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Abstract Jumping finite automata and sensing 5′ → 3′ Watson-Crick finite au-
tomata are finite-state models of computation which allow to process the input
word not only in the strictly left-to-right manner. In this paper a new combined
model of them is presented. The accepting power of the new model is studied
and compared with the original models and also other well-known language fam-
ilies. Furthermore, the paper investigates changes in the accepting power when
commonly studied restrictions from Watson-Crick finite automata, e.g., all states
are final, are applied on this combined model. At the end, the paper presents a
comprehensive hierarchy of all related language families.
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1 Introduction

In recent years, research in formal language theory takes interest in models that
process inputs or generate outputs in non-conventional ways compared to clas-
sical models of automata and grammars. Due to the direction of the ongoing
development in computer science, the main focus is often on models that process
information discontinuously and work in a parallel way. In this paper, we focus
our attention on two groups of such models: jumping finite automata and Watson-
Crick finite automata. To be more precise, our main focus is on their specific
variations which have multiple heads working in parallel that non-conventionally
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process the input sequence/string. Traditionally, when an automaton model uti-
lizes several heads, either each head works on its own tape, or all heads read the
same input string in a symbol-by-symbol left-to-right way. In contrast, there are
also well-established models of grammars that generate strings in a parallel way,
but this process is usually very different than the reading with several heads. In
the grammars, the sentential form is repeatedly rewritten on several places at once
until the process creates the final string. The studied multi-head variations of fi-
nite automata models have their behavior set somewhere between the mentioned
traditional models. They utilize several heads, but these heads cooperate on a sin-
gle tape to process the single input string. Therefore, every symbol in the input
is read only once, and the heads do not work in the traditional symbol-by-symbol
left-to-right way.

To give a better insight into this study, let us briefly introduce both groups
of mentioned models. Jumping finite automata were first introduced relatively
recently in [16,17]. Their jumping concept is in its core focused on discontinuous
information processing. In essence, a jumping finite automaton works just like a
classical finite automaton except it does not read the input string in a symbol-by-
symbol left-to-right way. After the automaton reads a symbol, the head can jump
over (skip) a portion of the tape in either direction. Once an occurrence of a symbol
is read on the tape, it cannot be re-read again later. Generally, these models can
very easily define even some non-context-free languages if the order of symbols is
unimportant for the language. On the other hand, the resulting language families
of these models are usually incomparable with the classical families of regular,
linear, and context-free languages. In the following years, this jumping mechanism
has proven to be a clever addition into the model of finite automata that delivers
new interesting results and captures novel families of languages. Several follow-up
series of papers have spawned from this idea that further explore its possibilities
in various different ways: a continuing study of the initial models (see [2,6,7,
26]), a use of jumps in other classical models (see [8,13,15]), a different approach
with more deterministic behavior (see [1,3–5]), and a use of jumps together with
multiple heads (see [9–12]). If the jumping concept utilizes multiple heads, the
heads can naturally jump on specific positions in the tape, and thus they can
easily work on different places at once in parallel.

Watson-Crick (WK) finite automata are a more settled and already thoroughly
studied group of biology-inspired models (see, e.g., [24]). In essence, a WK automa-
ton also works just like a classical finite automaton except it uses a WK tape (i.e.,
double-stranded tape), and it has a separate head for each of the two strands in
the tape. This is therefore a group of models that always naturally use two heads.
The classical version of a WK automaton processes the input tape quite conven-
tionally: each head works separately on its own strand of the tape, and both heads
read the input in a traditional symbol-by-symbol left-to-right way. However, more
recently, new variations of this model were introduced that process the input in
non-conventional ways. In a 5′ → 3′ WK automaton (see [18–21]), both heads read
their specific strand in the biochemical 5′ to 3′ direction. In a computing point of
view, this means that they read the double strand sequence in opposite directions.
Furthermore, a 5′ → 3′ WK automaton is sensing if the heads sense that they
are meeting each other, and the processing of the input ends if for all pairs of the
sequence one of the letters is read. The sensing 5′ → 3′ WK automata generally
accept the family of linear languages. This concept is also studied further in sev-
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eral follow-up papers that explore alternative definitions and combinations with
different mechanics (see [22,23]).

Even though that these two groups are significantly different in their original
definitions, their newer models sometimes work in a very similar way. Both con-
cepts are also not mutually exclusive in a single formal model. This paper defines
jumping 5′ → 3′ WK automata—a combined model of jumping finite automata
and sensing 5′ → 3′ WK automata—and studies their characteristics. We primar-
ily investigate the accepting power of the model and also the effects of common
restrictions on the model.

2 Preliminaries

This paper assumes that the reader is familiar with the theory of automata and
formal languages (see [14,27]). This section recalls only the crucial notions used
in this paper.

For a set Q, card(Q) denotes the cardinality of Q, and 2Q denotes the power
set of Q. For an alphabet (finite nonempty set) V , V ∗ represents the free monoid
generated by V under the operation of concatenation. The unit of V ∗ is denoted
by ε. Members of V ∗ are called strings. Set V + = V ∗ − {ε}; algebraically, V + is
thus the free semigroup generated by V under the operation of concatenation. For
x ∈ V ∗, |x| denotes the length of x, and alph(x) denotes the set of all symbols
occurring in x; for instance, alph(0010) = {0, 1}. For x ∈ V ∗ and a ∈ V , |x|a
denotes the number of occurrences of a in x. The Parikh vector associated to
a string x ∈ V ∗ with respect to the alphabet V = {a1, a2, . . . , an} is ΨV (x) =
(|x|a1 , |x|a2 , . . . , |x|an). For L ⊆ V ∗ we define ΨV (L) = {ΨV (x) : x ∈ L}. For x, y ∈
V ∗, the shuffle of x and y, denoted by shuffle(x, y), is defined as shuffle(x, y) =
{x1y1x2y2 · · ·xnyn : x = x1x2 · · ·xn, y = y1y2 · · · yn, xi, yi ∈ V ∗, 1 ≤ i ≤ n, n ≥
1}. Let X and Y be sets; we call X and Y to be incomparable if X 6⊆ Y , Y 6⊆ X,
and X ∩ Y 6= ∅.

A general grammar or, more simply, a grammar is quadruple G = (N,T, S, P ),
where N and T are alphabets such that N ∩T = ∅, S ∈ N , and P is a finite set of
rules of the form x→ y, where x, y ∈ (N ∪T )∗ and alph(x)∩N 6= ∅. If x→ y ∈ P
and u, v ∈ (N ∪ T )∗, then uxv ⇒ uyv [x → y], or simply uxv ⇒ uyv. In the
standard manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, define ⇒+

and ⇒∗. The language generated by G, L(G), is defined as L(G) = {w ∈ T ∗ :
S ⇒∗ w}. We recognize several special cases of grammars: G is a context-sensitive
grammar if every x → y ∈ P satisfies x = αAβ and y = αyβ such that A ∈ N ,
α, β ∈ (N∪T )∗, and y ∈ (N∪T )+. G is a context-free grammar if every x→ y ∈ P
satisfies x ∈ N . G is a linear grammar if every x → y ∈ P satisfies x ∈ N and
y ∈ T ∗NT ∗ ∪ T ∗. G is a regular grammar if every x → y ∈ P satisfies x ∈ N
and y ∈ TN ∪T . A language L is context-sensitive, context-free, linear, or regular
if and only if L = L(G), where G is a context-sensitive, context-free, linear, or
regular grammar, respectively.

A finite automaton is a quintuple A = (V,Q, q0, F, δ), where V is an input
alphabet, Q is a finite set of states, V ∩ Q = ∅, q0 ∈ Q is the initial (or start)
state, and F ⊆ Q is a set of final (or accepting) states. The mapping δ is a
transition function. If δ : Q× (V ∪{ε})→ 2Q, then the device is nondeterministic;
if δ : Q×V → Q, then the automaton is deterministic. A string w is accepted by a
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finite automaton if there is a sequence of transitions starting from q0, ending in a
state in F , and the symbols of the sequence yield w. A language is regular if and
only if it can be recognized by a finite automaton.

Let FIN, REG, LIN, CF, and CS denote the families of finite, regular, linear,
context-free, and context-sensitive languages, respectively. Moreover, let FINε-inc

denote the family of finite languages which contain the empty string.

2.1 Jumping Finite Automata

A general jumping finite automaton (see [16,17]), a GJFA for short, is a quintuple
M = (Q,Σ,R, s, F ), where Q is a finite set of states, Σ is an input alphabet,
Q∩Σ = ∅, R ⊆ Q×Σ∗×Q is finite, s ∈ Q is the start state, and F ⊆ Q is a set of
final states. Members of R are referred to as rules of M . If (p, y, q) ∈ R implies that
|y| ≤ 1, then M is a jumping finite automaton, a JFA for short. A configuration of
M is any string in Σ∗QΣ∗. The binary jumping relation, symbolically denoted by
y, over Σ∗QΣ∗, is defined as follows. Let x, z, x′, z′ ∈ Σ∗ such that xz = x′z′ and
(p, y, q) ∈ R; then, M makes a jump from xpyz to x′qz′, symbolically written as
xpyz y x′qz′. In the standard manner, extend y to yn, where n ≥ 0; then, based
on yn, define y+ and y∗. The language accepted by M , denoted by L(M), is
defined as L(M) = {uv : u, v ∈ Σ∗, usv y∗ f, f ∈ F}. We say that M accepts w
if and only if w ∈ L(M). M rejects w if and only if w ∈ Σ∗ − L(M).

Double-jumping modes for GJFAs were introduced in [9,10], which perform
two single jumps simultaneously. Both jumps always follow the same rule, however,
they are performed on two different positions on the tape and thus handle different
parts of the input string. Additionally, these jumps cannot ever cross each other
(i.e., the initial mutual order of reading positions is preserved during the whole
accepting process). The specific double-jumping modes then assign one of the three
jumping directions to each of the two jumps—(1) to the left, (2) to the right, and
(3) in either direction. We omit the precise formal definition.

2.2 Watson-Crick Finite Automata

In this part we recall some well-known concepts of DNA computing and related
formal language theory. Readers who are not familiar with these topics should
read [24].

Let V be an alphabet and ρ ⊆ V × V be its complementary relation. For
instance, V = {A,C,G, T} is usually used in DNA computing with the Watson-
Crick complementary relation {(T,A), (A, T ), (C,G), (G,C)}. The strings built up
by complementary pairs of letters are double strands (of DNA).

A Watson-Crick finite automaton (or shortly, a WK automaton) is a finite
automaton working on a Watson-Crick tape, that is, a double-stranded sequence
(or molecule) in which the lengths of the strands are equal and the elements of
the strands are pairwise complements of each other: [

a1

b1 ][
a2

b2 ] . . . [
an

bn ] = [
a1a2...an

b1b2...bn ]
with ai, bi ∈ V and (ai, bi) ∈ ρ (i = 1, . . . , n). The notation [w1

w2
] is used only for

strings w1, w2 with equal length and satisfying the complementary relation ρ. The
set of all double-stranded strings with this property is denoted by WKρ(V ). For
double-stranded strings for which these conditions are not necessarily satisfied,
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the notation (w1
w2

) is used throughout the paper. Formally, a WK automaton is
M = (V, ρ,Q, q0, F, δ), where V , Q, q0, and F are the same as in finite automata,
ρ ⊆ V ×V is a symmetric relation, and the transition mapping δ : (Q×( V

∗

V ∗
))→ 2Q

in such a way that δ(q, (w1
w2

)) (q ∈ Q, w1, w2 ∈ V ∗) is nonempty only for finitely
many values of (q, (w1

w2
)).

The elementary difference between finite automata and WK automata, besides
the doubled tape, is the number of heads. WK automata scan each of the two
strands separately with a unique head. In classical WK automata, the processing
of the input sequence ends if all pairs of the sequence are read with both heads.
There are also some restricted variations of WK automata which are widely used
in the literature (see, e.g., [24]):
– N : stateless, i.e., with only one state: if Q = F = {q0};
– F : all-final, i.e., with only final states: if Q = F ;
– S : simple (at most one head moves in a step)

δ : (Q× (( V
∗

{ε} ) ∪ ( {ε}
V ∗

)))→ 2Q;
– 1 : 1-limited (exactly one letter is being read in a step)

δ : (Q× (( V
{ε} ) ∪ ( {ε}

V
)))→ 2Q.

Further variations such as NS, FS, N1, and F1 WK automata can be identified
in a straightforward way by using multiple constraints.

In 5′ → 3′ WK automata (see [18–21,23]), both heads start from the 5′ end of
the appropriate strand. Physically/mathematically and from a computing point
of view they read the double-stranded sequence in opposite directions, while bio-
chemically they go to the same direction. A 5′ → 3′ WK automaton is sensing
if the heads sense that they are meeting (i.e., they are close enough to meet in
the next step or there is a possibility to read strings at overlapping positions).
In sensing 5′ → 3′ WK automata, the processing of the input sequence ends if
for all pairs of the sequence one of the letters is read. Due to the complementary
relation, the sequence is fully processed; thus, the automaton makes a decision on
the acceptance.

In the usual WK automata, the state transition is a mapping of the form
(Q×( V

∗

V ∗
))→ 2Q. In a transition q′ ∈ δ(q, (w1

w2
)), we call rl = |w1| and rr = |w2| the

left and right radius of the transition (they are the lengths of the strings that the
heads read from left to right and from right to left in this step, respectively). The
value r = rl + rr is the radius of the transition. Since δ(q, (w1

w2
)) is nonempty only

for finitely many triplets of (q, w1, w2), there is a transition (maybe more) with the
maximal radius for a given automaton. Let δ be extended by the sensing condition
in the following way: Let r be the maximum of the values rl + rr for the values
given in the transition function of the original WK automaton. Then, let δ′ : (Q×
( V
∗

V ∗
)×D)→ 2Q, where D is the sensing distance set {−∞, 0, 1, . . . , r,+∞}. This

set gives the distance of the two heads between 0 and r, +∞ when the heads are
further than r, or −∞ when the heads are after their meeting point. Trivially,
this automaton is finite, and D can be used only to control the sensing (i.e., the
appropriate meeting of the heads). To describe the work of the automata, we use

the concept of configuration. A configuration (w1
w2

)(q, s)(
w′1
w′2

) consists of the state

q, the actual sensing distance s, and the input [
w1w

′
1

w2w
′
2

] ∈ WKρ(V ) in such a way

that the first head (upper strand) has already processed the part w1, while the
second head (lower strand) has already processed w′2. A step of the automaton,
according to the state transition function, can be of the following two types:
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(1) Normal steps : ( w1
w2y )(q,+∞)(

xw′1
w′2

)⇒ (w1x
w2

)(q′, s)(
w′1
yw′2

),

for w1, w2, w
′
1, w
′
2, x, y ∈ V ∗ with |w2y| − |w1| > r, q, q′ ∈ Q,

if and only if [
w1xw

′
1

w2yw
′
2

] ∈WKρ(V ) and q′ ∈ δ(q, ( xy ),+∞),

and s =

{
|w2| − |w1x| if |w2| − |w1x| ≤ r;
+∞ in other cases.

(2) Sensing steps : ( w1
w2y )(q, s)(

xw′1
w′2

)⇒ (w1x
w2

)(q′, s′)(
w′1
yw′2

),

for w1, w2, w
′
1, w
′
2, x, y ∈ V ∗,

if and only if [
w1xw

′
1

w2yw
′
2

] ∈WKρ(V ) and q′ ∈ δ(q, ( xy ), s),

and s′ =

{
s− |x| − |y| if s− |x| − |y| ≥ 0;

−∞ in other cases.

In the standard manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n,
define ⇒+ and ⇒∗. The accepted language, denoted by L(M), can be defined
by the final accepting configurations that can be reached from the initial one: A
double strand [w1

w2
] is accepted by a sensing 5′ → 3′ WK automaton M if and only

if ( ε
w2

)(q0, s0)(w1
ε ) ⇒∗ [

w′1
w′2

](qf , 0)[
w′′1
w′′2

], for qf ∈ F , where [
w′1
w′2

][
w′′1
w′′2

] = [w1
w2

] with

the proper value of s0 (it is +∞ if |w1| > r, elsewhere it is |w1|); since the full
input is processed by the time the heads meet.

From a biochemical point of view, a double-stranded sequence has no dis-
tinguishable start and end. Consequently, each word that is accepted by a WK
automaton has a complement-symmetric pair which is also in the language. This
fact does not cause any problem in connection to formal language theory. For in-
stance, double strands having only A and C in a strand (and thus having T and
G in the other) can represent languages over a binary alphabet: considering the
pair [AT ] as letter a and [CG ] as letter b in the new alphabet V ′.

Lastly, we briefly mention other closely related 5′ → 3′ WK automata models.
Besides the sensing version, the papers [18–21] also define the full-reading sensing
version. The formal definition remains almost identical, however, the automaton
continues with the reading when the heads meet, and both heads have to read their
strand completely from the 5′ end to the 3′ end. The resulting behavior therefore
combines some properties of classical WK automata and sensing 5′ → 3′ WK
automata. It can be easily seen that the full-reading sensing version is generally
stronger than the sensing version. And finally, the paper [23] introduces a new
version of sensing 5′ → 3′ WK automata without the sensing distance. It shows
that it is not strictly necessary to know the precise sensing distance and that
we can obtain the same power even if we are able to recognize only the actual
meeting event of heads. Nonetheless, this result does not hold in general if we
consider restricted variations of these models.

3 Definitions

Considering the previously described sensing 5′ → 3′ WK automata and full-
reading sensing 5′ → 3′ WK automata, there is quite a large gap between their
behaviors. On the one hand, the definition of sensing 5′ → 3′ WK automata states
that we need to read only one of the letters from all pairs of the input sequence
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before it is fully processed. However, this also limits the positioning of heads be-
cause they can read letters only until they meet. On the other hand, the definition
of full-reading sensing 5′ → 3′ WK automata allows the heads to traverse the
whole input. Nonetheless, this also means that all pairs of the input sequence are
read twice (which may be undesired). If we take into consideration other mod-
els, jumping finite automata utilize a mechanism that allows heads to skip (jump
over) some symbols. Furthermore, the recently introduced double-jumping modes
behave very similarly to 5′ → 3′ WK automata. Due to this natural fit, it is our
intention to fill and explore this gap by introducing the jumping mechanism into
sensing 5′ → 3′ WK automata. We want the heads to be able to traverse the whole
input, but we also want to read all pairs of the input sequence only once.

With a simple direct approach, it is possible to fit the jumping mechanism
straightforwardly into the original definition of sensing 5′ → 3′ WK automata.
(Note that we are now tracking only the meeting event of the heads from [23] and
not the original precise sensing distance from [18–21].)

Definition 1 A sensing 5′ → 3′ WK automaton with jumping feature is a 6-tuple
M = (V, ρ,Q, q0, F, δ), where V , ρ, Q, q0, and F are the same as in WK automata,
V ∩ {#} = ∅, δ : (Q× ( V

∗

V ∗
)×D) → 2Q, where D = {⊕,	} indicates the mutual

position of heads, and the transition function assigns a nonempty set only for
finitely many triplets of (Q× ( V

∗

V ∗
)×D). We denote the head as I-head or J-head

if it reads from left to right or from right to left, respectively. We use the symbol ⊕
if the I-head is on the input tape positioned before the J-head; otherwise, we use

the symbol 	. A configuration (w1
w2

)(q, s)(
w′1
w′2

) has the same structure as in sensing

5′ → 3′ WK automata; however, s indicates only the mutual position of heads, and

a partially processed input (
w1w

′
1

w2w
′
2

) may not satisfy the complementary relation ρ.

A step of the automaton can be of the following two types: Let w′1, w2, x, y ∈ V ∗
and w1, w

′
2 ∈ (V ∪ {#})∗.

(1) Reading steps: ( w1
w2y )(q, s)(

xw′1
w′2

) y (w1{#}|x|
w2

)(q′, s′)(
w′1

{#}|y|w′2
), where q′ ∈

δ(q, ( xy ), s), and s′ is either ⊕ if |w2| > |w1x| or 	 in other cases.

(2) Jumping steps: ( w1
w2v )(q, s)(

uw′1
w′2

) y (w1u
w2

)(q, s′)(
w′1
vw′2

), where s′ is either ⊕ if

|w2| > |w1u| or 	 in other cases.
Note that the jumping steps are an integral and inseparable part of the behavior
of the automaton, and thus they are not affected by the state transition function.
In the standard manner, extend y to yn, where n ≥ 0; then, based on yn,
define y+ and y∗. The accepted language, denoted by L(M), can be defined
by the final accepting configurations that can be reached from the initial one: A
double strand [w1

w2
] is accepted by a sensing 5′ → 3′ WK automaton with jumping

feature M if and only if ( ε
w2

)(q0,⊕)(w1
ε ) y∗ (w

′
1
ε

)(qf ,	)(
ε
w′2

), for qf ∈ F , where
w′1 = a1a2 . . . an, w′2 = b1b2 . . . bn, ai, bi ∈ (V ∪{#}), and either ai = # or bi = #,
for all i = 1, . . . , n, for some n ≥ 0.

From a practical point of view, however, this definition is not ideal. The au-
tomaton can easily end up in a configuration that cannot yield accepting results,
and the correct positions of auxiliary symbols # need to be checked separately at
the end of the process. Therefore, we present a modified definition that has the
jumping mechanism more integrated into its structure. We are also using a sim-
plification for complementary pairs and treat them as single letters; such a change
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has no effect on the accepting power, and this form of input is more natural for
formal language theory.

Definition 2 A jumping 5′ → 3′ WK automaton is a quintuple M = (V,Q, q0,
F, δ), where V , Q, q0, and F are the same as in WK automata, V ∩ {#} = ∅, the
state transition function δ : (Q×V ∗×V ∗×D)→ 2Q, where D = {⊕,	} indicates
the mutual position of heads, and δ assigns a nonempty set only for finitely many
quadruples of (Q×V ∗×V ∗×D). A configuration (q, s, w1, w2, w3) consists of the
state q, the position of heads s ∈ D, and the three unprocessed portions of the
input tape: (a) before the first head (w1), (b) between the heads (w2), and (c)
after the second head (w3). A step of the automaton can be of the following four
types: Let x, y, u, v, w2 ∈ V ∗ and w1, w3 ∈ (V ∪ {#})∗.
(1) ⊕-reading: (q,⊕, w1, xw2y, w3) y (q′, s, w1{#}|x|, w2, {#}|y|w3), where q′ ∈

δ(q, x, y,⊕), and s is either ⊕ if |w2| > 0 or 	 in other cases.
(2) 	-reading: (q,	, w1y, ε, xw3) y (q′,	, w1, ε, w3), where q′ ∈ δ(q, x, y,	).
(3) ⊕-jumping: (q,⊕, w1, uw2v, w3) y (q, s, w1u,w2, vw3), where s is either ⊕ if
|w2| > 0 or 	 in other cases.

(4) 	-jumping: (q,	, w1{#}∗, ε, {#}∗w3) y (q,	, w1, ε, w3).
In the standard manner, extend y to yn, where n ≥ 0; then, based on yn,
define y+ and y∗. The accepted language, denoted by L(M), can be defined
by the final accepting configurations that can be reached from the initial one:
A string w is accepted by a jumping 5′ → 3′ WK automaton M if and only if
(q0,⊕, ε, w, ε) y∗ (qf ,	, ε, ε, ε), for qf ∈ F .

Even though the structure of this modified definition is considerably different
from Definition 1, it is not very difficult to show that both models accept the same
family of languages.

Proposition 3 The models of Definitions 1 and 2 accept the same family of lan-
guages.

Proof By construction (from both sides). Let M1 = (V1, ρ,Q, q0, F, δ1) from Def-
inition 1 and M2 = (V2, Q, q0, F, δ2) from Definition 2. The states can remain
identical. We can define bijection ϕ : ρ→ V2. Let ϕ(ai, a

′
i) = xi and ϕ(bi, b

′
i) = yi,

where ai, a
′
i, bi, b

′
i ∈ V1, (ai, a

′
i), (bi, b

′
i) ∈ ρ, xi, yi ∈ V2, for all i = 1, . . . , n, n ≥ 1.

Any δ1(q, (
a1...an

b′1...b
′
m

), s) can be converted into δ2(q, x1 . . . xn, y1 . . . ym, s), for some
n,m ≥ 0, and vice versa. Now, we reason that both models accept the same inputs.

We say that a current configuration of M1 is potentially valid if M1 can still
potentially reach the accepting configuration (w

′
1
ε

)(qf ,	)(
ε
w′2

), qf ∈ F , where
w′1 = a1a2 . . . an, w′2 = a′1a

′
2 . . . a

′
n, ai, a

′
i ∈ (V ∪ {#}), and either ai = # or

a′i = #, for all i = 1, . . . , n, n ≥ 0. Observe that the condition regarding #’s can
be checked continuously and individually for each pair (

ai

a′i
) that was already visited

with both heads. The following description thus considers only the configurations
of M1 that are still potentially valid.

First, we cover how M1 can be simulated with M2. The accepting process of
M1 can be divided into three distinct stages:
(1) Before the heads meet (the position of heads remains ⊕): The reading steps

of M1 clearly correspond with the ⊕-reading steps of M2—the processed po-
sitions are marked with # in both models. Likewise, the jumping steps of M1

clearly correspond with the ⊕-jumping steps of M2—the visited positions are
left unchanged for the other head in both models.
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(2) The meeting point of heads (when the position changes from ⊕ to 	): The
same steps as in (1) are still applicable. The difference is that in M1 the heads
can cross each other, but in M2 the heads must meet each other precisely.
However, the crossing situations in M1 that lead to potentially valid config-
urations are quite limited. Assume that the I-head reads/skips u and the
J-head reads/skips v, then:
(a) If |u| > 1 and |v| > 1, the resulting configuration cannot be potentially

valid since some pair (
ai

a′i
) was either read or skipped with both heads.

(b) If |u| > 1 and |v| = 0: Considering a reading step, all symbols from u
that are read after the meeting point must be skipped with the J-head.
However, since jumping steps can occur arbitrarily, there is also an alter-
native sequence of steps in M1 where the heads precisely meet, the J-head
jumps afterwards, and the same configuration is reached. Moreover, any
jumping step can be replaced with several shorter jumping steps.

(c) If |u| = 0 and |v| > 1, the situation is analogous to (b).
Thus, M2 does not need to cover these crossing situations.

(3) After the heads met (the position of heads is 	): To keep the current configu-
ration potentially valid, M1 can use reading steps only on positions that were
not yet read. Correspondingly, M2 can use 	-reading steps on positions that
do not contain #. Also, M1 can effectively use jumping steps only on posi-
tions that were already read. Correspondingly, M2 can use 	-jumping steps
on positions that contain #.
Second, the simulation ofM2 withM1 is trivial since any⊕/	-reading/jumping

step of M2 can be easily simulated with a reading/jumping step of M1. Moreover,
for the simulated steps, it is guaranteed that the condition regarding #’s holds.

Thus, when M1 or M2 accepts an input, there is a corresponding sequence of
steps in the other model that accepts the same input as well. Consequently, M1

and M2 clearly accept the same inputs. A rigorous version of this proof is rather
lengthy but straightforward, so we left it to the reader. ut

Hereafter, we primarily use Definition 2.

4 Examples

To demonstrate the behavior of the automata, we present a few simple examples.

Example 4 Let us recall that L = {w ∈ {a, b}∗ : |w|a = |w|b} is a well-known
nonlinear context-free language. We show that, even though the jumping directions
in the model are quite restricted, we are able to accept such a language. Consider
the following jumping 5′ → 3′ WK automaton

M = ({a, b}, {s}, s, {s}, δ)
with the state transition function δ: δ(s, a, b,⊕) = {s} and δ(s, a, b,	) = {s}.
Starting from s, M can either utilize the jumping or read simultaneously with
both heads (the I-head reads a and the J-head reads b), and it always stays in
the sole state s. Now, consider the inputs aaabbb and baabba. The former can be
accepted by using three ⊕-readings and one 	-jumping:

(s,⊕, ε, aaabbb, ε) y (s,⊕,#, aabb,#) y (s,⊕,##, ab,##) y
(s,	,###, ε,###) y (s,	, ε, ε, ε).
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The latter input is more complex and can be accepted by using one ⊕-jumping,
two ⊕-readings, one 	-jumping, and one 	-reading:

(s,⊕, ε, baabba, ε) y (s,⊕, b, aabb, a) y (s,⊕, b#, ab,#a) y
(s,	, b##, ε,##a) y (s,	, b, ε, a) y (s,	, ε, ε, ε).

It is not hard to see that, by combining different types of steps, we can accept any
input containing the same number of a’s and b’s, and thus L(M) = L.

Example 5 Consider the following jumping 5′ → 3′ WK automaton

M = ({a, b}, {s}, s, {s}, δ)

with the state transition function δ: δ(s, a, b,⊕) = {s}. Observe that this is almost
identical to Example 4, however, we cannot use the 	-reading anymore. Conse-
quently, we also cannot effectively use the ⊕-jumping because there is no way
how to process remaining symbols afterwards. As a result, the accepted language
changes to L(M) = {anbn : n ≥ 0}.

Lastly, we give a more complex example that uses all parts of the model.

Example 6 Consider the following jumping 5′ → 3′ WK automaton

M = ({a, b, c}, {s0, s1, s2}, s0, {s0}, δ)

with δ: δ(s0, a, b,⊕) = {s1}, δ(s1, ε, b,⊕) = {s0}, δ(s0, c, c,	) = {s2}, and δ(s2, ε,
c,	) = {s0}. We can divide the accepting process of M into two stages. First,
before the heads meet, the automaton ensures that for every a on the left side
there are two b’s on the right side; other symbols are skipped with the jumps.
Second, after the heads met, the automaton checks if the part before the meeting
point has double the number of c’s as the part after the meeting point. Thus,
L(M) = {w1w2 : w1 ∈ {a, c}∗, w2 ∈ {b, c}∗, 2 · |w1|a = |w2|b, |w1|c = 2 · |w2|c}.

5 General results

These results cover the general behavior of jumping 5′ → 3′ WK automata with-
out any further restrictions. Let SWK, JWK, GJFA, and JFA denote the lan-
guage families accepted by sensing 5′ → 3′ WK automata, jumping 5′ → 3′ WK
automata, general jumping finite automata, and jumping finite automata, respec-
tively.

Considering previous results on other models that use the jumping mechanism
(see [16,17,8–10]), it is a common characteristic that they define language families
that are incomparable with the classical families of regular, linear, and context-
free languages. On the other hand, sensing 5′ → 3′ WK automata (see [18–21,
23]) are closely related to the family of linear languages. First, we show that the
new model is able to accept all regular and linear languages. Furthermore, the
accepting power goes beyond the family of linear languages.
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Lemma 7 For every regular language L, there is a jumping 5′ → 3′ WK automa-
ton M such that L = L(M).

Proof Consider a finite automaton N = (V,Q, q0, F, δ1) such that L(N) = L. We
can construct the jumping 5′ → 3′ WK automaton M = (V,Q, q0, F, δ2) where
δ2(q, a, ε,⊕) = δ1(q, a) for all q ∈ Q, a ∈ (V ∪{ε}). Observe that with such a state
transition function the ⊕-reading steps always look like this: (q,⊕, w1, aw2, w3) y
(q′, s, w1{#}|a|, w2, w3), where q′ ∈ δ2(q, a, ε,⊕), w2 ∈ V ∗, w1, w3 ∈ (V ∪ {#})∗,
and s is either ⊕ if |w2| > 0 or 	 in other cases. There are no possible 	-reading
steps. The ⊕-jumping can be potentially used to skip some symbols before the
heads meet; nonetheless, the resulting configuration will be in the form (q, s, w1,
w2, w3) where alph(w1w3)∩V 6= ∅. Since there is no way how to read such symbols
in w1 and w3, the configuration cannot yield an accepting result. Consequently,
any input string will be read in M the same way as in N (the remaining #’s will
be erased with the 	-jumping afterwards). Thus, L(M) = L(N) = L. ut

Lemma 8 For every sensing 5′ → 3′ WK automaton M1, there is a jumping
5′ → 3′ WK automaton M2 such that L(M1) = L(M2).

Proof This can be proven by construction. Consider any sensing 5′ → 3′ WK
automaton M1. A direct conversion would be complicated, however, let us recall
that LIN = SWK (see Theorem 2 in [21]). Consider a linear grammar G =
(N,T, S, P ) such that L(G) = L(M1). We can construct the jumping 5′ → 3′

WK automaton M2 such that L(M2) = L(G). Assume that qf 6∈ (N ∪ T ). Define
M2 = (T,N ∪ {qf}, S, {qf}, δ), where B ∈ δ(A, u, v,⊕) if A → uBv ∈ P and
qf ∈ δ(A, u, ε,⊕) if A → u ∈ P (A,B ∈ N , u, v ∈ T ∗). By the same reasoning
as in the proof of Lemma 7, only the ⊕-reading can be effectively used before the
heads meet. Consequently, it can be easily seen that M2 reads all symbols in the
same fashion as G generates them. Moreover, the heads of M2 can meet each other
with the accepting state qf if and only if G can finish the generation process with
a rule A→ u. Thus, L(M2) = L(G) = L(M1). ut

Theorem 9 LIN = SWK ⊂ JWK.

Proof SWK ⊆ JWK follows from Lemma 8. LIN = SWK was proven in [21].
JWK 6⊆ LIN follows from Example 4. ut

The next two characteristics follow from the previous results.

Theorem 10 Jumping 5′ → 3′ WK automata without 	-reading steps accept
linear languages.

Proof Consider any jumping 5′ → 3′ WK automaton M = (V,Q, q0, F, δ) that
has no possible 	-reading steps. Expanding the reasoning in the proof of Lemma
8, if there are no possible 	-reading steps, the ⊕-jumping cannot be effectively
used, and we can construct a linear grammar that generates strings in the same
fashion as M reads them. Define the linear grammar G = (Q,V, q0, R), where R
is constructed in the following way: (1) For each p ∈ δ(q, u, v,⊕), add q → upv to
R. (2) For each f ∈ F , add f → ε to R. Clearly, L(G) = L(M). ut

Proposition 11 The language family accepted by double-jumping finite automata
that perform right-left and left-right jumps (see [10]) is strictly included in JWK.
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Proof First, Theorem 3.18 in [10] shows that jumping finite automata that per-
form right-left and left-right jumps accept the same family of languages. Second,
Theorem 3.7 in [10] shows that this family is strictly included in LIN. Finally,
Theorem 9 shows that LIN is strictly included in JWK. ut

Even though the model is able to accept some nonlinear languages, the jumping
directions of the heads are quite restricted compared to general jumping finite
automata. Consequently, there are some languages accepted by jumping 5′ → 3′

WK automata and general jumping finite automata that cannot be accepted with
the other model. To formally prove these results, we also need to introduce the
concept of the debt of a configuration in jumping 5′ → 3′ WK automata. First,
we start with the formal definition of a reachable state.

Definition 12 Let M = (V,Q, q0, F, δ) be a jumping 5′ → 3′ WK automaton.
Assuming some states q, q′ ∈ Q and a mutual position of heads s ∈ {⊕,	}, we say
that q′ is reachable from q and s if there exists a configuration (q, s, w1, w2, w3) such
that (q, s, w1, w2, w3) y∗ (q′, s′, w′1, w

′
2, w
′
3) in M , s′ ∈ {⊕,	}, w1, w2, w3, w

′
1,

w′2, w
′
3 ∈ (V ∪ {#})∗.

Next, we show that for any possible sequence of reading steps of a jumping
5′ → 3′ WK automaton M that leads from the starting configuration σ to a
configuration γ from which a final state is reachable, there exists w′ ∈ L(M) such
that w′ can be fully processed with the given sequence of reading steps from σ to
γ and a limited number of additional reading steps. Note that potential jumping
steps in σ to γ are unimportant for the result since jumping steps can occur
arbitrarily and they do not process any symbols of the input.

Lemma 13 Let M = (V,Q, q0, F, δ) be a jumping 5′ → 3′ WK automaton, and
let q ∈ Q and s ∈ {⊕,	} such that f ∈ F is reachable from q and s. When
(q0,⊕, ε, w, ε) y∗ (q, s, w1, w2, w3) in M , w ∈ V ∗, w1, w2, w3 ∈ (V ∪ {#})∗, there
exists w′ ∈ L(M) such that M starting with w′ can reach q and s′ (s′ = s or
s′ = 	) by using the same sequence of ⊕/	-reading steps as in (q0,⊕, ε, w, ε) y∗
(q, s, w1, w2, w3) and the rest of w′ can be processed with a limited number of steps
bounded by some constant k for M .

Proof First, if f is reachable from q and s, there has to exist a sequence of state
transitions from (Q× {⊕,	})+ such that (p0, s0) · · · (pn, sn),
– p0 = q, s0 = s′, pn = f , sn = 	,
– pi+1 ∈ δ(pi, ai, bi, si) or pi+1 = pi,
– si+1 = si or si+1 = 	, and
– (pi, si) = (pj , sj) implies i = j, i, j = 0, . . . , n, n ≥ 0 (all pairs are unique).

Obviously, this sequence is finite, and its maximum length is bounded by some
constant k for M . Second, assume the complete sequence of state transitions of
M , (q0,⊕) · · · (q, s′) · · · (f,	)(f,	), where (q0,⊕) · · · (q, s′) includes the same se-
quence of reading steps as (q0,⊕, ε, w, ε) y∗ (q, s, w1, w2, w3) and (q, s′) · · · (f,	)
= (p0, s0) · · · (pn, sn). Represent the complete sequence as (p0, s0) · · · (pm, sm),
pi+1 ∈ δ(pi, ui, vi, si) or pi+1 = pi, si+1 = si or si+1 = 	, i = 0, . . . ,m, m ≥ 0. At
first, for all i = 0, . . . ,m, set ai = ε, bi = ε, ci = ε, di = ε. If pi+1 ∈ δ(pi, ui, vi, si)
is used, then if si = ⊕, set ai = ui and bi = vi, otherwise if si = 	, set ci = ui and
di = vi. It is not hard to see that w′ = a0 · · · amdm · · · d0c0 · · · cmbm · · · b0 ∈ L(M).

ut
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Next, based on known M and L(M), we can define the debt of a configuration
of M . If we follow the computation of M on an input w, we can maintain the
Parikh vector o of symbols already processed from w in the current configuration.
Additionally, with the known L(M), we can determine Parikh vectors for all w′ ∈
L(M). The debt of the configuration represents the minimum number of symbols
that have to be added to o so that o matches some Parikh vector of w′ ∈ L(M).
Note that we use ∞ to cover situations when no match is possible.

Definition 14 Let M = (V,Q, q0, F, δ) be a jumping 5′ → 3′ WK automaton,
where V = {a1, . . . , an}. Following the computation of M on an input w ∈ V ∗,
let o = (o1, . . . , on) be the Parikh vector built by the processed (read) symbols
from w: At first, for the starting configuration, set o = ΨV (ε). For the following
configurations, whenever M makes a ⊕/	-reading step from some q to q′ according
to q′ ∈ δ(q, u, v, s), set o = o + ΨV (uv). Using the Parikh mapping of L(M), we
define ∆(o) = {

∑n
i=1(mi − oi) : (m1, . . . ,mn) ∈ ΨV (L(M)), mi ≥ oi, 1 ≤

i ≤ n} ∪ {∞}. Finally, we define the debt of the current configuration of M as
min(∆(o)).

And finally, we can combine Lemma 13 and Definition 14 to show that any
jumping 5′ → 3′ WK automaton M has to accept all w ∈ L(M) over configurations
with some bounded debt.

Lemma 15 Let L be a language, and let M = (V,Q, q0, F, δ) be a jumping 5′ → 3′

WK automaton. If L(M) = L, M accepts all w ∈ L using only configurations that
have their debt bounded by some constant k for M .

Proof By contradiction. Assume that M does not accept all w ∈ L exclusively
using only configurations that have their debt bounded by some constant k for M ,
then M can accept some w ∈ L over a configuration for which the debt cannot
be bounded by any k. Let V = {a1, . . . , an}. Following the computation of M on
w ∈ L, let o = (o1, . . . , on) be the Parikh vector built by the processed symbols
from w. Due to Lemma 13, when M is in a state q with a mutual position of
heads s from which a final state f ∈ F is reachable, there is w′ ∈ L(M) such
that Ψ(w′) = (m1, . . . ,mn), mi ≥ oi, 1 ≤ i ≤ n, and |w′| ≤

∑n
i=1(oi) + k′,

where k′ is some constant for M . According to Definition 14, w′ ∈ L(M) implies
min(∆(o)) ≤ k′. Finally, M clearly cannot accept w over a state q and a mutual
position of heads s from which no final state f ∈ F is reachable. Consequently,
when M accepts w, it must be done over configurations with the debt ≤ k′.
However, that is a contradiction with the premise that M can accept some w ∈ L
over a configuration for which the debt cannot be bounded by any k. ut

Observe that the debt alone does not depend on the order of symbols in the
words of L(M), e.g., ΨV ({(abc)n : n ≥ 0}) = ΨV ({anbncn : n ≥ 0}), for V =
{a, b, c}. However, when the debt is combined with the computational possibilities
of M on an input w, we can show that a language L cannot be accepted by M if
there is some w ∈ L such that w cannot be fully processed over configurations of
M with the debt bounded by some constant k.

Lemma 16 There is no jumping 5′ → 3′ WK automaton M such that L(M) =
{anbncn : n ≥ 0}.
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Proof Basic idea. Considering any sufficiently large constant k, we show that M
cannot process all symbols of a10kb10kc10k using only configurations that have
their debt bounded by k.
Formal proof. By contradiction. Let L = {anbncn : n ≥ 0}, and let M = (V,Q, q0,
F, δ) be a jumping 5′ → 3′ WK automaton such that L(M) = L. Due to Lemma
15, M must accept all w ∈ L using only configurations that have their debt
bounded by some constant k for M . Consider any k such that k > max({|uv| :
δ(q, u, v, s) 6= ∅, u, v ∈ V ∗}). Due to the structure of L, we can represent the debt
of the configuration as 〈da, db, dc〉, where da, db, dc is the minimum number of
symbols a, b, c that M must yet to read to get the balanced number of processed
symbols. (For illustration, the initial configuration has the debt 〈0, 0, 0〉. When M
reads a, the following configuration has the debt 〈0, 1, 1〉 because at least one b
and one c have yet to be read to keep the number of processed symbols balanced.)
When (q0,⊕, ε, w, ε) y∗ (qf ,	, ε, ε, ε), qf ∈ F , for all traversed configurations
must hold da + db + dc ≤ k. Let w = a10kb10kc10k.

First, we explore the maximum number of symbols that M can read from w
before the heads meet. Starting from (q0,⊕, ε, w, ε) 〈0, 0, 0〉 and until the position
	 is reached, M can use ⊕-reading steps to process symbols and ⊕-jumping steps
to skip symbols. Consider the optimal reading strategy to process the maximum
number of symbols from a10kb10kc10k:
(1) M processes (with multiple steps) ak and ck and reaches 〈0, k, 0〉,
(2) M reads l symbols together in one step (balanced number of a’s, b’s, and c’s)

while keeping 〈0, k, 0〉, l < k,
(3) M processes b2k and ak (or ck) and reaches 〈0, 0, k〉 (or 〈k, 0, 0〉).
No further reading is possible; this strategy processed 5k + l symbols.

Second, when the heads meet, a>4kb>4kc>4k has yet to be processed. The
heads are next to each other, and M can use 	-reading steps to process symbols
and 	-jumping steps to remove the auxiliary #’s. Consider one of the optimal
reading strategies to process the maximum number of symbols:
(1) the heads are between b’s and c’s,
(2) the debt of the current configuration is 〈0, k, 0〉,
(3) M processes b2k and ck and reaches 〈k, 0, 0〉.
No further reading is possible; this strategy processed 3k symbols. (Since there are
still more than 2k of b’s, M cannot reach a’s to further balance the debt.)

Even when M follows the best reading strategies in both parts, it is not able
to process more than 8k + l symbols; but the input contains 30k symbols. Conse-
quently, there is no constant k that bounds the debt of configurations of M . But
that is a contradiction with the assumption that there is a jumping 5′ → 3′ WK
automaton M such that L(M) = {anbncn : n ≥ 0}. ut

Lemma 17 There is no jumping 5′ → 3′ WK automaton M such that L(M) =
{w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c}.

Proof Let N be a jumping 5′ → 3′ WK automaton, L = {w ∈ {a, b, c}∗ : |w|a =
|w|b = |w|c}, and K = {anbncn : n ≥ 0}. Following the computation of N on
an input w of the form a∗b∗c∗, let o be the Parikh vector built by the processed
symbols from w. Observe that, for any configuration of N , the debt of the configu-
ration min(∆(o)) is similar for L(N) = L and L(N) = K since it only depends on
o and the quantities of symbols in the words of the language L(N). Consequently,
the proof that there is no M is analogous to the proof of Lemma 16. ut
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Proposition 18 JWK is incomparable with GJFA and JFA.

Proof The language {w ∈ {a, b}∗ : |w|a = |w|b} from Example 4 and the language
{w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c} from Lemma 17 are accepted with (general)
jumping finite automata (see Example 5 in [16]). The language {anbn : n ≥ 0} from
Example 5 is not accepted with (general) jumping finite automata (see Lemma 19
in [16]). ut

The last group of results compares the accepting power of the model with the
families of context-sensitive and context-free languages.

Theorem 19 JWK ⊂ CS.

Proof Clearly, the use of two heads and the jumping behavior can be simulated by
linear bounded automata, so JWK ⊆ CS. From Lemma 16, CS − JWK 6= ∅. ut

Lemma 20 There are some non-context-free languages accepted by jumping 5′ →
3′ WK automata.

Proof Consider the following jumping 5′ → 3′ WK automaton

M = ({a, b, c, d}, {s}, s, {s}, δ)

with the state transition function δ: δ(s, a, c,⊕) = {s} and δ(s, d, b,	) = {s}. The
accepting process has two stages. First, before the heads meet, the automaton
reads the same number of a’s and c’s. Second, after the heads met, the automaton
reads the same number of d’s and b’s. Thus, L(M) = {w1w2 : w1 ∈ {a, b}∗, w2 ∈
{c, d}∗, |w1|a = |w2|c, |w1|b = |w2|d}.
By contradiction. Assume that L(M) is a context-free language. The family of
context-free languages is closed under intersection with regular sets. Let K =
L(M) ∩ {a}∗{b}∗{c}∗{d}∗. Clearly, there are some strings in L(M) that satisfy
this forced order of symbols. Furthermore, they all have the proper correlated
numbers of these symbols. Consequently, K = {anbmcndm : n,m ≥ 0}. However,
K is a well-known non-context-free language (see Chapter 3.1 in [25]). That is a
contradiction with the assumption that L(M) is a context-free language. Therefore,
L(M) is a non-context-free language. ut

Lemma 21 There is no jumping 5′ → 3′ WK automaton M such that L(M) =
{anbncmdm : n,m ≥ 0}.

Proof Basic idea. We follow the proof structure of Lemma 16. Considering any
sufficiently large constant k, we show thatM cannot process all symbols of a10kb10k

c10kd10k using only configurations that have their debt bounded by k.
Formal proof. By contradiction. Let L = {anbncmdm : n,m ≥ 0}, and let M =
(V,Q, q0, F, δ) be a jumping 5′ → 3′ WK automaton such that L(M) = L. Due to
Lemma 15, M must accept all w ∈ L using only configurations that have their debt
bounded by some constant k for M . Consider any k such that k > max({|uv| :
δ(q, u, v, s) 6= ∅, u, v ∈ V ∗}). Let w = a10kb10kc10kd10k.

First, we explore the limits of what the heads of M can read from the input
after the meeting point. Consider the maximum number of b’s that the J-head
can read with 	-reading steps. Since a’s are in front of b’s, this number must
be limited. The starting configuration can have the debt of k b’s, the debt can
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reach k a’s, and only one step can read both types of symbols together. Thus, the
maximum number of b’s that the J-head can read with 	-reading steps is < 3k.
In the same manner, the maximum number of c’s that the I-head can read with
	-reading steps is < 3k.

Second, we explore the situation before the heads meet. Observe that the
I-head can process less than 4k of a’s and b’s on its own with ⊕-reading steps
and the J-head can process less than 4k of c’s and d’s on its own with ⊕-reading
steps. Due to the previous limits, the I-head cannot jump over all remaining b’s
and the J-head cannot jump over all remaining c’s. Thus, the heads cannot meet
in a configuration that can process all remaining symbols.

Consequently, there is no constant k that bounds the debt of configurations
of M . But that is a contradiction with the assumption that there is a jumping
5′ → 3′ WK automaton M such that L(M) = {anbncmdm : n,m ≥ 0}. ut

Theorem 22 JWK and CF are incomparable.

Proof JWK 6⊆ CF follows from Lemma 20. CF 6⊆ JWK follows from Lemma 21.
Lastly, LIN ⊂ JWK and LIN ⊂ CF. ut

6 Results on restricted variations

In this section, we compare the accepting power of unrestricted and restricted
variations of jumping 5′ → 3′ WK automata. This paper considers the same stan-
dard restrictions as they are defined for Watson-Crick finite automata. Since these
restrictions regulate only the state control and reading steps of the automaton, the
jumping is not affected in any way. Let JWK denote the language family accepted
by jumping 5′ → 3′ WK automata. We are using prefixes N, F, S, 1, NS, FS,
N1, and F1 to specify the restricted variations of jumping 5′ → 3′ WK automata
and appropriate language families.

In the field of DNA computing, the empty string/sequence usually does not
belong to any language because it does not refer to a molecule. This paper is not so
strict and thus considers the empty string as a possible valid input. Nonetheless,
the following proofs are deliberately based on more complex inputs to mitigate
the impact of the empty string on the results. Moreover, we distinguish between
FIN and FINε-inc, when the difference is unavoidable.

Note that there are some inherent inclusions between language families based
on the application of restrictions on the model. Additionally, several other basic
relations can be established directly from the restriction definitions:

Lemma 23 The following relations hold: (i) N JWK ⊆ F JWK; (ii) 1 JWK ⊆
S JWK; (iii) F1 JWK ⊆ FS JWK; (iv) N1 JWK ⊆ NS JWK; (v) NS JWK
⊆ FS JWK; (vi) N1 JWK ⊆ F1 JWK.

Proof These results follow directly from the definitions since the stateless restric-
tion (N) is a special case of the all-final restriction (F) and the 1-limited restriction
(1) is a special case of the simple restriction (S). ut
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6.1 On the simple restriction

Theorem 24 S JWK = JWK.

Proof
Basic idea. Any general reading step can be replaced with two simple reading steps
and a new auxiliary state that together accomplish the same action.
Construction. Consider an arbitrary jumping 5′ → 3′ WK automaton M =
(V,Q1, q0, F, δ1). We can construct the S jumping 5′ → 3′ WK automaton N
such that L(N) = L(M). Define N = (V,Q2, q0, F, δ2), where Q2 and δ2 are
created in the following way:
(1) Set Q2 = Q1.
(2) For each δ1(q, x, y, s) 6= ∅ where |x| = 0 or |y| = 0,

let δ2(q, x, y, s) = δ1(q, x, y, s).
(3) For each δ1(q, x, y, s) 6= ∅ where |x| > 0 and |y| > 0, add a new unique state p

to Q2 and let p ∈ δ2(q, x, ε, s) and δ2(p, ε, y, s) = δ1(q, x, y, s).
It is clear that all original transitions that did not satisfy the simple restriction
were transformed into the new suitable transitions according to the basic idea. Now
we reason that this change has no effect on the accepted language. Observe that
the mutual position of heads does not change between both transitions. Therefore,
considering the definitions of ⊕-reading and 	-reading steps, the first reading
cannot have any side effect on the second reading because the heads work on
different parts of the input. Lastly, the new automaton can do additional jumps
between the readings. Nonetheless, considering again the mutual position of heads,
jumps with the same effect can also be done before the first reading or after the
second reading. Thus, L(N) = L(M). ut

6.2 On the 1-limited restriction

Example 25 Consider the following jumping 5′ → 3′WK automatonM = ({a, b, c},
{s, f}, s, {f}, δ) with the state transition function δ:

δ(s, a, b,⊕) = {s}, δ(f, a, b,⊕) = {f}, δ(f, a, b,	) = {f},
δ(s, cc, ε,⊕) = {f}, δ(s, ε, cc,⊕) = {f}.

It is clear that the first three transitions mimic the behavior of Example 4. The
other two transitions ensure that the input is accepted only if it also contains pre-
cisely one substring cc. Therefore, L(M) = {w1ccw2 : w1, w2 ∈ {a, b}∗, |w1w2|a =
|w1w2|b}.

Lemma 26 Let M = (V,Q, q0, F, δ) be a 1 jumping 5′ → 3′ WK automaton M ,
and let w be an input string. When M reads w, let us represent the sequence of
used reading steps as (u1, v1, u

′
1, v
′
1) · · · (un, vn, u′n, v′n), ui, u

′
i, vi, v

′
i ∈ (V ∪ {ε}),

i = 1, . . . , n, n ≥ 1, where ui and u′i contain the symbol read by the I-head with the
⊕/	-reading step or ε and vi and v′i contain the symbol read by the J-head with the
⊕/	-reading step or ε. Let wI⊕ = u1 · · ·un, wI	 = u′1 · · ·u′n, wJ⊕ = vn · · · v1,
wJ	 = v′n · · · v′1. If w ∈ L(M), xy ∈ L(M) for all x ∈ shuffle(wI⊕, wJ	) and
y ∈ shuffle(wJ⊕, wI	).
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Proof Since M satisfies the 1-limited restriction, exactly one symbol is always
being read with a reading step. Therefore, for all i, only one of ui, vi, u

′
i, v
′
i is

nonempty and it contains one symbol. If M accepts w and a head jumps over a
symbol with a ⊕-jumping step, such a symbol is read later with the other head
with a 	-reading step. Since jumping steps can occur arbitrarily between reading
steps and since they do not depend on the state of M , it follows that every uv,
where u is a shuffle of wI⊕ and wJ	 and v is a shuffle of wJ⊕ and wI	, has to
belong into L(M). ut

Lemma 27 There is no 1 jumping 5′ → 3′ WK automaton M such that L(M) =
{w1ccw2 : w1, w2 ∈ {a, b}∗, |w1w2|a = |w1w2|b}.

Proof Basic idea. We follow the proof structure of Lemma 16. Considering any
sufficiently large constant k, we show thatM cannot process all symbols of a2kb2kcc
b2ka2k using only configurations that have their debt bounded by k.
Formal proof. By contradiction. Let L = {w1ccw2 : w1, w2 ∈ {a, b}∗, |w1w2|a =
|w1w2|b}, and let M = (V,Q, q0, F, δ) be a 1 jumping 5′ → 3′ WK automaton
such that L(M) = L. Due to Lemma 15, M must accept all w ∈ L using only
configurations that have their debt bounded by some constant k for M . Consider
any k ≥ 2. Let w = a2kb2kccb2ka2k.

Consider restrictions on how M can accept w so that it does not also accept
w′ 6∈ L. Due to Lemma 26, to ensure that both c’s are always next to each other,
some parts of wI⊕, wI	, wJ⊕, wJ	 must remain empty.

Consider cases where two or three parts remain empty. To ensure the proper
position of c’s, either only one head can read or only ⊕-reading or 	-reading steps
can be used. It is not hard to see that in these cases M can process at most 5k+ 2
symbols from the input. (In the optimal strategy to process the maximum number
of symbols, the heads meet between a’s and b’s and 	-reading steps are used.)

If only one part remains empty, the appropriate opposite part for the shuffle
must contain both c’s. Let us assume that wJ	 remains empty. Consequently, wI⊕
must contain at least a2kb2kcc. Consider the optimal reading strategy to process
the maximum number of symbols into wI⊕:
(1) the J-head reads k − 2 times a (the initial debt contains 2 c’s),
(2) 2k times the J-head reads b and the I-head reads a,
(3) the I-head reads 2k − 4 times b.
No further reading is possible; wI⊕ does not contain all required symbols. The
proof strategy and results are analogous for the other cases where wI	, wJ⊕, or
wJ	 remains empty.

Consequently, there is no constant k that bounds the debt of configurations of
M . But that is a contradiction with the assumption that there is a 1 jumping 5′ →
3′ WK automaton M such that L(M) = {w1ccw2 : w1, w2 ∈ {a, b}∗, |w1w2|a =
|w1w2|b}. ut

Theorem 28 1 JWK ⊂ JWK.

Proof This theorem follows directly from Example 25 and Lemma 27. ut

Example 29 Consider the following 1 jumping 5′ → 3′ WK automaton M =
({a, b}, {s, p}, s, {s}, δ) with the state transition function δ:

δ(s, a, ε,⊕) = {p}, δ(p, ε, b,⊕) = {s},
δ(s, a, ε,	) = {p}, δ(p, ε, b,	) = {s}.
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It is not hard to see that the resulting behavior is similar to Example 4. The
automaton now reads a’s and b’s with separate steps and uses one auxiliary state
that is not final. Consequently, L(M) = {w ∈ {a, b}∗ : |w|a = |w|b}.

Lemma 30 For every linear grammar G, there is a 1 jumping 5′ → 3′ WK au-
tomaton M such that L(G) = L(M).

Proof By construction. Consider any linear grammar G = (N,T, S, P ). Every
linear grammar has an equivalent grammar with rules in the form: (1) S → ε,
(2) A → aB, (3) A → Ba, (4) A → a, where A ∈ N , B ∈ (N − {S}), and
a ∈ T . Without loss of generality, assume that G satisfies this special form of
rules and qf 6∈ (N ∪ T ). Define the 1 jumping 5′ → 3′ WK automaton M =
(T,N ∪ {qf}, S, F, δ), where F and δ are constructed in the following way:
(1) Set F = {qf}. If S → ε ∈ P , add S to F .
(2) For each A→ aB ∈ P , add B to δ(A, a, ε,⊕).
(3) For each A→ Ba ∈ P , add B to δ(A, ε, a,⊕).
(4) For each A→ a ∈ P , add qf to δ(A, a, ε,⊕).
Following the same reasoning as in Lemma 8, L(M) = L(G). ut

Theorem 31 LIN ⊂ 1 JWK.

Proof This theorem follows directly from Example 29 and Lemma 30. ut

6.3 On the all-final restriction

Lemma 32 There is no F jumping 5′ → 3′ WK automaton M such that L(M) =
{cancbnc : n ≥ 0} ∪ {ε}.

Proof By contradiction. Assume that there is an F jumping 5′ → 3′ WK automa-
ton M = (V,Q, q0, F, δ) such that L(M) = {cancbnc : n ≥ 0}∪{ε}. Since M satis-
fies the all-final restriction, all states are final. Therefore, if in the first nonempty
reading step the I-head reads u and the J-head reads v, then uv or vu belongs to
L(M). Consider any k such that k > max({|uv| : δ(q, u, v, s) 6= ∅, u, v ∈ V ∗}). Let
w = cakcbkc. It is not hard to see that for any first nonempty reading step on w
(which reads u and v) must hold |uv|c ≤ 2. However, for all w′ ∈ (L(M)−{ε}) holds
|w′|c = 3. Therefore, if M accepts w, it also accepts uv 6∈ L(M) or vu 6∈ L(M).
But that is a contradiction with the assumption that M exists. ut

Theorem 33 F JWK ⊂ JWK.

Proof This theorem follows directly from Theorem 9 and Lemma 32. ut

Proposition 34 F JWK and LIN are incomparable.

Proof LIN 6⊆ F JWK follows from Lemma 32. F JWK 6⊆ LIN follows from
Example 4. Lastly, F JWK and LIN contain the language {a}∗. ut

Lemma 35 For every L ∈ F JWK holds ε ∈ L.

Proof Consider any F jumping 5′ → 3′ WK automaton M = (V,Q, q0, F, δ). Since
Q = F , q0 is a final state and (q0,⊕, ε, ε, ε) y (q0,	, ε, ε, ε) can be done with a
⊕-jumping step; thus, ε ∈ L(M). ut
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Proposition 36 F JWK and FIN are incomparable.

Proof FIN 6⊆ F JWK follows from Lemma 35. F JWK 6⊆ FIN follows from
Example 4. Lastly, it is trivial to construct an F jumping 5′ → 3′ WK automaton
with two states that accepts the finite language {ε, a}. ut

Theorem 37 FINε-inc ⊂ F JWK.

Proof First, F JWK 6⊆ FINε-inc follows from Example 4. Second, by construc-
tion. Consider any alphabet V and L = {x1, . . . , xn} ∈ FINε-inc such that
xi ∈ V ∗, i = 1, . . . , n, n ≥ 1. Define the F jumping 5′ → 3′ WK automaton
M = (V, {q0, qf}, q0, {q0, qf}, δ), where δ is constructed in the following way: For
each x ∈ L, set δ(q0, x, ε,⊕) = {qf}. It is clear that L(M) = L. ut

Example 38 Consider the following F (in fact, even N) jumping 5′ → 3′ WK
automaton M = ({a, b, c}, {s}, s, {s}, δ) with the state transition function δ:

δ(s, a, b,⊕) = {s}, δ(s, a, b,	) = {s},
δ(s, cc, ε,⊕) = {s}, δ(s, ε, cc,⊕) = {s}.

This is a slightly modified version of Example 25 where the substring cc can occur
arbitrarily many times. Therefore, L(M) = {w ∈ {a, b, cc}∗ : |w|a = |w|b}.

Proposition 39 F JWK and 1 JWK are incomparable.

Proof First, 1 JWK 6⊆ F JWK follows from Theorem 31 and Lemma 32. Next,
the proof structure of Lemma 27 can be straightforwardly applied on Example 38;
therefore, F JWK 6⊆ 1 JWK. Lastly, both families contain {a}∗. ut

6.4 On the stateless restriction

Lemma 40 There is no N jumping 5′ → 3′ WK automaton M = (V, {q0}, q0,
{q0}, δ) such that L(M) ∈ FIN and L(M) 6= {ε}.

Proof First, due to Lemma 35, L(M) must always contain ε. Second, by contra-
diction, assume that there is a N jumping 5′ → 3′ WK automaton M2 such that
L(M2) ∈ FIN and L(M2) contains a nonempty string. Since there is only one
state, any ⊕/	-reading step can be repeated arbitrarily many times. Therefore,
if in the first nonempty reading step the I-head reads u and the J-head reads v,
then uivi or viui belongs to L(M2) for all i ≥ 1. Thus, if M2 accepts a nonempty
string, L(M2) /∈ FIN. But that is a contradiction with the assumption that M2

exists. Consequently, if L(M) ∈ FIN, L(M) = {ε}. ut

Theorem 41 N JWK ⊂ F JWK.

Proof From Lemma 23, N JWK ⊆ F JWK. F JWK 6⊆ N JWK follows from
Theorem 37 and Lemma 40. ut
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Proposition 42 N JWK is incomparable with LIN, FIN, and FINε-inc.

Proof LIN, FIN, FINε-inc 6⊆ N JWK follows from Lemma 40. N JWK 6⊆ LIN,
FIN, FINε-inc follows from Example 4. Lastly, N JWK and LIN contain the
language {a}∗, and N JWK, FIN, and FINε-inc contain the language {ε}. ut

Proposition 43 N JWK and 1 JWK are incomparable.

Proof First, 1 JWK 6⊆N JWK follows from Theorem 31 and Lemma 40. Second,
N JWK 6⊆ 1 JWK follows from Example 38 and the proof of Proposition 39.
Lastly, both families contain the language {a}∗. ut

6.5 On the combined restrictions

Proposition 44 FS JWK ⊂ F JWK.

Proof Let L = {ccancc : n ≥ 0} ∪ {ε}. It is trivial to construct an F jumping
5′ → 3′ WK automaton that accepts L. However, there is no FS jumping 5′ →
3′ WK automaton that accepts L. By contradiction. Assume that there is an
FS jumping 5′ → 3′ WK automaton M such that L(M) = L. Using the basic
premise of Lemma 32, all c’s has to be read with the first nonempty reading step.
Nonetheless, a single head cannot read all c’s in one step if they are arbitrarily far
away from each other—a contradiction with the assumption that M exists. ut

Theorem 45 FINε-inc ⊂ FS JWK.

Proof FS JWK 6⊆ FINε-inc follows from {a}∗ ∈ FS JWK. The rest of the proof
is analogous to Theorem 37. ut

Example 46 Consider the following FS jumping 5′ → 3′ WK automaton M =
({a, b, c}, {s, p}, s, {s, p}, δ) with the state transition function δ:

δ(s, a, ε,⊕) = {p}, δ(p, ε, b,⊕) = {s},
δ(s, a, ε,	) = {p}, δ(p, ε, b,	) = {s},
δ(s, cc, ε,⊕) = {s}, δ(s, ε, cc,⊕) = {s},
δ(p, cc, ε,⊕) = {p}, δ(p, ε, cc,⊕) = {p}.

As a result, L(M) = {w ∈ {a, b, cc}∗ : |w|a = |w|b or |w|a = |w|b + 1}.
This automaton is just a combination of previous approaches from Examples 29
and 38. Note that L(M) resembles the resulting language of Example 38.

Proposition 47 FS JWK and 1 JWK are incomparable.

Proof First, 1 JWK 6⊆ FS JWK follows from the language in the proof of Propo-
sition 44. Second, the proof structure of Lemma 27 can be straightforwardly ap-
plied on Example 46; therefore, FS JWK 6⊆ 1 JWK. Lastly, FS JWK and 1
JWK contain the language {a}∗. ut
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Proposition 48 F1 JWK ⊂ FS JWK.

Proof From Lemma 23, F1 JWK ⊆ FS JWK. It is trivial to construct an FS
jumping 5′ → 3′ WK automaton that accepts {aa}∗. However, there cannot be an
F1 jumping 5′ → 3′ WK automaton that accepts only even-length inputs. ut

Proposition 49 F1 JWK and LIN are incomparable.

Proof LIN 6⊆ F1 JWK follows from {aa}∗ ∈ LIN. Considering Example 46, there
is an F1 jumping 5′ → 3′ WK automaton M such that L(M) = {w ∈ {a, b}∗ :
|w|a = |w|b or |w|a = |w|b+ 1}. Clearly, L(M) is not a linear language. Lastly, F1
JWK and LIN contain the language {a}∗. ut

Corollary 50 F1 JWK ⊂ 1 JWK. ut

Theorem 51 NS JWK ⊂ REG.

Proof NS JWK ⊆ REG can be proven by construction. We show that for any
NS jumping 5′ → 3′ WK automaton we can construct a finite automaton that
accepts the same language. Consider any NS jumping 5′ → 3′ WK automaton
M = (V, {q0}, q0, {q0}, δ). The following claims hold:

Claim 1 Any w ∈ L(M) can be expressed in the following special form w =
x1y
′
1 . . . xny

′
nx
′
1y1 . . . x

′
mym, where xi, y

′
i, x
′
j , yj ∈ V ∗, for all i = 1, . . . , n and

j = 1, . . . ,m, for some n,m ≥ 1, and for all xi, y
′
i, x
′
j , yj hold:

(i) either xi = ε or δ(q0, xi, ε,⊕) = {q0},
(ii) either yj = ε or δ(q0, ε, yj ,⊕) = {q0},
(iii) either x′j = ε or δ(q0, x

′
j , ε,	) = {q0},

(iv) either y′i = ε or δ(q0, ε, y
′
i,	) = {q0}.

Proof Due to the restrictions, parts (i), (ii), (iii), and (iv) cover all possible types
of state transitions. The accepted input can be always divided into two parts,
depending on the position where the heads of M meet each other when the au-
tomaton processes this input. The first part x1y

′
1 . . . xny

′
n is a combination of ⊕-

readings with the I-head and 	-readings with the J-head. Likewise, the second
part x′1y1 . . . x

′
mym is a combination of 	-readings with the I-head and ⊕-readings

with the J-head. To get the uncertain reading order forced by the jumping steps,
we also allow each part xi, y

′
i, x
′
j , yj to be empty. Therefore, all w ∈ L(M) have to

be able to satisfy this special form. �

Claim 2 Any w ∈ V ∗ that can be expressed in the previous special form belongs
to L(M).

Proof Considering the restrictions, M has only one state, and only one head can
read in a step. Therefore, if there is a possible reading step, it can be used arbi-
trarily many times. Furthermore, the possible reading steps can change only when
the heads meet each other. Also, since each head reads separately, there cannot
be any dependence between the first and second part of the input in the special
form. Consequently, any w ∈ V ∗ that can be expressed in the form from Claim 1
has to belong to L(M). �

Considering both claims, it is easy to construct a finite automaton that accepts
all inputs of this special form. REG 6⊆ NS JWK follows from Lemma 40. ut
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Proposition 52 N1 JWK ⊂ NS JWK.

Proof This proof is analogous to that of Proposition 48. ut

Proposition 53 The following relations hold:
(i) NS JWK ⊂ N JWK;

(ii) NS JWK ⊂ FS JWK;
(iii) N1 JWK ⊂ F1 JWK.

Proof Examples 4 and 46 and Proposition 49 show that N JWK, FS JWK,
and F1 JWK contain some non-regular languages. Considering Lemma 23 and
Theorem 51, all three proposed relations directly follow. ut

Proposition 54 FS JWK and N JWK are incomparable.

Proof First, FS JWK 6⊆ N JWK follows from Lemma 40. Second, let L =
{anbn : n ≥ 0}. It is trivial to construct an N jumping 5′ → 3′ WK automaton
that accepts L. However, there is no FS jumping 5′ → 3′ WK automaton that
accepts L. By contradiction. Assume that there is an FS jumping 5′ → 3′ WK
automaton M = (V,Q, q0, F, δ) such that L(M) = L. Due to the restrictions, if a
head of M reads u in a step, it must hold that |u|a = |u|b. Otherwise, there would
be w′ ∈ L(M) such that |w′|a 6= |w′|b. Consider any k such that k > max({|v1v2| :
δ(q, v1, v2, s) 6= ∅, v1, v2 ∈ V ∗}). Let w = a2kb2k. Clearly, when M processes w,
each head can read u such that |u|a = |u|b no more than once. However, these
balanced steps can therefore process only less than 2k symbols. Consequently, if
M accepts w, it also accepts some w′ 6∈ L—a contradiction with the assumption
that M exists. Therefore, N JWK 6⊆ FS JWK. Lastly, FS JWK and N JWK
contain the language {a}∗. ut

Proposition 55 F1 JWK and NS JWK are incomparable.

Proof First, F1 JWK 6⊆ NS JWK follows from Lemma 40. Second, NS JWK
6⊆ F1 JWK follows from {aa}∗ ∈ NS JWK. Lastly, both families contain the
language {a}∗. ut

Proposition 56 REG is incomparable with F JWK, N JWK, FS JWK, and
F1 JWK.

Proof First, Examples 4 and 46 and Proposition 49 show that F JWK, N JWK,
FS JWK, and F1 JWK contain some non-regular languages. Second, let L =
{cancbmc : n,m ≥ 0} ∪ {ε}. L is clearly a regular language. Considering the
proof of Lemma 32 and the previous results, we can easily see that F JWK, N
JWK, FS JWK, and F1 JWK cannot contain L. Lastly, all families contain the
language {a}∗. ut

Proposition 57 FIN is incomparable with FS JWK, F1 JWK, NS JWK, and
N1 JWK.

Proof Considering previous results. First, FS JWK, F1 JWK, NS JWK, and
N1 JWK cannot contain ∅. Second, FS JWK, F1 JWK, NS JWK, and N1
JWK contain {a}∗. Lastly, all families contain {ε}. ut
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Proposition 58 FINε-inc is incomparable with F1 JWK, NS JWK, and N1
JWK.

Proof Considering previous results. First, F1 JWK, NS JWK, and N1 JWK
cannot contain {ε, aa}. Second, F1 JWK, NS JWK, and N1 JWK contain
{a}∗. Lastly, all families contain {ε}. ut

All the obtained results comparing the accepting power of different variations
of jumping 5′ → 3′ WK automata are summarized in Figure 1.

S JWK = JWK

1 JWK

LIN

REG

FIN

FINε-inc

F JWK

FS JWK N JWK

F1 JWK

NS JWK

N1 JWK

Fig. 1 A hierarchy of language families closely related to the unrestricted and restricted
variations of jumping 5′ → 3′ WK automata is shown. If there is an arrow from family X to
family Y in the figure, then X ⊂ Y . Furthermore, if there is no path (following the arrows)
between families X and Y , then X and Y are incomparable.

7 Conclusion

The results clearly show that, with the addition of the jumping mechanism into
the model, the accepting power has been increased above sensing 5′ → 3′ WK
automata. The model is now able to accept some nonlinear and even some non-
context-free languages. On the other hand, the jumping movement of the heads
is restricted compared to jumping finite automata, and this limits its capabilities
to accept languages that require a more sophisticated discontinuous information
processing. Considering the comparison with full-reading sensing 5′ → 3′ WK
automata, the results are not yet clear and further research is required. However,
we know that there are some languages, like {anbncn : n ≥ 0}, that cannot be
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accepted by jumping 5′ → 3′ WK automata and that are accepted by full-reading
sensing 5′ → 3′ WK automata (see [18–21]).

If we compare the hierarchies of language families related to the restricted vari-
ations of jumping 5′ → 3′ WK automata and sensing 5′ → 3′ WK automata (see
[20,21,23]), there are several noticeable remarks. Most importantly, the 1-limited
restriction (1) has a negative impact on the accepting power, which is usually not
the case in sensing 5′ → 3′ WK automata. Secondly, when several restrictions are
combined together, the hierarchy structure resembles the alternative structure of
sensing 5′ → 3′ WK automata without the sensing distance. Lastly, almost all
restricted variations, with the exception of NS and N1, are still able to accept
some nonlinear languages, which cannot be accepted by any variation of sensing
5′ → 3′ WK automata.

Finally, the reader may notice that the 	-jumping can be used only in situ-
ations where it is forced by the current configuration. Jumping finite automata
usually immediately erase symbols from the configuration and do not use the aux-
iliary symbol #. It is therefore a question for future research whether we can safely
remove this part from the model and keep the accepting power intact.
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