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Abstract—We present a modular out-of-order architecture 
for stateful packet classification. The architecture uses DDR4 
SDRAM memory to store rules and their state information to 
support millions of rules. The memory access pattern generated 
by network traffic significantly degrades the performance of 
the DDR4. Our architecture contains a cache and aggregation 
queues to negate this effect. Additionally, the memory subsystem 
supports a read cancellation and uses an out-of-order pipeline 
to maximize the main memory’s effectiveness further. The rule 
set update is implemented as a non-blocking operation and can 
be interleaved with lookup operations without any performance 
decrease, leading to the same execution time for rule update and 
rule lookup. The architecture is optimized for the modern data
center’s network traffic and a small on-chip memory footprint, 
making it suitable as an accelerator for the Open vSwitch. As 
a result, our novel architecture configured with 1 million exact 
match rules can process traffic up to 202 Gbit/s (300Mp/s) in 
average case and 51 Gbit/s (76 Mp/s) in the worst case with the use 
of a common dual-channel 64 bit DDR4-2666 MHz. It  uses fewer 
FPGA resources (excluding cache memory) than the well-known 
de facto industry standard Xilinx MIG DDR4 controllers. Our 
proposed architecture enables commodity FPGA cards commonly 
equipped with DDR4 to process 100 Gbit/s which results in 
a significant cost reduction of a 100G SmartNICs.

Index Terms—Open vSwitch, OpenFlow, networking, TSS, 
external memory, 100G, FPGA, SmartNIC, Out-of-Order, cache, 
LSU, packet classfication

I. I n t r o d u c t i o n

Complexity and flexibility of the modern networks used, 
e.g., in data centers, were first introduced by a Software- 
Defined Networking (SDN) concept. The concept is based 
on highly configurable devices controlled and configured by 
an external network controller, usually using OpenFlow (OF) 
protocol [1]. The OF specifies 47 packet header fields, which 
can be matched in up to 255 tables by rules with up to 232 — 1 
priorities [2]. As the rules might overlap, the potential match 
complexity can be theoretically enormous. An OF rule also 
contains per-rule statistics and per-rule actions, which need to 
be updated/performed for each packet match. Additionally, the 
rule update rate is much faster than traditional core networks 
as rule-set changes with every reconfiguration of any service 
in the network.

978-1-6654-3595-6/21/$31.00 ©2021 IEEE

Open vSwitch (OvS) [3] is an open-source reference 
and a widely used software switch supporting SDN con
cept. However, for a 100 Gbit/s networks, it requires at least 
16 cores [4] and causes cache spoiling and thus largely 
degrades the machine’s performance.

The OvS utilizes an OpenFlow classifier and two, optionally 
three levels of software-based caching strategy. The lowest 
OvS cache level is called Exact Match Cache (EMC), which 
caches fully expanded rules. The EMC’s size is usually set to 
match the CPU’s L1 cache’s size and may contain approxi
mately hundreds of items. The second level of cache is called 
Mega Flow Cache (MFC), and it caches the cross produced 
OpenFlow rules. The size of this cache is also configurable, 
and it usually contains tens of hundreds of records in a simple 
setup. The accelerator API in OvS allows the accelerator to 
be connected as an EMC or MFC. The EMC is a table with 
a single key mask, and MFC supports multiple key masks 
and priorities. The offload of MFC results in fewer up-calls to 
software as a rule in MFC cover more potential variants of a 
record for EMC.

For OvS applications, the accelerator needs to store only 
some rules as it works as a cache. However, the memory 
capacity requirements are higher than the available FPGAs’ 
internal resources. Additionally, it is also necessary to use 
some additional internal memory resources for the classifi
cation process, such as rule statistics.

We have analyzed data-sets of OvS rules from large data 
centers and identified minimal requirements of 1 million OF 
rules. Even though external memories (DDR) can solve the 
capacity issue, they have many characteristics that complicate 
their usage. The external memory bandwidth significantly 
degrades with a random access pattern, and it has a large and 
non-deterministic latency. Therefore, it is challenging to design 
a network packet processing architecture, which uses external 
DDR memories.

This paper presents a novel architecture based on FPGA 
technology that solves the issues with external memories. 
Therefore, it provides enough memory capacity (for about 
2 millions rules including the counters) with high-performance 
processing (up to 202 Gbit/s) that is required in a real environ
ment. The proposed architecture can significantly accelerate
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the OvS application, enabling the deployment of a 100 Gbit/s 
networking and potential cost reductions.

II. Re q u i r e m e n t s

Computer networks generally differ in their configurations 
and traffic. This variability affects requirements on the system 
design. We have explored existing solutions and analyzed 
available SDN configurations from real data-centers to esti
mate the optimal solution for a typical target environment. The 
OpenFlow matching scheme is designed for flexibility. The 
current version of OpenFlow (1.5.1) does support 255 tables, 
each rule has 32b priority, and the matching key may contain 
up to 47 fields. The complexity of the rule match and the 
overall number of rules depend on the chosen schema and the 
network infrastructure. Although there are recommendations 
on the design of OpenFlow tables [5], the table schema is 
nearly always a user-specific. Therefore we have reached an 
large data center operators VMware, Inc and eBay, Inc for their 
OpenFlow dumps. Based on the provided data from 2015-2020 
and example configuration for various data-center software, we 
identified the four configuration categories, which are shown 
in Table I. Event thought the number of rules might seem low, 
each rule may be translated to multiple rules for an accelerator 
resulting even in several order of magnitude difference.

One of the critical requirement is the maximal network 
speed supported by the accelerator. However, its performance 
is measured in packets-per-seconds (PPS). The transition from 
PPS to network throughput depends on the packet sizes in 
the deployment. The accelerator used in a data center with 
larger packets (such as multimedia content streaming) would 
naturally require lower performance than the datacenter with 
mainly shorter ones. The Benson et al. [6 ] focused on the 
traffic patterns inside the datacenters. Their result shows that 
the network packet sizes follow a heavy-tail distribution with 
peaks at 200 B and 1440 B. Therefore, we can assume that the 
average packet length falls into the interval of the mentioned 
peaks.

In general, there are four assumptions that our architecture 
must fulfil to be worth enough compared to the existing 
solutions:

1) Packet classifier must be capable of handling at least 
100 Gbit/s at half of the average packet size in the 
worst case. The current software solution capable of such 
speed requires at least 16 CPu cores. We estimate that a 
reasonable CPu load would use maximally two cores.

2) The system must support frequent incremental rule- 
set update, because the longer update significantly de
creases overall performance of the Open vSwitch caches.

3) The rule statistic update collisions must not cause 
drops in throughput, because such a events are common 
in real deployment.

4) The system must support at least 1 million Open- 
Flow rules. This and previous requirements makes use 
of the traditional hardware architectures for a packet 
classification infeasible because they rely on on-chip 
memory which does not have sufficient capacity.

III. Re l a t e d  w o r k

The packet classification is a well-explored area that can 
be solved with multiple different approaches. Generally, there 
are four types of algorithms: 1) dimensional decomposition 
(such as HSM [7], and BV algorithm [8]), 2) geometric space 
partition (such as Efficuts [9] or HyperSplit [10] algorithm),
3) Trie tree structures (such as Quad-Trie algorithm [11]), and
4) the predefined filter matching (such as TSS algorithm [12]). 
unfortunately, almost no algorithm satisfies the requirements 
presented in Section II. The algorithms usually require a large 
number of memory accesses, which precludes their implemen
tation with external memory. Or the principle of algorithm 
functionality does not allow fast or incremental updates of 
a rule-set. Among the four presented approaches, only the filter 
matching based algorithms are suitable for our use-case.

The acceleration of the filter matching based classification 
algorithm is usually targeted as a part of a software imple
mentation of a virtual switch. Wanf et al. [13] used a Cuckoo 
hashing principles [14] and achieved a 3.5 times improvement 
in throughput compared to the previous solution implemented 
in the openvswitch.

Tseng et al. [15] focused on accelerating the classification 
by offloading the search algorithm to GPu. By balancing 
between GPu and CPu, they achieved three times higher 
throughput of OvS than the optimized CPu only implementa
tion. Similarly, Qiu et al. [16] proposed a GFlow algorithm 
for GPu based acceleration.

However, all software-based implementations require sig
nificant CPu resources for reaching 100 Gbit/s (more than 
16 cores in a dpdk based OvS [4]). Allocation of such a high 
amount of resources only for network stack is expensive; 
therefore research community focused also on hardware accel
eration of packet classification. These architectures could (un
der certain circumstances) even exceed our defined 100 Gbit/s 
threshold [17-19]. However, all of the mentioned papers 
achieve the speed for the price of using only the internal FPGA 
resources (Bloom Filters, a pipeline of unwrapped decision 
trees), which unfortunately are very limited and do not support 
large rule-set.

The support of a large number of rules requires the usage 
of external memory. Nonetheless, the throughput of external 
memories usually limits the whole architecture; thus, it does 
not reach the 100Gbit/s limit [20, 21]. Unfortunately, the ar
chitectures that do achieve 100 Gbit/s [22-24] do not support 
a fast update of a rule-set. The updates cause a pause in 
their functionality in order of seconds, which is unthinkable in 
a production environment. Besides, these architectures require 
SRAM, TCAM memories, which are more expensive than 
DRAM. Therefore, we are not aware of any architecture that 
clams to meet all requirements defined in Section II, which 
ensures the architecture applicability in modern data centers 
production environment.

IV. OUR ARCHITECTURE

In order to satisfy the requirements mentioned in Section II 
we designed an out-of-order hardware architecture for an TSS
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TABLE I: Parameters of real word rule-sets

Category name Number of rules Number of OF tables OF table pass-through graph Match complexity
Generic ACL 10K-1M eta 30 Linear pass-through Mostly exact match

VM Hypervisor 1K - 10K <30 Small tree LPM for L4 ports
Service Hypervisor 10K <30 Small tree Exact match
Network monitor 30K - 50K eta 100 DAG with high number of edges LPM anywhere

classification algorithm utilizing FPGA with an external DDR4 
memory. The following sections describe the most important 
aspects that had to be considered.

A. External Memory

The DDR4 SDRAM is commonly present on cheap com
modity FPGA cards, and the usage of this type of memory is 
essential for a supporting millions of rules on such a cards. 
These memories provide gigabytes of a memory space and 
high throughput (64b DDR4-2666 170 Gbit/s). However, it has 
a relatively large latency (70-100 cycles [25]). Additionally, 
the random access pattern together with switching between 
read and write mode degrades the throughput to a 24% [25]. 
Unfortunately, the hash table lookup does have a random 
access patterns, and the content maintenance is also a read- 
modify-write operation. This requires either using multiple 
memory channels for a single 100G Ethernet port or integrat
ing a large enough cache to filter pattern repetitions. Flow- 
based traffic analysis [26] suggests that the window between 
packets in a flow can be overlapped by a cache with a high 
probability for achievable cache size.

Storing of stateful rule information on-chip can eliminate 
the need for the frequent write to a memory, which signifi
cantly improves the overall performance, and just two DDR4- 
2666 memory channels are required to satisfy the packet- 
rate of 100G Ethernet in the worst case. If  the rule stateful 
information is stored in DDR, the four DDR4-2666 channels 
are required.

B. Classification Algorithm

Our architecture implements packet classification algorithm 
Tuple Space Search (TSS) [12]. It has a small number of 
memory accesses for the classification of SDN-like traffic and 
a very fast update. It is using hash tables that are easily 
implemented in hardware architecture. The other alternatives 
either require a large number of memory operations for its 
operation or do not support incremental update.

The TSS uses a list of hash tables sorted by the maximum 
rule priority. Each table is associate with a rule mask, which 
is used for a key comparison and hashing. The lookup starts 
at the first table and ends once the next table may not contain 
the rule with larger priority, or there is no other table. The rule 
with the highest priority is returned as a result of the lookup 
operation.

C. Hashing options

The primary parameters of a hash table data structure is 
a hashing scheme and a hash function. The hashing schemes 
with a high memory efficiency like Cuckoo hashing or Double 
hashing are traditionally used for on-chip memories where 
the memory size is limited. In our application, we need to 
pay close attention to the number of memory transactions as

the main limitation. The more memory efficient hash schemes 
require more memory accesses (e.g. direct hashing [27] vs 
Cuckoo hashing [14]). The collision probability of direct hash
ing is approximated by equation PCoiiision =  1 — e( 2n ) 
where k is number of occupied items and N  is a total size of 
the table. That implies that the probability of hash collision 
for a 1GB of memory filled with a 147 thousands of rules 
is 50%. The memory of hash tables can be shared between 
the hash tables if the key stored in a hash table is extended 
with a unique id. Sharing table memories results in a more 
uniform memory load and better overall memory efficiency in 
the multi-table scenario. Note that the small on-chip memories 
may still be utilized to reduce the problem of hash collisions. 
In our architecture, the hash function is used to distribute rules 
in the main memory, and it is unrelated to the efficiency of 
the cache. The work of Hua [28] suggests that the CRC-32 
hash function also works for network flows and has efficient 
hardware implementation as it is LFSR based. Due to the 
previously mentioned reasons, we decide to use CRC-32 as 
a main hash function.

D. Main parts of our architecture

Our architecture implements packet classification using ex
ternal memories and TSS algorithm with a per rule statistical 
counters stored inside the external memory. The architecture 
is configured for a OvS use-case, where the mostly used rules 
are offloaded into an accelerator. The rest of the rules may 
then applied to the unclassified traffic by the software.

Fig. 1: Diagram of our architecture

Our architecture depicted in Fig. 1 contains parser and 
deparser, out-of-order TSS pipeline (inside Match Action En
gine), Cache, Load/Store queues and DDR memory subsystem. 
The whole design is non-blocking and pipelined.

The Match Action Engine (MAE) is a component imple
menting the TSS algorithm and rule statistic handling. The 
packet classification may finish out-of-order and the memory 
transactions may also finish out-of-order for a single lookup. 
The pipelined design presents a large number of hazards and 
issues which we will address in this section. The inner design 
and data flow is depicted in Fig. 2.
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The functional design of the MAE can be separated into 
several parts. Input handler, Memory subsystem (including 
Cache and Load/Store queues) and the main Action Pipeline.

Fig. 2: Diagram of Match Action Engine datapath

The MAE has an input traffic interfaces which always 
executes Look-up instruction for the first table of the TSS. 
It also has a service interface that is used for managing 
the table and monitoring statistics by the application plane. 
The management of the tables inside the external memory 
of the accelerator does have many corner cases and hazards 
that can severely degrade the performance and are costly to 
remove. One of the examples is an atomic copy of all counters 
to a software. The pipeline does support of concurrently 
running updates and the slowdown is caused only by limited 
throughput of the DDR4. The AMBA AXI4 interface is used 
for a memory access.

Look-up operation consists of several steps: 1) A computa
tion of the hash from selected fields according to a specifica
tion of actually selected table. 2) The read transaction is issued 
into external memory. 3) The the result of the read transaction 
is processed inside the Action pipeline. If the key is not found 
inside the table the action pipeline selects next table according 
the TSS table chain and recirculates the input to the first step. 
If the key is found the counters are modified and written back 
into the memory subsystem and classified packet is dispatched 
on the output interface.

1) Input Handler: The input handler identifies and parses 
instructions from both of the interfaces. It computes the hash 
according to the actually selected table for a transaction. The 
hash is used to initiate read transactions from the table inside 
the memory subsystem. When the transaction is dispatched the 
session with an information for later statistic update is stored 
in Allocated Storage which also manages the allocation of the 
tags for a communication over the main bus.

The id of read transaction received from memory subsystem 
loads a session state from Allocated storage in to a action 
pipeline, which then computes the state update and potentially 
deallocates the session from its storage upon operation com
petition. This allows the action pipeline to process transac
tion out-of-order thus significantly reducing delays on cache 
misses.

2) Memory subsystem: Our memory subsystem is designed 
to increase the possibility that memory transactions will be 
merged before dispatching to DDR4 SDRAM chip, to max
imize the possibilities for Memory-level parallelism (MLP) 
and to fully utilize memory chips in the 1 0 0 % cache miss

scenario. Compare to a common cache subsystems widely 
found in CPUs. It has several unique features. It is designed for 
latency insensitive applications and to minimize the need for 
a buffering. Note that the increase of MLP and minimization of 
buffering are contradictory. We minimize buffer requirements 
by moving management of transaction context and collision 
handling to the MAE and Load/Store queues, where we can 
improve MLP at a much smaller cost.

3) Cache: The cache is an optional part of our architecture. 
We utilize unused resources inside the FPGA to increase the 
throughput of our design. The cache works in write-allocate 
mode and utilizes Tree-PLRU as a cacheline replacement 
policy. The write-allocate is used to minimize memory access 
to a cache memory as our application always writes the 
cacheline because of rule statistics update. The read cancel
lation happens when a cache line is invalidated by a write 
transaction, it is forwarded to a Load queue, and it marks all 
read from selected address to be invalidated. This means that 
the cache does not need to store information about pending 
transactions or buffer them. Also, it makes only MAE and 
Load/Store queue responsible for maintenance of correct store 
order. As the MAE and Store queue already has the out-of
order infrastructure, the additional resource requirements are 
minimal, and the cache is significantly simplified.

4) Load/Store queues: The Load/Store queues are essential 
parts of our architecture. The components are simple from 
an algorithmic point of view. It only merges transactions that 
are working with a same address. It implements read and write 
bypass and write forwarding. The CAMs used to detect address 
collisions as well as leading zero/one detectors used to allocate 
in out-of-order transaction logic have high latency, and thus 
the architecture needs to have a high degree of pipelining.

During the synchronization between write (Store) and read 
(Load) channel queues, the ongoing read transaction may be 
canceled by write into the cache. This event causes the pending 
read transaction to be invalidated, and thus it must be re
executed from the action pipeline. As the read cancellation was 
caused by cache write and the cache works in write-allocate 
mode, the cacheline should be present in the cache, and thus, 
the next read should execute immediately.

5) Action pipeline: Action pipeline is the most complicated 
part of the parts. It needs to resolve hazards that can occur 
during the processing by the pipeline itself in an out-of-order 
manner.

The pipeline receives Out-of-Order read transactions from 
memory with the attached tag. It then reads the appropriate 
session from the allocated storage and starts processing the 
read data. It compares the result with the searched key using 
a specified mask. In case of a match, it then updates the 
appropriate statistics of the rule and writes the updated values 
into the cache. This writing transaction’s latency should be 
minimal because potential cache line flushing uses LSQ, which 
has minimal write latency. Afterward, the result is sent to the 
output in case of match. In case of mismatch, the instruction 
is recirculated to search the next table given by the TSS
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TABLE II: Overview of similar solutions for packet 
classification

Name Rule Size Rule Storage Memory Mpps
Our architecture 64 B 16 GB off-chip 300

Rozhko [20] 50B 536 Mbit off-chip 22.4
Jiang [18] 20 B 4896 kbit on-chip 112
Qu [19] 50B 729 kbit on-chip 462
DPDK 4-core [4] 64 B+ 512 kbit L1 cache 36

io3 104 105 
Number of flows

Fig. 3: The worst case performance of our architecture 
with increasing number of flows

io6

algorithm. If  the engine reaches the last table, it outputs the 
packet as unclassified to be handled by the application plane.

Hazards introduced by searching the same keys in a span of 
few clocks are solved by implementing write forwarding for 
the rule statistics, which is enabled by comparing the address 
and record move and match flags inside the current stage of 
the pipeline with stages containing previously written data.

V. Pe r f o r m a n c e  a n a l y s i s

The external memories limit the performance of our archi
tecture. Two 64b DDR4-2666 memory channels are sufficient 
for a classification of 100G traffic, but it can be scaled up to 
4 channels.

uniform distribution of incoming packets for given number 
of flows. Realistically, this scenario is improbable to happen 
due to the nature of internet traffic. This worst-case scenario 
shows that after the number of flows exceeds the cache size 
the performance is decreased to the performance of the DDR 
channels. Our architecture on high-end FPGA card can handle 
even the case of the shortest packet lengths. On mid-tier FPGA 
cards, our architecture can handle «  50% of the worst case, 
«  80% of the packets with median packet lengths, and 100% 
of the packets with half of average packet lengths, which 
satisfies requirements defined in II.

B. Resources

The design has been implemented on X i l in x  xcvu9p 
FPGA. The Load and Store buffer is configured to have space 
for 64 items and the rule contains 64 B packet and byte counter 
and the last timestamp and a main pipeline with 8 stages. It 
achieved a frequency of over 300 MHz. The platform has 
2x100 Gbit/s Ethernet port, 2x64 bit DDR4-2666 8 GB and 
it uses OpenFlow 1.5.1-like rule format (64 B in size). The 
data width of main bus was 512 bit, and the 4-set associative 
cache can store 16K cachelines. The main cache memory is 
implemented using Xilinx UltraRAM, the BRAM memories 
of the cache are used to store tags and LRU flags. Resources 
are displayed in Table III. The sum of logical resources used 
is just a fraction of resources consumed by the memory 
controllers. The cache is configured to perform 1 write and 
1 read in a single clock, which result in classification per
formance of 300Mp/s with minimal read and write latency 
of 4 and 5 clock cycles.

TABLE III: Resource utilization and frequency.
Implemented for Xilinx Virtex Ultrascale+.

A. Results

Table II shows a comparison of our architecture with other 
similar packet classification solutions. This comparison is 
the general and optimal use-case where the number of rules 
does not exceed the caches configured for each solution. The 
only solutions also using external memories for a networks 
of similar speeds we are aware of are Rozhko and AccelNet. 
The AccelNet does not provide similar information as the 
other architectures. However, it is designed for 40 Gbit/s. 
Our architecture outperforms all of the previous architectures 
in terms of rule storage and all of the solutions using external 
memories in terms of throughput.

To analyze the effectiveness of memory subsystem of our 
architecture, we simulate the whole architecture with max
imal feasible size of the cache (16K cache-lines) for our 
FPGA chip. Our architecture is mostly limited by the number 
of DDR channels available. Figure 3 shows an evaluation 
of the performance for incoming number of flows depending 
on the number of DDR channel used. In the graph there 
are also approximate thresholds for shortest, median and half 
of average packet lengths for 100 Gbit/s network [29, 30]. 
The simulations implement the worst case scenario of using

Component LUTs FFs BRAMs URAMs F [MHz]
MAE 3525 5989 8 0 300
Cache 1152 3656 23.5 32 300
Load queue 1668 2508 0 0 300
Store queue 4189 4862 17 0 300
Interconnect 331 164 0 0 300
Sum 10865 17179 48.5 32 -
Mem controllers 30462 37172 51 0 300

VI. Co n c l u s i o n s

Modern network infrastructures have tremendous demands 
on flexibility and configurability. Therefore, developers of 
network devices are forced to support a high capacity memory 
storage capacity that can contain a sufficient number of 
configuration rules. Such rules are internally used for packet 
classification and define the behavior of the network.

Additionally, as the network traffic increases its volume, 
required throughput grows, and it is becoming usual in large 
infrastructures and data-centers to deploy 100 Gbit/s technolo
gies. It is challenging to design a solution with sufficient 
performance parameters and a high memory capacity.

This paper presented a novel hardware architecture that 
allows usage of external high capacity memory for above
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100G applications. Using our proposed hardware design, it is 
possible to perform packet classification, which is an essential 
process of OVS, using up to 1.9 million rules. Meanwhile, 
the design itself is ready for up to 200Gbit/s processing up 
to 300 millions packets per second. The comparison of our 
architecture with previous solutions shows significant improve
ments for real-world applications. These results seem very 
promising, and, based on our analysis of available datasets, 
the performance is sufficient for deployment into the real 
environment.

Our architecture allows us to continue our research in mul
tiple directions in the future. We believe the performance of 
our architecture can be further improved by utilizing multiple 
memory ports on our cache. Additionally, the future work can 
be focused on the application plane and optimal arrangement 
of the tables of rules.
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