypto hardware hash functions for high perfor
mance networking ASICs,” in 2011 ACM/IEEE Seventh Symposium
on Architectures fo r Networking and Communications Systems, Oct.
2011, pp. 156-166, DOI: 10.1109/ANCS.2011.32.

[29] CAIDA: Center for Applied Internet Data Analysis. Packet length
distributions, CAIDA, [Online]. Available: https://www.caida.org/
research / traffic - analysis / AIX / plen_hist / index . xml (visited on
02/06/2021).

[30] ------, Packet size distribution comparison between internet links in
1998 and 2008, CAIDA, [Online]. Available: https://www.caida.org/
research/traffic-analysis/pkt_size_distribution/graphs.xml (visited on
02/08/2021).

156

Authorized licensed use limited to: Rutgers University. Downloaded on May 17,2021 at 02:38:26 UTC from IEEE Xplore. Restrictions apply.

