
Tomáš Kozubek · Peter Arbenz ·
Jiří Jaroš · Lubomír Říha ·
Jakub Šístek · Petr Tichý (Eds.)

LN
CS

 1
24

56

4th International Conference, HPCSE 2019
Karolinka, Czech Republic, May 20–23, 2019
Revised Selected Papers

High Performance Computing
in Science and Engineering

Lecture Notes in Computer Science 12456

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Tomáš Kozubek • Peter Arbenz •

Jiří Jaroš • Lubomír Říha •

Jakub Šístek • Petr Tichý (Eds.)

High Performance Computing
in Science and Engineering
4th International Conference, HPCSE 2019
Karolinka, Czech Republic, May 20–23, 2019
Revised Selected Papers

123

Editors
Tomáš Kozubek
VSB - Technical University of Ostrava
Ostrava-Poruba, Czech Republic

Peter Arbenz
ETH Zurich
Zurich, Switzerland

Jiří Jaroš
Brno University of Technology
Brno, Czech Republic

Lubomír Říha
VSB - Technical University of Ostrava
Ostrava-Poruba, Czech Republic

Jakub Šístek
Institute of Mathematics of the CAS
Prague, Czech Republic

Petr Tichý
Charles University
Prague, Czech Republic

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-67076-4 ISBN 978-3-030-67077-1 (eBook)
https://doi.org/10.1007/978-3-030-67077-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6865-1884
https://orcid.org/0000-0002-1501-3176
https://orcid.org/0000-0002-0087-8804
https://orcid.org/0000-0002-1017-5766
https://orcid.org/0000-0002-5231-7830
https://orcid.org/0000-0001-6008-4056
https://doi.org/10.1007/978-3-030-67077-1

Preface

This volume comprises the proceedings of the 4th International Conference on High
Performance Computing in Science and Engineering – HPCSE 2019, which was held
in the Hotel Soláň in the heart of the Beskydy Mountains, Czech Republic, on May 20–
23, 2019. The biennial conference was organized by the IT4Innovations National
Supercomputing Center at VSB - Technical University of Ostrava with the support of
partner institutions: Brno University of Technology, Charles University, Czech
Technical University in Prague, Institute of Geonics and Institute of Mathematics of the
CAS, and Czech Network for Mathematics in Industry eu-maths-in.cz. The aim was to
bring together specialists in high performance computing from fields such as applied
mathematics, numerical methods, and parallel computing, to exchange experience and
to initiate new research collaborations. We are glad that our invitation was accepted by
distinguished experts from world-leading research institutions.

This conference has become an international forum for exchanging ideas among
researchers involved in scientific and parallel computing, including theory and appli-
cations, as well as applied and computational mathematics. The focus of HPCSE 2019
was on models, algorithms, and software tools that facilitate efficient and convenient
utilization of modern parallel and distributed computing architectures, as well as on
large-scale applications.

The members of the Scientific Committee of HPCSE 2019 were Radim Blaheta,
Martin Čermák, Zdeněk Dostál, Jaroslav Hron, Jiří Jaroš, Tomáš Kozubek, Jaroslav
Kruis, Tomáš Oberhuber, Ivan Šimeček, Jakub Šístek, Petr Tichý, and Vít Vondrák.

The invited plenary talks were presented by:

• Andrea Bartolini (University of Bologna),
• Steffen Börm (Christian-Albrechts-Universität zu Kiel),
• Ben T. Cox (University College London),
• Dominik Göddeke (University of Stuttgart),
• Frédéric Hecht (Université Pierre et Marie Curie),
• Jakub Kurzak (University of Tennessee),
• Günther Of (Technische Universität Graz),
• Daniela di Serafino (University of Campania Luigi Vanvitelli),
• Garth Wells (University of Cambridge),
• Stefano Zampini (KAUST).

We gratefully acknowledge the support of the Ministry of Education, Youth and
Sports from the National Programme of Sustainability (NPU II) through project
“IT4Innovations excellence in science – LQ1602”.

The HPCSE 2019 conference was a fruitful event, providing interesting lectures,
showcasing new ideas, demonstrating the beauty of applied mathematics, presenting
numerical linear algebra, optimization methods, and high performance computing, and
starting or strengthening collaborations and friendships.

This meeting attracted about 100 participants from 10 countries. All participants
were invited to submit an original paper to this book of proceedings. We give thanks
for all contributions as well as for the work of the reviewers, and hope that this volume
will be useful for readers. The proceedings were edited by Tomáš Kozubek, Peter
Arbenz, Jiří Jaroš, Lubomír Říha, Jakub Šístek, and Petr Tichý.

Finally, we would like to cordially invite readers to participate in the next HPCSE
conference, which is planned to be held at the same place on May 17–20, 2021.

On behalf of the organizers, Tomáš Kozubek.

Tomáš Kozubek
Peter Arbenz

Jiří Jaroš
Lubomír Říha
Jakub Šístek
Petr Tichý

vi Preface

Organization

Conference Chair

Tomáš Kozubek VSB - Technical University of Ostrava,
Czech Republic

Scientific Committee

Radim Blaheta Institute of Geonics of the CAS, Czech Republic
Martin Čermák VSB - Technical University of Ostrava,

Czech Republic
Zdeněk Dostál VSB - Technical University of Ostrava,

Czech Republic
Jaroslav Hron Charles University, Czech Republic
Jiří Jaroš Brno University of Technology, Czech Republic
Tomáš Kozubek VSB - Technical University of Ostrava,

Czech Republic
Jaroslav Kruis Czech Technical University in Prague, Czech Republic
Tomáš Oberhuber Czech Technical University in Prague, Czech Republic
Ivan Šimeček Czech Technical University in Prague, Czech Republic
Jakub Šístek Institute of Mathematics of the CAS, Czech Republic
Petr Tichý Charles University, Czech Republic
Vít Vondrák VSB - Technical University of Ostrava,

Czech Republic

Contents

Thermal Characterization of a Tier0 Datacenter Room in Normal
and Thermal Emergency Conditions . 1

Mohsen Seyedkazemi Ardebili, Carlo Cavazzoni, Luca Benini,
and Andrea Bartolini

Towards Local-Failure Local-Recovery in PDE Frameworks:
The Case of Linear Solvers . 17

Mirco Altenbernd, Nils-Arne Dreier, Christian Engwer,
and Dominik Göddeke

Complexity Analysis of a Fast Directional Matrix-Vector Multiplication 39
Günther Of and Raphael Watschinger

Fast Large-Scale Boundary Element Algorithms . 60
Steffen Börm

Solving Large-Scale Interior Eigenvalue Problems to Investigate
the Vibrational Properties of the Boson Peak Regime
in Amorphous Materials. 80

Giuseppe Accaputo, Peter M. Derlet, and Peter Arbenz

Performance Evaluation of Pseudospectral Ultrasound Simulations
on a Cluster of Xeon Phi Accelerators . 99

Filip Vaverka, Bradley E. Treeby, and Jiri Jaros

Estimation of Execution Parameters for k-Wave Simulations 116
Marta Jaros, Tomas Sasak, Bradley E. Treeby, and Jiri Jaros

Analysis and Visualization of the Dynamic Behavior of HPC Applications. . . 135
Ondrej Vysocky, Ivo Peterek, Martin Beseda, Matej Spetko,
David Ulcak, and Lubomir Riha

A Convenient Graph Connectedness for Digital Imagery 150
Josef Šlapal

Author Index . 163

Thermal Characterization of a Tier0
Datacenter Room in Normal and Thermal

Emergency Conditions

Mohsen Seyedkazemi Ardebili1(B) , Carlo Cavazzoni2 , Luca Benini1,3 ,
and Andrea Bartolini1

1 Universitá degli Studi di Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy
{mohsen.seyedkazemi,luca.benini,a.bartolini}@unibo.it

2 CINECA, Via Magnanelli 6/3, Casalecchio di Reno, 40033 Bologna, Italy
c.cavazzoni@cineca.it

3 Eidgenössische Technische Hochschule Zürich, Gloriastrasse 35,
8092 Zürich, Switzerland
lbenini@iis.ee.ethz.ch

https://ee.ethz.ch/

https://www.dei.unibo.it/

https://www.cineca.it/

Abstract. Datacenters are at the heart of the AI, Industry 4.0 and
cloud revolution. A datacenter contains a large number of computing
nodes hosted in a large temperature-controlled room. Due to the increas-
ing total power and power density of computing nodes, the overall dat-
acenter compute capacity is often capped by peak power consumption
and temperature bottlenecks. To preserve the homogeneous performance
assumption between all the nodes, complex cooling solution are required,
but they might not be sufficient. In this work, we analysed and charac-
terised the thermal properties of a Tier0 datacenter deploying advanced
hybrid cooling technologies: specifically, we studied the spatial and tem-
poral heterogeneity during production and cooling emergency hazards.
This paper gives first quantitative evidence of thermal bottlenecks in
real-life production workload, showing the presence of significant spa-
tial thermal heterogeneity which could be exploited by thermal-aware
job scheduling and datacenter-room run-time workload adaptation and
distribution.

Keywords: HPC · Thermal characterization · Power consumption

1 Introduction and Related Works

With the growth of the computing demand from a broad set of societal, industrial
and science application, datacenter have become a key component of the whole

This work has been partially supported by the EU H2020 ICT/2018 project IoTwins
(g.a. 857191).

c© Springer Nature Switzerland AG 2021
T. Kozubek et al. (Eds.): HPCSE 2019, LNCS 12456, pp. 1–16, 2021.
https://doi.org/10.1007/978-3-030-67077-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67077-1_1&domain=pdf
https://orcid.org/0000-0002-1166-6559
https://orcid.org/0000-0002-9589-4785
https://orcid.org/0000-0001-8068-3806
https://orcid.org/0000-0002-1148-2450
https://doi.org/10.1007/978-3-030-67077-1_1

2 M. Seyedkazemi Ardebili et al.

ICT. In the US a single dollar invested in HPC generates in average 43$ of profit
while in Europe the Return on Investment (ROI) of each euro invested in HPC
generates in average 69e in profit and 867e of increased revenues [9].

A datacenter is composed of several computing rooms, each hosting several
racks containing tens/hundreds of computing nodes. The power consumption
of these installations ranges from few to tens of MWatts. Additional power is
required to remove the heat generated by the active electronics. Summit [8] which
is today the most powerful supercomputer worldwide consumes 11 MWatts for
the computation and an additional 1.32 MWatts for the cooling. To achieving this
cooling efficiency Summit adopts a sophisticated computing node design and hot
water cooling solution [16]. Today’s datacenters of Google achieve similar cooling
efficiency and pay an equivalent additional 12% of power consumption for power
delivery and cooling dissipation [11].

Traditional cooling methods, based on computer room air conditioners
(CRAC), or computer room air handlers (CRAH) have been enhanced with free-
cooling mode, i.e., the capability to exploit the outside air, using only the AC
blowers to circulate it in the room [15]. Rear Door Heat Exchangers (RDHX) are
used to augment the computing density in air-cooled computing rooms. While to
further reduce the cooling, hot water cooling is used to remove heat [16,18]. Hot
water cooling requires special and costly heat exchanger (cold plate) to reduce
the thermal resistance and in general lead to a higher silicon temperature in the
computing unit than cold water cooling [3,5].

Several works in literature have analyzed the impact of heat dissipation in
datacenter components.

The first set of works focus on the chip-level thermal effects and show that
at chip-level exists hotspots and significant thermal gradients which can be
exploited for improving core’s performance and energy-efficiency [3,4,6,7,12].
Druzhinin et al. have studied the impact of the coolant temperature increase in
a datacenter blade with hot water cooling. The authors show that an increment
of 40 ◦C in the coolant causes 20% of additional leakage power and a consequent
decrease in the performance of 0.5% [14].

The second set of works focus on the machine level [10,13,18]. These works
characterize the effect of performance variability between nominally equal com-
puting nodes. Marathe et al. [13] show that in power-constrained computing
nodes, the hardware control logic turns the process variation effects into a per-
formance and core’s frequency variation. This can lead to significant applica-
tion time-to-solution overheads in parallel applications. While all the previously
mentioned papers highlight and characterize the side-effects of inlet tempera-
ture, performance variation, energy efficiency and parallel job performance in
a datacenter, none of them has characterized the temperature variation in a
datacenter’s room.

In this work, we characterize the temperature distribution of a Tier0 data-
center hosting the Marconi supercomputer [8,17], which is ranked 21st in the
list of the most powerful supercomputer worldwide and features hybrid and
free-cooling technologies. To carry out the analysis, we have collected the entire

Thermal Characterization of a Tier0 Datacenter Room 3

Marconi node’s telemetry data for a month of activity. During the selected period
(01.06.2019–01.07.2019), the ambient temperature has ranged from 12 ◦C to 38
◦C. Our analysis shows that:

– The inlet temperature of the nodes increases vertically. With an average dif-
ference of 6.5 ◦C from the top and bottom nodes. Moreover, the bottom nodes
face a higher variability of the inlet temperature than the top nodes in the
rack as an effect of a stronger dependency of their inlet air with the CRAC
outlet temperature. This is less strong with top nodes in the rack due to a
stronger dependency of their inlet air from heat re-circulation.

– The inlet temperature significantly changes in the floorplan. We measured
up to 10.8 ◦C difference for the monthly average chassis temperature for
chassis at the same height in the racks. Interestingly the monthly average
hotspot position in the floorplan is correlated with the chassis height.

– In the observed period, the datacenter faced a thermal hazard which has
compromised the liquid cooling capacity of the room (used by the RDHX).
We carefully analyze room temperature during this rare but extremely criti-
cal event. Our measurement shows that the effect of the thermal emergency
caused an increase in the average temperature of the computing nodes with
a modification of the hotspot location.

Our results show that the inlet temperature in a datacenter is heteroge-
neous and significant patterns are stable for long periods and visible in monthly
average. If accurately modelled this information can be used to improve job
scheduling and improve the datacenter’s cooling efficiency.

In Sect. 2, we present the methodology used to conduct the analysis. In
Sect. 3, we present the results of our analysis.

2 Methodology

We focus our study on the MARCONI Tier-0 cluster in the CINECA datacenter,
which is based on the Lenovo NeXtScale platform. MARCONI is composed of
two partitions, one (A3) based on Intel Skylake processors (8PFlops) and the
other (A2) based on Intel KnightLandings (KNL) processors (11PFlops). We
focused our analysis on the room hosting the largest partition of MARCONI
(A2), namely the Marconi KNL room. The MARCONI A2 cluster is based on
the 68-cores Intel Xeon Phi7250 (KnightLandings) at 1.4 GHz, with many-core
architecture (Intel OmniPath Cluster), provided about 250 thousand cores (68
cores/node, 244.800 cores in total) with the computational power of around
11Pflop/s. Each node has 16 GB/node MCDRAM + 96 GB/node DDR4 [17].
The CINECA datacenter features a holistic monitoring framework, namely Exa-
Mon [2], which aggregates a wide set of telemetry data.

Figure 1 depicts the layout of the HPC Marconi KNL room in CINECA.
In the Marconi KNL room, 46 + 1 racks (one of them is a rack of switches) are
located in three rows. Each rack is composed of 18 chassis in different height, and
each chassis has four computing nodes. Chassis one (C1) is in the bottom, and

4 M. Seyedkazemi Ardebili et al.

(a) Marconi KNL Room in CINECA
Datacenter.

(b) Racks Arrangements of Marconi
KNL Room in CINECA Datacenter.

Fig. 1. Racks arrangements of Marconi KNL room in CINECA datacenter.

chassis 18 (C18) is the highest one. There are six computer room air conditioning
(CRAC) units which support the two cold aisles. The RDHX of racks are in the
hot aisle. For each node and its associated components, such as voltage regulators
and fans, the Intelligent Platform Management Interface (IPMI) provide remote
telemetry access to the built-in sensors [1]. The ExaMon monitoring system
collects sensor data with the IPMI interface with 20 s sampling rate [2]. ExaMon
monitored data is stored in its internal KairosDB database as time traces and
remotely accessible through RESTfull APIs [2].

We focus our analysis on the following metrics: (i) inlet temperature
(BB Inlet Temp) which senses the temperature of a node close to the cold aisle;
(ii) outlet temperature (Exit Air Temp), which senses the temperature of a node
close to the RDHX and the hot corridor. (iii) The node power, which is derived
from the power measured for the two power supplies of each chassis (namely
PS1 Input Power and PS2 Input Power metrics). The power consumption and
workload are related, and this is not the focus of the manuscript. All these met-
rics are available in ExaMon. This study investigates the spatial and temporal
heterogeneity during production and cooling emergency hazards for the period
from 2019-06-01 00:00:00 to 2019-07-01 00:00:00 over the 3312 Marconi KNL
nodes. To conduct the study, we used the following methodology. We extracted
the data by using the RESTfull API provided by ExaMon. We use Python pro-
gramming language scripts. With Examon-KairosDB, we build suitable datasets,
and with Python codes, we performed data analysis and plots [2]. Table 1 sum-
marizes the characteristics of the dataset used in this study, and the boxplot in
Fig. 2 shows the shape of the distribution of inlet and outlet temperatures, and
power consumption of nodes in June 2019. To generate these boxplots, we use
all the collected data of sensors during June 2019. As it be noticed, there is no
overlap in the interquartile range between the inlet and outlet temperatures.

Thermal Characterization of a Tier0 Datacenter Room 5

Table 1. Characteristics of dataset

Name of parameter Value

Number of racks 46

Number of chassis Per Rack 18

Number of nodes 3312

Number of metrics 42 IPMI with knl tag

Sampling rate 20 s

Period of study From 2019-06-01 00:00:00 to 2019-07-01 00:00:00

Thermal emergency 2019-06-28

3 Experimental Results

To study the thermal characteristic of the Marconi KNL room, we investigated
the spatial and temporal aspects of temperature and power consumption of nodes
in the room during June 2019. This study contributes the 3D view of the thermal
and power characteristics of the room by utilizing the heat-map of distribution
of the power consumption and temperature of nodes, and also, different chassis-
level analysis that represents the power consumption and thermal variation in
different height of the room.

Subsection 3.1 analyzes the static spatial gradients present in the comput-
ing room. The analysis is conducted by averaging each metrics for the entire
month and studying their correlation and spatial variation. Differently, Sub-
sect. 3.2 analyzes the temporal variations by computing the average and the
min-max variation on a per-day base for the entire computing room. Finally,
Subsect. 3.3 focuses on the day for which the computing room has faced a rare
cooling hazard.

3.1 Spatial Study

Figure 3 shows the boxplot of inlet and outlet temperatures. In the x-axis, the
chassis number: higher vertical position is represented by bigger chassis number,
being C1 the bottom one, and C18 the top chassis in a rack. The y-axis shows
the temperature in C. For each chassis number, we collected the temperature of
nodes located in the different racks in the room still in the same chassis-number
and as a consequence in the same height.

For each chassis number, the boxplot generated among all the nodes belong-
ing to a given chassis number in the room (4 nodes per chassis × 46 racks) and
all the samples (23.8 M samples) collected in June 2019. Figure 4 reports the
boxplot of power consumption of chassis in Watt. This plot generated in the
same approach as Fig. 3.

Figure 3 demonstrates the presence of a vertical spatial thermal gradient. The
nodes which hosted in the chassis-2 of racks on average have a minimum inlet,

6 M. Seyedkazemi Ardebili et al.

Fig. 2. Boxplot of inlet and outlet temperatures and power consumption of computing
nodes in June 2019.

Fig. 3. Boxplot of inlet and outlet temperature of computing nodes in different chassis
in June 2019.

Thermal Characterization of a Tier0 Datacenter Room 7

Fig. 4. Boxplot of power consumption of computing nodes in different chassis in June
2019.

Fig. 5. Boxplot of fan speed (RPM) of computing nodes in different chassis in June
2019.

8 M. Seyedkazemi Ardebili et al.

and outlet air temperature, therefore, these nodes on average are coldest nodes
in the room (∼6 ◦C colder than chassis-18 ones).

Figure 5 illustrates the distribution of fans speed in different chassis-numbers.
Measured data confirm that fans of nodes of chassis-2 work with lower
speed/RPM and consume 15.8 W less (∼6%) than nodes of chassis-18.

We then studied the thermal variation in different chassis-level by averaging
for the entire June the daily variation for the different analyzed metrics for
different chassis-levels. Figure 6 reports these values and indicates that chassis-2
endured maximum thermal variation, and it has experienced on average 7.3 ◦C
thermal variations in inlet temperature and 12.1 ◦C in the outlet. From the plot,
we can notice that the thermal variation drops vertically and is more severe for
the inlet temperature. This effects can be explained by the fact that the inlet
temperature of the lower chassis is closer to the CRAC outlet air which, due to
free-cooling follow the external ambient temperature and daily variations. The
inlet air temperature for nodes in the higher chassis is instead affected also by
the rack dissipated heat as the effect of heat recirculation. The lower variation
for the outlet air w.r.t. the inlet air can be explained by the larger fan speed of
the nodes in the higher chassis.

We report two heat-map plots of Marconi KNL room that illustrate the distri-
bution of the average inlet temperature in different racks at two different heights
(bottom and top of the racks) of the room in June. The bar-colour shows the
temperate in C degree. The top plot in Fig. 7 describes the inlet thermal status
of nodes in the top of the room (chassis-18), and the bottom plot in the same
figure shows inlet thermal status at the bottom of the room (chassis-2). For both
the plots, the center row of racks is at the colder temperature. In average in June

Fig. 6. Average inlet and outlet temperature variation and power consumption varia-
tion of computing nodes in chassis in June 2019.

Thermal Characterization of a Tier0 Datacenter Room 9

(a) Chassis-2. (b) Chassis-18.

Fig. 7. Average inlet heat map of Marconi KNL room on June 2019.

the bottom nodes of each rack (chassis-2) had maximum 34.35 ◦C and minimum
25.46 ◦C as inlet air temperature, for the top nodes of each rack (chassis-18)
that was 42.1 ◦C, and 31. ◦C respectively. Moreover, for the same height just
by moving in a horizontal/plane direction for the top of the racks (chassis-18
height), the room had 10.8 ◦C of thermal variation, which is notable inlet tem-
perature heterogeneity. At the bottom of the racks (chassis-2 height), the room
had 2 ◦C lower thermal variation. It must also be noted that the two horizontal
sections of the average room temperature show different hotspots locations. This
result suggests that the horizontal heat distribution vary vertically in the room.
This effect poses challenges in proactive room level thermal management, as all
the 3D thermal maps should be considered for optimizations.

Figure 8 reports the average power consumption of different racks in the
room in June. The bar-color shows electrical power in KWatt. In the computing
room, the maximum average power consumption of a rack was 20.4 KWatt, the
minimum of 14.0 KWatt with a standard deviation of 1.8 KWatt. The power con-
sumption correlated to the inlet temperature with a correlation coefficient (CC)
equal to 0.68. The outlet temperature correlated with the inlet temperature with
CC = 0.91. Finally, the outlet temperature correlated with the power consump-
tion with CC = 0.88. We can conclude that there is an intertwined dependency
between node’s power consumption, inlet temperature and outlet temperature,
which can be exploited for optimizing the room cooling and saving cooling energy.

3.2 Temporal Study

In this subsection, we analyze the temporal variations in the heat dissipation of
the datacenter room.

Figure 9 shows in the x-axis the days of June 2019, and y-axis reports the
average inlet and outlet temperature of nodes in the room for each day in C
degree. Each reported value corresponds to a day and is computed as the average

10 M. Seyedkazemi Ardebili et al.

Fig. 8. Average power consumption [KWatt] of racks of Marconi KNL room in June
2019.

Fig. 9. Average inlet and outlet temperature and power consumption of computing
nodes in different days of June 2019.

among all the nodes in the room (4 nodes per chassis × 18 chassis × 46 racks)
and all the samples in a day (3 samples per minutes× 1440 min per day).

From the plot, we can notice that all the reported metrics were relatively
constant for all the days of June except the 28th which had a thermal capacity

Thermal Characterization of a Tier0 Datacenter Room 11

failure. In addition, both the outlet and inlet temperature daily variation follows
the average node power consumption. It must be noted that even if during
the thermal emergency the outlet and inlet temperature increased due to the
compromised RDHX cooling capacity their average value in the day is lower due
to the counteracting action taken by the machine administrators that reduced the
room power consumption as we will see in the next subsection. Indeed, the node
average power consumption was 280 W on the 11th of June and 183 W on the
28th of June. Although with around 100 W reduction in the power consumption
of each node the inlet and outlet temperatures of nodes decreased, its thermal
variation dramatically raised (Fig. 10).

Measurement reveals that nodes in the thermal emergency day on average
had 14.7 ◦C thermal fluctuations in the inlet and 23.7 ◦C in the outlet tempera-
tures. It must be noted that during regular days, the average thermal fluctuation
(computed as the average of the daily min-max variation) is lower for the inlet
temperature than the outlet temperature.

Fig. 10. Average inlet and outlet temperature variation and power consumption vari-
ation of computing nodes in different days of June 2019.

3.3 Thermal Emergency

In this section, we analyze the heat variation of the datacenter room during the
thermal emergency day (28th of June 2019). Figure 11 shows in x-axis time, and
left and right y-axis respectively shows the temperature in C degree and power
consumption in Watt. In Fig. 11, we report the inlet, outlet temperatures, and

12 M. Seyedkazemi Ardebili et al.

power consumption of a node during the thermal hazard day and as it can be
seen the thermal hazard starts after 16:00 o’clock then it reaches its’ peak around
17:20 o’clock. In this period, the power consumption decreased to zero, which
means the computing nodes were turned off for a while, so, there is loss-data
for the outlet temperature. Therefore we extracted the data of five snapshots
in time corresponding to before, during and after the thermal emergency. The
10:00, 12:00, and 16:00 o’clock snapshots corresponds to the node’s condition
before the peak of thermal emergency. The 17:20 and 19:00 o’clock snapshots
provide information for the peak and after the peak of the thermal emergency.
Finally, the 21:00 o’clock snapshot corresponds to the recovery after the thermal
emergency.

Figure 12 shows in the x-axis the chassis number and in y-axis the inlet
temperate in C degree. As can be noted from Fig. 12, although generally inlet
temperature increase with height, the thermal pattern of chassis in the thermal
emergency period is quite different from the one during the normal conditions.
Around the hazard at 17:20 and 19:00, (i) the inlet temperature increases of ∼5
◦C (ii) the hotspot from chassis-18 moved to the chassis-17 and 15 also, (iii) the
global minimum for temperature was not on the chassis-2, and (iv) the chassis-
1 and 4 were colder than the chassis-2. We reported the outlet temperature
in Fig. 13, which shows in the x-axis the chassis number and in the y-axis the
outlet temperate in C degree. We can notice that during thermal hazard, the
outlet temperature was colder than during a typical day. This outlet temperature
reduction was more prominent for the higher chassis than the lower one. For
example, chassis-15 faced a 10 ◦C temperature reduction.

An explanation of this effect can be found in Fig. 14, which provides the
average power consumption for the nodes in different chassis during the five
time-snapshot examined for the thermal emergency day. The x-axis of Fig. 14
shows the chassis number, and the y-axis shows the average power consumption
in Watt. We find that the reduction in outlet temperature correlates with a
sharp decrease in power consumption from 270 W to 6 W, as it is evident in
Fig. 14. Moreover after the thermal emergency at the 21:00 o’clock the average
node power has been reduced to only 150 W. This power reduction was due to
the machine administrator intervention, which initially switched off the nodes
(17:20) and then started to bring up the nodes gradually.

Fig. 11. Inlet, outlet temperature and power consumption of a computing node on 28
June 2019 the day of thermal emergency.

Thermal Characterization of a Tier0 Datacenter Room 13

To finalize the study of the thermal emergency day in Fig. 15 we report two
heat-map plots of Marconi KNL room that show the distribution of the inlet
temperature in different racks at two different heights (bottom and top of the
racks) of the room at 17:20 on the 28th of June 2019. The bar-colour shows
the temperature in C degree. From the figure, we can notice that the centre
row is almost always colder than others like the normal. At 17:20 the bottom
nodes of each rack (chassis-2) had maximum 37 ◦C and minimum 30 ◦C as
inlet air temperature, for the top nodes of each rack (chassis-18) that was 43
◦C, and 36 ◦C respectively. Moreover, for the same height just by moving in a
horizontal/plane direction for the top of the racks (chassis-18 height), the room
had 7 ◦C of thermal variation, which is lower than the normal condition 10.8
◦C (Fig. 7) and also in the bottom we have the same amount of variation 7 ◦C.
Therefore the thermal heterogeneity of room was reduced.

Fig. 12. Average inlet temperature of computing nodes in different chassis in different
time instances on 28 June 2019 the day of thermal emergency.

14 M. Seyedkazemi Ardebili et al.

Fig. 13. Average outlet temperature of computing nodes in different chassis in different
time instances on 28 June 2019 the day of thermal emergency.

Fig. 14. Average power consumption of computing nodes in different chassis in different
time instances on 28 June 2019 the day of thermal emergency.

Thermal Characterization of a Tier0 Datacenter Room 15

(a) Chassis-2. (b) Chassis-18.

Fig. 15. Heatmap of Marconi KNL room on 28 June 2019 at 17:20 the day of thermal
emergency.

4 Conclusion

In this work, we analyzed the spatial and thermal heat dissipation characteristics
of the CINECA Marconi KNL room. The study revealed that nodes hosted in
the top chassis of racks are in worse thermal conditions than bottom nodes. This
has a direct impact on the average power consumption of the nodes, which is
higher for the top nodes. These nodes can consume up to 6% more power due to
a higher fan speed than bottom nodes. The study of the thermal map revealed
that the center row of racks in the Marconi KNL room is colder than the other
two rows; overall, this was valid for normal and thermal hazard condition. The
hotspot varies vertically as well as during the thermal emergency condition. We
can conclude that the study of the spatial and thermal heat dissipation charac-
teristics revealed significant non-idealities and heterogeneity which if modelled,
can be leveraged by thermal-aware job-scheduler and room-level power manage-
ment run-times.

References

1. Intel Server Board S2600IP and Workstation Board W2600CR Technical Product
Specification (2013)

2. Bartolini, A., et al.: Paving the way toward energy-aware and automated datacen-
tre. In: Proceedings of the 48th International Conference on Parallel Processing:
Workshops, ICPP 2019, pp. 8:1–8:8. ACM, New York (2019)

3. Bartolini, A., Conficoni, C., Diversi, R., Tilli, A., Benini, L.: Multiscale ther-
mal management of computing systems-the MULTITHERMAN approach. IFAC
PapersOnLine 50(1), 6709–6716 (2017)

4. Beneventi, F., Bartolini, A., Cavazzoni, C., Benini, L.: Cooling-aware node-level
task allocation for next-generation green hpc systems. In: Proceedings of the
2016 International Conference on High Performance Computing and Simulation
(HPCS), pp. 690–696. IEEE (2016)

16 M. Seyedkazemi Ardebili et al.

5. Conficoni, C., Bartolini, A., Tilli, A., Cavazzoni, C., Benini, L.: Integrated energy-
aware management of supercomputer hybrid cooling systems. IEEE Trans. Ind.
Inform. 12(4), 1299–1311 (2016)

6. Coskun, A.K., Ayala, J.L., Atienza, D., Rosing, T.S.: Modeling and dynamic man-
agement of 3D multicore systems with liquid cooling. In: Proceedings of the 17th
IFIP International Conference on Very Large Scale Integration (VLSI-SoC 2009),
pp. 35–40. IEEE (2009)

7. Diversi, R., Tilli, A., Bartolini, A., Beneventi, F., Benini, L.: Bias-compensated
least squares identification of distributed thermal models for many-core systems-
on-chip. IEEE Trans. Circ. Syst. I Regul. Pap. 61(9), 2663–2676 (2014)

8. Dongarra, J.J., Meuer, H.W., Strohmaier, E.: 29th top500 supercomputer sites.
Technical report, Top500.org (1994)

9. ETP4HPC: Strategic research agenda (2017)
10. Fraternali, F., Bartolini, A., Cavazzoni, C., Tecchiolli, G., Benini, L.: Quantify-

ing the impact of variability on the energy efficiency for a next-generation ultra-
green supercomputer. In: Proceedings of the 2014 International Symposium on
Low Power Electronics and Design, pp. 295–298. ACM (2014)

11. Gao, J., Jamidar, R.: Machine learning applications for data center optimization
(2014)

12. Kim, J., Sabry, M.M., Ruggiero, M., Atienza, D.: Power-thermal modeling and con-
trol of energy-efficient servers and datacenters. In: Khan, S.U., Zomaya, A.Y. (eds.)
Handbook on Data Centers, pp. 857–913. Springer, New York (2015). https://doi.
org/10.1007/978-1-4939-2092-1 29

13. Marathe, A., Zhang, Y., Blanks, G., Kumbhare, N., Abdulla, G., Rountree, B.: An
empirical survey of performance and energy efficiency variation on intel processors.
In: Proceedings of the 5th International Workshop on Energy Efficient Supercom-
puting, E2SC 2017, Denver, CO, USA, pp. 9:1–9:8. ACM, New York (2017)

14. Moskovsky, A., Druzhinin, E., Shmelev, A., Mironov, V., Semin, A.: Server level
liquid cooling: do higher system temperatures improve energy efficiency? Int. J.
Supercomput. Front. Innov. 3(1), 67–74 (2016)

15. Pore, M., Abbasi, Z., Gupta, S.K.S., Varsamopoulos, G.: Techniques to achieve
energy proportionality in data centers: a survey. In: Khan, S.U., Zomaya, A.Y.
(eds.) Handbook on Data Centers, pp. 109–162. Springer, New York (2015).
https://doi.org/10.1007/978-1-4939-2092-1 4

16. Rogers, J.: ORNL’s warm water HPC facilities and control systems (2019)
17. Rossi, E.: MARCONI-A2 (KNL) (2017)
18. Shoukourian, H., Wilde, T., Huber, H., Bode, A.: Analysis of the efficiency charac-

teristics of the first high-temperature direct liquid cooled petascale supercomputer
and its cooling infrastructure. J. Parallel Distrib. Comput. 107, 87–100 (2017)

https://www.top500.org/
https://doi.org/10.1007/978-1-4939-2092-1_29
https://doi.org/10.1007/978-1-4939-2092-1_29
https://doi.org/10.1007/978-1-4939-2092-1_4

Towards Local-Failure Local-Recovery
in PDE Frameworks: The Case

of Linear Solvers

Mirco Altenbernd1, Nils-Arne Dreier2, Christian Engwer2,
and Dominik Göddeke1,3(B)

1 University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
dominik.goeddeke@mathematik.uni-stuttgart.de

2 University of Münster, Orleansring 10, 48149 Münster, Germany
3 Stuttgart Center for Simulation Science (SimTech), Stuttgart, Germany

Abstract. It is expected that with the appearance of exascale super-
computers the mean time between failure in supercomputers will
decrease. Classical checkpoint-restart approaches are too expensive at
that scale. Local-failure local-recovery (LFLR) strategies are an option
that promises to leverage the costs, but actually implementing it into
any sufficiently large simulation environment is a challenging task. In
this paper we discuss how LFLR methods can be incorporated in a PDE
framework, focussing at the linear solvers as the innermost component.
We discuss how Krylov solvers can be modified to support LFLR, and
present numerical tests. We exemplify our approach by reporting on the
implementation of these features in the Dune framework, present C++
software abstractions, which simplify the incorporation of LFLR tech-
niques and show how we use these in our solver library. To reduce the
memory costs of full remote backups, we further investigate the benefits
of lossy compression and in-memory checkpointing.

Keywords: PDE frameworks · Fault tolerance · Lossy compression

1 Introduction

Exascale supercomputers are expected to appear in the near future and pre-
exascale systems are already operational [35]. Early after reaching petascale,
the power, concurrency, locality, resilience and scalability challenges have been
identified [20,21,30,41], and a recent PhD thesis by Nielsen [36] summarizes the
progress that has been made on the road towards exascale as of 2018.

1.1 Motivation

In this work, we focus on the resilience challenge, as emphasised by a number
of potentially alarming reports: The mean time between failure (MTBF) on the
Titan supercomputer (#1 on the TOP500 in November 2012, decommissioned
c© Springer Nature Switzerland AG 2021
T. Kozubek et al. (Eds.): HPCSE 2019, LNCS 12456, pp. 17–38, 2021.
https://doi.org/10.1007/978-3-030-67077-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67077-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-67077-1_2

18 M. Altenbernd et al.

in 2019) has been in the range of hours [24], and similar but slightly lower
values have been reported for the Blue Waters system [18] and Tianhe-2 [16],
the #1 supercomputer from 2013–2015. The architectures of these exemplary
machines differ vastly, indicating that progress towards a ‘hardware solution’ to
the resilience challenge proceeds at a much slower rate than solutions towards
other exascale challenges, e.g., as in the continued establishment of ‘MPI+X’
programming models. This is further exemplified in detailed studies of failures
in HPC systems, see for instance [9,26,38], and by surveying the expectations
spanning the last decade [14,15,19].

It is a known or at least a widely accepted fact that global, synchronous
checkpoint-restart strategies are already prohibitively expensive at scale, and
continue to become worse. For instance, 2000 s for a 64 TB dump on 1000 nodes
has been reported already in 2014 [40]. However, such strategies are, if at all,
the ones that are actually implemented in large-scale software, leading to the
unfavorable situation that the effects of a lack of ‘better’ solutions combined with
the slow improvement in hardware and middleware exponentiate themselves.

Already quite early in the pursuit of the exascale challenges, so-called ‘local-
failure local-recovery (LFLR)’ strategies have been suggested, see e.g. [39,43].
The LFLR philosophy has the potential to change fault mitigation from a reac-
tive to a proactive technique: If the time to compute and store a checkpoint
is minimized and is ideally almost completely hidden from the progress of the
application, then the checkpointing frequency can be increased compared to con-
ventional approaches, which immediately implies reduced recovery times in case
of a failure, because the ‘distance’ from the corrupted to the sane data is reduced.

While LFLR is undoubtedly the prime choice, actually implementing it into
any sufficiently large simulation environment is challenging. We focus on sim-
ulation frameworks for partial differential equation models (PDEs), that are
modularly designed not for a single application but for a whole range of differ-
ent ones. In fact, it means that almost all components need to be adapted, in
contrast to global checkpoints, and manual restarting using the queueing system.
We illustrate the complexity with a node loss scenario: When a local node dies,
by definition of the MPI standard all local parts of the distributed data are lost.
With ULFM (a middleware solution, see Subsect. 1.3), all MPI communicators
can be restored, for instance by swapping in spare processes, but the resulting
ranks are then ‘empty’. To enable the application to proceed, all local state has to
be restored. For PDE frameworks, this means that the local part of the grid has
to be reconstructed, then the discretization has to be reassembled, and finally,
the state of the (nonlinear) solver or even the inversion or optimization loop has
to be restored, up to the point where the reconstructed state matches that of the
non-lost ranks in the simulation. All these are typically implemented as separate
modules, possibly developed by different parties in different sub-projects, and
designed with interoperability e.g. between solvers for different discretizations on
different grids in mind, necessitating sophisticated techniques for the ‘catching
up’ of the lost rank(s).

Towards Local-Failure Local-Recovery in PDE Frameworks 19

1.2 Contribution

We argue to tackle proactive (and ultimately automatic) LFLR for PDE software
frameworks in a bottom-up approach, i.e., for each module in a large framework
separately. For this, we consider the Distributed Unified Numerics Environment
(Dune, see Subsect. 2.1), and mention that our ideas can also be implemented in
other frameworks as well. In this paper focus on linear solvers as one core build-
ing block: Linear solvers are often the most time-consuming part of an appli-
cation, and exhibit the degree of complexity necessary to develop more general
techniques. Following the Dune interoperability philosophy, we develop abstract
interfaces that encapsulate all functionality needed for LFLR, and demonstrate
their practical use only for linear solvers. In particular, we assume that all input
data for the linear solvers, i.e., the locally lost parts of the matrix and the right
hand side(s), can be treated by similar interfaces but different techniques under
the hood, that we however have not implemented yet.

For linear solvers, it turns out that the local checkpointing and recovery
procedure can potentially be substantially accelerated on large scale systems
if checkpoints are stored in a compressed way. In this paper, we thus examine
techniques to efficiently store (compressed) local checkpoints, in remote memory
instead of on disk, and to use these checkpoints to locally recover the state of the
global linear preconditioned Krylov solver in such a way that global convergence
is only minimally affected by the recovery.

Our compression-based approach to checkpoint-restart can be useful even in
the case of full checkpoints taken before the iterative solve, in a transition phase
where not all modules support LFLR yet: In case of a node loss the processes
can roll back to their full checkpoint followed by a ‘solver recovery’ which creates
a good initial guess based on available solver checkpoints. In certain cases, this
yields a superior recovery approach, as detailed throughout the paper.

1.3 Related Work

The current MPI standard mandates that all ranks terminate if one does. ULFM
(User Level Failure Mitigation, [10,11]) is a solution to this problem, and will be
integrated into the MPI4 standard. Some experience exists with PDE solvers on
the application level [3], and for various in-situ recovery techniques with shrink
and/or substitute [5], and for the connection to LFLR [43].

Similar ideas to our approach have been pursued: Cantwell et al. apply mes-
sage logging and remote in-memory checkpointing to Nektar++ [13]. Transpar-
ent recovery via implicitly coordinated, diskless, application-driven in memory
checkpointing has been added to fenix [23]. Also, the waLBerla framework con-
tains a resilient, diskless, and distributed checkpointing scheme to regularly cre-
ate snapshots of simulation data using ULFM [31]. Losada et al. [34] recently
demonstrated that by combining ULFM, the ComPiler for Portable Checkpoint-
ing (CPPC) tool, and the Open MPI VProtocol system-level message logging
to construct a local rollback mechanism, only failed processes need to be recov-
ered from the last checkpoint, while consistency before further progress in the
execution is achieved through a two-level message logging process.

20 M. Altenbernd et al.

Following the ideas of algorithm-based fault tolerance (ABFT, [28]), we have
previously used the existing hierarchy of linear multigrid solvers to compress
checkpoints [25] and to detect silent data corruption [4]. This has also involved
the solution of local auxiliary Dirichlet problems to recover from a fault, see also
Huber et al. [29], which we employ here too.

Data compression receives increased interest in scientific computing [17,
33,42]. Combining the ideas of ABFT and compression leads to so-called
interpolation-restart (IR) strategies. Some examples include interpolating lost
data from surviving nodes [32], IR for Krylov solvers [1] and for eigensolvers [2].
The idea we pursue in this paper lies somewhere in between.

2 Preliminaries

In this section, we outline the setting in which we implemented our approach,
and discuss specific related work.

2.1 DUNE – The Distributed Unified Numerics Environment

Dune [8] is a framework for the grid-based numerical solution of PDEs. It is
being developed at several universities and research institutes, for more than
15 years under a free and open source license. The main goal of Dune is the
definition of interfaces for different parts of a PDE solver and specific imple-
mentations of these interfaces. Due to its modularity, it is highly flexible. The
core modules consist of a grid interface [6,7], basic infrastructure, linear alge-
bra, and finite element bases. The core modules are extended by grid modules,
discretization modules, and several extensions and user modules.

Specifically we mention Dune-common and Dune-ISTL. The Dune-
common module provides general infrastructure and foundation classes. As part
of this it defines a lightweight abstraction on top of MPI, which allows to intro-
duce fault tolerance features without modifying the whole code base. We discuss
this in more detail in the next subsection.

The module Dune-ISTL (Iterative Solver Template Library, [12]) contains
data types and methods for the solution of linear systems. Iterative solvers are
implemented using dynamic polymorphism, which makes them configurable at
runtime. Unlike other PDE frameworks, Dune-ISTL does not rely on a global
numbering of the unknowns, instead the building blocks (operator, precondi-
tioner and scalar product) take care of the communication and consistency of
the data. This makes Dune well-suited for the design and implementation of
LFLR strategies.

2.2 Restoring MPI Communicators with ULFM and Distributed
Exceptions

In fault tolerance, the distinction between hard and soft errors is important, i.e.
errors that do or do not terminate program execution. Current MPI standards

Towards Local-Failure Local-Recovery in PDE Frameworks 21

can not handle hard errors like node losses. For the MPI-4 specification the
ULFM proposal [10,11] suggests an approach, where MPI does not replace the
failed rank, but provides users with sufficient information and functionality to
react locally on all ranks to this failure.

From a framework point of view we aim at hiding any such details behind
a high-level interface. This interface allows to react to possible changes in the
proposal, but it also allows us to introduce appropriate abstractions, which help
our integration into the existing code base. Our code is based on modern C++
and as such makes excessive use of exceptions for error management. This does
usually not integrate well with MPI, as exceptions are only handled locally.
The failing rank is then in a different state than all other ranks, which can
immediately lead to dead-locks. In [22] we proposed an approach to introduce
parallel exceptions into C++ code. In this paper we rely on an implementation
of this proposal in Dune. We extend the existing MPI abstractions in Dune-
common, so that now all ranks receive a particular exception in case of soft or
hard failures, allowing a synchronized reaction to mitigate failures locally.

Our implementation ensures that in case of a failure an exception is received
on all surviving ranks. The term ‘surviving’ here means, that the rank is capable
to continue the computation. We rely on two methods from the ULFM proposal:
MPIX_Comm_revoke, which revokes the communicator for any communication and
MPIX_Comm_agree to agree on the error state. Once a rank calls a communication
method on a revoked communication an error is raised which is then mapped to
an exception in our implementation. A working communicator can be recovered
by calling MPIX_Comm_shrink and its siblings, on which the computation can be
continued, after the error state has been resolved.

This functionality is typically not available in default MPI installations on
clusters yet. To test our recovery strategies we have created a stand-alone library,
which uses the MPI P-interface to equip any MPI implementation with the
MPIX_Comm_revoke, MPIX_Comm_agree and MPIX_Comm_shrink methods. This fall-
back implementation is freely available as a separate open source library.1 It
is loaded via the LD_PRELOAD mechanism to overload some MPI_* functions: At
the initialization of MPI (MPI_Init or MPI_Init_thread) MPI_COMM_WORLD is inter-
nally duplicated with the PMPI_Comm_dup method. This new communicator is
used to propagate MPIX_Comm_revoke messages. Then, a non-blocking receive is
created with PMPI_Irecv, waiting for these revoke messages. All waiting meth-
ods (MPI_Wait, MPI_Waitany, MPI_Waitall, MPI_Waitsome) are extended to test
also for revoke messages using PMPI_Waitany. Analogously, all testing methods
are extended. If a revoke message is received, the error code MPIX_ERR_REVOKED

is returned. All blocking communications are mapped to their non-blocking
counterparts followed by MPI_Wait to make sure that they terminate if the
communicator is revoked. The MPIX_Comm_agree method is implemented using
PMPI_allreduce with MPI_BAND (binary and operation) on the communicator that
was created in the initialization. The method MPIX_Comm_shrink extracts the
group of processes from the revoked communicator using PMPI_Comm_group, and

1 https://gitlab.dune-project.org/exadune/blackchannel-ulfm, BSD-3 licence.

https://gitlab.dune-project.org/exadune/blackchannel-ulfm

22 M. Altenbernd et al.

creates a new communicator using MPI_Comm_create. It is not possible to use
MPI_Comm_dup, as there are probably pending collective communication on the
revoked communicator, which hinder the collective process of duplication. This
implementation is fully compatible with MPI-3.

2.3 Data-Driven Compression with the SZ Library

Compression is natural to consider in numerical algorithms like iterative solvers,
as they are inexact by definition: It introduces a small but typically quantifiable
or controllable additional error, and the decompressed data is thus different to
the input data. We employ the SZ library [17,33,42] for lossy compression in
this paper. It was developed with the aim to provide a compression strategy
that can significantly reduce the data size while effectively controlling the data
distortion. In its current version it features an adaptive compression framework
which selects either an improved Lorenzo prediction method or a linear regression
method to dynamically compress data in different regions of the dataset. The
selection is realised based on the data features in each block to obtain the best
compression quality. Because of its prediction/regression-layer it is best suited
for structured, e.g., grid based, and ordered datasets. Furthermore the size of the
input data must be big enough to show the full potential of the algorithm: The
authors recommend to not apply it to datasets with sizes below ten kilobytes.

When applied to suitable data, experiments confirm that SZ yields better
compression ratios while having superior rate distortion compared to other lossy
compressors [33].

SZ compresses the data in two steps (see Fig. 1): The first step involves
an approximation where a first-phase prediction for every new data point is
calculated based on already processed data points (dependent on selected layer-
size) and a fitting scheme (prediction or regression). Secondly, a Huffmann-like
coding is applied to move the first-phase prediction closer to the real value using
a small sized integer p (usually 4 bit) providing a second-phase prediction. If the
second-phase prediction is not accurate enough, the original data is stored by
applying standard binary compression techniques. Subsequent data points then
use these more accurate data point in their predictions.

3 Preparing Iterative Linear Solvers for LFLR

Building upon these preliminaries, we introduce a LFLR concept into the Dune
framework, by means of a flexible interface. This especially refers to easy mod-
ification of backup storing techniques (location, compression, . . .), backup fre-
quency and data to backup and to restore. We recall that we use the iterative
solver modules as demonstrator, and do not consider checkpointing matrix or
preconditioner data, and neither grid data. See Subsect. 1.3 for possible remedies.

Towards Local-Failure Local-Recovery in PDE Frameworks 23

(a)

(b)
2m−12m−1 − 12m−1 − 2 2m−1 + 1 2m−1 + 2p = 1 2m

2×error bound
first-phase prediction f(i, j)

second-phase prediction

real value

Fig. 1. SZ compression workflow: data is traversed along one grid dimension and values
are predicted based on a layer of already processed points (a). Predicted values are
shifted by a multiple of a fixed length interval to be as close as possible to the real
value (b).

3.1 Backup Creation and Compression

An important aspect of our fault tolerance concept are backups with low mem-
ory overhead, which are created locally as far as possible. Thus, backup creation
should involve as little communication as possible between participating ranks.
Sending local backups to remote ranks introduces a substantial amount of com-
munication, which we alleviate by compression. This communication can addi-
tionally be done asynchronously, spread out over multiple solver iterations. We
focus on the synchronous case here, but design our interface with asynchronicity
in mind.

The interface allows the use of full backups, i.e., copying all desired data as a
particular specialization. To reduce the memory and bandwidth footprint of the
backups, another specialization of the interface exists for SZ, that can be easily
adapted for other compression libraries.

Lossy compression techniques offer better compression rates compared to
lossless ones, with the disadvantage of introducing a compression error: For the
data x and their decompressed counterpart x̃ it holds that x̃ = x + eps whereby
the size of eps can be bounded in some norm depending on the used technique.
For iterative solvers which apply convergence control based on the norm of the
residual ‖Ax−b‖2 with the operator A and the right hand side b, this introduced
error is expected to have only negligible influence on the convergence and the
solution if it is small enough. This negligible influence even varies during the
iterative procedure because the numerical error is decreasing over time and thus
the compression error can behave similarly.

Intercepting the iterative solve of the equation Ax = b after iteration i with
its current approximation x(i) and replacing it with its decompressed data x̃(i),
we obtain the following in the 2-norm of the residual:

24 M. Altenbernd et al.

‖Ax̃(i) − b‖2 = ‖A(x̃(i) − x(i) + x(i)) − b‖2
= ‖Ax(i) + A(x̃(i) − x(i)) − b‖2
≤ ‖Ax(i) − b‖2 + ‖A(x̃(i) − x(i))‖2 (1)

This indicates that the residual norm will maintain its order of accuracy if
‖A(x̃(i) − x(i))‖2 is smaller or of similar magnitude as the fault-free residual
norm ‖Ax(i) − b‖2. Obviously, as ‖Ax(i) − b‖2 decreases towards convergence,
‖A(x̃(i) − x(i))‖2 must also get smaller within the iterative procedure to achieve
convergence.

We also investigate different backup frequencies where a backup is only cre-
ated every n-th iteration and therefore can be outdated in case of local recovery
compared to fault-free ranks. This introduces an additional error component
into the analysis but enables further opportunities to decrease the computa-
tional and numerical overhead of our protection mechanism. This is benefitial in
an asynchronous setting, as it allows to distribute the backup creation as well
as communication, cf. Subsect. 3.2.

In our implementation, we use the point-wise relative error bound control
strategy (PW REL) provided by the SZ library (cf. Subsect. 2.3). For the current
iterate x(i) ∈ R

N and the decompressed counterpart x̃(i) ∈ R
N this error control

strategy guarantees that for a prescribed tolerance ε it holds that

|x̃(i)
j − x

(i)
j |

|x(i)
j |

≤ ε ∀j = 1, . . . , N. (2)

Summing up the component-wise error over all elements yields after straight-
forward calculations:

⇒
N∑

j=1

|x̃(i)
j − x

(i)
j |2 = ‖x̃(i) − x(i)‖22 ≤ ε2‖x(i)‖22

√
⇐⇒ ‖x̃(i) − x(i)‖2 ≤ ε‖x(i)‖2

This indicates that if Eq. (2) holds true we can guarantee that the global relative
error of the decompressed data in the 2-norm is smaller than the prescribed ε.

We can choose ε either fixed over the iterative solve, or couple it adaptively
to readily available quantities: Using the operator norm and the induced norm
property, we can further estimate the error in Eq. (1) as

‖A(x̃(i) − x(i))‖2 ≤ ‖A‖2‖x̃(i) − x(i)‖2
= sup

x∈RN

‖Ax‖2
‖x‖2 ‖x̃(i) − x(i)‖2

≤ sup
x∈RN

‖Ax‖2
‖x‖2 ε‖x(i)‖2.

Towards Local-Failure Local-Recovery in PDE Frameworks 25

If we omit the supremum over R
N and just consider the current x(i) we get

sup
x∈RN

‖Ax‖2
‖x‖2 ε‖x(i)‖2 ≈ ‖Ax(i)‖2

‖x(i)‖2 ε‖x(i)‖2 = ‖Ax(i)‖2ε,

while ‖Ax(i)‖2 can be bounded by readily available quantities:

‖Ax(i)‖2 = ‖Ax(i) − b + b‖2 ≤ ‖Ax(i) − b‖2 + ‖b‖2
This means if we couple ε to the current residual 2-norm ‖Ax(i)−b‖2 by choosing

ε =
‖Ax(i) − b‖2

‖b‖2 + ‖Ax(i) − b‖2 tolaSZ

both summands in Eq. (1) are likely to be of similar order of magnitude. Here
tolaSZ is an additional tuning parameter which can be used to create more or less
accurate backups. A lower value of tolaSZ will decrease ‖A(x̃(i)−x(i))‖2 but also
lower the compression error ‖x̃(i) − x(i)‖2 and thus lead to a lower compression
rate and probably an increased compression time. On the other side the influence
of the compression error overall will diminish.

This is correlated to a special characteristic of the SZ compression algorithm:
If data are not suitable for compression, the compression itself takes longer and
yields worse compression rates as when applied to smooth suitable data. In an
ideal scenario each value, besides the first ones which are necessary to compute
predictions with the chosen prediction scheme, can be represented by a small
sized integer. We investigate this particularity of SZ further below.

3.2 Remote Storing of Backups

Due to the high compression rates, we can store backups within the memory of
other ranks with an acceptable footprint size. Each rank communicates its local
backup to a small subset of neighboring ranks where the backups are kept in
memory. The size of this subset is correlated to the requested robustness of the
iterative solver. If multiple node losses are expected to happen simultaneously,
higher redundancy is necessary. Within our numerical examples we simplify this
and just store the backups in a ring topology without duplication because our
main research objective so far is to show the general usability of our fault tolerant
solver concept.

3.3 Recovery Strategies

Generally, our recovery strategy involves a solver restart combined with the
creation of a good initial guess based on non-lost data on fault-free ranks as well
as backups on ranks where data was lost. Operations like assembly before the
iterative solver have to be recovered in a different way, see Subsects. 1.2 and 1.3.

Based on this assumption we essentially provide three recovery strategies
utilising the available backup data: A local rollback, a global rollback and an
improved local recovery:

26 M. Altenbernd et al.

1. local rollback: The data on the failed and recovered rank are initialised by
their backup data.

2. global (synchronous) rollback: The data on all ranks are initialised by
backup data corresponding to the same global iteration. Therefore it may be
necessary to store multiple backups from each rank and also copies of the
rank specific data in case of high fault probability.

3. improved rollback: Local data on the recovered rank are initialised by
their backup data and post-processed by applying a local auxiliary Dirichlet
problem. Here the Dirichlet data are obtained from neighbouring nodes as
suggested in our previous publication [25] and Huber et al. [29].

To enable these recovery techniques we also have to store the iteration number
(synchronous rollback) as well as the current local residual norm (improved
recovery) for each local backup which are negligible scalars.

After the recovery, the new residual norm ‖r̃(i)‖ can be split into two parts:
Given the set of all participating ranks R as well as the set Rf containing all
faulty ranks, and indicating the local representation of a vector by a subscript,
we obtain the following bound:

‖r̃(i)‖2
2 =

∑

r∈R
‖r̃(i)r ‖2

2

≤
∑

r∈Rf

‖Ax̃(i−1)
r − br‖2

2 +
∑

r∈R\Rf

‖Ax(i)
r − br‖2

2

≤
∑

r∈Rf

(
‖Ax(i−1)

r − br‖2
2 + ‖A(x̃(i−1)

r − x(i−1)
r)‖2

2

)
+

∑

r∈R\Rf

‖Ax(i)
r − br‖2

2

=
∑

r∈Rf

(
‖r(i−1)

r ‖2
2 + ‖A(x̃(i−1)

r − x(i−1)
r)‖2

2

)
+

∑

r∈R\Rf

‖r(i)r ‖2
2 (3)

As a consequence, based on the size of R resp. Rf and the quality of recov-
ery, the introduced error may be not visible in the residual norm at all. But
it still can have an effect on the following iterative convergence procedure and
the obtained solution. Rf = R corresponds to a global rollback. Applying the
improved recovery reduces the target quantity

∑

r∈Rf

‖A(x̃(i−1)
r − x(i−1)

r)‖22

and by this the compression error in Eq. (3).
By design our fault tolerance interface allows to use the created backups

to switch to a different type of solver if the previously selected does not yield
adequate results.

3.4 Recovery of Iterative Solvers

We want to establish recovery approaches which store as little data as possible
while still providing better performance than simple restart mechanisms. The

Towards Local-Failure Local-Recovery in PDE Frameworks 27

simplest approach which can be applied to any iterative solver is a restart with
an initial guess which uses the progress which has been made until the local
rank loss. Ranks which did not die have their data present while for the crashed
nodes backups are remotely available. Utilizing these data it is possible to build
up a new global initial guess for any solver.

In the spirit of the ABFT concept, there is a lot of headspace for improvement:

CG with Rollback: The Conjugate Gradients method [27] is a widely used algo-
rithm to solve problems arising from linear partial differential equations with
sparse symmetric positive definite operators. A great advantage of the CG method
is that it makes use of a short recurrence. For CG a restart involves rebuilding its
associated Krylov space to which the iterate x(i) was orthogonalized before. When
restarting the solver with the recovered iterate x̃(i) all this information is lost. This
means, that in case of a rollback the solver builds a new Krylov space

Kk(A, r̃(i)) = span(r̃(i), ..., Ak−1r̃(i)), (4)

where r̃(i) = b − Ax̃(i) is the residual of the recovered solution. Note that this
is implicit due to the short recurrence. In case of our rollback recoveries, the
initial guess is either recovered locally from its backup (local rollback) or globally
(global rollback). In case of the global rollback the local parts of the global iterate
are from the same iteration while a local rollback combines data from different
previous iterations.

Full CG Recovery: In order to avoid this restart and keep information of previous
iterations we can make use of the short recurrence in our recovery strategy.
We not only checkpoint the current iterate but also the corresponding search
direction which is intended for the following iteration.

In case of a recovery, this search direction is then used to build up the implicit
Krylov space. All subsequent search directions are computed from the CG relation

p(k) = r(k) − βp(k−1) ∀k = i + 1, (5)

In case of an exact backup, i.e. p̃(i) = p(i), this space is orthogonal to the previous
Krylov space

Ki−1(A, r(0)) = span
(
p(0), . . . , p(i−1)

)
. (6)

Therefore, the iteration sequence is arithmetically the same as in the fault-free
case.

Storing the search direction next to the iterate proves to be particularly
advantageous in the case of multiple data losses, as seen in our numerical tests.
A requirement to make use of this advantage is a global synchronous rollback.
Otherwise the local iterates and search directions may belong to different iter-
ations and the solver behaves more or less similar to the scenario where no
information besides the iterate are kept.

Our numerical tests show, that even with a moderate compression accuracy,
the iteration count is only mildly affected.

28 M. Altenbernd et al.

GMRES Recovery: In contrast to the Conjugate Gradients method GMRES [37]
is never applied in its full version for relevant applications, due to prohibitive
memory requirements resulting from the lack of a short-term recurrence: For
each iteration one additional full basis vector has to be stored. Furthermore the
solution is computed by solving a minimization problem combining all these
basis vector at the end of the overall solve. Instead, the so-called GMRES(m)
version is used where the GMRES algorithm is terminated after m iterations,
followed by a computation of an approximate solution and a restart of the same
algorithm with it as initial guess.

Because a restart is already involved, we simply restart GMRES(m) in case
of a node loss, utilizing the backup data. This means that we lose, in the worst-
case, one m-block of the GMRES(m) algorithm because no more information is
shared within different blocks beside the iterate. We expect that an additional
local compression error only shows minimal effect for this recovery approach.

In theory it would also be possible to store the basis but the storage costs
are quite significant and hard to justify by the only moderate advantages.

4 Implementation for Iterative Solvers in DUNE

The iterative solvers in Dune are developed with dynamic polymorphism to
make them configurable during runtime and make it possible to formulate the
algorithms in an abstract framework of operator/preconditioner applications
and scalar product computations. Every IterativeSolver holds std::shared_ptr

to the abstract interfaces LinearOperator, Preconditioner and ScalarProduct.
These interfaces can be implemented for different use cases and parallelization
strategies.

All code is available from the project gitlab in the specific feature branches.2

4.1 Framework Extensions

We extend this framework by an abstract class BackupRestoreManager. With this
class the solver is able to register backups during the solution process. Fur-
thermore, the solver can check during the setup phase, whether a backup from
a previous run is available. Depending on the backup strategy this interface
can be implemented in different ways: For our tests, we have implemented the
RemoteBackupRestoreManager, which distributes the in-memory backups in remote
processes using a ring topology, i.e., backups of rank r are stored on rank (r+1)
mod s, where s is the number of ranks. Losing two or more consecutive ranks
yields at least one rank without available backup, and a possible remedy is
to store backups with more redundancy, or to fall back to synchronous global
checkpoints on disk, depending on the application.

2 https://gitlab.dune-project.org/exadune/dune-common/tree/feature/ulfm-mpigu
ard, https://gitlab.dune-project.org/exadune/dune-istl/tree/fault tolerance interf
ace.

https://gitlab.dune-project.org/exadune/dune-common/tree/feature/ulfm-mpiguard
https://gitlab.dune-project.org/exadune/dune-common/tree/feature/ulfm-mpiguard
https://gitlab.dune-project.org/exadune/dune-istl/tree/fault_tolerance_interface
https://gitlab.dune-project.org/exadune/dune-istl/tree/fault_tolerance_interface

Towards Local-Failure Local-Recovery in PDE Frameworks 29

To make it possible to switch between multiple compression techniques,
we introduce a further abstract interface Compressor. Classes that satisfy the
Compressor interface can be used to compress and restore multiple vectors and
auxiliary data in/from a backup. The compression accuracy can be specified by
passing a double. The signatures of the most important methods are:

1 void compress(const X& vector , double accuracy =1.);

2 void compress(unsigned char* data , size_t len , double eps =1.);

3 void restore(X& vector);

4 void restore(unsigned char* data , size_t len);

Furthermore, the class provides information whether the compression is lossy
and the compressed data is of constant size.

For our tests we implemented a CopyCompressor, that copies the data in mem-
ory, and a SZCompressor, that uses the SZ library.

4.2 Modifications for CG and GMRES(m)

To integrate the classes into the CG solver, we need to adapt the algo-
rithm at two places. In the initialization phase, we check whether a
backup is available and if so we restore it. During the restore we distin-
guish between a simple and full backup. The CGSolver stores internally a
std::shared_ptr<BackupRestoreManager<Vector>> called _brm; in the code snip-
pets below to access the backup. The following listing show a simplified code.

1 void CGSolver :: apply(Vector& x, Vector& b){

2 // prepare solver

3 int i=1;

4 ...

5 // try recovery

6 if(_brm ->isRestart ()){

7 bool onlyXrestored = _brm ->restore(i, def , {x, p});

8 _prec ->pre(x,b); // makes x consistent

9 i++;

10 _op ->applyscaleadd (-1,x,b); // overwrite b with residual

11 if(onlyXrestored){

12 p=0;

13 _prec ->apply(p,b); // apply preconditioner

14 }

15 }else{

16 // compute initial residual

17 ...

18 }

19 ...

20 // the actual loop

21 for (; i<= _maxit; i++) {

22 ...

23 }

24 }

To create the backup we introduce the following call after the new search
direction p is computed.

30 M. Altenbernd et al.

1 backup_future = _brm ->createBackup(i,def ,{x,p});

This creates a backup of the current iteration number i, the current defect
def and the vectors x and p. Note that p is only stored if the environment
is configured accordingly. The returned backup_future is an object, which can
encapsulate communication, as relevant for the asynchronous case.

5 Numerical Examples

In our experiments, we first examine the numerical behavior of the different
strategies introduced above. Then, we quantify the overhead introduced by the
compression and additional communication. Small-scale test problems with sin-
gle and multiple injected faults are run for viability analysis, and large-scale
fault-free tests for performance analysis. The former are designed as a worst
case, with a fault injection scheme that is unrealistic in future systems, but
which demonstrates the limitations in terms of applicability.

5.1 Small-Scale Viability Tests

The small-scale test problem is a Poisson problem with the known solution
u(x, y) = e−x2−y2

and corresponding right hand side b:

−Δu = b in Ω = (0, 1)2

u(x, y) = e−x2−y2
on ∂Ω

It is discretized with bilinear Lagrange Finite Elements on a 300 × 300 square
grid, partitioned with minimal overlap to four ranks. For solving we use the
CG resp. GMRES(20) method with an ILU(1) preconditioner until the initial
residual is reduced by a factor of 10−6. When faults are injected multiple times
the rank which loses the data is traversed in a cyclic fashion.

Conjugate Gradients: Solving this problem with the CG method needs 251 iter-
ations for reaching the prescribed reduction in the fault-free scenario. Table 1
shows the number of iterations which are needed when different recovery
approaches are combined, using either a Copy backup or SZ backups with dif-
ferent accuracies tolaSZ, both only for the iterate x(i). A fault, i.e., data loss, is
injected in iteration 60, and then in every 20th iteration: We thus consider the
unrealistically hard case of very frequent failures.

As expected we see that both local and global rollbacks lead to a significantly
increased iteration count because the solver is restarted every 20th iteration and
loses all information about its Krylov space history. Due to this information
loss, the amount of iterations needed for convergence is increased by a factor of
four (1022 iterations) if the solver is rolled back synchronously and no compres-
sion is involved. Introducing an additional compression error does not lead to a
noteworthy additional increase.

Towards Local-Failure Local-Recovery in PDE Frameworks 31

Table 1. Iteration count for different recovery strategies and compression accuracies,
conjugate gradients. n/c denotes non-converging schemes.

Strategy Copy tolaSZ

1 10−1 10−2 10−3 10−4

Local rollback 890 951 931 888 890 890

Global rollback 1022 1029 1024 1022 1022 1022

Full recovery 251 n/c n/c 283 253 253

Compared to the global rollback, a local rollback results in a smaller increase
of iterations numbers as it keeps the progress which has been made on the
fault-free ranks. In combination with a compression error these numbers can
increase but selecting a tolaSZ of 10−2 and below reduces this compression error
to have a diminishing effect. Choosing such a tolerance still gives compression
rates between 20–30 in our experiments. Since SZ compression is designed for
high resolution data sets and because in our case the local test problems have
only 22500 degrees of freedom it is expected to give far better compression rates
when used beyond toy problems.

Because of the high fault rate and the subsequent information loss, applying
the auxiliary problem, i.e., the improved recovery in CG, is not improving the
results significantly, and is therefore omitted in the table. It can only be used
to increase the compression rate further by reducing tolaSZ. In such a case the
improved recovery gives similar results to Copy backups but with more recovery
overhead.

In particular, the ‘local’ scheme shows that compressing the iterate x(i) does
not deteriorate convergence too much, compared with copy compression. The
results obtained for the global scheme(s) show that not changing the backup
locally but rerolling is worse, because less information on the iterate is kept,
irrespective of compression accuracy.

The scheme specifically tailored for CG (labeled ‘full’) indicates that a too
strong compression (values of tolaSZ ≥ 10−2) of not only the iterate x(i), but
also the search direction p(i) leads to a situation where restarting the implicit
building of the Krylov space means that the two no longer seem to suffice to build
the global approximation space, as the compression is oblivious of the different
roles of the iterate and the search direction in CG.

Overall we observe that for the CG method storing the search direction
for recovery can improve the solver robustness significantly when multiple data
losses are expected because it is possible to keep the information from the pre-
vious iterations. Using a moderate accuracy (tolaSZ) even makes compression
viable. On the other hand storing the search direction introduces additional
bandwidth- and memory-overhead, which is however alleviated by compression.

GMRES(m): As explained in Sect. 3.4, GMRES(m) has inherent restarts and
does not have a true iterate update within each block of m iterations. We consider

32 M. Altenbernd et al.

Table 2. Iteration count for different recovery strategies and compression accuracies,
GMRES(20).

Strategy Copy tolaSZ

1 10−1 10−2 10−3 10−4

Local rollback 555 561 557 557 556 555

Global rollback 555 583 577 553 557 555

two recovery approaches for this algorithm: Local and global rollback. Each
of them restarts the GMRES(m) solver with the last available data and loses
all progress made within one m-block. This simulates a fault injection at any
position in the faulty block.

Table 2 shows the iteration numbers for a test scenario in which the fault-
free run takes 555 iteration until convergence. This means that the algorithm
terminates after the 28th m-block. Here faults are injected every 4th block, i.e.
after 60 successful iterations, beginning at the end of the fifth m-block.

Because GMRES never updates the iterate within one m-block, a fault within
any iteration in this block yields the same result after recovery: The solver is
restarted with the approximation computed by the last successful m-block which
is still locally available or can, for the faulty ranks, be received from a remote rank
involving a compression error depending on the compression accuracy. Thus, the
only difference between a local rollback and a global rollback is that the com-
pression error is introduced globally in case of the second approach. Furthermore
it should be obvious that a global rollback would never be applied in practice
when using compression because the fault-free ranks still have access to their
uncompressed data. It only demonstrates the worst case where a lot of ranks
lose their data.

Taking a closer look at the results we see that the introduced local compres-
sion error does not have a big effect on the necessary iteration number to reach
the convergence criterion. Even selecting tolaSZ = 100 provides suitable backup
data for recovery while yielding compression rates of 40 and above. In addition it
illustrates the robustness of GMRES(m) as introducing even global compression
errors after every 4th m-block do not deteriorate convergence further.

For GMRES(m) we can conclude that due to its properties, i.e., higher
robustness and inherent restarts, it seems to be more suitable for our local
recovery approaches than the Conjugate Gradients method. Although we can
not store any information from an m-block, the number of successful iterations
needed for convergence does not change in comparison to the fault-free scenario.

Conjugate Gradients with Occasional Faults and Older Backups: The previous
scenario has by far higher fault rates than expected for future systems. As seen
in Table 3 the local recovery approach is more competitive if data loss occurs
only occasionally, even when the backup frequency is low and outdated backups
are used. We introduce a single data loss at iterations i ∈ {20, 60, 120, 200}, and
the recovery is initiated with a backup from the last iterate (left) resp. a ten

Towards Local-Failure Local-Recovery in PDE Frameworks 33

iterations old backup (right). Note that even full recovery with a Copy backup
of the age ten increases the iteration count by nine since progress of iterations
between backup and data-loss is lost. This means that, when a ten iteration old
Copy backup is used and data is lost after iteration i = 60, the solver effectively
restarts after iteration 50.

Table 3. Iteration numbers for convergence of CG with single data-losses and recovery
based on a one (left) resp. ten (right) iterations old backup.

Iteration

20 60 120 200

F
u
ll

re
co

v
er

y

Copy 251 251 251 251

t
o
l
a
S
Z 1 253 281 655 1556

10−1 253 281 341 272

10−2 253 281 253 253

G
lo

b
a
l

ro
ll
b
a
ck

Copy 251 281 299 263

t
o
l
a
S
Z 1 251 281 299 265

10−1 251 281 299 264

10−2 251 281 299 263

L
o
ca

l
ro

ll
b
a
ck

Copy 252 282 296 264

t
o
l
a
S
Z 1 252 282 298 264

10−1 252 282 298 264

10−2 252 282 296 264

Im
p
ro

v
ed

Copy 249 278 298 263

t
o
l
a
S
Z 1 249 278 298 263

10−1 249 278 298 263

10−2 249 278 298 263

Iteration

20 60 120 200

F
u
ll

re
co

v
er

y

Copy 260 260 260 260

t
o
l
a
S
Z 1 262 291 381 1592

10−1 260 291 369 284

10−2 262 263 265 262
G

lo
b
a
l

ro
ll
b
a
ck

Copy 260 270 306 265
t
o
l
a
S
Z 1 260 270 307 267

10−1 260 270 307 266

10−2 260 270 306 265

L
o
ca

l
ro

ll
b
a
ck

Copy 261 288 287 268

t
o
l
a
S
Z 1 261 288 287 269

10−1 261 288 287 268

10−2 261 287 287 268

Im
p
ro

v
ed

Copy 258 267 289 265

t
o
l
a
S
Z 1 257 267 289 265

10−1 257 267 289 265

10−2 257 267 289 265

In both scenarios, the full recovery without compression (Copy) offers the
best results with respect to iteration numbers because a local recovery still always
loses the Krylov space information. Setting the compression target below 10−2

does not change the results, so we omit these tests in the table. However in
contrast to the previous fault scenario all rollback recoveries increase the itera-
tion number only marginally even when less accurate compression is involved.
Surprisingly sometimes an older backup can be superior to a recent one (see
data loss at iteration 60 with global rollback or data-loss at iteration 120 with
local rollback), and we assume numerical noise and granularity effects. Applying
an improved recovery with ten local CG iterations without a preconditioner for
the auxiliary problem reduces the amount of necessary global iterations further,
especially when an older backup is used.

34 M. Altenbernd et al.

5.2 Overhead Quantification at Scale

To quantify the overhead of the backup strategy, we run test simulations on
the PALMAII cluster of the University of Münster. We do not inject artificial
errors, i.e., no restore is performed. The test is performed in weak scaling, with
approx. 106 DoF per rank. Backups of the current solution approximation x(i)

are created at every CG iteration. The overhead, comprising both the copy or
compression to create the backup as well as sending it to the next rank, is shown
in Fig. 2. The backup is sent in the same cyclic fashion to a successor as before.
On a single rank we do not have any communication overhead but only the
necessity to create a local copy of the data. We observe that these copy operation
yields an overhead of less than 2% when no compression is applied. Utilizing
compression increases the overhead to 10–12% because of the additional time
needed to compress the data. When more and more ranks, i.e. communication,
are involved the overhead of the compression goes down significantly and it
nearly reaches the ‘no compression’ case. Considering scenarios with an overall
higher bandwidth pressure and/or increased backup redundancy resulting in
more communication, we expect the utilization of compression techniques to
become superior. In addition, the compression overhead of SZ reduces further
for smoother and/or higher resolved data. In our experiments, the interconnect
of the cluster is 100 Gbit/s Intel Omni-Path, which is not the limiting resource. In
addition, when backups are communicated to further ranks for higher robustness
the compression overhead will diminish because the communication overhead for
the compressed backups will increase to a lesser extent than for the uncompressed
backup.

100 101 102

Processes

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

Overhead for Backup of the intermediate solution

no compression
tolaSZ = 100

tolaSZ = 10−2

tolaSZ = 10−4

Fig. 2. Overhead of backup strategies. Backup of intermediate solution in every iter-
ation, with different compression methods. The vertical dotted line marks the process
number of one node.

Towards Local-Failure Local-Recovery in PDE Frameworks 35

6 Conclusions

We have designed an abstract interface that enables the integration of LFLR
techniques into linear solvers. The implementation in Dune is flexible, and has
been specialized so far for CG and GMRES(m). In the spirit of ABFT, there
exists both basic functionality (as sufficient for GMRES(m)), and we exploit
solver-specific properties to improve the schemes.

We have evaluated our approach and demonstrated sufficiently small over-
head. In terms of numerical performance, local recovery seems to be promising
when faults do not appear too frequently, which is a realistic assumption for
future machines. For higher fault rates GMRES is more robust to errors and
local recovery than CG. CG recovery can be improved by storing its search
direction and thus keeping the Krylov space information.

First observations show that with single backup propagation (i.e., neglecting
redundancy of the backups), SZ compression introduces a marginal overhead
compared to a full checkpoint propagation, but essentially enables in-memory
backups on neighbouring nodes.

The next step is to extend our LFLR techniques to other modules in Dune.

Acknowledgements. Supported by the German Research Foundation in the Prior-
ity Programme 1648 ‘Software for Exascale Computing’, grants GO 1758/2-2 and EN
1042/2-2; and under Germany’s Excellence Strategy EXC 2044–390685587, Mathemat-
ics Münster: Dynamics–Geometry–Structure.

References

1. Agullo, E., Giraud, L., Guermouche, A., Roman, J., Zounon, M.: Numerical recov-
ery strategies for parallel resilient Krylov linear solvers. Numer. Linear Algebra
Appl. 23(5), 888–905 (2016)

2. Agullo, E., Giraud, L., Salas, P., Zounon, M.: Interpolation-restart strategies for
resilient eigensolvers. SIAM J. Sci. Comput. 38(5), C560–C583 (2016)

3. Ali, M.M., Southern, J., Strazdins, P., Harding, B.: Application level fault recovery:
using Fault-Tolerant Open MPI in a PDE solver. In: 2014 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1169–
1178. IEEE (2014)

4. Altenbernd, M., Göddeke, D.: Soft fault detection and correction for multigrid. Int.
J. High Perform. Comput. Appl. 32(6), 897–912 (2018). https://doi.org/10.1177/
1094342016684006

5. Ashraf, R.A., Hukerikar, S., Engelmann, C.: Shrink or substitute: handling pro-
cess failures in HPC systems using in-situ recovery. In: Proceedings of the 26th
Euromicro International Conference on Parallel, Distributed and Network-based
Processing (PDP 2018), pp. 178–185. IEEE (2018)

6. Bastian, P., et al.: A generic grid interface for parallel and adaptive scientific com-
puting. Part II: implementation and tests in DUNE. Computing 82(2–3), 121–138
(2008). https://doi.org/10.1007/s00607-008-0004-9

7. Bastian, P., et al.: A generic grid interface for parallel and adaptive scientific com-
puting. Part I: abstract framework. Computing 82(2–3), 103–119 (2008). https://
doi.org/10.1007/s00607-008-0003-x

https://doi.org/10.1177/1094342016684006
https://doi.org/10.1177/1094342016684006
https://doi.org/10.1007/s00607-008-0004-9
https://doi.org/10.1007/s00607-008-0003-x
https://doi.org/10.1007/s00607-008-0003-x

36 M. Altenbernd et al.

8. Bastian, P., et al.: The DUNE framework: basic concepts and recent developments.
arXiv preprint arXiv:1909.13672 (2019)

9. Bautista-Gomez, L., Zyulkyarov, F., Unsal, O., McIntosh-Smith, S.: Unprotected
computing: a large-scale study of dram raw error rate on a supercomputer. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, p. 55. IEEE Press (2016)

10. Bland, W., Lu, H., Seo, S., Balaji, P.: Lessons learned implementing user-level fail-
ure mitigation in MPICH. In: Proceedings of the 2015 15th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, pp. 1123–1126 (2015).
https://doi.org/10.1109/CCGrid.2015.51

11. Bland, W., Bouteiller, A., Herault, T., Hursey, J., Bosilca, G., Dongarra, J.J.: An
evaluation of user-level failure mitigation support in MPI. In: Träff, J.L., Benkner,
S., Dongarra, J.J. (eds.) EuroMPI 2012. LNCS, vol. 7490, pp. 193–203. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33518-1 24

12. Blatt, M., Bastian, P.: The iterative solver template library. In: K̊agström, B.,
Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, pp.
666–675. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75755-
9 82

13. Cantwell, C.D., Nielsen, A.S.: A minimally intrusive low-memory approach to
resilience for existing transient solvers. J. Sci. Comput. 78(1), 565–581 (2019)

14. Cappello, F.: Fault tolerance in petascale/exascale systems: current knowledge,
challenges and research opportunities. Int. J. High Perform. Comput. Appl. 23(3),
212–226 (2009)

15. Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale
resilience: 2014 update. Supercomputing Front. Innovations 1(1), 5–28 (2014)

16. Chen, C., Du, Y., Zuo, K., Fang, J., Yang, C.: Toward fault-tolerant hybrid pro-
gramming over large-scale heterogeneous clusters via checkpointing/restart opti-
mization. J. Supercomputing 75(8), 4226–4247 (2017). https://doi.org/10.1007/
s11227-017-2116-5

17. Di, S., Cappello, F.: Fast error-bounded lossy HPC data compression with SZ. In:
Proceedings of the 2016 IEEE International Parallel and Distributed Processing
Symposium, pp. 730–739. IEEE (2016)

18. Di Martino, C., Kramer, W., Kalbarczyk, Z., Iyer, R.: Measuring and understand-
ing extreme-scale application resilience: a field study of 5,000,000 HPC application
runs. In: Proceedings of the 2015 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pp. 25–36. IEEE (2015)

19. Dongarra, J., Herault, T., Robert, Y.: Fault tolerance techniques for high-
performance computing. In: Herault, T., Robert, Y. (eds.) Fault-Tolerance Tech-
niques for High-Performance Computing. CCN, pp. 3–85. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-20943-2 1

20. Dongarra, J., et al.: The international exascale software project roadmap. Int.
J. High Perform. Comput. Appl. 25(1), 3–60 (2011). https://doi.org/10.1177/
1094342010391989

21. Dongarra, J., et al.: Applied mathematics research for exascale computing. Tech-
nical report, U.S. Department of Energy, Office of Science, Advanced Scientific
Computing Research Program (2014). http://science.energy.gov/∼/media/ascr/
pdf/research/am/docs/EMWGreport.pdf

22. Engwer, C., Altenbernd, M., Dreier, N.A., Göddeke, D.: A high-level C++ app-
roach to manage local errors, asynchrony and faults in an MPI application. In: Pro-
ceedings of the 26th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP 2018), pp. 714–721. IEEE (2018)

http://arxiv.org/abs/1909.13672
https://doi.org/10.1109/CCGrid.2015.51
https://doi.org/10.1007/978-3-642-33518-1_24
https://doi.org/10.1007/978-3-540-75755-9_82
https://doi.org/10.1007/978-3-540-75755-9_82
https://doi.org/10.1007/s11227-017-2116-5
https://doi.org/10.1007/s11227-017-2116-5
https://doi.org/10.1007/978-3-319-20943-2_1
https://doi.org/10.1177/1094342010391989
https://doi.org/10.1177/1094342010391989
http://science.energy.gov/~/media/ascr/pdf/research/am/docs/EMWGreport.pdf
http://science.energy.gov/~/media/ascr/pdf/research/am/docs/EMWGreport.pdf

Towards Local-Failure Local-Recovery in PDE Frameworks 37

23. Gamell, M., et al.: Evaluating online global recovery with fenix using application-
aware in-memory checkpointing techniques. In: Proceedings of the 45th Interna-
tional Conference on Parallel Processing Workshops (ICPPW 2016), pp. 346–355.
IEEE (2016)

24. Gamell, M., Katz, D., Kolla, H., Chen, J., Klasky, S., Parashar, M.: Exploring
automatic, online failure recovery for scientific applications at extreme scales. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2014, pp. 895–906. IEEE (2014)

25. Göddeke, D., Altenbernd, M., Ribbrock, D.: Fault-tolerant finite-element multigrid
algorithms with hierarchically compressed asynchronous checkpointing. Parallel
Comput. 49, 117–135 (2015)

26. Gupta, S., Patel, T., Engelmann, C., Tiwari, D.: Failures in large scale systems:
long-term measurement, analysis, and implications. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, p. 44. ACM (2017)

27. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear sys-
tems. J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952)

28. Huang, K.H., Abraham, J.: Algorithm-based fault tolerance for matrix operations.
IEEE Trans. Comput. 100(6), 518–528 (1984)

29. Huber, M., Gmeiner, B., Rüde, U., Wohlmuth, B.: Resilience for massively parallel
multigrid solvers. SIAM J. Sci. Comput. 38(5), S217–S239 (2016)

30. Keyes, D.E.: Exaflop/s: the why and the how. Comptes Rendus Mécanique 339(2–
3), 70–77 (2011). https://doi.org/10.1016/j.crme.2010.11.002

31. Kohl, N., et al.: A scalable and extensible checkpointing scheme for massively
parallel simulations. Int. J. High Perform. Comput. Appl. 33, 571–589 (2017).
https://doi.org/10.1177/1094342018767736

32. Langou, J., Chen, Z., Bosilca, G., Dongarra, J.: Recovery patterns for iterative
methods in a parallel unstable environment. SIAM J. Sci. Comput. 30, 102–116
(2007)

33. Liang, X., et al.: Error-controlled lossy compression optimized for high compression
ratios of scientific datasets. In: Proceedings of the IEEE International Conference
on Big Data (Big Data 2018), pp. 438–447 (2018)

34. Losada, N., Bosilca, G., Bouteiller, A., González, P., Mart́ın, M.: Local rollback
for resilient MPI applications with application-level checkpointing and message
logging. Future Gener. Comput. Syst. 91, 450–464 (2019)

35. Meuer, H., Strohmaier, E., Dongarra, J.J., Simon, H.D.: Top500 supercomputer
sites (2019). http://www.top500.org/

36. Nielsen, A.S.: Scaling and resilience in numerical algorithms for exascale com-
puting. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2018). https://
infoscience.epfl.ch/record/258087/files/EPFL TH8926.pdf

37. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869
(1986). https://doi.org/10.1137/0907058

38. Schroeder, B., Gibson, G.: A large-scale study of failures in high-performance com-
puting systems. IEEE Trans. Dependable Secure Comput. 7(4), 337–350 (2009)

39. Sloan, J., Kumar, R., Bronevetsky, G.: An algorithmic approach to error local-
ization and partial recomputation for low-overhead fault tolerance. In: Depend-
able Systems and Networks (DSN 2013), pp. 1–12 (2013). https://doi.org/10.1109/
DSN.2013.6575309

40. Snir, M., et al.: Addressing failures in exascale computing. Int. J. High Perform.
Comput. Appl. 28(2), 129–173 (2014)

https://doi.org/10.1016/j.crme.2010.11.002
https://doi.org/10.1177/1094342018767736
http://www.top500.org/
https://infoscience.epfl.ch/record/258087/files/EPFL_TH8926.pdf
https://infoscience.epfl.ch/record/258087/files/EPFL_TH8926.pdf
https://doi.org/10.1137/0907058
https://doi.org/10.1109/DSN.2013.6575309
https://doi.org/10.1109/DSN.2013.6575309

38 M. Altenbernd et al.

41. Snir, M., et al.: Addressing failures in exascale computing. Int. J. High Perform.
Comput. Appl. 28(2), 129–173 (2014). https://doi.org/10.1177/1094342014522573

42. Tao, D., Di, S., Chen, Z., Cappello, F.: Significantly improving lossy compression
for scientific data sets based on multidimensional prediction and error-controlled
quantization. In: Proceedings of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2017), pp. 1129–1139. IEEE (2017)

43. Teranishi, K., Heroux, M.A.: Toward local failure local recovery resilience model
using MPI-ULFM. In: Proceedings of the 21st European MPI Users’ Group Meet-
ing, p. 51. ACM (2014)

https://doi.org/10.1177/1094342014522573

Complexity Analysis of a Fast Directional
Matrix-Vector Multiplication

Günther Of(B) and Raphael Watschinger

Institute of Applied Mathematics, Graz University of Technology,
Steyrergasse 30, 8010 Graz, Austria

of@tugraz.at, watschinger@math.tugraz.at

Abstract. We consider a fast, data-sparse directional method to real-
ize matrix-vector products related to point evaluations of the Helmholtz
kernel. The method is based on a hierarchical partitioning of the point
sets and the matrix. The considered directional multi-level approxima-
tion of the Helmholtz kernel can be applied even on high-frequency levels
efficiently. We provide a detailed analysis of the almost linear asymptotic
complexity of the presented method. Our numerical experiments are in
good agreement with the provided theory.

Keywords: Helmholtz · Fast multipole method · Hierarchical matrix

1 Introduction

In this paper we consider an efficient method for the computation of the matrix-
vector product for a fully populated matrix A ∈ C

NT ×NS with entries

A[j, k] = f(xj , yk), (1)

f(x, y) =
exp(iκ|x − y|)

4π|x − y|

where f is the Helmholtz kernel, κ > 0 the wave number and PT = {xj}NT
j=1 and

PS = {yk}NS

k=1 are two sets of points in R
3. Similar matrices arise in the solution

of boundary value problems for the Helmholtz equation by boundary element
methods. Using standard matrix-vector multiplication is prohibitive for large NT

and NS due to the asymptotic runtime and storage complexity O(NT NS).
Due to the oscillating behavior of the Helmholtz kernel, existing standard fast

methods for the reduction of the complexity do not perform well for relatively
large wave numbers κ. Therefore, a variety of methods have been developed.
There are several versions of the fast multipole method (FMM) based on different
expansions of the Helmholtz kernel f . A first version suitable for high frequency
regimes is given in [16] and an overview of the early developments can be found
in [14]. Of further interest are the methods in [8,12], which rely on plane wave
expansions, and the wideband method in [7] which switches between different
expansions in low and high frequency regimes.
c© Springer Nature Switzerland AG 2021
T. Kozubek et al. (Eds.): HPCSE 2019, LNCS 12456, pp. 39–59, 2021.
https://doi.org/10.1007/978-3-030-67077-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67077-1_3&domain=pdf
http://orcid.org/0000-0003-2258-7001
http://orcid.org/0000-0002-7750-8561
https://doi.org/10.1007/978-3-030-67077-1_3

40 G. Of and R. Watschinger

Directional methods allow to overcome the deficiencies of standard schemes
in high frequency regimes, too. The basic idea of these methods is that the
Helmholtz kernel f can locally be smoothed by a plane wave. In the context of
fast methods this idea was first considered in [6] and later in [9]. In [13] the idea is
picked up and combined with an approximation of the kernel via interpolation.
[3,5] follow a similar path in the context of H2-matrices providing a rigorous
analysis. A slightly different method is proposed in [1], where the directional
smoothing is combined with a nested cross approximation of the kernel.

In this paper we present a directional method in the spirit of [13] based
on a uniform clustering of the point sets. We choose this approach due to the
applicability of the involved interpolation to other kernels and a smooth transi-
tion between low and high frequency regimes in contrast to the wideband FMM
in [7]. We give a description of the method in Sect. 2 and an asymptotic com-
plexity analysis in Sect. 3. While [13] provides already a brief analysis we present
a detailed one not unlike the one in [3], but focusing on points distributed in
3D volumes instead of points on 2D manifolds and allowing two distinct sets of
points. In addition, we exploit the uniformity for a significant storage reduction
compared to non-uniform approaches. This reduction and the claimed almost
linear asymptotic behavior can be observed in our numerical tests in Sect. 4.

2 Derivation of the Fast Directional Method

In this section we present a method for fast matrix-vector multiplications for the
matrix A in (1) based on a hierarchical partitioning of the sets of points into
boxes and a directional multi-level approximation of the Helmholtz kernel f on
suitable pairs of such boxes.

2.1 Box Cluster Trees

The desired matrix partition can efficiently be constructed from a hierarchi-
cal tree clustering of the point sets into axis-parallel boxes. In what follows
we define uniform box cluster trees which are constructed by a uniform sub-
division of an initial box, see, e.g., [10]. In particular, we construct a uniform
box cluster tree TT for a given set of points PT = {xj}NT

j=1 in an axis-parallel
box T = (a1, b1] × . . . × (a3, b3] ⊂ R

3 by Algorithm 1. As additional parameter
we have the maximal number of points per leaf nmax. We use standard notions
of levels and leaves in trees known from graph theory. In addition we define

– the index set t̂ := {j ∈ {1, . . . , NT } : xj ∈ t} for a box t ∈ TT ,
– the level sets of the tree by T (�)

T := {t ∈ TT : level(t) = �},
– the depth p(TT) := max{level(t) : t ∈ TT } of the cluster tree TT ,
– the set LT of all leaves of TT .

In general, Algorithm1 creates an adaptive, i.e. unbalanced cluster tree depend-
ing on the point distribution. Other construction principles for box cluster trees

Complexity Analysis of a Fast Directional Matrix-Vector Multiplication 41

Algorithm 1. Construction of a uniform box cluster tree TT

1: input: Points PT = {xj}NT
j=1 inside a box T = (a1, b1] × . . . × (a3, b3], maximal

number nmax of points per leaf.
2: Construct an empty tree TT and add T as its root.
3: Call RefineCluster(T , TT)

4: function RefineCluster(T = (a1, b1] × . . . × (a3, b3], T)
5: if #{xj : xj ∈ T} > nmax then
6: Compute center c1 = (a1 + b1)/2, c2 = (a2 + b2)/2, c3 = (a3 + b3)/2.
7: Uniformly subdivide T into 8 boxes T1 = (a1, c1] × . . . × (a3, c3], . . . ,
8: T8 = (c1, b1] × . . . × (c3, b3].
9: for k = 1, . . . , 8 do

10: if #{xj : xj ∈ Tk} ≥ 1 then
11: Add Tk to T as child of T .
12: Call RefineCluster(Tk, T).

such as bisection [15, Sect. 3.1.1] tailor the tree to the point sets yielding more
balanced trees. However, the boxes at a given level � of such a tree can vary
strongly in shape, while the ones of a uniform box cluster tree are identical
up to translation. We will exploit this uniformity to avoid recomputations and
to reduce the storage costs of the presented method.

2.2 A Directional Kernel Approximation

In this section we describe a method to approximate the Helmholtz kernel f on
a suitable pair of boxes t and s by a separable expansion, which will allow for
low rank approximations of suitable subblocks of the matrix A in (1). Due to the
oscillatory part exp(iκ|x−y|) of f , standard approaches like tensor interpolation
of the kernel are not effective for relatively large κ as pointed out in [1,13].
Therefore, we consider a directional approach which first appeared in [6] and [9]
and was later used in [5] and [13] among others. The basic idea is that the
oscillatory part exp(iκ|x − y|) of f can be smoothened by a plane wave term
exp(−iκ〈x−y, c〉) in a cone around a direction c ∈ R

3 with |c| = 1. We can rewrite
the Helmholtz kernel f by expanding the numerator and the denominator by a
plane wave term yielding

f(x, y) = fc(x, y) exp(iκ〈x, c〉) exp(−iκ〈y, c〉), (2)

fc(x, y) := f(x, y) exp(−iκ〈x − y, c〉) =
exp(iκ(|x − y| − 〈x − y, c〉))

4π|x − y| . (3)

The modified kernel function fc is somewhat smoother than f on suitable boxes t
and s. In fact, if two points x ∈ t and y ∈ s satisfy (x − y)/|x − y| ≈ c, then
fc(x, y) ≈ (4π|x − y|)−1, i.e. the oscillations of f are locally damped in fc.
Therefore tensor interpolation can be applied to approximate fc instead of f on
suitable axis-parallel boxes t and s and we get

42 G. Of and R. Watschinger

fc(x, y) ≈
∑

ν∈M

∑

μ∈M

fc(ξt,ν , ξs,μ)L(m)
t,ν (x)L(m)

s,μ (y), (4)

where ν and μ are multi-indices in the set M = {1, . . . , m + 1}3, ξt,ν are ten-
sor products of 1D Chebyshev nodes of order m + 1 transformed to the box
t = (a1, b1] × . . . × (a3, b3], i.e. ξt,ν = (ξ[a1,b1],ν1 , ξ[a2,b2],ν2 , ξ[a3,b3],ν3) with

ξ[aj ,bj],νj
=

aj + bj

2
+

bj − aj

2
cos

(
2νj − 1

2π(m + 1)

)
, νj ∈ {1, . . . , m + 1},

and L
(m)
t,ν are the corresponding Lagrange polynomials, which are tensor prod-

ucts of the 1D Lagrange polynomials corresponding to the interpolation nodes
{ξ[aj ,bj],νj

}m+1
νj=1.

Inserting approximation (4) into (2) and grouping the terms depending on x
and y, respectively, yields the desired separable approximation

f(x, y) ≈
∑

ν∈M

∑

μ∈M

fc(ξt,ν , ξs,μ)L(m)
t,c,ν(x)L(m)

s,c,μ(y), (5)

L
(m)
t,c,ν(x) := L

(m)
t,ν (x) exp(iκ〈x, c〉). (6)

The directional approximation (5) of f can be used to approximate the sub-
matrix A

∣∣
t̂×ŝ

of the matrix A in (1) restricted to the entries of the index sets t̂
and ŝ for two suitable axis-parallel boxes t and s, i.e.,

A
∣∣
t̂×ŝ

[j, k] = f(xj , yk) ≈
∑

ν∈M

∑

μ∈M

fc(ξt,ν , ξs,μ)L(m)
t,c,ν(xj)L

(m)
s,c,μ(yk). (7)

In matrix notation this reads

A
∣∣
t̂×ŝ

≈ Lt,cAc,t×sL
∗
s,c, (8)

where we define the coupling matrix Ac,t×s ∈ C
(m+1)3×(m+1)3 by

Ac,t×s[j, k] := fc(ξt,αj
, ξs,βk

), j, k ∈ {1, . . . , (m + 1)3}, (9)

for suitably ordered multi-indices αj , βk ∈ M = {1, . . . , m + 1}3, the directional
interpolation matrix Lt,c ∈ C

t̂×(m+1)3 by

Lt,c[j, k] := L
(m)
t,c,αk

(xj), j ∈ t̂, k ∈ {1, . . . , (m + 1)3}, (10)

and Ls,c analogously. In particular, instead of the original #t̂ ·#ŝ matrix entries
only (m + 1)3(#t̂ + #ŝ + (m + 1)3) entries have to be computed for the approx-
imation in (8), which is significantly less if (m + 1)3 � #t̂,#ŝ.

In the following admissibility conditions we will specify for which boxes t
and s and which direction c the approximation in (5) is applicable. Similar crite-
ria have been considered in [1,5,13]. In particular, the criteria lead to exponential
convergence of the approximation with respect to the interpolation degree [5,17].

Complexity Analysis of a Fast Directional Matrix-Vector Multiplication 43

Definition 1 Directional admissibility [5, cf. Sect. 3.3]). Let t, s ⊂ R
3 be

two axis-parallel boxes and let c ∈ R
3 be a direction with |c| = 1 or c = 0. Denote

the midpoints of t and s by mt and ms, respectively. Let two constants η1 > 0
and η2 > 0 be chosen suitably. Define the diameter diam (t) and the distance
dist (t, s) by

diam (t) := sup
x1,x2∈t

|x1 − x2|, dist (t, s) := inf
x∈t,y∈s

|x − y|.

We say that t and s are directionally admissible with respect to c if the separation
criterion

max{diam (t),diam (s)} ≤ η2 dist (t, s) , (A1)

and the two cone admissibility criteria

κ

∣∣∣∣
mt − ms

|mt − ms|
− c

∣∣∣∣ ≤ η1

max{diam (t),diam (s)} , (A2)

κ max{diam (t),diam (s)}2 ≤ η2 dist (t, s) (A3)

are satisfied.

Criterion (A1) is a standard separation criterion, see, e.g., [10] and [11,
Sect. 4.2.3]. It ensures that the boxes t and s are well-separated allowing for
an approximation of general non-oscillating kernels.

Criterion (A3) is similar to (A1), since it also controls the distance of two
boxes t and s. Note that (A1) follows immediately from (A3) in case that
κ max{diam (t),diam (s)} > 1 and vice versa in the opposite case. As stated
in [3, Sect. 3], (A3) can also be understood as a bound on the angle between all
vectors x − y for x ∈ t and y ∈ s that shrinks if κ or max{diam (t),diam (s)}
increases. Hence, (A3) guarantees that the angle between x−y and a direction c
is small if the angle between the difference of the midpoints mt − ms and c is
already small, which is enforced by (A2).

Indeed, criterion (A2) is used to assign a suitable direction c to two non-
overlapping boxes t and s. While the choice c = (mt − ms)/|mt − ms| would
always guarantee (A2), we want to choose c from a small, finite set of directions.
This allows to use the same direction c for a fixed box t and several boxes sj

and, therefore, to use the same interpolation matrix Lt,c for the approximation
of various blocks A

∣∣
t̂×ŝj

as in (8). A possible way to construct suitable sets of
directions and further details on criterion (A2) are discussed in Sect. 2.4. First,
we want to discuss how to use criteria (A1) and (A3) to construct a suitable
partition of the matrix A in (1) based on the clustering described in Sect. 2.1.

2.3 Partitioning of the Matrix

In general, the sets of evaluation points PT and PS for the matrix A in (1) are
contained in overlapping boxes T and S. Therefore, the full matrix A cannot be

44 G. Of and R. Watschinger

Algorithm 2. Construction of a block tree TT×S

1: input: Box cluster trees TT and TS , parameter η2 for the criteria (A1) and (A3).
2: Set b = (t01, s

0
1), i.e. the pair of roots of TT and TS .

3: Construct an empty tree TT×S and add b as its root.
4: Call RefineBlock(b, TT×S).

5: function RefineBlock(b = (t, s), TT×S)
6: if t ∈ LT or s ∈ LS then
7: return
8: if t and s violate (A1) or (A3) then
9: for t′ ∈ child(t) do

10: for s′ ∈ child(s) do
11: Add b′ = (t′, s′) to TT×S as child of b.
12: Call RefineBlock(b′, TT×S).

approximated directly. For this reason, we recursively construct a partition of A
by Algorithm 2, which we organize in a block tree TT×S ([11, Sect. 5.5]).

Definition 2. Let TT and TS be two uniform box cluster trees and let η2 > 0.
A block tree TT×S is constructed by Algorithm2. The set of all leaves of TT×S is
denoted by LT×S and split into the set of admissible (i.e. approximable) leaves
and the set of inadmissible leaves

L+
T×S := {b = (t, s) ∈ LT×S : t and s satisfy (A1) and (A3)},

L−
T×S := LT×S \ L+

T×S .

For a given block tree TT×S the pairs of indices t̂ × ŝ of all leaves (t, s) ∈ LT×S

form a partition of the full index set {1, . . . , NT } × {1, . . . , NS}, i.e. of the
matrix A. The matrix blocks corresponding to admissible blocks b ∈ L+

T×S can
be approximated by the directional interpolation (8). Inadmissible blocks related
to b ∈ L−

T×S are computed directly.

2.4 Choice of Directions

As we would like to use relatively small numbers of directions c in the directional
approximations (8), we consider a fixed set of directions D(�) for all blocks (t, s)
at a given level � of the block tree. These sets D(�) should be constructed in such
a way that for all blocks (t, s) at level � in L+

T×S there exists a direction c ∈ D(�)

such that criterion (A2) holds for some fixed η1.
Since the bound on the right-hand side of (A2) increases for decreasing diam-

eters of t and s and these diameters are halved for each new level of the uniform
box cluster trees, the number of directions in D(�) can be reduced with increas-
ing level �. If the maximum of the diameters of two boxes t and s at level �̃ is
so small that the bound on the right-hand side of (A2) is greater than κ, then
(A2) holds for c = 0 for all following levels. In this case, a plane wave term is

Complexity Analysis of a Fast Directional Matrix-Vector Multiplication 45

Algorithm 3. Construction of directions D(�)

1: input: Largest high frequency level �hf ≥ −1.
2: for � = �hf + 1, �hf + 2,. . . ,min{p(TT), p(TS)} do
3: Set D(�) = {0}.

4: Construct the six faces {E
(�hf)
j }6

j=1 of the cube [−1, 1]3, i.e.

E
(�hf)
1 = {−1} × [−1, 1]2, E

(�hf)
2 = {1} × [−1, 1]2, . . . , E

(�hf)
6 = [−1, 1]2 × {1}.

5: Set D(�hf) = {c
(�hf)
j }6

j=1 where c
(�hf)
j is the midpoint of E

(�hf)
j , i.e.

c
(�hf)
1 = (−1, 0, 0), c

(�hf)
2 = (1, 0, 0), . . . , c

(�hf)
6 = (0, 0, 1).

6: for � = �hf − 1, . . . , 0 do
7: Set D(�) = ∅.
8: for all faces E

(�+1)
j , j = 1, . . . , 6 · 4�hf−�−1 do

9: Uniformly subdivide E
(�+1)
j into 4 faces E

(�)

4(j−1)+1, . . . , E
(�)
4j .

10: Construct normalized midpoints c
(�)

4(j−1)+1, . . . , c
(�)
4j of E

(�)

4(j−1)+1, . . . , E
(�)
4j .

11: Add directions c
(�)

4(j−1)+1, . . . , c
(�)
4j to D(�).

not needed for the approximation of the Helmholtz kernel f , and the approxima-
tion (8) coincides with a standard tensor interpolation. We call the other levels
satisfying

η1

κ max{diam (t),diam (s)} ≤ 1, for all t ∈ T �
T , s ∈ T �

S , (11)

high frequency levels and denote the largest high frequency level as �hf , or set
�hf = −1 in case that all levels � ≥ 0 are low frequency levels, i.e. do not
satisfy (11). The value of �hf depends on η1 and the uniform box cluster trees TT

and TS . In practice, we choose a suitable level �hf instead of η1 and construct the
sets of directions D(�), using more and more directions for levels � < �hf . Our
construction by Algorithm 3 combines ideas from [9, Sect. 4.1] and [3, Sect. 3].

Finally, we assign a direction c ∈ D(�) to a pair of boxes t and s which is close
to the normalized difference (mt−ms)/|mt−ms| of the midpoints of t and s and,
hence, can be used for the directional approximation (8). For this purpose, we
define a mapping dir(�) for each level � ∈ N0, which maps a vector v in R

3\{0}
to a direction c

(�)
j such that the intersection point of the ray {λv : λ > 0} and

the surface of the cube [−1, 1]3 lies in the face E
(�)
j (cf. Algorithm 3).

Definition 3. Let �hf ≥ −1 and let the directions D(�) and the faces {E
(�)
j } be

constructed by Algorithm3. We define the mapping dir(�) : R3 → D(�) ∪ {0} for
each � ∈ N0 as follows:

– If � > �hf we set dir(�)(v) = 0 for all v ∈ R
3.

– If � ≤ �hf we set dir(�)(0) = 0. For all v ∈ R
3\{0} we set dir(�)(v) = c

(�)
j(v)

where

j(v) := min{j : ψQ(v) ∈ E
(�)
j }, ψQ(v) :=

1
max

j∈{1,...,3}
|vj |

v

to avoid ambiguity.

46 G. Of and R. Watschinger

For two boxes t, s ⊂ R
3 and a level � ∈ N0 we define the direction c(�)(t, s) by

c(�)(t, s) := dir(�)

(
mt − ms

|mt − ms|

)
.

In this way (A2) is satisfied for two boxes t, s, and the direction c(�)(t, s) for
a constant η1 which depends linearly on the product κq�hf [17, Theorem. 2.19].
Here q�hf denotes the maximal diameter of all boxes at level �hf in the trees TT

and TS .

2.5 Transfer Operations

The approximation of an admissible subblock A
∣∣
t̂×ŝ

of A in (7) can be further
enhanced. If t is a non-leaf box at level � in a box cluster tree TT with children
t1, . . . , tk, the directional interpolation matrix Lt,c can be approximated using
the matrices Ltj ,c�+1 for a suitable direction c�+1. We describe this approach
following [5, Sect. 2.2.2].

Let us rewrite the generating functions L
(m)
t,c,ν(x) of Lt,c in (6) by

L
(m)
t,c,ν(x) = exp(iκ〈x, c�+1〉)

[
exp(iκ〈x, c − c�+1〉)L(m)

t,ν (x)
]
.

If c�+1 is sufficiently close to c, the term in square brackets is smooth and can
be interpolated for points x in a child box tj yielding

exp(iκ〈x, c − c�+1〉)L(m)
t,ν (x) ≈

∑

ν̃∈M

exp(iκ〈ξtj ,ν̃ , c − c�+1〉)L(m)
t,ν (ξtj ,ν̃)L(m)

tj ,ν̃(x).

This provides an approximation of the restriction of L
(m)
t,c,ν to the child tj

L
(m)
t,c,ν

∣∣
tj

(x) ≈
∑

ν̃∈M

([
exp(iκ〈ξtj ,ν̃ , c − c�+1〉)L(m)

t,ν (ξtj ,ν̃)
]
L

(m)
tj ,c�+1,ν̃(x)

)
.

In matrix notation the related restriction to the index set t̂j reads as

Lt,c|t̂j×(m+1)3 ≈ Ltj ,c�+1Etj ,c, (12)

where the entries of the transfer matrix Etj ,c ∈ C
(m+1)3×(m+1)3 are defined by

Etj ,c[k, �] := exp(iκ〈ξtj ,νk
, c − c�+1〉)L(m)

t,ν�
(ξtj ,νk

), (13)

for all k, � ∈ {1, . . . , (m + 1)3}.
A suitable choice [17, Theorem. 2.19] for the direction c�+1 is given by

dir(�+1)(c), with dir(�+1) given in Definition 3. Since this direction depends only
on c and the level � of the box t, it is reasonable to omit the dependence of the
transfer matrix Etj ,c on c�+1 in the notation.

Complexity Analysis of a Fast Directional Matrix-Vector Multiplication 47

2.6 Main Algorithm

In the previous sections, we have described how to partition the matrix (1) and
how to approximate suitable subblocks. Here we explain the complete algorithm
for a a matrix-vector multiplication g = Av.

The idea is to execute the multiplication blockwise according to the partition
induced by the leaves LT×S of the block tree TT×S . Inadmissible blocks from
L−

T×S are multiplied directly with the target vector v. For admissible blocks from
L+

T×S we use the decomposition (8) and split the multiplication into three phases.
This is similar to the usual three-phase algorithm for H2-matrices [11, Sect. 8.7]
and the FMM [10] with adaptations due to the directional approximation. We
describe the scheme first for one block corresponding to an admissible pair of
boxes t and s at level � and then give a description of the complete algorithm.

In the first phase, the forward transformation, the product ṽs,c := L∗
s,cv|ŝ is

computed. If s is a leaf in the cluster tree, this is done directly by (10). This is
also known as S2M (source to moment) step in fast multipole methods. If s is
not a leaf, approximation (12) with c�+1 = dir(�+1)(c) is used iteratively to get

ṽs,c :=
∑

sj∈child(s)

E∗
sj ,cṽsj ,c�+1 ≈

∑

sj∈child(s)

E∗
sj ,c

[
L∗

sj ,c�+1
v|ŝj

]
≈ L∗

s,cv|ŝ,

by using the products of the children, which is also known as M2M operation
(moment to moment). In the second phase, which is called multiplication phase
or M2L (moment to local) step, the product

g̃t,c := Ac,t×sṽs,c

is computed by (9). In the complete algorithm all contributions from various
boxes s are added up, i.e.

g̃t,c :=
∑

s:(t,s)∈L+
T ×S

Ac,t×sṽs,c.

In the third phase, the so-called backward transformation, the product

g̃|t̂ := Lt,cg̃t,c (14)

is computed. If t is a leaf, this is done directly. This step is known as L2T (local
to target) in fast multipole methods. If t is not a leaf, the approximation (12) is
used to compute

g̃tj ,c�+1 = Etj ,c g̃t,c, (15)

for all children tj of t, which is also known as L2L operation (local to local), and
the evaluation (14) takes place for descendants which are leaves. In the complete
algorithm the local contribution in (15) is added to the existing contribution
g̃tj ,c�+1 originating from the multiplication phase.

Before we present the complete Algorithm 4, we define the sets of active and
inherited directions for each box in the cluster trees TT and TS . These are used
to keep track of all required directions for boxes t and s in the trees TT and TS .
They can be generated during the construction of the block tree TT×S .

48 G. Of and R. Watschinger

Definition 4. Let TT and TS be two uniform box cluster trees, TT×S the cor-
responding block tree and �hf ≥ −1. Recalling Algorithm3 and Definition 3 we
define for all � ≥ 0 and all t ∈ T (�)

T the set of active directions by

D(t) := {c ∈ D(�) : ∃ s ∈ T (�)
S such that (t, s) ∈ L+

T×S and c = c(�)(t, s)}.

The set of inherited directions D̂(t) is defined recursively by setting D̂(t01) = ∅
for the root t01 of TT , and for all � > 0 and all t ∈ T (�)

T by setting

D̂(t) := {ĉ ∈ D(�) : ∃ c ∈ D(t′) ∪ D̂(t′) such that ĉ = dir(�)(c), t′ = parent(t)}.

Analogously, the sets of active directions D(s) and inherited directions D̂(s) are
defined for clusters s ∈ TS.

Algorithm 4. Fast directional matrix vector multiplication g ≈ Av

1: input: Box cluster trees TT and TS , block tree TT×S , interpolation degree m,
sets of directions D(t), D̂(t), D(s), D̂(s) for all boxes t, s in TT , TS .

2: Initialize g = 0.
3: � Forward transformation
4: for all leaves s ∈ LS do
5: for all directions c ∈ D(s) ∪ D̂(s) do
6: Compute ṽs,c = L∗

s,cv|ŝ.
7: for all levels � = p(TS) − 1, . . . , 0 do

8: for all non-leaf boxes s ∈ T (�)
S \LS do

9: for all directions c ∈ D(s) ∪ D̂(s) do
10: Set ṽs,c = 0.
11: for all s′ ∈ child(s) do
12: Update ṽs,c += E∗

s′,cṽs′,c′ , where c′ = dir(�+1)(c).

13: � Multiplication phase
14: for all boxes t ∈ TT do
15: for all directions c ∈ D(t) ∪ D̂(t) do
16: Initialize g̃t,c = 0.

17: for all boxes s ∈ TS such that (t, s) ∈ L+
T×S do

18: Update g̃t,c += Ac,t×sṽs,c, where c = dir(�)(t, s) and � = level(t).

19: � Backward transformation
20: for all levels � = 0, . . . , p(TT) − 1 do

21: for all non-leaf boxes t ∈ T (�)
T \LT do

22: for all directions c ∈ D(t) ∪ D̂(t) do
23: for all t′ ∈ child(t) do
24: Update g̃t′,c′ += Et′,cg̃t,c, where c′ = dir(�+1)(c).

25: for all leaves t ∈ LT do
26: for all directions c ∈ D(t) ∪ D̂(t) do
27: Update g|t̂ += Lt,cg̃t,c.

28: � Nearfield evaluation
29: for all blocks b = (t, s) ∈ L−

T×S do
30: Update g|t̂ += A|t̂×ŝv|ŝ.

Complexity Analysis of a Fast Directional Matrix-Vector Multiplication 49

2.7 Implementation Details

In this section, we describe how to exploit the uniformity of the box cluster trees
to reduce the storage required by the transfer matrices Et′,c defined in (13) and
the coupling matrices Ac,t×s defined in (9). This is crucial as there is a large
number of such matrices involved in the computations in Algorithm4.

For a level � ≥ 0, a box t ∈ T �
T , a child t′ and directions c and c′ = dir(�+1)(c)

we consider the transfer matrix Et′,c which has the entries

Et′,c[j, k] = exp(iκ〈ξt′,νj
, c − c′〉)L(m)

t,νk
(ξt′,νj

), j, k ∈ {1, . . . , (m + 1)3}.

This matrix can be split into a directional and a non-directional part by

Et′,c = Ed
t′,cEt′ ,

where we define the directional part Ed
t′,c and the non-directional part Et′ by

Ed
t′,c := diag ({exp(iκ〈ξt′,ν̃ , c − c′〉)}ν̃∈M) ,

Et′ [j, k] := L
(m)
t,νk

(ξt′,νj
), j, k ∈ {1, . . . , (m + 1)3}.

Let us consider the non-directional part Et′ first. The value of the Lagrange
polynomial L

(m)
t,ν depends only on the position of the evaluation point ξt′,μ rela-

tive to the box t. Together with the uniformity of the box cluster tree TT , this
implies that each Et′ is identical to one of 8 non-directional transfer matrices in a
reference configuration. Only these reference matrices of size (m+1)3 × (m+1)3

have to be computed and stored. The directional part Ed
t′,c changes for varying

boxes t, child boxes t′ or directions c. Since it is diagonal, however, only (m+1)3

entries instead of (m + 1)6 entries need to be computed. Furthermore, for low
frequency levels � > �hf the directional part Ed

t′,c becomes the identity and no
additional computations are required.

Next we consider the coupling matrices Ac,t×s defined in (9) for admissible
blocks (t, s) in a block tree TT×S . Ac,t×s depends on the difference of the cluster
centers only, see (3). Due to the uniformity of the box cluster trees, many of
the coupling matrices coincide. In particular, it suffices to compute and store all
required coupling matrices for all levels � only once for a reference configuration
and assign them to the appropriate blocks (t, s) ∈ L+

T×S .
The dimension of the coupling matrices (9) increases cubically in the interpo-

lation degree m. A compression of these matrices by a low rank approximation

Ac,t×s ≈ Uc,t×sV
∗
c,t×s,

with Uc,t×s, Vc,t×s ∈ C
(m+1)3×k for some low rank k, increases the performance

of the algorithm (cf. [13]). Such approximations exist because the coupling matri-
ces are generated by smooth functions. For their construction, we apply a par-
tially pivoted ACA [2,15] in our implementation and the examples in Sect. 4,
but do not analyze its effect on the complexity in the following section. A more
involved compression strategy is described in [4].

50 G. Of and R. Watschinger

3 Complexity Analysis

To analyze the complexity of Algorithm4 for fast directional matrix vector mul-
tiplications, we estimate the number of directional interpolation matrices and
transfer matrices in Theorem 1, give then an estimate for the number of cou-
pling matrices in Theorem 2 and 3 and finally estimate the number of nearfield
matrices in Theorem 4. We start by establishing the general setting.

Throughout this section we fix the wave number κ > 0 and the sets of points
PT = {xj}NT

j=1 and PS = {yk}NS

k=1, which may but do not have to coincide, and
set N = max{NT , NS}. In all considerations TT and TS denote two uniform box
cluster trees as constructed in Algorithm 1 for a fixed parameter nmax. We set
the maximum and the minimum of the depths of the trees TT and TS

pmax := max{p(TT), p(TS)}, pmin := min{p(TT), p(TS)}.

The diameters of all boxes at a fixed level � of TT are identical and denoted
as q�(TT) just like the diameters q�(TS) of boxes at level � in TS . For all levels
� ≤ pmin we define

q� := max{q�(TT), q�(TS)}.

The related block tree TT×S is constructed by Algorithm2 for a fixed param-
eter η2. For the directional approximation we use a small, fixed interpolation
degree m and the directions D(�), constructed by Algorithm3 for a fixed choice
of the largest high frequency level �hf ≥ −1.

For the complexity analysis we will need a few assumptions which we collect
and discuss here. We assume that there exist small constants cgeo, cmax, cad and
cun ∈ R+ such that the following assumptions hold true:

nmax ≤ cmax(m + 1)3, (16)
q0 ≤ cun min{q0(TT), q0(TS)}, (17)

pmax ≤ log8(N) + cad, (18)

κq0 ≤ cgeo
3
√

N. (19)

In addition, �hf is assumed to be chosen such that

�hf + 1 ≤ pmax + chf , (20)

for a small constant chf ∈ N0. Furthermore, we require that (33) holds, which
we introduce and discuss later. Let us shortly discuss above assumptions. By
equation (16) we ensure that the maximal number of points in leaf boxes of the
cluster trees is reasonably small. Assumption (17) means that the diameters of
the root boxes of TT and TS should be of comparable size. While this is not
satisfied in general, one can enforce it by an initial subdivision of the greater
box and application of the method to the resulting subboxes. Equation (18) is an
indirect assumption on the sets of points PT and PS , which holds if the points are
distributed more or less uniformly in a 3D domain. Also Eq. (19) is reasonable
only if points are distributed rather uniformly in a 3D volume, and guarantees

Complexity Analysis of a Fast Directional Matrix-Vector Multiplication 51

that the wave length λ = 2π/κ is resolved in that case, which is required in
typical physical applications. Finally, Eq. (20) is a bound on the largest high
frequency level �hf and allows to bound the number of directions constructed
in Algorithm 3. With these assumptions we can start with the complexity anal-
ysis, which is based on the following obvious, but important observation.

Remark 1. In Algorithm 4 every directional interpolation matrix Lt,c and Ls,c,
every transfer matrix Et′,c and Es′,c, every coupling matrix Ac,t×s and every
nearfield matrix A|t̂×ŝ is multiplied with a suitable vector exactly once. All
entries of these matrices can be computed with O(1) operations. Since the com-
plexity of the application of a matrix to a vector is proportional to the number
of its entries, it suffices to count all these matrices and their respective entries
to estimate the storage and runtime complexity of Algorithm 4.

Theorem 1. Let assumption (20) hold true. Then there exists a constant cLE

depending only on chf such that the number NLE of applied transfer matrices Et′,c
and Es′,c and directional interpolation matrices Lt,c and Ls,c in Algorithm4 is
bounded by

NLE ≤ cLE 8pmax . (21)

If (16) and (18) apply in addition, these matrices can be stored and applied with
complexity O(N).

Proof. We start to estimate the number NLE,T of applied transfer matrices Et′,c
for L2L operations in lines 20–24 of Algorithm4 and directional interpolation
matrices Lt,c for L2T operations in lines 25–27. For this purpose we estimate
the number of such matrices for each box t in TT .

Let us first assume, that t ∈ T �
T is a non-leaf box at level �. In this case

a transfer matrix is applied for each direction c ∈ D(t) ∪ D̂(t) and each box
t′ ∈ child(t), but no directional interpolation matrix. The number of directions
in D(t) ∪ D̂(t) is bounded by #D(�), which is 6 · 4�hf−� if � ≤ �hf and 1 else, and
#child(t) ≤ 8 for all t due to the uniformity of the box cluster tree. Therefore, the
total number NLE(t) of transfer and directional interpolation matrices needed
for a non-leaf box t ∈ T �

T is bounded by

B(�) =

{
48 · 4�hf−�, if � ≤ �hf ,

8, otherwise.

If t ∈ T �
T is a leaf box then we only need a directional interpolation matrix

for each direction c ∈ D(t) ∪ D̂(t) but no transfer matrix. Therefore, NLE(t)
is bounded by 6 · 4�hf−� if � ≤ �hf and by 1 otherwise. Since this bound is less
than B(�) for all levels �, there holds NLE(t) ≤ B(�) for all boxes t ∈ T �

T .
The number NLE,T of all directional interpolation matrices and transfer

matrices for boxes t ∈ TT can hence be estimated by

NLE,T =
p(TT)∑

�=0

∑

t∈T �
T

NLE(t) ≤
p(TT)∑

�=0

#T �
T B(�).

52 G. Of and R. Watschinger

Due to the uniformity of the box cluster tree there holds #T �
T ≤ 8�. Let us first

assume that all levels in TT are high frequency levels, i.e. p(TT) ≤ �hf . Then we
can further estimate

NLE,T ≤
p(TT)∑

�=0

48 · 4�hf−� 8� < 48 · 4�hf 2p(TT)+1 ≤ 24 · 4chf 8pmax , (22)

where we used assumption (20) in the last step. If instead p(TT) > �hf , we get

NLE,T ≤
�hf∑

�=0

48 · 4�hf−� 8� +
p(TT)∑

�=�hf+1

8�+1

≤ 12 · 8�hf+1 + 8 (8p(TT)+1 − 8�hf+1) ≤ 68 · 8pmax .

(23)

Analogously, we can estimate the number NLE,S of transfer matrices
and directional interpolation matrices needed for the S2M and M2M oper-
ations in lines 4–12 of Algorithm 4. Therefore, the estimate on the number
NLE of all transfer and directional interpolation matrices in (21) holds with
cLE = 2 · max(68, 24 · 4chf).

To prove the complexity statement we observe that every transfer matrix (13)
has (m + 1)6 entries and every directional interpolation matrix (10) has at most
nmax(m + 1)3 ≤ cmax(m + 1)6 entries by assumption (16). Therefore, the linear
complexity is a direct consequence of (21), if in addition (18) holds. ��

Theorem 2. Let assumption (17) hold true. Then there exists a constant cC

depending only on cun and η2, such that the number NC of all coupling matrices
Ac,t×s in Algorithm4 is bounded by

NC ≤ cC

(
pmin(q0κ)3 + 8pmin

)
. (24)

If in addition (18) and (19) hold true, these matrices can be stored and applied
with complexity O(N log(N)). If (19) is replaced by the stronger assumption

κq0 ≤ c 3
√

N/ log(N), (25)

then the complexity is reduced to O(N).

Proof. In this proof we pursue similar ideas as in [3, cf. proof of Lem. 8]. We
assume that the depth of TT×S is not zero, because otherwise NC ≤ 1 and the
assertion is trivial. Our strategy is to estimate the numbers N

(�)
C of coupling

matrices at all relevant levels � = 1, . . . , pmin.
In line 17 of Algorithm4 we see that the number of coupling matrices needed

for a box t ∈ T (�)
T is given by #{s : (t, s) ∈ L+

T×S}. For such blocks (t, s) ∈ L+
T×S

the parent(s) is in the nearfield N (tp) of tp := parent(t) by construction of the
block tree in Algorithm2, where

N (tp) := {sp ∈ T (�−1)
S : sp and tp violate (A1) or (A3)}.

Complexity Analysis of a Fast Directional Matrix-Vector Multiplication 53

Using this property and the uniformity of the box cluster trees we can estimate

N
(�)
C =

∑

t∈T (�)
T

∑

(t,s)∈L+
S×T

1 ≤
∑

t∈T (�)
T

8 · #N (parent(t)) ≤ 8�+1N
(�−1)
N ,T , (26)

where N
(�−1)
N ,T is an upper bound for the number of boxes in the nearfield of a

box at level � − 1 in TT which we estimate in the following.
We cover the nearfield N (t) of a fixed box t ∈ T (�)

T by a ball Br�
(mt) with

radius r� and center mt and take the ratio of the volume of the ball and the
one of a box to estimate N

(�)
N ,T for � ≥ 1. We have to distinguish the cases of

the two admissibility criteria (A1) and (A3). For this purpose, let �̃ be such that
κqj > 1, if and only if j ≤ �̃. Such an �̃ exists since qj decreases monotonically
for increasing level j. In particular, we set �̃ = −1, if κqj ≤ 1 for all j ≥ 0.
If j ≤ �̃ criterion (A3) implies (A1) as mentioned in Sect. 2.2. Vice versa, (A1)
implies (A3) if j > �̃.

Let us first assume that � ≤ �̃ and consider an arbitrary box s ∈ N (t). Then t
and s violate (A3), which means that η2 dist (t, s) < κq2

� , i.e. there exist x ∈ t̄
and y ∈ s̄ such that |x − y| < κq2

� /η2. Hence, we can estimate

max
z∈s̄

|z − mt| ≤ max
z∈s̄

(|z − y| + |x − y| + |x − mt|)

≤ q� +
κq2

�

η2
+

q�

2
≤

(
3
2

+
1
η2

)
κq2

� =: r�,
(27)

where we used κq� > 1 for the last estimate. Therefore, every box s ∈ N (t) is
contained in the ball Br�

(mt) with r� from (27). If instead � > �̃ we analogously
show

N (t) ⊂ Br�
(mt), r� =

(
3
2

+
1
η2

)
q�. (28)

With the ball Br�
(mt) covering N (t) we can estimate

#N (t) ≤ |Br�
(mt)|

v�(TS)
=

(4π/3)r3
�

3−3/2q�(TS)3
= 4π

√
3

(
r�

q�(TS)

)3

, (29)

where v�(TS) = 3−3/2q�(TS)3 denotes the volume of boxes s ∈ T (�)
S . Since t ∈ T (�)

T

was arbitrary, the bound in (29) holds also for N
(�)
N ,T instead of N (t).

Summarizing (26) and above findings, we get for the number NC of all cou-
pling matrices the estimate

NC =
pmin∑

�=1

N
(�)
C ≤

pmin∑

�=1

8�+1N
(�−1)
N ,T ≤

pmin∑

�=1

8�+14π
√

3
(

r�−1

q�−1(TS)

)3

≤ 4π
√

3
(

3
2

+
1
η2

)3
⎛

⎝
�̃+1∑

�=1

8�+1(κcunq�)3 +
pmin∑

�=�̃+2

8�+1c3
un

⎞

⎠

≤ cC

⎛

⎝
�̃+1∑

�=1

(κq0)3 + 8pmin

⎞

⎠ ≤ cC(pmin(κq0)3 + 8pmin), (30)

54 G. Of and R. Watschinger

where we assumed that 1 ≤ �̃ + 1 < pmin and used assumption (17) and the
relation q0 = 2�q�. If either �̃+1 ≥ pmin or �̃ = −1, one can repeat the estimates
in (30) and ends up with a similar result where one can cancel 8pmin in the first
case and pmin(κq0)3 in the second case. The assertions about the complexity
follow directly from (30) with assumptions (18) and (19) or (25), respectively,
since every coupling matrix (9) has (m + 1)6 = O(1) entries. ��

In Theorem 2 we have estimated the number NC of all coupling matrices,
which corresponds to the number of admissible blocks L+

T×S . As explained in
Sect. 2.7, we store reoccuring matrices only once to reduce the related storage
costs drastically as we will see in the next theorem and in Sect. 4. Since one
needs to know all blocks in L+

T×S in Algorithm 4 and storing them has complex-
ity O(NC), storing each matrix only once does not reduce the overall storage
complexity of the method asymptotically.

Theorem 3. Let the root boxes T and S of TT and TS be identical up to trans-
lation. Then the number NSC of coupling matrices Ac,t×s which have to be stored
can be estimated by

NSC ≤ pmin max{cC, c
2/3
C (κq0)2}. (31)

If (18) and (19) hold, the corresponding storage complexity is O(N2/3 log(N)).

Proof. From the proof of Theorem2, in particular (27), (28) and (29), it follows
that the number of admissible blocks (t, s) ∈ L+

T×S for a fixed box t ∈ T �
T can

be estimated by

8 · #N (parent(t)) ≤ 32π
√

3c3
un

(
3
2

+
1
η2

)3

max{1, (κq0)381−�}

≤ cC max{1, (κq0)38−�},

(32)

where we used q� = 2−�q0, and cC is the same constant as in (24). For a different
box t′ ∈ T �

T the boxes s′ such that (t′, s′) ∈ L+
T×S are identical to blocks (t, s)

up to translation, which follows from the assumption on the root boxes T and S
and the uniformity of the trees TT and TS . Hence, the coupling matrices coincide
and (32) is a bound for the number N

(�)
SC of stored coupling matrices at level �.

On the other hand, there are at most 82� blocks at level � of T +
T×S , which gives

N
(�)
SC ≤ min{82�, cC max{1, (κq0)38−�}}.

The maximum over all � of the expression on the right-hand side is bounded
by 82�∗

, where �∗ is the intersection point of 82� and cC max{1, (κq0)38−�}. By
computing this maximum we end up with the general bound

N
(�)
SC ≤ max

{
cC, c

2/3
C (κq0)2

}
for all � ≥ 0.

Summation over all levels � = 1, . . . , pmin yields (31). Since every coupling matrix
has (m + 1)6 entries, it follows that all distinct coupling matrices can be stored
with O(N2/3 log(N)) memory units, if assumptions (18) and (19) hold. ��

Complexity Analysis of a Fast Directional Matrix-Vector Multiplication 55

In Theorem 4, we will perform the complexity analysis of the nearfield eval-
uation, i.e. lines 29 and 30 of Algorithm4. In unbalanced trees there can be
leaf clusters at coarse levels with large nearfields. If there were many of these,
the complexity would not be linear. To exclude exceptional settings we make
the additional assumption that the number of such leaf clusters is bounded, i.e.,
there exists a constant cin ∈ N such that

#L−
T ≤ cin, #L−

S ≤ cin, (33)

where L−
S := LS \ L+

S and

L+
S := {s ∈ LS : #{t : (t, s) ∈ L−

T×S} ≤ cnf and

#t̂ ≤ cmnmax for all (t, s) ∈ L−
T×S},

(34)

for some fixed parameters cm and cnf . It follows from (32) that for a leaf box
s ∈ T (�)

S the assumption #{t : (t, s) ∈ L−
T×S} ≤ cnf holds true for sufficiently

large constant cnf if � = level(t) is large enough.

Theorem 4. Let assumptions (17) and (33) hold true. Then there exists a con-
stant cD depending only on cun, cin, cm, cnf , nmax and η2 such that the num-
ber MD of entries of all nearfield blocks A|t̂×ŝ in Algorithm4 is bounded by

MD ≤ cD(NT + NS + 8pmin). (35)

If (18) holds, the corresponding storage complexity is O(N).

Proof. Each nearfield matrix block corresponds to an inadmissible block (t, s) ∈
L−

T×S . For such a block there holds t ∈ LT or s ∈ LS by construction. We start
counting entries of blocks corresponding to leaves in LS by considering the sets
L+

S and L−
S .

For the number M−
D,S of nearfield matrix entries corresponding to blocks (t, s)

with outlying leaves s ∈ L−
S there holds

M−
D,S =

∑

s∈L−
S

#ŝ
∑

{t:(t,s)∈L−
T ×S}

#t̂ ≤ cinnmaxNT . (36)

Here we used that #ŝ ≤ nmax holds for all leaf boxes, and that the nearfield
N (s) = {t : (t, s) ∈ L−

T×S} of s can contain at most all NT points in PT .
Next we estimate the number M+

D,S of nearfield matrix entries corresponding
to blocks (t, s) with s ∈ L+

S . For fixed s ∈ L+
S there exist at most cnf such

blocks (t, s) and the corresponding boxes t contain maximally cmnmax points by
definition of L+

S in (34). Furthermore, the level of a box s in an inadmissible
block (t, s) can be at most pmin and TS can have at most 8pmin leaves at levels
� ≤ pmin. Hence, we get

M+
D,S =

∑

s∈L+
S

#ŝ
∑

t∈N (s)

#t̂ ≤ 8pmincnfcmn2
max. (37)

56 G. Of and R. Watschinger

Analogous estimates as (36) and (37) hold true for nearfield matrices cor-
responding to leaves in LT . Adding up all these estimates leads to the bound
in (35), with the constant cD = 2nmax max{cin, cnfcmnmax}. If (18) holds, the
storage complexity O(N) is an immediate consequence of (35). ��

The following theorem summarizes the results of this section.

Theorem 5. Let assumptions (16)–(20) and (33) hold true. Then the complex-
ity of Algorithm4 is O(N log(N)). If (19) is replaced by (25) the complexity is
reduced to O(N).

4 Numerical Examples

In this section we want to test the method presented in Sect. 2 and to validate
the theoretical results from Sect. 3. For this purpose we use a single core imple-
mentation of Algorithm 4 in C++ on a computer with 384 GiB RAM and 2 Intel
Xeon Gold 5218 CPUs. To reduce the required memory we store only the non-
directional parts Et′ of the transfer matrices and each coupling matrix once, as
described in Sect. 2.7. However, if the matrix is applied several times it can be
beneficial to store also the directional interpolation matrices Lt,c and nearfield
matrix blocks.

For the tests we consider points distributed uniformly inside the cube [−1, 1]3.
For various values k ≥ 3 we choose x̃n = (2n − 1)2−k − 1 in [−1, 1] for all
n ∈ {1, ..., 2k} and construct the set of points PT (k) = {xj}N(k)

j=1 with N(k) = 8k

as tensor products of these one-dimensional points. We choose PS(k) = PT (k)
and consider the matrix A as in (1) with the wave number κ = 0.1 · 2k and the
diagonal set to zero to eliminate the singularities. The approximation derived
in Sect. 2 is applicable despite the change of the diagonal because it effects only
parts of the matrix which are evaluated directly.

We construct a uniform box cluster tree TT for the set PT using Algorithm 1
with the initial box T = [−1, 1]3 and the parameter nmax = 512. With this choice
of parameters and points, TT is a uniform octree with depth p(TT) = k−3, where
every leaf contains exactly 512 points. We construct the sets of directions D(�)

with Algorithm 3 and the largest high frequency level �hf = k − 4 and finally
we use Algorithm 2 to construct the block cluster tree TT×T with the parameter
η2 = 5. The parameters �hf and η2 were chosen according to the parameter choice
rule in [17, Sect. 3.1.4]. In particular, the choice η2 = 5 minimizes the number of
inadmissible blocks b ∈ L−

T×T at levels � > �hf . Note that due to the uniformity
of the tree TT and the choice PS(k) = PT (k) the block tree TT×T has depth
p(TT) = �hf + 1 and all inadmissible blocks are at level �hf + 1.

The assumptions (16)–(20) are all satisfied for the considered examples for
suitable constants cmax, cun, cad, cgeo, and chf independent of the sets PT (k).
Assumption (33) holds for cin = 0, because all leafs in LT are at level k − 3 and
by the choice of η2 there holds #{s : (t, s) ∈ L−

T×T } ≤ 27 for all leaves t ∈ LT .
In the described setting we apply Algorithm4 for the fast multiplication of

the matrix A with a randomly constructed vector v. The interpolation degree

Complexity Analysis of a Fast Directional Matrix-Vector Multiplication 57

Table 1. Computation times and storage requirements for matrix-vector multiplica-
tions using Algorithm 4 for the matrix A corresponding to sets of points PT (k) for
various values of k. Parameters: �hf = k − 4, η2 = 5, interpolation degree m = 4.

k N κ ttot ts tnf tff nf [%] NSC NC [GiB]

5 32768 3.2 7.31 0.34 6.94 0.03 24.41 316 3096 0.02

6 262144 6.4 76.25 1.20 74.29 0.76 4.06 1522 166320 0.10

7 2097152 12.8 702.72 3.71 688.14 10.87 0.58 4554 2640960 0.46

8 16777216 25.6 6060.16 15.24 5907.66 137.26 0.077 9824 33103296 3.09

9 134217728 51.2 50204.00 118.89 48576.20 1508.91 0.010 32036 344979432 24.2

5 6 7 8 9

0.2

0.24

0.28

0.32

0.36

k = log(N)

ne
ar
fie
ld

ti
m
es

pe
r
po

in
t
[m

s]

0

2

4

6

8

10

12

fa
rfi
el
d
ti
m
es

pe
r
po

in
t
[
s]

nearfield times
O(N) ref.

farfield times
O(N log(N)) ref.

5 6 7 8 9

0.2

0.3

0.4

0.5

0.6

0.7

k = log(N)

St
or
ag
e
pe

r
po

in
t
[K

iB
]

Storage per point
O(N) reference

Fig. 1. Plots related to the computations of Table 1. Left image: Nearfield and farfield
computation times per point with linear and quasi-linear reference curves in the dif-
ferent scales. Right image: Required storage per point with linear reference curve.

m = 4 is chosen, since it is reasonably high to yield a good approximation
quality (e.g. relative error 2 · 10−4 for k = 6) while it is low enough to make the
approximations of all admissible blocks efficient.

The results of the computations for various sets of points PT (k) are given
in Table 1 and Fig. 1. The total computational times ttot are split into setup
times ts, times tnf of the nearfield part, and computational times tff of the farfield
part. In addition, the percentage of matrix entries in inadmissible blocks (nf), the
numbers NSC and NC of stored and applied coupling matrices and the storage
requirements ([GiB]) are given. A direct computation for k = 7 takes more than
32 hours. Thus the directional approximation is about 160 times faster. For larger
examples the difference would be even more pronounced due to the quadratic
complexity of the direct computation.

In Fig. 1, we plot computational times and memory consumption per point.
As expected from our theoretical results of Sect. 3, we observe linear and almost
linear behavior, respectively, for the nearfield and the farfield part of the compu-
tations, see the left plot in Fig. 1. As usual there is some preasymptotic behavior
in such plots. The right plot in Fig. 1 shows the linear behavior of the mem-
ory requirements. Note that we store coupling matrices and transfer matrices

58 G. Of and R. Watschinger

only. In particular, we mention the low number NSC of stored coupling matrices
compared to the total number NC of coupling matrices in Table 1.

Acknowledgment. This work was partially supported by the Austrian Science Fund
(FWF): I 4033-N32.

References

1. Bebendorf, M., Kuske, C., Venn, R.: Wideband nested cross approximation for
Helmholtz problems. Numer. Math. 130(1), 1–34 (2015). https://doi.org/10.1007/
s00211-014-0656-7

2. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation
matrices. Computing 70(1), 1–24 (2003). https://doi.org/10.1007/s00607-002-
1469-6

3. Börm, S.: Directional H2-matrix compression for high-frequency problems. Numer.
Linear. Algebra. Appl. 24(6), e2112 (2017). https://doi.org/10.1002/nla.2112

4. Börm, S., Börst, C.: Hybrid matrix compression for high-frequency problems.
SIAM J. Matrix Anal. Appl. 41(4), 1704–1725 (2020). https://doi.org/10.1137/
19M124280X

5. Börm, S., Melenk, J.M.: Approximation of the high-frequency Helmholtz kernel by
nested directional interpolation: error analysis. Numer. Math. 137(1), 1–34 (2017).
https://doi.org/10.1007/s00211-017-0873-y

6. Brandt, A.: Multilevel computations of integral transforms and particle interactions
with oscillatory kernels. Comput. Phys. Commun. 65(1), 24–38 (1991). https://
doi.org/10.1016/0010-4655(91)90151-A

7. Cheng, H., et al.: A wideband fast multipole method for the Helmholtz equation
in three dimensions. J. Comput. Phys. 216, 300–325 (2006). https://doi.org/10.
1016/j.jcp.2005.12.001

8. Darve, E., Havé, P.: Efficient fast multipole method for low-frequency scattering.
J. Comput. Phys. 197(1), 341–363 (2004). https://doi.org/10.1016/j.jcp.2003.12.
002

9. Engquist, B., Ying, L.: Fast directional multilevel algorithms for oscillatory ker-
nels. SIAM J. Sci. Comput 29(4), 1710–1737 (2007). https://doi.org/10.1137/
07068583X

10. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput.
Phys. 73(2), 325–348 (1987). https://doi.org/10.1016/0021-9991(87)90140-9

11. Hackbusch, W.: Hierarchical matrices: algorithms and analysis, SSCM, vol. 49.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47324-5

12. Hu, B., Chew, W.C.: Fast inhomogeneous plane wave algorithm for scattering from
objects above the multilayered medium. IEEE Trans. Geosci. Remote Sens. 39(5),
1028–1038 (2001). https://doi.org/10.1109/36.921421

13. Messner, M., Schanz, M., Darve, E.: Fast directional multilevel summation for
oscillatory kernels based on Chebyshev interpolation. J. Comput. Phys. 231(4),
1175–1196 (2012). https://doi.org/10.1016/j.jcp.2011.09.027

14. Nishimura, N.: Fast multipole accelerated boundary integral equation methods.
Appl. Mech. Rev. 55(4), 299–324 (2002). https://doi.org/10.1115/1.1482087

15. Rjasanow, S., Steinbach, O.: The Fast Solution of Boundary Integral Equations.
Springer-Verlag, Berlin, Heidelberg (2007). https://doi.org/10.1007/0-387-34042-4

https://doi.org/10.1007/s00211-014-0656-7
https://doi.org/10.1007/s00211-014-0656-7
https://doi.org/10.1007/s00607-002-1469-6
https://doi.org/10.1007/s00607-002-1469-6
https://doi.org/10.1002/nla.2112
https://doi.org/10.1137/19M124280X
https://doi.org/10.1137/19M124280X
https://doi.org/10.1007/s00211-017-0873-y
https://doi.org/10.1016/0010-4655(91)90151-A
https://doi.org/10.1016/0010-4655(91)90151-A
https://doi.org/10.1016/j.jcp.2005.12.001
https://doi.org/10.1016/j.jcp.2005.12.001
https://doi.org/10.1016/j.jcp.2003.12.002
https://doi.org/10.1016/j.jcp.2003.12.002
https://doi.org/10.1137/07068583X
https://doi.org/10.1137/07068583X
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1007/978-3-662-47324-5
https://doi.org/10.1109/36.921421
https://doi.org/10.1016/j.jcp.2011.09.027
https://doi.org/10.1115/1.1482087
https://doi.org/10.1007/0-387-34042-4

Complexity Analysis of a Fast Directional Matrix-Vector Multiplication 59

16. Rokhlin, V.: Diagonal forms of translation operators for Helmholtz equation in three
dimensions. Appl. Comput. Harmon. A. 1, 82–93 (1993). https://doi.org/10.1006/
acha.1993.1006

17. Watschinger, R.: A directional approximation of the Helmholtz kernel and its appli-
cation to fast matrix-vector multiplications. Master’s thesis, Graz University of
Technology, Insitute of Applied Mathematics (2019). https://permalink.obvsg.at/
AC15364438

https://doi.org/10.1006/acha.1993.1006
https://doi.org/10.1006/acha.1993.1006
https://permalink.obvsg.at/AC15364438
https://permalink.obvsg.at/AC15364438

Fast Large-Scale Boundary Element
Algorithms

Steffen Börm(B)

Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel,
24118 Kiel, Germany

boerm@math.uni-kiel.de

http://www.math.uni-kiel.de/scicom

Abstract. Boundary element methods (BEM) reduce a partial differen-
tial equation in a domain to an integral equation on the domain’s bound-
ary. They are particularly attractive for solving problems on unbounded
domains, but handling the dense matrices corresponding to the integral
operators requires efficient algorithms.

This article describes two approaches that allow us to solve bound-
ary element equations on surface meshes consisting of several millions of
triangles while preserving the optimal convergence rates of the Galerkin
discretization.

Keywords: Boundary element method · Hierarchical matrices ·
Rank-structured matrices · Fast solvers

1 Introduction

We consider Laplace’s equation

Δu(x) = 0 for all x ∈ Ω, (1a)

where Ω ⊆ IR3 is a non-empty domain with a sufficiently smooth boundary ∂Ω.
If we add the boundary condition

u(x) = f(x) for all x ∈ ∂Ω, (1b)

with a suitable function f , we obtain the Dirichlet problem. With the boundary
condition

∂u

∂n
(x) = f(x) for all x ∈ ∂Ω, (1c)

where n denotes the outward-pointing unit normal vector for the domain Ω, we
arrive at the Neumann problem. We can solve these problems by using Green’s
representation formula (cf., e.g., [18, Theorem 2.2.2]) given by

u(x) =
∫

∂Ω

g(x, y)
∂u

∂n
(y) dy −

∫
∂Ω

∂g

∂ny
(x, y)u(y) dy for all x ∈ Ω, (2)

c© Springer Nature Switzerland AG 2021
T. Kozubek et al. (Eds.): HPCSE 2019, LNCS 12456, pp. 60–79, 2021.
https://doi.org/10.1007/978-3-030-67077-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67077-1_4&domain=pdf
http://orcid.org/0000-0003-2512-474X
https://doi.org/10.1007/978-3-030-67077-1_4

Fast Large-Scale Boundary Element Algorithms 61

where

g(x, y) =

{
1

4π‖x−y‖ if x �= y,

0 otherwise
for all x, y ∈ IR3

denotes the free-space Green’s function for the Laplace operator. If we know
Dirichlet and Neumann boundary conditions, we can use (2) to compute the
solution u in any point of the domain Ω.

For boundary values x ∈ ∂Ω, Green’s formula takes the form

1
2
u(x) =

∫
∂Ω

g(x, y)
∂u

∂n
(y) dy −

∫
∂Ω

∂g

∂ny
(x, y)u(y) dy

for almost all x ∈ ∂Ω, (3)

at least in the distributional sense [27, eq. (3.92)], and this boundary integral
equation can be used to solve the Dirichlet problem: we can solve the integral
equation to obtain the Neumann values ∂u

∂n from the Dirichlet values and then
use (2) to find the solution u in all of Ω.

In order to solve the Neumann problem, we take the normal derivative of (3)
and arrive at the boundary integral equation

1
2

∂u

∂n
(x) =

∂

∂nx

∫
∂Ω

g(x, y)
∂u

∂n
(y) dy − ∂

∂nx

∫
∂Ω

∂g

∂ny
(x, y)u(y) dy

for almost all x ∈ ∂Ω, (4)

again in the distributional sense [27, eq. (3.92)], that can be used to find Dirichlet
values matching given Neumann values, so we can follow the same approach
as for the Dirichlet problem. The Dirichlet values are only determined up to a
constant by the Neumann values, and factoring out the constants leads to unique
solutions [27, Theorem 3.5.3].

In this paper, we will concentrate on solving the boundary integral equations
(3) and (4) efficiently. We employ a Galerkin scheme using a finite-dimensional
space Vh spanned by basis functions (ψi)i∈I for the Neumann values and another
finite-dimensional space Uh spanned by basis functions (ϕj)j∈J for the Dirichlet
values. The discretization turns the boundary integral operators into matrices,
i.e., the matrix G ∈ IRI×I corresponding to the single-layer operator given by

gij =
∫

∂Ω

ψi(x)
∫

∂Ω

g(x, y)ψj(y) dy dx for all i, j ∈ I, (5a)

the matrix K ∈ IRI×J corresponding to the double-layer operator given by

kij =
∫

∂Ω

ψi(x)
∫

∂Ω

∂g

∂ny
(x, y)ϕj(y) dy dx for all i ∈ I, j ∈ J , (5b)

and the matrix W ∈ IRJ ×J corresponding to the hypersingular operator given by

wij = −
∫

∂Ω

ϕi(x)
∂

∂nx

∫
∂Ω

∂g

∂ny
(x, y)ϕj(y) dy dx for all i, j ∈ J . (5c)

62 S. Börm

In order to set up this last matrix, we use an alternative representation
[27, Corollary 3.3.24] based on the single-layer operator.

Together with the mixed mass matrix M ∈ IRI×J given by

mij =
∫

∂Ω

ψi(x)ϕj(y) for all i ∈ I, j ∈ J ,

we obtain the linear system

Gx =
(

1
2
M + K

)
b (6)

for the Dirichlet-to-Neumann problem (3), where x ∈ IRI contains the coeffi-
cients of the Neumann values and b ∈ IRJ those of the given Dirichlet values,
and the system

Wx =
(

1
2
M∗ − K∗

)
b (7)

for the Neumann-to-Dirichlet problem (4), where x ∈ IRJ now contains the
coefficients of the Dirichlet values and b ∈ IRI those of the given Neumann
values. M∗ and K∗ denote the transposed matrices of M and K, respectively.

Considered from the point of view of numerical mathematics, these linear
systems pose three challenges: we have to evaluate singular integrals in order
to compute diagonal and near-diagonal entries, the resulting matrices are typi-
cally dense and large, and the condition number grows with the matrix dimen-
sion, which leads to a deteriorating performance of standard Krylov solvers.
The first challenge can be met by using suitable quadrature schemes like the
Sauter-Schwab-Erichsen technique [12,26,27]. For the third challenge, various
preconditioning algorithms have been proposed [23,28], among which we choose
H-matrix coarsening and factorization [2,14].

This leaves us with the second challenge, i.e., the efficient representation of
the dense matrices G, K, and W . This task is usually tackled by employing a
data-sparse approximation, i.e., by finding a sufficiently accurate approximation
of the matrices that requires only a small amount of data. One possibility to
construct such an approximation is to use wavelet basis functions and neglect
small matrix entries in order to obtain a sparse matrix [10,22,24,29]. Since the
construction of suitable wavelet spaces on general surfaces is complicated [11],
we will not focus on this approach.

Instead, we consider low-rank approximation techniques that directly provide
an approximation of the matrices for standard finite element basis functions.
These techniques broadly fall into three categories: analytic methods approxi-
mate the kernel function g locally by sums of tensor products, and discretization
of these sums leads to low-rank approximations of matrix blocks. The most
prominent analytic methods are the fast multipole expansion [16,17,25] and
interpolation [8,13]. Algebraic methods, on the other hand, directly approxi-
mate the matrix blocks, e.g., by computing a rank-revealing factorization like an
adaptive cross approximation [1,3,4]. The convergence and robustness of ana-
lytic methods can be proven rigorously, but they frequently require a larger than

Fast Large-Scale Boundary Element Algorithms 63

necessary amount of storage. Algebraic methods reach close to optimal compres-
sion, but involve a heuristic pivoting strategy that may fail in certain cases
[9, Example 2.2]. Hybrid methods combine analytic and algebraic techniques in
order to obtain the advantages of both without the respective disadvantages. In
this paper, we will focus on the hybrid cross approximation [9] and the Green
cross approximation [7] that both combine an analytic approximation with an
algebraic improvement in order to obtain fast and reliable algorithms.

2 H2-Matrices

Both approximation schemes in this paper’s focus lead to H2-matrices [6,21],
a special case of hierarchical matrices [15,19]. A given matrix G ∈ IRI×J with
general finite row and column index sets I and J is split into submatrices that
are approximated by factorized low-rank representations.

The submatrices are constructed hierarchically in order to make the matrix
accessible for elegant and efficient recursive algorithms. The first step is to split
the index sets into a tree structure of subsets.

Definition 1 (Cluster tree). Let I be a finite non-empty index set. A tree T
is called a cluster tree for I if the following conditions hold:

– Every node of the tree is a subset of I.
– The root is I.
– If a node has children, it is the union of these children:

t =
⋃

t′∈chil(t)

t′ for all t ∈ T with chil(t) �= ∅.

– The children of a node t ∈ T are disjoint:

t1 ∩ t2 �= ∅ ⇒ t1 = t2 for all t ∈ T , t1, t2 ∈ chil(t).

Nodes of a cluster tree are called clusters.

Cluster trees can be constructed by recursively splitting index sets, e.g.,
ensuring that “geometrically close” indices are contained in the same cluster
[20, Section 5.4]. We assume that cluster trees TI and TJ for the index sets I
and J are given.

Using the cluster trees, the index set I × J corresponding to the matrix G
can now be split into a tree structure.

Definition 2 (Block tree). A tree T is called a block tree for the row index
set I and the column index set J if the following conditions hold:

– Every node of the tree is a subset t × s ⊆ I × J with t ∈ TI and s ∈ TJ .
– The root is I × J .

64 S. Börm

– If a node has children, the children are given as follows:

chil(t × s) =

⎧⎪⎨
⎪⎩

{t × s′ : s′ ∈ chil(s)} if chil(t) = ∅,

{t′ × s : t′ ∈ chil(t)} if chil(s) = ∅,

{t′ × s′ : t′ ∈ chil(t), s′ ∈ chil(s)} otherwise

for all t × s ∈ T .

Nodes of a block tree are called blocks.

Block trees are usually constructed recursively using an admissibility condi-
tion matching the intended approximation scheme: we start with the root I ×J
and recursively subdivide blocks. Once the admissibility condition indicates for
a block t× s that we can approximate the submatrix G|t×s, we stop subdividing
and call the block t × s a farfield block. We also stop if t and s have no children,
then t× s is a nearfield block. If we ensure that leaf clusters contain only a small
number of indices, nearfield blocks are small and we can afford to store them
without compression. The key to the efficiency of hierarchical matrices is the
data-sparse representation of the farfield blocks.

We assume that a block tree TI×J is given and that its farfield leaves are
collected in a set L+

I×J , while the nearfield leaves are in a set L−
I×J .

For a hierarchical matrix [15,19], we simply assume that farfield blocks have
low rank k ∈ IN and can therefore be stored efficiently in factorized form
G|t×s ≈ AtsB

∗
ts with Ats ∈ IRt×k, Bts ∈ IRs×k. Here we use IRt×k and IRs×k as

abbreviations for IRt×[1:k] and IRs×[1:k].
The more efficient H2-matrices [6,21] use a different factorized representation

closely related to fast multipole methods [25]: each cluster is associated with a
low-dimensional subspace, e.g., a space spanned by polynomials or multipole
functions, and the range of a matrix block G|t×s has to be contained in the
subspace for the row cluster t, while the range of the adjoint block G|∗t×s has to
be contained in the subspace for the column cluster s. This property is expressed
by the equation (9) below.

Definition 3 (Cluster basis). Let k ∈ IN. A family V = (Vt)t∈TI of matrices
is called a cluster basis for TI with (maximal) rank k if the following conditions
hold:

– We have Vt ∈ IRt×k for all t ∈ TI .
– For all t ∈ TI with chil(t) �= ∅, there are transfer matrices Et′ ∈ IRk×k for all

t′ ∈ chil(t) such that

Vt|t′×k = Vt′Et′ for all t′ ∈ chil(t). (8)

An important property of cluster bases is that they can be stored efficiently:
under standard assumptions, only O(nk) units of storage are requires, where
n = |I| is the cardinality of the index set I.

Fast Large-Scale Boundary Element Algorithms 65

Definition 4. (H2-matrix). Let V = (Vt)t∈TI and W = (Ws)s∈TJ be cluster
bases for TI and TJ , respectively. A matrix G ∈ IRI×J is called an H2-matrix
with row basis (Vt)t∈TI and column basis (Ws)s∈TJ if for every admissible leaf
t × s ∈ L+

I×J there is a coupling matrix Sts ∈ IRk×k such that

G|t×s = VtStsW
∗
s . (9)

Under standard assumptions, we can represent an H2-matrix by O(nk +
mk) coefficients, where n = |I| and m = |J | are the cardinalities of the index
sets. The matrix-vector multiplication x 	→ Gx can be performed in O(nk +
mk) operations for H2-matrices, and there are a number of other important
operations that also only have linear complexity with respect to n and m, cf. [6].

3 Hybrid Cross Approximation

In order to construct an H2-matrix approximation of the matrices V , K, and
W required for the boundary element method, we first consider the hybrid cross
approximation (HCA) method [9] originally developed for hierarchical matrices.

We associate each cluster t ∈ TI with an axis-parallel bounding box Bt ⊆ IR3

such that the supports of all basis functions associated with indices in t are
contained in Bt. In order to ensure that the kernel function g is sufficiently
smooth for a polynomial approximation, we introduce the admissibility condition

max{diam(Bt),diam(Bs)} ≤ 2η dist(Bt, Bs), (10)

where diam(Bt) and diam(Bs) denote the Euclidean diameters of the bounding
boxes Bt and Bs, while dist(Bt, Bs) denotes their Euclidean distance. η is a
parameter that controls the storage complexity and the accuracy of the approx-
imation. In our experiments, the choice η = 1 leads to reasonable results.

If two clusters t ∈ TI , s ∈ TJ satisfy this condition, the restriction g|Bt×Bs

can be approximated by polynomials. We use m-th order tensor Chebyshev inter-
polation and denote the interpolation points for Bt and Bs by (ξt,ν)k

ν=1 and
(ξs,μ)k

μ=1, where k = m3. The corresponding Lagrange polynomials are denoted
by (Lt,ν)k

ν=1 and (Ls,μ)k
μ=1, and the tensor interpolation polynomial is given by

g̃int(x, y) =
k∑

ν=1

k∑
μ=1

Lt,ν(x)g(ξt,ν , ξs,μ)Ls,μ(y) for all x ∈ Bt, y ∈ Bs.

It is possible to prove

‖g − g̃int‖∞,Bt×Bs
� qm

diam(Bt)1/2 diam(Bs)1/2

for all m ∈ IN and all t ∈ TI , s ∈ TJ satisfying (10).

The rate q of convergence depends only on the parameter η, cf. [6, Chapter 4].

66 S. Börm

Unfortunately, the rank k of this approximation is too large: potential the-
ory suggests that a rank k ∼ m2 should be sufficient for an m-th order
approximation.

We reduce the rank by combining the interpolation with an algebraic proce-
dure, in this case adaptive cross approximation [1,4]: we introduce the matrix
S ∈ IRk×k by

sνμ = g(ξt,ν , ξs,μ) for all ν, μ ∈ [1 : k]

and use a rank-revealing pivoted LU factorization to obtain an approximation
of the form

S ≈ S|[1:k]×σCS|τ×[1:k],

where C := (S|τ×σ)−1 and τ, σ ⊆ [1 : k] denote the first k̃ ≤ k row and column
pivots, respectively. Due to the properties of the kernel function g, the rank k̃
can be expected to be significantly smaller than k.

Given the pivot sets τ and σ, we can now “take back” the interpolation:

g(x, y) ≈
k∑

ν=1

k∑
μ=1

Lt,ν(x)sνμLs,μ(y)

≈
k∑

ν=1

k∑
μ=1

Lt,ν(x)(S|[1:k]×σCS|τ×[1:k])νμLs,μ(y)

=
k∑

ν=1

k∑
μ=1

∑
λ∈τ

∑
κ∈σ

Lt,ν(x)sνκcκλsλμLs,μ(y)

=
∑
λ∈τ

∑
κ∈σ

k∑
ν=1

Lt,ν(x)g(ξt,ν , ξs,κ)

︸ ︷︷ ︸
≈g(x,ξs,κ)

cκλ

k∑
μ=1

g(ξt,λ, ξs,μ)Ls,μ(y)

︸ ︷︷ ︸
≈g(ξt,λ,y)

≈
∑
λ∈τ

∑
κ∈σ

g(x, ξs,κ) cκλ g(ξt,λ, y). =: g̃hca(x, y)

By controlling the interpolation order and the accuracy of the cross approxima-
tion, we can ensure that the approximation error ‖g− g̃hca‖∞,Bt×Bs

is below any
given tolerance [9].

Fast Large-Scale Boundary Element Algorithms 67

In order to obtain an approximation of the submatrix G|t×s, we replace g by
g̃hca in (5a) to find

gij =
∫

∂Ω

ψi(x)
∫

∂Ω

g(x, y)ψj(y) dy dx

≈
∫

∂Ω

ψi(x)
∫

∂Ω

g̃hca(x, y)ψj(y) dy dx

=
∑
λ∈τ

∑
κ∈σ

∫
∂Ω

ψi(x)g(x, ξs,κ)
︸ ︷︷ ︸

=:aiκ

cλκ

∫
∂Ω

ψj(y)g(ξt,λ, y)
︸ ︷︷ ︸

=:bjλ

= (ACB∗)ij for all i ∈ t, j ∈ s (11)

with matrices A ∈ IRt×σ and B ∈ IRs×τ . Due to |τ | = |σ| = k̃ ≤ k, the matrix
ACB∗ is an improved low-rank approximation of the submatrix G|t×s.

This procedure alone only yields a hierarchical matrix, not the desired H2-
matrix. In order to reduce the storage requirements, we apply hierarchical com-
pression [5]: the hybrid cross approximation technique already yields low-rank
approximations of individual blocks, but these approximations do not share com-
mon row or column cluster bases. The hierarchical compression algorithm recur-
sively merges independent submatrices into larger H2-matrices until the entire
matrix is in the required form.

The parallelization of this algorithm is fairly straightforward: we can set up
the matrices corresponding to the leaves of the block tree in parallel, and the
merge operations for submatrices can also be performed in parallel once their
children are available. In order to handle the dependencies between children
and their parents, both clusters and blocks, a task-based programming model is
particularly useful for this algorithm.

4 Green Cross Approximation

While hybrid cross approximation requires a subsequent compression step to
obtain an H2-matrix, we now consider a related technique [7] that directly yields
an H2-matrix approximation of the matrix G.

We once more consider an admissible pair t ∈ TI , s ∈ TJ of clusters with
bounding boxes Bt, Bs ⊆ IR3. We construct an auxiliary axis-parallel box ωt ⊆
IR3 such that

Bt ⊆ ωt, diam(ωt) � dist(Bt, ∂ωt), diam(ωt) � dist(Bs, ωt), (12)

cf. Fig. 1 for an illustration. Let y ∈ Bs. The third assumption in (12) implies
y �∈ ωt, therefore the function u(x) = g(x, y) is harmonic in ωt. This property
allows us to apply Green’s equation (2) to the domain ωt to obtain

g(x, y) =
∫

∂ωt

g(x, z)
∂g

∂nz
(z, y) dz −

∫
∂ωt

∂g

∂nz
(x, z)g(z, y) dz.

68 S. Börm

Bt

Bs

∂ωt

Fig. 1. Possible choice of the auxiliary bounding box ωt corresponding to Bt and Bs

We observe that the variables x and y are separated in both integrands. Due to
the second and third assumptions in (12), the integrands are smooth for x ∈ Bt

and y ∈ Bs, and we can approximate the integrals by a quadrature rule, e.g., a
composite Gauss rule, with weights (wν)k

ν=1 and quadrature points (zν)k
ν=1 on

the boundary ∂ωt in order to get

g(x, y) ≈
k∑

ν=1

wνg(x, zν)
∂g

∂nz
(zν , y) −

k∑
ν=1

wν
∂g

∂nz
(x, zν)g(zν , y) =: g̃grn(x, y)

for all x ∈ Bt and all y ∈ Bs. The function g̃grn is again a sum of tensor products,
and, as in the case of the hybrid cross approximation, its discretization gives rise
to a low-rank approximation of the submatrix G|t×s, since we have

gij =
∫

∂Ω

ψi(x)
∫

∂Ω

g(x, y)ψj(y) dy dx

≈
∫

∂Ω

ψi(x)
∫

∂Ω

g̃grn(x, y)ψj(y) dy dx

=
k∑

ν=1

w1/2
ν

∫
∂Ω

ψi(x)g(x, zν) dx

︸ ︷︷ ︸
=:aiν

w1/2
ν

∫
∂Ω

ψj(y)
∂g

∂nz
(zν , y) dy

︸ ︷︷ ︸
=:bjν

−
k∑

ν=1

w1/2
ν

∫
∂Ω

ψi(x)
∂g

∂nz
(x, zν) dx

︸ ︷︷ ︸
=:ciν

w1/2
ν

∫
∂Ω

ψj(x)g(zν , y) dy

︸ ︷︷ ︸
=:djν

= (AB∗ − CD∗)ij for all i ∈ t, j ∈ s

with A,C ∈ IRt×k and B,D ∈ IRs×k, therefore

G|t×s ≈
(
A C

) (
B∗

−D∗

)
.

Fast Large-Scale Boundary Element Algorithms 69

Unfortunately, the rank of this approximation is quite high, higher than, e.g., for
the hybrid cross approximation. Once again, we can use an algebraic technique,
i.e., the adaptive cross approximation, to improve the analytically-motivated
initial approximation g̃grn: we define

L :=
(
A C

)
∈ IRt×(2k)

and perform an adaptive cross approximation to find index sets τ ⊆ t and
σ ⊆ [1:2k] of cardinality k̃ ≤ 2k such that

L ≈ L|t×σ(L|τ×σ)−1L|τ×[1:2k].

By applying this approximation and “taking back” the quadrature approxima-
tion in the last step, we arrive at

G|t×s ≈ L

(
B∗

D∗

)
≈ L|t×σ(L|τ×σ)−1L|τ×[1:2k]

(
B∗

D∗

)
≈ L|t×σ(L|τ×σ)−1G|τ×s.

We define t̂ := τ and Vt := L|t×σ(L|τ×σ)−1 ∈ IRt×t̂ and obtain

G|t×s ≈ VtG|t̂×s. (13)

This is a rank-k̃ approximation of the matrix block, and experiments indicate
that k̃ is frequently far smaller than 2k. The equation (13) can be interpreted as
“algebraic interpolation”: we (approximately) recover all entries of the matrix
G|t×s from a few rows G|t̂×s, where the indices in t̂ play the role of interpolation
points and the columns of Vt the role of Lagrange polynomials. We call this
approach Green cross approximation (GCA).

Concerning our goal of finding an H2-matrix, we observe that Vt and t̂ depend
only on t and ωt, but not on the cluster s, therefore Vt it is a good candidate for
a cluster basis.

Applying the same procedure to the cluster s instead of t, we obtain ŝ ⊆ s
and Ws ∈ IRs×ŝ such that

G|t×s ≈ G|t×ŝW
∗
s ,

and combining both approximations yields

G|t×s ≈ VtG|t̂×s ≈ VtG|t̂×ŝW
∗
s ,

the required representation (9) for an H2-matrix.
In order to make V = (Vt)t∈TI and W = (Ws)s∈TJ proper cluster bases, we

have to ensure the nesting property (8). We can achieve this goal by slightly
modifying our construction: we assume that t ∈ TI has two children t1, t2 ∈
chil(t) and that the sets t̂1 ⊆ t1 and t̂2 ⊆ t2 and the matrices Vt1 and Vt2 have
already been computed. We have

G|t×s =
(

G|t1×s

G|t2×s

)
≈

(
Vt1G|t̂1×s

Vt2G|t̂2×s

)
=

(
Vt1

Vt2

)
G|(t̂1∪t̂2)×s.

70 S. Börm

We apply the cross approximation to G|(t̂1∪t̂2)×s instead of G|t×s and obtain

t̂ ⊆ t̂1 ∪ t̂2 and V̂t ∈ IR(t̂1∪t̂2)×t̂ such that

G|(t̂1∪t̂2)×s ≈ V̂tG|t̂×s

and therefore

G|t×s ≈
(

Vt1

Vt2

)
G|(t̂1∪t̂2)×s ≈

(
Vt1

Vt2

)
V̂tG|t̂×s,

so defining

Vt :=
(

Vt1

Vt2

)
V̂t

ensures (8) if we let (
Et1

Et2

)
:= V̂t.

This modification not only ensures that V = (Vt)t∈TI is a proper cluster basis, it
also reduces the computational work required for the cross approximation, since
only the submatrices G|(t̂1∪t̂2)×s have to be considered, and these submatrices
are significantly smaller than G|t×s.

The parallelization of this algorithm is straightforward: we can compute index
sets and matrices for all leaves of the cluster tree in parallel. Once this task has
been completed, we can treat all clusters whose children are leaves in parallel.
Next are all clusters whose children have already been treated. Repeating this
procedure until we reach the root of the tree yields a simple and efficient paral-
lel version of the algorithm. Our implementation uses simple parallel for loops
to iterate through the children of clusters and blocks prior to setting up their
parents.

5 Numerical Experiments

Now that we have two compression algorithms at our disposal, we have to inves-
tigate how well they perform in practice. While we can prove for both algorithms
that they can reach any given accuracy (disregarding rounding errors), we have
to see which accuracies are necessary in order to preserve the theoretical conver-
gence rates of the Galerkin discretization.

Until now, we have only seen HCA and GCA applied to the matrix G cor-
responding to the single-layer operator. For the other two operators, we simply
take the appropriate derivatives of g̃hca and g̃grn and use them as approximations
of the kernel functions.

Given a boundary element mesh, we choose discontinuous piecewise constant
basis functions for the Neumann values and continuous piecewise linear basis
functions for the Dirichlet values. For a meshwidth of h ∈ IR>0, we expect
theoretical convergence rates of O(h) for the Neumann values in the L2 norm,

Fast Large-Scale Boundary Element Algorithms 71

O(h3/2) for the Neumann values in the H−1/2 norm and the Dirichlet values in
the H1/2 norm, and O(h2) for the Dirichlet values in the L2 norm.

In a first experiment, we approximate the unit sphere {x ∈ IR3 : x2
1 + x2

2 +
x2
3 = 1} by a sequence of triangular meshes constructed by splitting the eight

sides of a double pyramid {x ∈ IR3 : |x1| + |x2| + |x3| = 1} regularly into
triangles and then projecting all vertices to the unit sphere. Since we expect
the condition number of the matrices to be in O(h−1) and want to preserve
the theoretical convergence rate of O(h2), we aim for an accuracy of O(h3) for
the matrix approximation. For the sake of simplicity, we use a slightly higher
accuracy: if h is halved, we reduce the error tolerance by a factor of 10 instead
of just 8.

Nearfield matrix entries are computed by Sauter-Schwab-Erichsen quadra-
ture [27], and we have to increase the order of the nearfield quadrature occasion-
ally to ensure the desired rate of convergence.

Table 1. Parameters chosen for the unit sphere

n qnear rleaf m εaca εcomp εslv εprc

8 192 4 25 5 1−5 1−5 1−6 1−2

18 432 4 36 6 3−6 3−6 3−7 1−2

32 768 4 36 6 1−6 1−6 1−7 5−3

73 728 5 49 7 3−7 3−7 3−8 5−3

131 072 5 49 7 1−7 1−7 1−8 2−3

294 912 5 64 8 3−8 3−8 3−9 2−3

524 288 5 64 8 1−8 1−8 1−9 1−3

1 179 648 6 81 9 3−9 3−9 3−10 1−3

2 097 152 6 81 9 1−9 1−9 1−10 5−4

4 718 592 6 100 10 3−10 3−10 3−11 5−4

8 388 608 6 100 10 1−10 1−10 1−11 2−4

The parameters used for this experiment are summarized in Table 1, where
n denotes the number of triangles, qnear the nearfield quadrature order, rleaf
the resolution of the cluster tree, i.e., the maximal size of leaf clusters, m the
order of interpolation for HCA and the order of quadrature for GCA, εaca the
relative accuracy for the adaptive cross approximation, εcomp the accuracy for
the hierarchical compression used for HCA, εslv the relative accuracy of the
Krylov solver, and εprc the relative accuracy of the preconditioner constructed
by coarsening [14] and H-Cholesky decomposition [20]. We use η = 1 for the
admissibility parameter and construct the boxes ωt for the Green quadrature
to ensure dist(∂ωt, Bt) = δt, with δt = max{b1 − a1, b2 − a2, b3 − a3}, where
Bt = [a1, b1] × [a2, b2] × [a3, b3]. This choice is not strictly covered by the theory
in [7], but works very well in practice. The nearfield order was only increased
if the convergence was compromised. εaca, εcomp, and εslv where chosen in the

72 S. Börm

expectation that an accuracy of O(h3) would be required in order to keep up
with the discretization error. εprc was chosen in the expectation that an accuracy
of O(h) would be necessary to keep up with the growth of the condition number
of the linear system.

Fig. 2. L2 error for the Dirichlet-to-Neumann problem

Figure 2 shows the L2-norm error for the approximation of the Neumann data
computed via the boundary integral equation (3). We use the functions u1(x) =
x2
1 − x2

3, u2(x) = g(x, y1), and u3(x) = g(x, y2) with y1 = (1.2, 1.2, 1.2) and
y2 = (1.0, 0.25, 1.0) as test cases. We can see that the optimal convergence rate
of O(h) is preserved despite the matrix compression and nearfield quadrature.

Figure 3 shows the L2-norm error for the approximation of the Dirichlet data
computed via the boundary integral equation (4). Also in this case, the optimal
convergence rate of O(h2) is preserved.

Since computing the exact H−1/2-norm error is complicated, we rely on the
H−1/2-ellipticity of the single-layer operator: we compute the L2-projection of
the Neumann values into the discrete space, which is expected to converge at a
rate of O(h3/2) to the exact solution, and then compare it to the Galerkin solu-
tion using the energy product corresponding to the matrix G. Figure 4 indicates
that the discrete H−1/2-norm error even converges at a rate of O(h2), therefore
the O(h3/2) convergence compared to the continuous solution is also preserved.

Now that we have established that the compression algorithms do not hurt
the optimal convergence rates of the Galerkin discretization, we can consider the
corresponding complexity. The runtimes have been measured on a system with
two Intel R© Xeon R© Platinum 8160 processors, each with 24 cores and running at
a base clock of 2.1 GHz. The implementation is based on the open-source H2Lib
software package, cf. http://www.h2lib.org.

http://www.h2lib.org

Fast Large-Scale Boundary Element Algorithms 73

Fig. 3. L2 error for the Neumann-to-Dirichlet problem

Fig. 4. Discrete H−1/2 error for the Dirichlet-to-Neumann problem

74 S. Börm

Fig. 5. Setup times for cluster bases and matrices

Since we expect the runtime to grow like O(n logα n), cf. [9] in combination
with [5, Lemma 3.2] for HCA and [7] in combination with [6, Lemma 3.45] for
GCA, where n is the number of triangles and α > 0, we display the runtime per
triangle in Fig. 5, using a logarithmic scale for n and a linear scale for the runtime.
We can see that HCA and GCA behave differently if the problem size grows: the
runtime for HCA shows jumps when the order of interpolation is increased, while
the runtime for GCA shows jumps when the order of the nearfield quadrature is
increased.

This observation underlines a fundamental difference between the two meth-
ods: HCA constructs the full coefficient matrix S for every matrix block, and the
matrix S requires m6 coefficients to be stored and O(km3) operations for the
adaptive cross approximation, where we expect k ∼ m2. GCA, on the other hand,
applies cross approximation only per cluster, not per block, and the recursive
structure of the algorithm ensures that only indices used in a cluster’s children
are considered in their parent. This explains why GCA is less vulnerable to
increases in the order than HCA.

On the other hand, HCA computes the approximation of a submatrix by
evaluating single integrals, cf. (11), that can be computed in O(q2near) operations,
while GCA relies on double integrals, i.e., the entries of the matrix G, that require
O(q4near) operations. This explains why HCA is less vulnerable to increases in
the nearfield quadrature order than GCA.

The setup of the matrices dominates the runtime, e.g., for 8 388 688 triangles,
the matrices G, K, and W take 7 096, 9 937, and 23 752 s to set up with GCA,
respectively, while the preconditioner for G takes only 4 898 s for coarsening and
2 244 s for the factorization, with 2 362 and 1 470 s for the preconditioner for W .
Solving the linear system with the preconditioned conjugate gradient method
takes around 750 s for the Dirichlet-to-Neumann problems and around 500 s for
the Neumann-to-Dirichlet problems.

Fast Large-Scale Boundary Element Algorithms 75

Of course, the storage requirements of the algorithms may be even more
important than the runtime, since they determine the size of a problem that
“fits” into a given computer. We again expect a growth like O(n logα n) and
report the storage requirements per triangle in Fig. 6.

Fig. 6. Storage requirements for the matrices

Although theory would lead us to expect the storage requirements to grow
like O(n log2 n), Fig. 6 suggests a behaviour more like O(n log n) in practice.
We can see that HCA consistently requires less storage than GCA. This is not
surprising, since the algebraic algorithm [5] employed to turn the hierarchical
matrix provided by HCA into an H2-matrix essentially computes the best pos-
sible H2-matrix approximation.

We may conclude that a server with 2 processors and just 48 = 2 × 24
processor cores equipped with 1 536 GB of main memory can handle boundary
element problems with more than 8 million triangles in a matter of hours without
sacrificing accuracy.

Admittedly, the unit sphere considered so far is an academic example. In
order to demonstrate that the techniques also work in more complicated settings,
we consider the crank shaft geometry displayed in Fig. 7 created by Joachim
Schöberl’s netgen Software. We start with a mesh with 25 744 triangles and
refine these triangles regularly in order to obtain higher resolutions.

The boundary element mesh is far less “smooth” in this case, and this leads
both to an increased condition number and the need to use significantly higher
nearfield quadrature orders. Since we have already seen that HCA is far less
susceptible to the nearfield quadrature than GCA, we only consider HCA in
this example. Experiments indicate that the parameters given in Table 2 are
sufficient to preserve the theoretically predicted convergence rates of the
Galerkin method.

76 S. Börm

Fig. 7. Crank shaft geometry

Table 2. Parameters chosen for the crank shaft geometry

n qnear rleaf m εaca εcomp εslv εprc

25 744 7 64 5 1−9 1−9 1−11 1−3

102 976 8 64 6 1−10 1−10 1−12 5−4

231 696 9 64 7 1−11 1−11 1−13 2−4

411 904 9 64 8 1−12 1−12 1−14 1−4

926 784 10 64 9 1−12 1−12 1−14 5−5

1 647 616 10 64 10 1−13 1−13 1−15 5−5

Fig. 8. L2 error for the Neumann-to-Dirichlet problem for the crank shaft geometry

Figure 8 shows the L2-norm errors for the Neumann-to-Dirichlet problem at
different refinement levels of the crank shaft geometry. We can see that the opti-
mal O(h2) rate of convergence is again preserved despite the matrix compression.

Fast Large-Scale Boundary Element Algorithms 77

Fig. 9. Setup times for matrices for the crank shaft geometry

Figure 9 shows the setup times per triangle for the three matrices. Due to the
computationally expensive nearfield quadrature, the setup time for the matrices
dominates the other parts of the program, e.g., for 1 647 616 triangles the setup
times for the three matrices are 15 167, 11 488, and 10 164 s, respectively, while
computing both preconditioners takes only 3 156 s and each linear system is
solved in under 180 s.

We conclude that using modern compression techniques like HCA and GCA
in combination with efficient H2-matrix representations of the resulting matrices,
large boundary element problems on meshes with several million triangles can
be treated in few hours on moderately expensive servers.

References

1. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math.
86(4), 565–589 (2000)

2. Bebendorf, M.: Hierarchical LU decomposition based preconditioners for BEM.
Computing 74, 225–247 (2005)

3. Bebendorf, M., Kuske, C., Venn, R.: Wideband nested cross approximation for
Helmholtz problems. Numer. Math. 130(1), 1–34 (2014). https://doi.org/10.1007/
s00211-014-0656-7

4. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation
matrices. Computing 70(1), 1–24 (2003)

5. Börm, S.: Construction of data-sparse H2-matrices by hierarchical compression.
SIAM J. Sci. Comp. 31(3), 1820–1839 (2009)

6. Börm, S.: Efficient Numerical Methods for Non-local Operators: H2-Matrix Com-
pression, Algorithms and Analysis, EMS Tracts in Mathematics, vol. 14, EMS
(2010)

7. Börm, S., Christophersen, S.: Approximation of integral operators by Green
quadrature and nested cross approximation. Numer. Math. 133(3), 409–442 (2015).
https://doi.org/10.1007/s00211-015-0757-y

https://doi.org/10.1007/s00211-014-0656-7
https://doi.org/10.1007/s00211-014-0656-7
https://doi.org/10.1007/s00211-015-0757-y

78 S. Börm

8. Börm, S., Grasedyck, L.: Low-rank approximation of integral operators by inter-
polation. Computing 72, 325–332 (2004)

9. Börm, S., Grasedyck, L.: Hybrid cross approximation of integral operators. Numer.
Math. 101, 221–249 (2005)

10. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic oper-
ator equations – convergence rates. Math. Comp. 70, 27–75 (2001)

11. Dahmen, W., Schneider, R.: Wavelets on manifolds I: construction and domain
decomposition. SIAM J. Math. Anal. 31, 184–230 (1999)

12. Erichsen, S., Sauter, S.A.: Efficient automatic quadrature in 3-d Galerkin BEM.
Comput. Meth. Appl. Mech. Eng. 157, 215–224 (1998)

13. Giebermann, K.: Multilevel approximation of boundary integral operators. Com-
puting 67, 183–207 (2001)

14. Grasedyck, L.: Adaptive recompression of H-matrices for BEM. Computing 74(3),
205–223 (2004)

15. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of H-matrices. Com-
puting 70, 295–334 (2003)

16. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comp.
Phys. 73, 325–348 (1987)

17. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the
Laplace equation in three dimensions. In: Acta Numerica 1997, pp. 229–269. Cam-
bridge University Press (1997)

18. Hackbusch, W.: Regularity. Elliptic Differential Equations. SSCM, vol. 18, pp. 263–
310. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54961-2 9

19. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. Part I: introduc-
tion to H-matrices. Computing 62(2), 89–108 (1999)

20. Hackbusch, W.: Tensor Spaces. Hierarchical Matrices: Algorithms and Analysis.
SSCM, vol. 49, pp. 379–394. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-47324-5 16

21. Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On H2-matrices. In: Bungartz, H.,
Hoppe, R., Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer-
Verlag, Berlin (2000). https://doi.org/10.1007/978-3-642-59709-1 2

22. Harbrecht, H., Schneider, R.: Wavelet Galerkin schemes for boundary integral
equations - implementation and quadrature. SIAM J. Sci. Comput. 27, 1347–1370
(2006)

23. Langer, U., Pusch, D., Reitzinger, S.: Efficient preconditioners for boundary ele-
ment matrices based on grey-box algebraic multigrid methods. Int. J. Numer. Meth.
Eng. 58(13), 1937–1953 (2003)

24. von Petersdorff, T., Schwab, C.: Fully discretized multiscale Galerkin BEM. In:
Dahmen, W., Kurdila, A., Oswald, P. (eds.) Multiscale Wavelet Methods for PDEs,
pp. 287–346. Academic Press, San Diego (1997)

25. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J.
Comp. Phys. 60, 187–207 (1985)

https://doi.org/10.1007/978-3-662-54961-2_9
https://doi.org/10.1007/978-3-662-47324-5_16
https://doi.org/10.1007/978-3-662-47324-5_16
https://doi.org/10.1007/978-3-642-59709-1_2

Fast Large-Scale Boundary Element Algorithms 79

26. Sauter, S.A.: Cubature techniques for 3-D Galerkin BEM. In: Hackbusch, W.,
Wittum, G. (eds.) Boundary Elements: Implementation and Analysis of Advanced
Algorithms. Notes on Numerical Fluid Mechanics (NNFM), vol. 50, pp. 29–44.
Vieweg-Verlag, Berlin (1996). https://doi.org/10.1007/978-3-322-89941-5 2

27. Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, Cham (2011)
28. Steinbach, O., Wendland, W.L.: The construction of some efficient preconditioners

in the boundary element method. Adv. Comp. Math. 9, 191–216 (1998)
29. Tausch, J.: A variable order wavelet method for the sparse representation of layer

potentials in the non-standard form. J. Numer. Math. 12(3), 233–254 (2004)

https://doi.org/10.1007/978-3-322-89941-5_2

Solving Large-Scale Interior Eigenvalue
Problems to Investigate the Vibrational
Properties of the Boson Peak Regime

in Amorphous Materials

Giuseppe Accaputo1, Peter M. Derlet2, and Peter Arbenz1(B)

1 Computer Science Department, ETH Zürich, Zürich, Switzerland
arbenz@inf.ethz.ch

2 Condensed Matter Theory Group, Paul Scherrer Institut, Villigen, Switzerland

Abstract. Amorphous solids, like metallic glasses, exhibit an excess of
low frequency vibrational states reflecting the break-up of sound due to
the strong structural disorder inherent to these materials. Referred to as
the boson peak regime of frequencies, how the corresponding eigenmodes
relate to the underlying atomic-scale disorder remains an active research
topic. In this paper we investigate the use of a polynomial filtered eigen-
solver for the computation and study of low frequency eigenmodes of
a Hessian matrix located in a specific interval close to the boson peak
regime. A distributed-memory parallel implementation of a polynomial
filtered eigensolver is presented. Our implementation, based on the Trili-
nos framework, is then applied to a Hessian matrix of an atomistic bulk
metallic glass structure derived from a molecular dynamics simulation for
the computation of eigenmodes close to the boson peak. In addition, we
study the parallel scalability of our implementation on multicore nodes.
Our resulting calculations successfully concur with previous atomistic
results, and additionally demonstrate a broad cross-over of boson peak
frequencies within which sound is seen to break-up.

Keywords: Amorphous materials · Boson peak · Large scale
eigenvalue problems · Interior eigenvalues · Polynomial filters · Trilinos

1 Introduction

In amorphous materials, such as structural glass, sound waves have a meaning
only within a finite range of wavelengths. At long wavelengths, the heterogeneity
of the amorphous structure self averages [23] and an elastic continuum emerges. In
this regime, sound is well defined via a linear dispersion characterized by a group
velocity set by the continuum’s isotropic elastic constants. However, as the wave-
length reduces, the structural heterogeneity of the glass is increasingly probed,
resulting in a broadening of a sound mode’s frequency spectrum. When this broad-
ening becomes comparable to the frequency of the sound wave (the Ioffe–Regel
c© Springer Nature Switzerland AG 2021
T. Kozubek et al. (Eds.): HPCSE 2019, LNCS 12456, pp. 80–98, 2021.
https://doi.org/10.1007/978-3-030-67077-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67077-1_5&domain=pdf
http://orcid.org/0000-0002-1501-3176
https://doi.org/10.1007/978-3-030-67077-1_5

Large-Scale Interior Eigenvalue Problems 81

limit), sound loses its traditional meaning as a propagating plane wave. In this
frequency range, the density of vibrational modes allowed by the solid is enhanced
(the boson peak), also suggesting a transition from propagating to more localized
or quasi-localized non-propagating modes. The precise way in which this tran-
sition is related to micro-structural length scales within the amorphous system
remains an active area of research [11,15,25,27,28,35–37,39,49].

One avenue in which this phenomenon may be studied is via the molecular
dynamics simulation technique – a particle trajectory method able to produce
structural glasses with atomic scale resolution. Indeed computer generated amor-
phous structures may be generated in which the force on each atom is identically
zero. When this is the case, the structure is at a local minimum of the total
potential energy and its vibrational properties may be investigated through the
corresponding local quadratic curvature. This is done by realizing that the lead-
ing order deviation in energy of a stable configuration (defined by the N atomic
positions, ri) may be expressed as the quadratic form

E ({ri + qi}) = E ({ri}) +
1
2

N∑

i,j=1

qijΔijqij , (1)

where qij = qi − qj , and qi is the deviation of the ith atom from its position ri.
In the above, Δij is therefore the second derivative with respect to the bond-
length deviations qij . Δij is a symmetric 3 × 3 matrix. The quadratic energy
term then defines a linear restoring force for such deviations, and an equation
of motion for the {qi} coordinates whose secular form equals

N∑

j=1

(
δij(ωn)2 − Hij

)
qn,j = 0, 1 ≤ n ≤ N,

where Hij = Δij/
√

mimj , mi is the mass of the ith atom, and ωn is the fre-
quency of the nth vibrational eigenmode qn,i. The energy function, E ({ri}),
is usually determined through an empirical force model which is short range
(for metallic and covalent systems), i.e., which spans a few atomic distances and
results in a sparse matrix H.

Therefore, in order to calculate the vibrational frequencies, ωn =
√

λn, we
have to solve a real symmetric eigenvalue problem

Hq = λq, H ∈ IR3N×3N , q ∈ IR3N . (2)

The regime of frequencies relevant to sound waves and the boson peak regime are
at the lower end of the eigenvalue spectrum. Early simulation work had often con-
sidered system sizes in the range of several thousand atoms, and more recent work
has considered system sizes up to several hundred thousand atoms [15,27,39].
Contemporary understanding of the frequency regime of the boson peak suggests
that the relevant length scales correspond to those of elastic heterogeneities – a
length scale which is at least an order of magnitude larger than an inter-atomic

82 G. Accaputo et al.

distance. Thus, if one wishes to study the transition from well defined propagat-
ing sound waves to their break up, larger system sizes will be needed spanning
values of N up to several tens if not hundreds of millions of atoms. For such
large system sizes, the boson peak eigenvalue regime is no longer an extremal
eigenvalue problem, since there will now be a significant interval of (lower) eigen-
values describing the allowed sound waves. This fact motivates the development
of eigensolver methods which are able to focus on a finite interval of eigenvalues
in the interior of the spectrum of H and their eigenvectors.

The shift-and-invert Lanczos (SI-Lanczos) algorithm is the method of choice
for computing interior eigenvalues and corresponding eigenvectors of a symmet-
ric H close to some target τ . However, the SI-Lanczos algorithm needs the
factorization of H − τI which is not feasible here for its excessive memory
requirements. For such cases, the Jacobi–Davidson methods have been devel-
oped [42,43]. To be efficient, they however need an effective preconditioner to
solve the so-called correction equation, which usually entails its factorization [4].
In an earlier study [34], we were not able to identify such preconditioners for (2).

In this work we investigate a technique, known as spectral filtering or ker-
nel polynomial method, for solving eigenvalue problems that obviates factoriza-
tions altogether [20,21,40,41]. Spectral filtering has been combined with Krylov
space methods [16,38] or subspace iteration [18,51]. High-performance imple-
mentations are discussed in [18,31]. In order for the technique to be appli-
cable the extremal eigenvalues λmin and λmax of H, or, at least, some accu-
rate bounds must be available. To compute the eigenvalues in the interval
[ξ, η] ⊂ [λmin, λmax], a polynomial ρ is constructed such that ρ(x) ≥ 1 in [ξ, η]
and |ρ(x)| � 1 away from [ξ−ε, η+ε] for some positive ε. The desired polynomial
ρ could be an approximation of the characteristic function χ[ξ,η] associated with
the interval [ξ, η]. If ρ(H) multiplies a vector, (most) of the unwanted eigenvec-
tor components are suppressed. Therefore, ρ is called a polynomial filter. The
degree of ρ depends on the width of the interval [ξ, η], on the width ε of the
margins, and the strength of the filter. The degree increases if η − ξ and/or ε
shrink. A consequence is that increasing parallelism by slicing the interval [ξ, η]
is not scalable. Interval slicing may however be necessary for memory reasons.
In our experiments we use polynomial degrees as high as d = O(10′000).

The numerical experiments consider that part of the spectrum in which sound
is known to break up in a simplified model of an amorphous solid corresponding
to a Hessian H of order 4′116′000 corresponding to 1′372′000 atoms. With the
new approach we can deal with models that are more than five times bigger than
those we reported on previously. Their simulation requires at least 360 cores on
our compute environment in order to store matrices and vectors in main memory.
The new algorithm relies heavily on matrix-vector multiplication and therefore
scales well to higher core counts.

For the amorphous system investigated in the present work we find a spec-
trum of low frequency modes that are well characterized by sound waves. How-
ever as the frequency of these modes increases, the associated decrease in sound
wavelength results in increased scattering with the underlying microscopic disor-
der of the amorphous material until eventually the vibrational modes have little

Large-Scale Interior Eigenvalue Problems 83

or no sound-like character. This is the boson peak regime and for the largest sys-
tem size considered, the transition appears to have a rather extended frequency
range suggesting the boson peak frequency and the associated break-up of sound
is a broad cross-over rather than an abrupt transition.

The paper is organized as follows. In Sect. 2 we review the technique of
polynomial filtering. In Sect. 3 we give some details on how we implemented
our eigensolvers with the Trilinos software framework. In Sect. 4 we discuss the
numerical experiments that we conducted in a distributed memory computing
environment. In Sect. 5 we discuss physics results and in Sect. 6 we draw our
conclusion and mention potential future work.

An extended version of this paper is available from the arXiv [2].

2 Numerical Solution Procedures

In this section we discuss how we complement the restarted Lanczos algorithm
by polynomial filters to compute interior eigenvalues of a symmetric matrix. The
Lanczos algorithm has been used for this purpose, e.g., in [9,24].

2.1 Spectral Projector

Let H be a real symmetric matrix of order n and let

H = UΛU∗ =
n∑

i=1

λiuiu
∗
i , U = [u1, . . . ,un], Λ = diag(λ1, . . . , λn),

with orthogonal/unitary U , be its spectral decomposition. For convenience, we
assume that H’s spectrum σ(H) ⊂ [−1, 1]. If this is not the case then we can
enforce this property by means of a linear transformation [2] provided that we
know the extremal eigenvalues λmin and λmax of H or that we at least have
accurate lower and upper bounds, respectively, for them.

To compute the eigenpairs associated with the eigenvalues in a prescribed
interval [ξ, η] ⊂ [−1, 1] it is useful to define the corresponding spectral projector.
To this end, let

χ[ξ,η](x) =

{
1, x ∈ [ξ, η],
0, otherwise,

(3)

be the characteristic function for the closed interval [ξ, η]. Then, the spectral
projector [33] for the eigenvalues in [ξ, η] is given by

P[ξ,η] ≡ χ[ξ,η](H) =
n∑

i=1

χ[ξ,η](λi)uiu
∗
i =

∑

ξ≤λi≤η

uiu
∗
i . (4)

The orthogonal projector P[ξ,η] has eigenvalues 0 and 1. Its range R(P[ξ,η]) is
spanned by the eigenvectors ui with λi ∈ [ξ, η]. The trace of the projector P[ξ,η]

is the number of eigenvalues in [ξ, η], counting multiplicities,

μ[ξ,η] ≡ trace P[ξ,η] = |σ(H) ∩ [ξ, η]|. (5)

84 G. Accaputo et al.

Algorithm 1. Computation of the eigenvectors associated with an interval
Input: Symmetric positive definite Matrix H with −1 � λmin and λmax � 1 and an

interval [ξ, η] ⊂ [−1, 1].
Output: Eigenpairs (λ1, u1), . . . , (λm, um), m = μ[ξ,η], with {λ1, . . . , λm} = σ(H) ∩

[ξ, η].

1: Determine an orthonormal basis V = [v1, . . . , vm] for R(P[ξ,η]).
2: Determine the desired eigenpairs by the Rayleigh–Ritz procedure [30], i.e., compute

the spectral decomposition of the (small) matrix V ∗HV ,
Q∗(V ∗HV)Q = Λ. (6)

The eigenvalues in [ξ, η] can now be read from the diagonal of Λ; the associated
eigenvectors are the respective columns of U = V Q.

In Algorithm 1 we formulate an idealized procedure to compute the eigenva-
lues of H in [ξ, η] and their corresponding eigenvectors. In step 1 of this algo-
rithm it is useful to know (at least an upper bound of) the dimension μ[ξ,η] of
R(P[ξ,η]). Then, V can be computed by the Lanczos algorithm with the matrix
P[ξ,η] in (4). Applying P[ξ,η] to a vector removes all components in the direction
of the unwanted eigenvectors. Algorithm 1 implements an idealized procedure
as the spectral projector P[ξ,η] is not available. Forming it would require the
knowledge of the seeked eigenvectors. If P[ξ,η] was available the desired subspace
could be obtained by one step of subspace iteration provided the subspace is
chosen properly.

In a practical procedure, a function, say ψ, is constructed that is much bigger
in [ξ, η] than in [−1, 1] \ [ξ, η] such that the components in undesired directions
are suppressed as much as possible if ψ(H) is applied to a vector. It is not
necessary that ψ(H) ≈ χ[ξ,η](H).

In the sequel we discuss polynomial filters ψ. We favor polynomial filters since
applying a matrix polynomial to a vector requires matrix-vector multiplications
which can be implemented relatively easily and efficiently in an HPC environ-
ment. Rational approximations are possible but require the solution of linear
systems which we want to avoid [7,50]. In fact, the efficient implementation of
the multiplication of sparse matrices with (multiple) vectors is an area of recent
investigation [3,22].

2.2 Chebyshev Polynomial Expansions

Let IPj denote the set of polynomials of degree at most j. The Chebyshev poly-
nomials Tj(x) = cos(j arccos x) ≡ cos(jϑ) ∈ IPj , j = 0, 1, . . ., form a complete
orthogonal set on the interval [−1, 1] with respect to the inner product [44]

〈f, g〉 ≡
∫ 1

−1

f(x)g(x)√
1 − x2

dx =
∫ π

0

f(ϑ)g(ϑ) dϑ, x = cos ϑ.

Using the Kronecker delta δjk, we have

〈Tj , Tk〉 =
π

2
(1 + δ0j)δjk.

Large-Scale Interior Eigenvalue Problems 85

The Chebyshev series of a piecewise continuous function f on [−1, 1] is given by

f̂(x) =
∞∑

j=0

γjTj(x), γj =
〈f, Tj〉
〈Tj , Tj〉

. (7)

This series converges to f(x) if f is continuous at the point x, and converges
to the average of the left- and right-hand limits if f has a jump discontinuity
at x [44]. The polynomial p ∈ IPd that best approximates f in the norm ‖·‖ =
〈·, ·〉1/2 is obtained by truncation,

pd(x) =
d∑

j=0

γjTj(x). (8)

The Chebyshev polynomials satisfy the three-term recurrence

Tj+1(x) = 2xTj(x) − Tj−1(x), j > 0, T0(x) = 1, T1(x) = x.

The three-term recurrence can be used when a matrix polynomial is applied to
a vector. Let tj = Tj(H)x. Then t0 = T0(H)x = Ix, t1 = T1(H)x = Hx, and

tj+1 = 2Htj − tj−1, j > 0. (9)

Algorithm 2 shows how pd(H)x is evaluated employing the 3-term recur-
rence (9). It constitutes the most time consuming operation in our simulations.
Note that the degree d can be in the hundreds or even thousands. Algorithm2
presents a stable procedure to evaluate truncated Chebyshev series [44]. (The
Clenshaw algorithm [44] could be used as well.)

2.3 Dealing with the Gibbs Phenomenon

Truncated Chebyshev series expansions of discontinuous functions exhibit oscil-
lations near the discontinuities, which are known as Gibbs oscillations or
Gibbs phenomenon. To alleviate this phenomenon the series must be truncated
smoothly using appropriate damping factors. The damping factors depend on the

Algorithm 2. Evaluation of truncated Chebyshev series pd(H)x
Input: Vector x and coefficients γ0, . . . , γd that define pd in (8).
Output: Vector y = pd(H)x.

1: t′′ = x; y = γ0t
′′. /* t′′ = t0; y = p0(H)x. */

2: if d ≥ 1 then t′ = Hx; y = y + γ1t
′; end if /* t′ = t1; y = p1(H)x. */

3: for j = 2, . . . , d do
4: t = 2Ht′ − t′′; t′′ = t′; t′ = t. /* t = tj ; t′ = tj−1; t′′ = tj−2. */
5: y = y + γjt. /* y = pj(H)x = pj−1(H)x + γjtj . */
6: end for

86 G. Accaputo et al.

index at which the series is truncated, i.e., on the degree of the approximating
polynomial. Thus, pd(t) in (8) is replaced by

ρd(t) =
d∑

j=0

gd
j γjTj(t) (10)

where the gd
j are the smoothing coefficients. These coefficients can be deter-

mined by different approaches, see [47] for a survey. We chose to employ Jackson
smoothing [32,38], with smoothing coefficients given by

gd
j =

(
1 − j

d + 2

)
cos jαd +

1
d + 2

cos αd

sin αd
sin jαd, αd =

π

d + 2
. (11)

The advantage of Jackson smoothing is its monotonic approximation. This
implies that the truncated polynomial is positive if the function to be approxi-
mated is so.

2.4 Counting the Eigenvalues in an Interval

In order that the eigenvalues of H in [ξ, η] can be computed numerically their
number or at least a (tight) upper bound has to be known. After all, mem-
ory space has to be provided for storing the associated eigenvectors. Applying
Sylvester’s law of inertia for counting the eigenvalues in an interval is infeasible
because of the fill-in generated in the LDLT factorization of H − λI. However,
we showed above that the number of the eigenvalues in an interval [ξ, η] equals
the trace of the spectral projector P[ξ,η] = χ[ξ,η](H) which we do not have avail-
able explicitly, but which we can approximate by a truncated Chebyshev series
ψ(H), i.e. ψ(t) ≈ χ[ξ,η](t). Hutchinson [19] showed that E(v∗Hv) = trace (H)
holds for randomly generated vectors v with entries that are identically inde-
pendently distributed (i.i.d.) random variables. Hutchinson originally used i.i.d.
Rademacher random variables, where each entry of v assumes the value −1 or 1
with probability 1/2. In general, any sequence of random vectors v� whose entries
are i.i.d. random variables can be used, as long as the mean of their entries is
zero [9]. Here, we use a Gaussian estimator to approximate trace P[ξ,η],

μ[ξ,η] = trace P[ξ,η] ≈ TM ≡ n

M

M∑

�=1

vT
� ψd(H)v�, ‖v�‖2 = 1, (12)

by using normally distributed variables for the entries of the random vectors v�.
(The factor n in (12) is due to the normalization of the v�.) Despite the fact that
the Gaussian estimator has a larger variance than Hutchinson’s, it shows better
convergence in terms of the number M of sample vectors [5]. As in [20,26,29]
we choose ψd ∈ IPd to be a truncated Chebyshev series for χ[ξ,η](t), such that

γj =
〈χ[ξ,η], Tj〉
〈Tj , Tj〉

.

Large-Scale Interior Eigenvalue Problems 87

2.5 Computing a Basis of R(P[ξ,η])

The desired eigenvectors uk of H with eigenvalues λk ∈ [ξ, η] span R(P[ξ,η]) =
R(χ[ξ,η](H)). In Algorithm 1 first a basis for R(P[ξ,η]) is computed and then the
eigenvectors are extracted from it by the Rayleigh–Ritz procedure [30]. Remem-
ber that if uk ∈ R(V) then λk is an eigenvalue of V ∗HV .

The procedure to generate a basis of R(P[ξ,η]) is based on the thick-restart
Lanczos algorithm [48] where the operator is the matrix polynomial ρd(H). Our
implementation follows closely the one described by Li et al. [24] that has been
implemented in the EVSL library1.

The requirements for the polynomial filter are different for the Lanczos algo-
rithm and for eigenvalue counting. In the latter the filter ψ(t) ∈ IPd has to be
a good approximation of the characteristic function χ[ξ,η](t). As the Lanczos
algorithm converges best towards extremal eigenvalues that are well separated
from the rest of the spectrum [30], ρd(t) must be (relatively) large in [ξ, η] and
small outside. Li et al. [24] suggest, as others before [40,41,47], to generate a
filter that mimicks a Delta distribution, i.e., the functional δ(· − γ) defined by

∫ ∞

∞
δ(t − γ)φ(t) dt = φ(γ)

for all continuous functions φ. In IPd, δ(t − γ) can be represented by

ρd(x) =
d∑

j=0

Tj(γ)
〈Tj , Tj〉

Tj(x). (13)

γ ∈ (ξ, η) is chosen close to the interval midpoint such that τ := ρd(ξ) = ρd(η).
By construction, ρd(x) > τ in (ξ, η). Eigenvectors of ρd(H) corresponding to
eigenvalues > τ are potential eigenvectors of H. Care has to be taken, though, as
different eigenvalues of H may be mapped to the same value by ρd. Nevertheless,
the eigenvectors of ρd(H) corresponding to eigenvalues > τ do span R(P[ξ,η]).
The correct eigenvalue-eigenvector relations can be found by the Rayleigh–Ritz
procedure applied to H. With this filter the eigenvalues close to ξ and η appear
usually later than those close to γ. Since TM in (12) is only an approximation
of μ[ξ,η] we add some 10% to it to get a (heuristic) upper bound for the number
of eigenvalues in [ξ, η]. Of course, a large overestimation of μ[ξ,η] entails a waste
of memory space.

3 Implementation

We combined the methods discussed in the previous section and a few other
useful tools into a utility that can be employed to compute the eigenpairs of a
n×n real symmetric (or complex Hermitian) matrix H within a specified interval
of interest [ξ, η] in parallel by simply providing an XML configuration file [1].
The outline of the utility is displayed in Algorithm3. The utility is written in
C++11 and uses Trilinos [45] extensively. Trilinos2 is a collection of open-source
1 http://www-users.cs.umn.edu/∼saad/software/EVSL/.
2 https://trilinos.org/packages/.

http://www-users.cs.umn.edu/~saad/software/EVSL/
https://trilinos.org/packages/

88 G. Accaputo et al.

Algorithm 3. The BosonPeak Utility
1: Import user-specified configuration via XML file.
2: Import matrix H .
3: if requested then estimate extremal eigenvalues λmin, λmax of H using a few Lanc-

zos steps.
4: Transform the matrix H such that −1 ≤ λmin < λmax ≤ 1.
5: if requested then estimate the number of eigenvalues in the specified interval [ξ, η].
6: Compute the polynomial filter ρd.
7: Compute the eigenpairs (λk, uk), ‖uk‖ = 1, of H with λk ∈ [ξ, η] and residual

norms rk = ‖Huk − λkuk‖ < ε using the thick restart Lanczos algorithm.
8: if requested then save eigenvalues λk, associated eigenvectors uk, and residual

norms rk to disk.

software libraries, called packages, for the development of scientific applications.
More information on the utility is found in [1,2].

The most basic Trilinos package is Epetra that provides classes for the con-
struction and use of sequential and distributed parallel linear algebra objects.
The Trilinos solver packages are designed to work with Epetra objects. The most
used linear algebra objects in our implementation are (i) sparse matrices stored
as Epetra CrsMatrix objects in the compressed row storage (CRS) scheme, and
(ii) Epetra MultiVector objects that represent multivectors, i.e., collections of
dense vectors. Each vector in an Epetra MultiVector object is stored as a con-
tiguous array of double-precision numbers. Both objects are extensively used for
sparse matrix-vector multiplications in the various Trilinos solver packages. All
Trilinos packages resort to a method called Epetra Operator::Apply to multi-
ply a matrix with a (multi)vector. Our operators are mostly matrix polynomials,
and a call to Epetra Operator::Apply entails the invocation of Algorithm2.

Anasazi [6] is a package that offers a collection of algorithms for solving large-
scale eigenvalue problems. As part of the package it provides solver managers
to implement strategies for that purpose. We employ Anasazi’s block Krylov–
Schur eigensolver with thick restarts. The subspace iteration that we discuss
below is not a part of Anasazi. We implemented it ourselves, based on Epetra
data structures.

The Teuchos package is a collection of common tools used throughout Trili-
nos. Among other things, it provides templated access to BLAS and LAPACK
interfaces, parameter lists that allow to specify parameters for different packages,
and memory management tools for aiding in correct allocation and deletion of
memory.

Part of Teuchos’ memory management tools is an implementation of a smart
Reference-Counted Pointer (RCP) class, which for an object tracks a count of
the number of references to it held by other objects. Once the counter becomes
zero, the object can be deleted. The advantage of a RCP is that the possibility
of memory leaks in a program can be reduced. This is important when working
with rather large objects, e.g., an Epetra CrsMatrix object storing over 109

nonzero entries. RCP objects are heavily used throughout our implementation

Large-Scale Interior Eigenvalue Problems 89

to manage large objects, especially large temporary objects that are only needed
during a fraction of the whole computation.

Trilinos supports distributed-memory parallel computations through the
Message Passing Interface (MPI). Both Epetra CrsMatrix and Epetra
Multivector objects can be used in a distributed memory environment by defin-
ing data distribution patterns using Epetra Map objects.

The entries of a distributed object (rows or columns of an Epetra CrsMatrix
or rows of an Epetra Multivector) are represented by global indices uniquely
over the entire object. A map essentially assigns global indices to available MPI
ranks, which in our case corresponds to a single core of a processor.

For the addressing, local and global indices in Epetra use by default the 32-bit
int type. Since our implementation is based on the C++11 language standard
and we want to allow computations with large matrices, we explicitly use 64-bit
global indices of type long long when working with distributed linear algebra
objects. (Local indices are of type int.)

An Epetra Map object encapsulates the details of distributing data over
MPI ranks. In our implementation, we use contiguous and one-to-one maps
for the block row-wise distribution of the Epetra MultiVector objects. Con-
tiguous means that the list of global indices on each MPI rank forms an interval
and is strictly increasing. A one-to-one map allows a global index to be owned by
a single rank. For the columns, the distribution pattern we are using distributes
the complete set of global column indices for a given global row, meaning that
if a rank p owns the global row index i, it also owns all global column indices
j on that row, thus having local access to the global entry (i, j). The map used
for the distribution of the columns is thus not a one-to-one map, since a global
column index can be owned by multiple ranks.

The matrix import implemented in the utility allows to efficiently import
large matrices stored in a HDF53 file directly to an Epetra CrsMatrix object.
HDF5 is a data model, library, and file format for storing and managing data
collections of all sizes and complexity. One of the advantages of using the HDF5
file format to store and import large matrices is the possibility to use MPI to read
the HDF5 files in parallel. For this reason Trilinos provides the EpetraExt::HDF5
class for importing a matrix stored in a HDF5 file to a Epetra CrsMatrix.

Since the EpetraExt::HDF5 class currently does not provide an import func-
tion for matrices with 64-bit global indices of type long long, we extended the
class by this functionality. The BosonPeak utility also provides a Python script
that can be used to convert matrices stored in the MatrixMarket format4 to a
HDF5 file suitable for import. The utility is described in detail in [1].

3 https://portal.hdfgroup.org/.
4 https://math.nist.gov/MatrixMarket/.

https://portal.hdfgroup.org/
https://math.nist.gov/MatrixMarket/

90 G. Accaputo et al.

4 Numerical Experiments

To test our code we consider a glassy structure comprising of 1′372′000 atoms.
The Hessian matrix H has order n = 3 × 1′372′000 = 4′116′000 and nnz =
1′028′329′164 nonzero entries. The number of nonzeros per row is about 250,
leading to a sparsity of 6 · 10−5. The atomic positions of this structure are
produced through a series of molecular dynamics simulations involving: a well-
equilibrated liquid at temperatures well above the melting temperature, a quench
to the lower temperatures of the amorphous solid regime, and a final relaxation
which brings the system to a local potential energy minimum from which the
dynamical matrix H can be calculated. Note that different equivalent initial
distributions of the atoms lead to different realizations of the configuration. The
empirical atomic interaction model used to perform these simulations is based on
a Lennard–Jones force model [46], which describes the interaction between atoms
of two types differing in both size and mass. Periodic boundary conditions are
used to remove the explicit structural effect of a surface. For the chosen density,
the periodicity length is L = 101.714585 where the unit distance is close to the
average atomic bond length. Details of the sample preparation procedure and
the resulting glassy structures may be found in Refs. [12–14].

Past work considering much smaller glassy atomic configurations using the
Lennard–Jones potential [1,2,15] suggests that the eigenvalue regime at which
sound breaks up – the so-called boson peak regime – occurs in the approximate
λ-interval [1, 2], where λmax was around but above 1900. Since the infinite-
dimensional operator underlying (2) is bounded, we do not expect λmax to
increase much with increased system size. Indeed, the actual matrix H has its
eigenvalues in the interval [0, 1941]. (In the computation this interval is mapped
to [−1, 1], cf. [2].)

A survey of results for the partial eigenvalue computations of the Hessian H
in five subintervals of [ξ, η] = [1, 2] is given in Table 1. There are three intervals
of length 0.014 with about 50 eigenvalues and two intervals of length 0.028 with
about 105 eigenvalues. These computations were part of an exploration of the
eigenstructure of H in the entire interval [1, 2]. For each interval [ξ, η] we give the
true, estimated, and requested numbers of eigenvalues in the respective interval.
The true numbers of eigenvalues are obtained as a result of the computations
that targeted at the requested numbers of eigenvalues in the intervals. These
are 10 − 20% more eigenvalues than estimated and, as such, a crude upper
bound for μ[ξ,η]. The estimates have been obtained by the technique discussed
in Subsect. 2.4 with M = 30 samples in (12) and degree k = 100 for which
parameters de Napoli et al. [29] report very good results.

We computed the eigenvalues of H with Anasazi’s block Krylov–Schur (BKS)
algorithm (in fact, the thick restarted block Lanczos algorithm) with the same
parameter values. The block size b was fixed at 8. The maximal dimension of
the Krylov space K was set to 3 × nev, where nev is the number of requested
eigenvalues. The number of blocks was thus limited to 3×nev

block size . If the maximal
dimension of the Krylov space is attained then a restart is issued. The threshold
in the discussion after Eq. (13) was set to τ = 0.9.

Large-Scale Interior Eigenvalue Problems 91

Table 1. Computational results for large glassy structure. ξ, η are given with reference
to the interval [0, 1941]. The number of matrix-vector multiplications (#MatVec) equals
(blk size) × (#blk steps) × (poly degree). Times are for 360 cores on Euler V.

blk

size

#blks max

dim K
re-starts #blk

steps

poly

degree

#MatVec’s ξ η evs

est

evs

req

evs

true

time [sec]

8 21 168 3 63 10′142 5′111′568 1.169 1.183 49 55 46 22′667
8 21 168 3 77 10′202 6′284′432 1.183 1.197 49 55 48 27′959
8 21 168 4 91 10′262 7′470′736 1.197 1.211 50 55 54 32′937
8 48 384 2 80 5′175 3′312′000 1.211 1.239 101 128 106 14′647
8 48 384 2 80 5′233 3′349′120 1.239 1.267 103 128 105 14′850

We have implemented the operator ρd(H) in Trilinos. The degree d of the
filter polynomial is given in Table 1. One call of the operator amounts to the
execution of d matrix-multivector multiplications. Remember that b = 8. The
bd MatVec’s constitute more than 99% of the execution time of the solver.

The computations were carried out on Euler V of ETH Zurich’s compute
cluster5. Euler V contains 352 compute nodes (Hewlett-Packard BL460c Gen10),
each equipped with two 12-core Intel Xeon Gold 5118 processors (2.3 GHz nom-
inal, 3.2 GHz peak) and 96 GB of DDR4 memory clocked at 2.4 GHz. The
nodes are connected via a 100 Gb/s InfiniBand EDR network. In the speci-
fied environment, our implementation worked with OpenMPI 1.65, HDF5 1.8.12,
Boost 1.57.0, and Trilinos 12.2.1. Further, the code has been compiled with
GCC 4.8.2 and the following optimization flags:

-ftree-vectorize -march=corei7-avx -mavx -std=c++11 -O3.

The convergence criterion requires that the residual norms

‖ρd(H)uk − μkuk‖ < ε, ε = 10−6, ‖uk‖ = 1,

for all requested eigenpairs (μk,uk). This lead to very accurate eigenpairs of the
original matrices,

rk ≡ ‖Huk − λkuk‖ < 3.5 · 10−8, ‖uk‖ = 1,

or better for all desired (true) eigenpairs (λk,uk). Since we compute too many
eigenpairs, the desired ones are finally too accurate. So, it is important for good
efficiency to have accurate estimates for the eigenvalue counts. A high secu-
rity margin entails high computational and memory costs, together with overly
accurate results.

Interestingly, it is faster to compute the 105 eigenvalues in the longer intervals
than the 50 eigenvalues in the shorter ones, essentially because of the lower
degrees of the filter polynomials. Also the maximal dimension of the search
space is relatively larger. This eases the extraction of the desired information.
The overhead due to reorthogonalizations is negligible. The times in Table 1 are

5 https://scicomp.ethz.ch/wiki/Euler.

https://scicomp.ethz.ch/wiki/Euler

92 G. Accaputo et al.

Table 2. Execution times for p = 360 and p = 720 cores for the intervals in Table 1
and derived speedups.

evs conf evs found deg p = 360 p = 720 ‘speedup’

#blk steps time #blk steps time

55 46 10′142 63 22′667 63 11′570 1.96

55 48 10′202 77 27′959 63 11′506 2.43

55 54 10′262 91 32′937 77 14′229 2.31

128 106 5′175 80 14′647 112 10′570 1.39

128 105 5′233 80 14′850 112 10′547 1.41

very well in proportion with the number of MatVec’s. We consistently observe
226 MatVec’s per sec. The times given are the fastest out of three runs. This
number of MatVec’s per second amounts to ∼1.29 Gflop/s per core which is
about 3.5% of the nominal peak performance of 36.8 Gflop/s per core [17, p.
55]. This percentage is comparable with those listed in the High Performance
Conjugate Gradients (HPCG) Benchmark project6.

Arithmetic intensity refers to the number of floating point operations per-
formed per amount of bytes moved. The arithmetic intensity of a MatVec of a
sparse matrix stored in CRS format [8] with a multivector with b columns is

ai =
2 · b · nnz

12 · nnz + (2 · 8 · b + 4) · n
. (14)

The coefficient 12 refers to the 8-byte values and the 4-byte column indices of
the matrix. The 4n bytes are consumed by the row pointers. The arithmetic
intensity for b = 8 is 1.28, while it is 0.17 for b = 1. Note that multivectors are
read and written.

The STREAM benchmark7 measures the sustainable memory bandwidth in
high performance computers. Relevant for the MatVec is the triad operation
x ← y + αz. On an Intel Xeon Gold 5118, about 6.42 GB/s are moved per core
in the STREAM TRIAD benchmark [17]. The performance of memory bound
operations equals the arithmetic intensity times the memory bandwidth. In this
way we get a performance of 1.06 Gflop/s for b = 1 and of 8.20 Gflop/s for b = 8.
Our code thus performs rather as a single vector MatVec than as a multivector
MatVec with eight columns.

In Table 2 we replicate the execution times of Table 1 for 360 cores and com-
plement them with the execution times obtained with 720 cores. 360 cores cor-
respond to 15 nodes; 720 cores correspond to 30 nodes of Euler V. Evidently,
the runs with 720 cores should take only half the time of the ones on 360 cores,
amounting to a speedup of two. Since most of the computing time is spent in
(blocked) matrix-vector multiplications a speedup close to two can indeed be

6 https://www.hpcg-benchmark.org/.
7 https://www.cs.virginia.edu/stream/.

https://www.hpcg-benchmark.org/
https://www.cs.virginia.edu/stream/

Large-Scale Interior Eigenvalue Problems 93

expected. The data is distributed among the cores in the standard block row-
wise fashion of Trilinos. The computations are similar, in particular, the initial
vectors are equal. Nevertheless, the number of iteration steps until convergence
can differ significantly. Therefore, the speedup appears to be erratic. However,
if we compare the execution times of the single block steps, then we observe
speedups close to two, more precisely between 1.94 and 1.988. With 720 cores
about 443 MatVec’s are executed per second. In this sense, our code scales well.

5 Physics Results

In what follows, the eigenmode q is seen as consisting of N 3-vectors, qi =
(q1i , q2i , q3i), where the superscript indicates the coordinate direction. To gain
an estimate of the number of atoms involved in a normalized eigenmode the
participation ratio [10] is used,

PR =
1∑

i |qi|4
=

1
‖q‖44

, (15)

where ‖q‖2 = 1 is assumed. When an eigenmode has constant values, say |qi| =
1/

√
N then PR = 1 and all atoms are said to partake in the eigenmode. On

the other hand when |qi| = 1 for the ith atom and |qj | = 0 for all other atoms
j �= i, then PR = 1/N . For a plane (sound) wave of wave-vector k we have
qi =

√
2/N ζ̂q sink ·qi entailing a PR = 2/3. Here ζ̂q is termed the polarization

vector and is usually taken as being perpendicular (transverse sound) or parallel
(longitudinal sound) to k.

Figure 1 plots the participation ratio of the entire spectrum considered in
the present work. At λ = 0, there exist three modes with a participation ratio
equal to unity, which correspond to the translational modes of the dynamical
matrix. For the region up to approximately, λ = 0.5, the eigenvalues are seen
to bunch into clusters with a participation ratio of approximately 2/3, indi-
cating plane-wave-like eigenmodes and the presence of well defined sound. The
observed bunching and their multiplicity arise from a combination of the polar-
ization vectors, ζ̂k , and the allowed wave-vectors, k[mnl] = 2π/L(m,n, l). Here
L is the periodicity length of the amorphous configuration, and m, n, and l
are integers defining the allowed wave-lengths. Through inspection of the corre-
sponding eigenmodes, a wave-vector family and polarization type can be iden-
tified for each bunching and are indicated in Fig. 1. As the participation drops
with increasing eigenvalue magnitude, this identification process becomes more
difficult with each peak (now significantly broadened) being well described by a
range of different plane wave components.

Figure 2 displays the spatial structure of two such eigenmodes. In this figure,
(a) demonstrates a mode that is well described by [100] transverse plane waves,
and (b) a mode well described by [311] transverse plane waves. In both (a)
and (b), three spatial structures are shown, where the left-most figure plots the
atoms at their spatial coordinates colored according to |qi|4 derived from the
actual eigenmode and the central figure plots their color according to |qPW

i |4

94 G. Accaputo et al.

derived from the plane wave (PW) representation. The right-most figure plots
only those atoms for which |qi|4 > max{|qPW

i |4; i = 1, n}. Inspection of the left
and central panels of Fig. 2 demonstrates that a large part of the eigenmode
derived from the dynamical matrix is well described by a PW decomposition.
On the other hand, the right most panels clearly show that their exist local
regions of oscillator strength which are not described by the PW picture. For
the longer wavelength [110] mode, Fig. 2a, these regions are rare, but as the wave-
length decreases (wave-vector magnitude increases), such as the [311] mode in
Fig. 2b these localized regions become more numerous and somewhat extended.
For higher wave-vector magnitudes, this trend continues with an associated drop
in the participation ratio corresponding to the final break up of sound.

Fig. 1. The participation ratio (15) as a function of eigenvalue λ. At λ = 0, three
uniform translational modes exist, having a PR equal to unity. For increasing values
of λ, a bunching of eigenvalues is observed, all of which initially have a PR = 2/3,
and correspond to eigenmodes which are well described by the plane wave represen-
tation [m, n, l] ⇔ kmnl = 2π/L(m, n, l) of either transverse (T) or longitudinal (L)
polarization.

Via Fig. 1, both an eigenvalue and wave-vector magnitude regime can be
identified at which the participation ratio rapidly decreases. The large system size
presently considered allows us to study this regime in detail, suggesting that a
crossover to more heterogeneous modes occurs over a broad range of eigenvalues.
This corresponds to length scales of the order of 2π/|k410| to 2π/|k332| and length
scales ranging between 20 and 25 bond lengths. Such a length-scale is compatible
with amorphous elastic heterogeneity – a length scale which is believed to play
a defining role in the break up of sound [27,35]. Larger system sizes will be
needed to investigate whether this cross-over limits to a sharp transition at a

Large-Scale Interior Eigenvalue Problems 95

distinct length-scale and particular eigenvalue that may be finally identified as
the boson peak frequency. It is in such future simulations, that the true power
of the current method will become evident since all computational resources can
now be focused to the actual eigenvalue region of interest centered around the
boson peak frequency.

Fig. 2. Plots of the amorphous configuration consisting of 1372000 atoms, where each
atom is colored according to its value of |qi|4. The left most panels derive its value
from the calculated eigenmode and central panels from the plane wave decomposition.
The right-most panels show only those atoms whose oscillator strength significantly
deviates from the plane wave decomposition. (a) shows a [110] transverse mode, and
(b) a [311] transverse mode. (Color figure online)

6 Conclusions

We have discussed a highly parallel implementation of a polynomial filtered
Krylov space-based method for solving large-scale symmetric eigenvalue prob-
lems arising in the investigation of amorphous materials. The algorithm enables
us to compute hundreds or thousands of eigenvalues of matrices of size in the
millions. If the number of eigenvalues is too large to compute at once (e.g. for
memory requirement) then the interval of interest can be split in subintervals
that contain a reasonable number of eigenvalues whose associated eigenvectors
can be accommodated by the available memory.

The polynomial filter is designed to enhance the eigenvalues of the interval of
interest. Polynomials of very high degrees can result. Therefore, our algorithm
is based almost completely on matrix-vector multiplications. The work to keep

96 G. Accaputo et al.

the basis vectors of the Krylov space orthogonal is negligible. This entails a high
potential for parallelization which is confirmed by our experiments.

We plan to apply our solver to problems of size 49′152′000 and larger. The
use of larger matrices and correspondingly larger simulation cell sizes will give
information on how the vibrational modes of the boson peak regime observed in
the present work evolve to the bulk limit. Indeed, the treatment of larger system
sizes will result in a transition to a spectrum free of eigenvalue bunching, where
the effect of disorder smears the allowed sound-waves into an effectively contin-
uous eigenvalue spectrum. In this experimentally relevant limit, the bulk nature
of the boson peak regime should become manifest from an entirely atomistic
description of a model amorphous system.

We will also work on optimizing the evaluation of matrix polynomials, in
particular, if applied to multivectors, cf. [3,22]. As noted in the introduction,
A is a matrix formed of symmetric 3 × 3 blocks. In an efficient implementation
this should be taken into account. Doing so, the arithmetic intensity is more
than doubled relative to the standard elementwise CRS storage format [8] and
execution times can be reduced by about the same factor. (The numerator in (14)
becomes (8 · 2

3 +4 · 1
9)nnz +(16 · b+4)n.) Finally, let us note that the abundance

of matrix-vector multiplications makes our code amenable to GPU computing.

Acknowledgments. The computations have been executed on the Euler compute
cluster at ETH Zurich at the expense of a grant of the Seminar for Applied Mathe-
matics. We acknowledge the assistance of the Euler Cluster Support Team.

References

1. Accaputo, G.: Solving large scale eigenvalue problems in amorphous materials.
Master’s thesis, ETH Zurich, Computer Science Department (2017). https://doi.
org/10.3929/ethz-b-000221499

2. Accaputo, G., Derlet, P.M., Arbenz, P.: Solving large-scale interior eigenvalue prob-
lems to investigate the vibrational properties of the boson peak regime in amor-
phous materials. Print Archive: arXiv:1902.07041 [physics.comp-ph] (2019)

3. Aktulga, H.M., Buluç, A., Williams, S., Yang, C.: Optimizing sparse matrix-
multiple vectors multiplication for nuclear configuration interaction calculations.
In: International Parallel and Distributed Processing Symposium (IPDPS), pp.
1213–1222 (2014)

4. Arbenz, P., Hetmaniuk, U.L., Lehoucq, R.B., Tuminaro, R.: A comparison of eigen-
solvers for large-scale 3D modal analysis using AMG-preconditioned iterative meth-
ods. Int. J. Numer. Methods Eng. 64, 204–236 (2005)

5. Avron, H., Toledo, S.: Randomized algorithms for estimating the trace of an
implicit symmetric positive semi-definite matrix. J. ACM 58, 8:1–8:34 (2011)

6. Baker, C.G., Hetmaniuk, U.L., Lehoucq, R.B., Thornquist, H.K.: Anasazi software
for the numerical solution of large-scale eigenvalue problems. ACM Trans. Math.
Softw. 36, 1–23 (2009)

7. van Barel, M.: Designing rational filter functions for solving eigenvalue problems
by contour integration. Linear Algebra Appl. 502, 346–365 (2016)

8. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, Philadelphia (1994)

https://doi.org/10.3929/ethz-b-000221499
https://doi.org/10.3929/ethz-b-000221499
http://arxiv.org/abs/1902.07041

Large-Scale Interior Eigenvalue Problems 97

9. Bekas, C., Kokiopoulou, E., Saad, Y.: Polynomial filtered Lanczos iterations with
applications in density functional theory. SIAM J. Matrix Anal. Appl. 30, 397–418
(2008)

10. Bell, R.J., Dean, P.: Atomic vibrations in vitreous silica. Discuss. Faraday Soc. 50,
55–61 (1970)

11. Berthier, L., Charbonneau, P., Jin, Y., Parisi, G., Seoane, B., Zamponi, F.: Growing
timescales and lengthscales characterizing vibrations of amorphous solids. Proc.
Nat. Acad. Sci. 113, 8397–8401 (2016)

12. Derlet, P.M., Maaß, R.: Thermal processing and enthalpy storage of a binary amor-
phous solid: a molecular dynamics study. J. Mater. Res. 32, 2668–2679 (2017)

13. Derlet, P.M., Maaß, R.: Local volume as a robust structural measure and its con-
nection to icosahedral content in a model binary amorphous system. Materialia 3,
97–106 (2018)

14. Derlet, P.M., Maaß, R.: Thermally-activated stress relaxation in a model amor-
phous solid and the formation of a system-spanning shear event. Acta Mater. 143,
205–213 (2018)

15. Derlet, P.M., Maaß, R., Löffler, J.F.: The Boson peak of model glass systems and
its relation to atomic structure. Eur. Phys. J. B 85, 1–20 (2012)

16. Fang, H.R., Saad, Y.: A filtered Lanczos procedure for extreme and interior eigen-
value problems. SIAM J. Sci. Comput. 34, A2220–A2246 (2012)

17. FUJITSU Server Performance Report PRIMERGY RX2540 M4. White paper,
version 1.3. Fujitsu Corporation, 17 November 2018 (2018)

18. Galgon, M., et al.: Improved coefficients for polynomial filtering in ESSEX. In:
Sakurai, T., Zhang, S.-L., Imamura, T., Yamamoto, Y., Kuramashi, Y., Hoshi, T.
(eds.) EPASA 2015. LNCSE, vol. 117, pp. 63–79. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-62426-6 5

19. Hutchinson, M.F.: A stochastic estimator of the trace of the influence matrix for
Laplacian smoothing splines. Commun. Stat. Simulat. Comput. 19, 433–450 (1990)

20. Jay, L.O., Kim, H., Saad, Y., Chelikowsky, J.R.: Electronic structure calculations
for plane-wave codes without diagonalization. Comput. Phys. Commun. 118, 21–30
(1999)

21. Krämer, L., Di Napoli, E., Galgon, M., Lang, B., Bientinesi, P.: Dissecting the
FEAST algorithm for generalized eigenproblems. J. Comput. Appl. Math. 244,
1–9 (2013)

22. Kreutzer, M., Pieper, A., Hager, G., Wellein, G., Alvermann, A., Fehske, H.: Perfor-
mance engineering of the kernel polynomial method on large-scale CPU-GPU sys-
tems. In: International Parallel and Distributed Processing Symposium (IPDPS),
pp. 417–426 (2015)

23. Leonforte, F., Boissière, R., Tanguy, A., Wittmer, J.P., Barrat, J.L.: Continuum
limit of amorphous elastic bodies. III. Three-dimensional systems. Phys. Rev. B
72, 224206 (2005)

24. Li, R., Xi, Y., Vecharynski, E., Yang, C., Saad, Y.: A thick-restart Lanczos algo-
rithm with polynomial filtering for Hermitian eigenvalue problems. SIAM J. Sci.
Comput. 38, A2512–A2534 (2016)

25. Liang, Z., Keblinski, P.: Sound attenuation in amorphous silica at frequencies near
the boson peak. Phys. Rev. B 93, 054205 (2016)

26. Lin, L., Saad, Y., Yang, C.: Approximating spectral densities of large matrices.
SIAM Rev. 58, 34–65 (2016)

27. Marruzzo, A., Schirmacher, W., Fratalocchi, A., Ruocco, G.: Heterogeneous shear
elasticity of glasses: the origin of the boson peak. Sci. Rep. 3, 1407 (2013)

https://doi.org/10.1007/978-3-319-62426-6_5
https://doi.org/10.1007/978-3-319-62426-6_5

98 G. Accaputo et al.

28. Monaco, G., Mossa, S.: Anomalous properties of the acoustic excitations in glasses
on the mesoscopic length scale. Proc. Nat. Acad. Sci. 106, 16907–16912 (2009)

29. di Napoli, E., Polizzi, E., Saad, Y.: Efficient estimation of eigenvalue counts in an
interval. Numer. Linear Algebra Appl. 23, 674–692 (2016)

30. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice Hall, Upper Saddle
River (1980)

31. Pieper, A., et al.: High-performance implementation of Chebyshev filter diago-
nalization for interior eigenvalue computations. J. Comput. Phys. 325, 226–243
(2016)

32. Rivlin, T.J.: An Introduction to the Approximation of Functions. Dover, New York
(1981)

33. Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd edn. SIAM,
Philadelphia (2011)

34. Schaffner, S.: Using Trilinos to solve large scale eigenvalue problems in amorphous
materials. Master’s thesis, ETH Zurich, Computer Science Department (2015)

35. Schirmacher, W.: The boson peak. Phys. Status Solidi B 250, 937–943 (2013)
36. Schirmacher, W., Ruocco, G., Scopigno, T.: Acoustic attenuation in glasses and

its relation with the boson peak. Phys. Rev. Lett. 98, 025501 (2007)
37. Schirmacher, W., Scopigno, T., Ruocco, G.: Theory of vibrational anomalies in

glasses. J. Non-Cryst. Solids 407, 133–140 (2015)
38. Schofield, G., Chelikowsky, J.R., Saad, Y.: A spectrum slicing method for the

Kohn–Sham problem. Comput. Phys. Commun. 183, 497–505 (2012)
39. Shintani, H., Tanaka, H.: Universal link between the boson peak and transverse

phonons in glass. Nat. Mater. 7, 870–877 (2008)
40. Silver, R.N., Röder, H.: Calculation of densities of states and spectral functions by

Chebyshev recursion and maximum entropy. Phys. Rev. E 56, 4822–4829 (1997)
41. Silver, R.N., Röder, H., Voter, A.F., Kress, J.D.: Kernel polynomial approximations

for densities of states and spectral functions. J. Comput. Phys. 124, 115–130 (1996)
42. Sleijpen, G.L.G., van den Eshof, J.: On the use of harmonic Ritz pairs in approxi-

mating internal eigenpairs. Linear Algebra Appl. 358, 115–137 (2003)
43. Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson iteration method for

linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425 (1996)
44. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM,

Philadelphia (2013)
45. The Trilinos Project Home Page. https://trilinos.github.io
46. Wahnström, G.: Molecular-dynamics study of a supercooled 2-component

Lennard–Jones system. Phys. Rev. A 44, 3752–3764 (1991)
47. Weiße, A., Wellein, G., Alvermann, A., Fehske, H.: The kernel polynomial method.

Rev. Mod. Phys. 78, 275–306 (2006)
48. Wu, K., Simon, H.D.: Thick-restart Lanczos method for large symmetric eigenvalue

problems. SIAM J. Matrix Anal. Appl. 22, 602–616 (2000)
49. Xu, N., Wyart, M., Liu, A.J., Nagel, S.R.: Excess vibrational modes and the Boson

peak in model glasses. Phys. Rev. Lett. 98, 175502 (2007)
50. Yamazaki, I., Tadano, H., Sakurai, T., Ikegami, T.: Performance comparison of

parallel eigensolvers based on a contour integral method and a Lanczos method.
Parallel Comput. 39, 280–290 (2013)

51. Zhou, Y., Saad, Y., Tiago, M.L., Chelikowsky, J.R.: Self-consistent field calcula-
tions using Chebyshev-filtered subspace iteration. J. Comput. Phys. 219, 172–184
(2006)

https://trilinos.github.io

Performance Evaluation of Pseudospectral
Ultrasound Simulations on a Cluster

of Xeon Phi Accelerators

Filip Vaverka1(B) , Bradley E. Treeby2 , and Jiri Jaros1

1 Faculty of Information Technology, Centre of Excellence IT4Innovations,
Brno University of Technology, Bozetechova 2, 612 00 Brno, Czech Republic

{ivaverka,jarosjir}@fit.vutbr.cz
2 Medical Physics and Biomedical Engineering, University College London,

London WC1E 6BT, UK
b.treeby@ucl.ac.uk

Abstract. The rapid development of novel procedures in medical ultra-
sonics, including treatment planning in therapeutic ultrasound and image
reconstruction in photoacoustic tomography, leads to increasing demand
for large-scale ultrasound simulations. However, routine execution of such
simulations using traditional methods, e.g., finite difference time domain,
is expensive and often considered intractable due to the computational
and memory requirements. The k-space corrected pseudospectral time
domain method used by the k-Wave toolbox allows for significant reduc-
tions in spatial and temporal grid resolution. These improvements are
achieved at the cost of all-to-all communication, which are inherent to
the multi-dimensional fast Fourier transforms. To improve data locality,
reduce communication and allow efficient use of accelerators, we recently
implemented a domain decomposition technique based on a local Fourier
basis.

In this paper, we investigate whether it is feasible to run the dis-
tributed k-Wave implementation on the Salomon cluster equipped with
864 Intel Xeon Phi (Knight’s Corner) accelerators. The results show the
immaturity of the KNC platform with issues ranging from limited sup-
port of Infiniband and LustreFS in Intel MPI on this platform to poor
performance of 3D FFTs achieved by Intel MKL on the KNC architec-
ture. Yet, we show that it is possible to achieve strong and weak scaling
comparable to CPU-only platforms albeit with the runtime 1.8× to 4.3×
longer. However, the accounting policy for Salomon’s accelerators is far
more favorable and thus their employment reduces the computational
cost significantly.

Keywords: Ultrasound simulations · Local Fourier basis
decomposition · Pseudospectral methods · Ultrasound · k-Wave
toolbox · Intel Xeon Phi · Knight’s Corner · MKL · MPI · OpenMP

c© Springer Nature Switzerland AG 2021
T. Kozubek et al. (Eds.): HPCSE 2019, LNCS 12456, pp. 99–115, 2021.
https://doi.org/10.1007/978-3-030-67077-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67077-1_6&domain=pdf
http://orcid.org/0000-0002-7960-5752
http://orcid.org/0000-0001-7782-011X
http://orcid.org/0000-0002-0087-8804
https://doi.org/10.1007/978-3-030-67077-1_6

100 F. Vaverka et al.

1 Introduction

There is a growing number of medical applications of ultrasound such as pho-
toacoustic imaging [1], neurostimulation [28] and high intensity focused ultra-
sound (HIFU) cancer treatment [5,18]. These applications require fast, accurate
and versatile ultrasound propagation models in tissue-like materials at various
stages such as planning or post-processing. Typically, these requirements can
be met with models based on the generalized Westervelt equation [22], which
allows for modeling nonlinear ultrasound wave propagation through heteroge-
neous medium with a power law absorption. Due to this demand, several ultra-
sound modeling packages for medical applications have been released along with
our k-Wave toolkit, see [9] for a recent review. The majority of those pack-
ages employ either finite-difference time-domain (FDTD) method, pseudospec-
tral time-domain (PSTD) method or a variant of operator-splitting methods.
The k-Wave toolbox is among a few based on the k-space pseudo-spectral time-
domain (KSTD) method.

FDTD methods scale well on large parallel systems using a straightforward
domain decomposition and halo exchange over the nearest neighbors [31]. How-
ever, most FDTD schemes require between 8 to 10 grid points per wavelength
to achieve sufficient accuracy and even more to manage dispersion in cases
where propagation over a large number of wavelengths has to be modeled [17].
This makes many realistic ultrasound simulations intractable due to high mem-
ory requirements. The PSTD methods can theoretically approach the Nyquist
limit of 2 grid points per wavelength and thus significantly reduce the memory
requirements. The KSTD method improves on the PSTD method by using a
semi-analytical time-stepping schemes [25] which complements excellent spatial
properties with a larger time step size. The main drawback of PSTD and espe-
cially KSTD methods is the introduction of a global trigonometric basis and the
use of the fast Fourier transform (FFT) to implement gradient operators. The
KSTD method requires, due to the k-space correction, 3D FFTs which inher-
ently limit the scalability of this method on parallel distributed, and especially
on accelerated systems [13]. Although a lot of work on efficient distributed FFTs
has been carried out (FFTW [7], Hybrid FFTW [20], P3DFFT [21], PFFT [23],
AccFFT [8], multi-GPU CUDA FFT [19] or FFT-ECP [26]), the computation
time is still often determined by the communication between subdomains, which
in many cases prevents the use of accelerators such as GPUs or Intel Xeon Phis.

This paper investigates the possibility of deploying a distributed implementa-
tion of the KSTD method implemented in the k-Wave toolbox [14] on a large clus-
ter of Intel Xeon Phi accelerators. The method combines advantages of FDTD
and KSTD methods by replacing global Fourier basis with a set of local ones [12],
thus achieving communication complexity of an FDTD method while maintain-
ing many properties of a KSTD method. The following section briefly describes
the principle of the local Fourier basis decomposition. Next, the architecture of
the accelerated cluster is described in Sect. 3. After that, the implementation is
briefly explained in Sect. 4 and achieved scaling results are presented in Sect. 5.

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 101

Finally, Sect. 6 investigates performance of the accelerators and the last section
draws conclusions on usability of the platform.

2 Local Fourier Basis Domain Decomposition

The numerical model of the nonlinear wave propagation in heterogeneous absorb-
ing medium investigated in this paper is based on the governing equations derived
by Treeby [27] written as three-coupled first-order partial differential equations:

∂u
∂t

= − 1
ρ0

∇p + F , (momentum conservation)

∂ρ

∂t
= −ρ0∇ · u − u · ∇ρ0 − 2ρ∇ · u+ M , (mass conservation)

p = c20

(
ρ + d · ∇ρ0 +

B

2A
ρ2

ρ0
− Lρ

)
. (equation of state)

(1)

Here u is the acoustic particle velocity, d is the acoustic particle displacement,
p is the acoustic pressure, ρ is the acoustic density, ρ0 is the ambient (or equilib-
rium) density, c0 is the isotropic sound speed, B/A is the nonlinearity parameter,
and operator L captures power law absorption and dispersion. Two linear source
terms are also included, where F is a force source term, and M is a mass source.

In the k-Wave toolbox, the model (1) would normally be directly discretized
using the KSTD method (see [27]). However, to alleviate the global communi-
cation overhead, we instead divide the simulation domain into a set of cuboid
subdomains, each of which supported by its own local Fourier basis [12] (LFB
for short). The neighboring subdomains are coupled by overlapping each other
and the overlaps are also used to restore their local periodicity [2], see Fig. 1.

Fig. 1. The principle of local Fourier basis domain decomposition shown for one spatial
dimension. (a) The local subdomain is padded with a few grid points (overlap) from
both neighboring subdomains which are periodically exchanged. (b) After the overlap
exchange, each local domain is multiplied by a bell function to restore periodicity.

102 F. Vaverka et al.

The computation itself consists of an iterative algorithm running over a given
number of time steps. Each time step is composed of a sequence of element-wise
operations, overlap exchanges and local 3D FFTs, see Fig. 2. The majority of
the computation time is usually spent on 3D FFTs or overlap exchanges. The
restriction of the Fourier basis to the local subdomain has naturally a negative
impact on the accuracy of the LFB method. The amount of accuracy loss depends
on the overlap size and the properties of the bell function used [3,14,29].

Fig. 2. Simplified computation loop governed by Eq. (1). Blue blocks denote element-
wise operations, yellow 3D FFTs, and orange overlap exchanges. (Color figure online)

3 Target Architecture

The target architecture investigated in this paper is a typical Intel/Infiniband
cluster accelerated with Intel Xeon Phi cards of the Knight’s Corner architecture
[15]. The experiments were conducted on the Salomon supercomputer at the
IT4Innovations national supercomputing center in Ostrava, Czech Republic1.

Salomon consists of 1008 compute nodes, 432 of which are accelerated by Intel
Xeon Phi 7120P accelerators. The architecture of the Salomon’s accelerated part
is shown in Fig. 3. Every node consists of a dual socket motherboard populated
with two Intel Xeon E5-2680v3 (Haswell) processors accompanied with 128 GB
of RAM. The nodes also integrate a pair of accelerators connected to individual
processor sockets via the PCI-Express 2.0 x16 interface. The communication
between processors is handled by the Intel QPI interface.

The nodes are interconnected by a 7D enhanced hypercube running on the
56Gbit/s FDR Infiniband technology. The accelerated nodes occupy a subset of
this topology constituting a 6D hypercube. Every node contains a single Infini-
band network interface (NIC) connected via PCI-Express 3.0 to the first socket,
and a service 1Gbit/s Ethernet interface connected to the same socket. Both
accelerators are capable of directly accessing the Infiniband NIC by means of
Remote Direct Memory Access (RDMA).

1 https://docs.it4i.cz/salomon/hardware-overview/.

https://docs.it4i.cz/salomon/hardware-overview/

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 103

A single Intel Xeon Phi 7120P accelerator packs 61 P54C in-order cores
extended by 4-wide simultaneous multithreading (SMT) and a 512-bit wide vec-
tor processing unit (VPU). The Xeon Phi cores are supported by 30.5MB of
L2 cache evenly distributed over individual cores and interconnected via a ring
bus. The memory subsystem consists of 4 memory controllers managing in total
16GB of GDDR5. The theoretical performance and memory bandwidth of a
single accelerator is over 2 TFLOP/s in single precision and 352GB/s, respec-
tively. A single accelerator can theoretically provide a speedup of 4× for compute
bound, and 5× for memory bandwidth bound applications over a single twelve
core Haswell processor. The total compute power of the accelerated part of the
cluster reaches one PFLOP/s.

30 GFlop/s

1 GB
100 GB/s

PCI-EPCI-E

MIC 1MIC 2

CPUCPU RAM

RAM

RAM

RAM

IB
 N

IC
G

bE
 N

IC

GbE

PCI-E PCI-E

MIC 1 MIC 2

CPU CPURAM

RAM

RAM

RAM

IB
 N

IC
G

bE
 N

IC

7D
 H

-C
U

B
E

Fig. 3. The architecture of the Salomon accelerated nodes and interconnection. The
size of the rectangles representing individual components is proportional to their per-
formance, bandwidth or capacity.

4 Implementation

4.1 Execution Mode

The Intel Xeon Phi offers three different modes of execution: (1) The offload
mode is an analogy to the GPGPU approach where the accelerator is controlled
by the CPU and used only for the compute intensive tasks. (2) The native
mode uses the accelerator as an isolated compute node with shared memory.
(3) The cluster mode allows accelerators to be connected using the message
passing interface (MPI) and run distributed jobs over many accelerators. In this
mode, the CPUs can be used either to only run the operating system, or join the
distributed job as additional workers, although with reduced compute power.

The proposed implementation uses Intel Xeon Phis in the native mode, which
allows for direct access to NICs through the RDMA mechanism and thus should
achieve the best performance in MIC-to-MIC communication. Overall the PSTD
and KSTD methods tend to be memory bound as they exhibit relatively low
arithmetic intensity on the order of O(log n). Therefore, the k-Wave toolbox
favors architectures with high memory bandwidth and fast access to the network.

104 F. Vaverka et al.

The code is logically structured into one MPI process per subdomain which
runs on a single accelerator (or CPU socket). The work local to each subdomain
is distributed across cores by means of OpenMP and OpenMP SIMD constructs.
Since realistic simulations do not require double precision, only single precision
floating point operations are used. This yields higher performance and saves
valuable memory bandwidth. The k-Wave LFB code boils down to a mix of
element-wise operations on 3D real or complex matrices, 3D fast Fourier trans-
forms and overlap exchanges. The following sections briefly describe most impor-
tant operations, however, more details can be found in [29].

4.2 Fast Fourier Transforms

The most computationally expensive part of the simulation loop consists of a
number of 3D fast Fourier transforms calculated over the local subdomains.
Depending on which medium parameters are heterogeneous, the number of FFTs
varies between ten and fourteen. Their actual implementation relies on third
party libraries compatible with the FFTW interface [7], in this case the Intel
MKL library [11] which showed better results than FFTW on the Intel Xeon
Phi architecture [30].

The simulation code mostly uses out-of-place real-to-complex and complex-
to-real transforms which reduces both the spatial and temporal complexity of
the FFT by a factor of two [24]. However, the implementation of the out-of-place
C2R transforms in the MKL library has proved to be very inefficient on the Intel
Xeon Phi Knight’s Corner. Hence, the C2R transforms are performed in-place
using a temporary matrix and the results consequently copied to the destina-
tion matrix. The performance characteristics of the 3D FFT implementation are
further analyzed in Sect. 6.2.

4.3 Overlap Exchanges

The gradient or derivative calculation on a subdomain can be performed only
after gathering the most recent data from all its neighbors. This is accommodated
by exchanging the overlap regions between neighboring subdomains before every
such operation, see the orange bars in Fig. 2. The size of these transfers range
from N3

d to Nx × Ny × Nd grid points, where Nd is the overlap size and N{x,y,z}
the subdomain edge length.

Since the overlaps have to contain the most recent data, it is difficult to
properly hide the communication by overlapping it with useful computation.
However, our implementation structurally allows to hide up to 50% of the com-
munication by exploiting stages where multiple arrays have to be updated at the
same time. This is achieved by a combination of persistent communications and
non-blocking calls provided by MPI, see Listing 1.

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 105

4.4 Parallel Input and Output

The simulation of nonlinear ultrasound wave propagation in large realistic
domains naturally requires a fast and scalable input-output subsystem. Not only
may typical medium, source and input signal descriptions occupy tens to hun-
dreds of GBs, the simulation outputs in the form of pressure and velocity time
series can easily spread over a few TBs [16].

The parallel I/O subsystem of the k-Wave toolbox is based on the Parallel
HDF5 library [6] supported by the MPI-IO back-end [4]. In combination with
the parallel LustreFS file system, very good throughput reaching up to 15GB/s
has been achieved on several clusters [10].

Although the parallel I/O is not intended to be deeply investigated in this
paper, there is a key observation that needs to be mentioned because of it being a
significant source of issues on the accelerated part of the Salomon supercomputer.
The obstacle is the lack of LustreFS support in the Xeon Phi implementation of
the Intel MPI library. This makes the use of the distributed scratch file system
impossible and forces us to use an NFS mounted home file system, not primarily
intended for parallel I/O. As a consequence, the amount of data being collected
was severely limited to avoid any inference in the experiments.

106 F. Vaverka et al.

5 Scaling Results

5.1 Overview

The main objective of this section is to investigate the performance and scaling
properties of the cluster of Intel Xeon Phi accelerators in simulating ultrasound
wave propagation. The secondary objective is the evaluation of the software
support and the ease of use of the whole platform.

The experiments were conduced on various numbers of Salomon’s accelerated
nodes ranging from 1 up to 256 (512 accelerators). Since Salomon’s hypercube
interconnection topology has some blocking factor, there is a measurable vari-
ation between the job instances stemming from the different placement of the
MPI processes on currently available nodes. Although the job placement can be
restricted manually, it significantly prolongs the waiting time in the queues and
thus was not used. Instead, particular benchmark runs of the same type were
packed into a single large job to maintain fair conditions. Different job alloca-
tions were used for benchmarking subdomains placed over CPUs and accelera-
tors. Therefore, a small variation between these benchmarks may be observed,
however, it is considered insignificant from the perspective of the overall scaling
trends and even the absolute performance.

Every benchmark run consisted of 100 time steps of the simulation loop
summarized in Fig. 2. This number is deemed sufficient to hide any cache and
communication warm-up effects. All experiments, if not stated otherwise, were
performed with the most typical overlap size of 16 grid points.

The following subsections first focus on obtaining the performance and scaling
results for the largest possible simulation domains while trying to work around
the stability and HW/SW support issues. However, some issues are related to
high numbers of nodes used for large simulation domain sizes. It was not possible
to resolve these issues even after consultation with the Salomon support and the
vendor. In the second subsection, we thus limited the simulation domain size
and the number of nodes used to mimic an ideal situation. Finally, the most
significant stages of the KSTD solver are analyzed and discussed.

5.2 Performance Scaling on Large Domains

Driven by the practical demands from industry and medical physics, we first
focus on the performance scaling of large simulation domains spread over many
accelerators. The simulation domain sizes of interest are expanded from 256 ×
256× 256 (224) to 2048× 2048× 2048 (233) grid points by sequentially doubling
the dimension sizes starting from the least significant one. The domains are
partitioned into a number of subdomains growing from 1 to 256. The numbers
of subdomains for particular domain sizes are further restricted by the size of
the smallest meaningful subdomain (643) and the largest possible subdomain
(256× 256× 512) that can fit within memory, excluding the overlaps. Particular
subdomains are assigned either to a single accelerator or a single CPU socket.
This allows us to mutually compare performance scaling of both architectures.

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 107

Figures 4 and 5 show the strong and weak scaling achieved by both archi-
tectures. Although the whole range of overlap sizes between 2 to 32 grid points
was investigated, only the most common overlap size of 16 is presented for the
sake of brevity. The scaling of small overlap sizes generally does better due to a
higher degree of communication overlapping. For bigger overlap sizes, the abso-
lute execution time is more influenced by the communication time elaborated in
Fig. 8 and the strong scaling curves appear flatter.

A brief glance at Fig. 4 reveals a significant disparity between the performance
of CPUs and accelerators. The dramatic slowdown on the accelerator side is
caused by the communication layer, more specifically the Intel MPI Infiniband
backend DAPL [15], which becomes unstable for more than 32 accelerators in a
single job. This problem was discussed in detail with the cluster support team
and the vendor specialists but has not been resolved yet. The only solution that
proved to be stable was to replace the 56Gbit Infiniband by a 1Gbit Ethernet
interface. This typically leads to a 4.3× slower execution compared to CPUs.
Nevertheless the code maintains reasonable strong scaling factors of 1.45 (average
speedup achieved by doubling the computational resources) comparable with
the execution on CPUs. The only reason why the performance slump is not even
deeper is the limited performance of the FFTs on the accelerators, and therefore,
better opportunity for communication overlapping.

Examining further the CPU and accelerator scaling plots, there are very few
anomalies in the scaling curves. The most significant are apparent for very small
numbers of subdomains when using accelerators, or for tiny subdomains when
using CPUs. Putting these results into context of the global Fourier basis decom-
positions (GFB) presented in [13], the LFB implementation on CPUs shows its
superiority with typical and peak speedup of 2 and 6, respectively.

Fig. 4. Strong scaling evaluation on large domains having between 224 and 233 grid
points with an overlap size of 16 grid points collected on CPUs and accelerators. Since
the Infiniband interface is not stable for more than 32 accelerators, 1 Gbit Ethernet is
used instead.

108 F. Vaverka et al.

Fig. 5. Weak scaling evaluation on large subdomains with overlap size of 16 grid points
collected on CPUs and accelerators. The size of the subdomains ranges between 218

and 225 grid points.

Figure 5 shows the weak scaling achieved on the CPUs and accelerators.
Each of the plotted series corresponds to a constant subdomain size from the
investigated range between 643 and 256× 256× 512 grid points. At first glance,
poor weak scaling is observed when the simulation domain is split into less than
8 subdomains. This is due to the growing rank of the domain decomposition and
the number of neighbors. Once a full 3D decomposition is reached, the scaling
curves remain almost flat in-line with almost perfect scaling.

Fig. 6. Strong scaling evaluation on small domains (224 to 230 grid points) with an
overlap size of 16 grid points collected on CPUs and accelerators, both supported by
FDR Infiniband.

5.3 Performance Scaling on Small Domains

In order to better quantify the impact of the misbehaving Infiniband on large
jobs, the previous experiments were repeated with reduced domain sizes (up to

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 109

10243) and a reduced number of accelerators (up to 32). Figure 6 shows the
improved strong scaling on accelerators when using Infiniband and compares it
again with the CPU baseline. Not only does Infiniband reduce the overall execu-
tion time by a factor of 1.9 with respect to Ethernet, it also improves the scaling
factors from 1.45 to 1.52. The reduction of the communication overhead has also
a positive impact on weak scaling presented in Fig. 7. Here, the penalty caused
by increasing the rank of the decomposition is greatly reduced and very good
scaling is achieved even when going from one to two subdomains. Nevertheless,
the final conclusion is that a cluster of Intel Xeon Phi accelerators is signifi-
cantly slower than a comparable cluster of CPUs, even though the theoretical
parameters of the architecture promise the direct opposite.

Fig. 7. Weak scaling evaluation on small domains (subdomains of 219 to 225 grid points)
with an overlap size of 16 grid points collected on CPUs and accelerators, both sup-
ported by FDR Infiniband.

5.4 Simulation Time Breakdown

Figure 8 shows the execution time breakdown for domains of various sizes par-
titioned into 32 (2 × 4 × 4) and 256 (4 × 8 × 8) subdomains with an overlaps
size of 16 grid points. The slower interconnection of the accelerators becomes
immediately evident from Fig. 8b which shows that this usually comprises more
than 60% of the compute time. By comparing the communication time on the
accelerators with CPUs we can find a massive 3× to 12× deterioration which
increases proportionally with the simulation size. On the other hand, the cal-
culation time remains favorable for medium sized subdomains. For small ones,
there is not enough work for all 120 threads used. On contrary the L2 cache is
exceeded for subdomains bigger than 2563 grid points, which leads to a signif-
icant drop in the FFT performance (see Fig. 8a at 229 and 230). In conclusion,
the computation can only be 1.8× slower than a single CPU socket for favorable

110 F. Vaverka et al.

Fig. 8. The execution time breakdown for a time step of the simulation loop collected
on 32 and 256 CPUs (CPU) or accelerators (KNC) for different domain sizes with an
overlap size of 16 grid points. Results for both the Infiniband (IB) and the 1 Gbit
Ethernet (GbE) interconnects are shown.

subdomain sizes while it can worsen to more than 16× slower for large subdo-
mains. Both interconnect and FFT computation issues are further investigated
in Sect. 6.

6 Platform Investigation

6.1 Overview

As mentioned earlier, the practical use of a cluster of Intel Xeon Phi accelerators
suffers from many issues and immature libraries. Apart from the missing support
for the LustreFS file system and the instability of the Intel MPI communication
back-end for the infiniband interface, there are two other major issues. The
first is the performance of 3D FFTs and the second one is the communication
bandwidth. Both are further investigated in this section.

6.2 Performance of 3D FFTs on Intel Xeon Phi

Since the performance breakdown presented in Fig. 8 revealed relatively poor
performance of the FFTs running on the accelerators compared to a single CPU,
a deeper performance investigation was carried out. The particular routines of
interest were the real-to-complex (R2C) and complex-to-real (C2R) 3D FFTs
with the conjugate-even storage within an interleaved complex array imple-
mented in the Intel MKL library. Both in-place and out-of-place transforms
were evaluated.

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 111

Fig. 9. Performance of a single accelerator vs. a single CPU while running in-place and
out-of place forward and inverse 3D FFTs implemented by Intel MKL.

Figure 9 shows the relative performance of a single accelerator executing 120
threads versus a single CPU executing 12 threads. The thread counts were chosen
according to the best performance achieved by each architecture. The measured
performance is plotted for several domain sizes growing from 323 to 5123 grid
points.

Although the theoretical values suggest an accelerator should be four times
faster than a single CPU, our FFT benchmarks revealed a different picture.
For small domains, the performance of the accelerators is dismal, reaching less
than 10% compared to a single CPU. This is very likely caused by poor work-
load distribution among cores and cache coherency issues such as false shar-
ing. However, even a 3D transform over a 643 domain requires the execution
of 3 × 4096 independent 1D FFTs, which appears to be enough to employ 120
threads evenly. Moreover, as the size of each 1D FFT is only 64 elements (256B,
1MB in total), the capacity of L2 cannot be a true bottleneck. That being
said, the 1D transforms are unlikely to cause the troubles. The other sources of
performance issues are the multi-dimensional matrix transpositions and thread
synchronization between particular phases of the 3D FFT algorithm.

With an increasing transform size, the performance of the accelerator
increases, reaching 50% of the CPU performance in the best case. Furthermore,
the performance of the forward transforms is slightly better than the performance
of the inverse one. Much more unexpected behavior is observed for the out-of-
place transforms on domains larger than 2563 grid points. Beyond this size, the
relative performance of the accelerator falls below 10%. At this size, the data
cannot fit within L2 cache any more. Considering the only difference between the
forward and inverse FFT being the sign in the exponent, this behavior must be
a hidden bug inside the complex-to-real out-of-place FFTs in MKL. This state-
ment is supported by the measurements provided by Intel VTune performance
counters. At a size of 256×256×512 grid points, there is a 60-fold increase in the
L1 data cache misses, most of which end up as L2 data cache memory fills. These

112 F. Vaverka et al.

misses seem to be caused by the Read for Ownership (RFO) operations executed
before memory writes recorded as L2_DATA_WRITE_MISS_MEM_FILL events, a typ-
ical sign of false sharing. The issue is related to the FFT execution plan and the
memory hierarchy as out-of-place real-to-complex transforms do not exhibit sim-
ilar behavior.

6.3 Performance of Intel MPI on Intel Xeon Phi

The second issue afflicting the performance is the interconnection. Even when
using the Infiniband interface, the accelerators do not achieve comparable com-
munication times to CPUs as shown in Fig. 8a.

Figure 10 shows the bidirectional bandwidth and latency in CPU-to-CPU
and Phi-to-Phi communication over the Infiniband and Ethernet interconnects
measured by the OSU Micro-Benchmark suite2. The difference is obvious. Not
only is there an order of magnitude lower bandwidth for small messages when
the infiniband is used between accelerators, the loss is not caught up even for
medium sized messages. There appears to be an improvement for 4MB messages,
however, this is helpful only for the biggest subdomains with an overlap size of 32
grid points. The communication latency copies the same trend, being typically
5× to 10× longer. The explanation of this behavior can be found in the com-
bination of the PCI-Express 2.0 (about 16GB/s bidirectional), additional hop
between PCI-Express 2.0 and PCI-Express 3.0 where the Infiniband card is con-
nected to, and low attainable memory bandwidth of a single Intel Xeon Phi core
of (only about 2.65GB/s) yielding 4.1GB/s for bidirectional communication.

The bandwidth of the Ethernet interface is, as expected, limited by the net-
work interface for big messages.

Fig. 10. Comparison of the communication bandwidth and latency for processors with
Infiniband, and accelerators with Infiniband and TCP over 1 Gbit Ethernet.

2 http://mvapich.cse.ohio-state.edu/benchmarks/.

http://mvapich.cse.ohio-state.edu/benchmarks/

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 113

7 Conclusion

The goal of this paper was to investigate the performance scaling and suitability
of accelerated clusters based on Intel Xeon Phis for large simulations of ultra-
sound wave propagation in biologically relevant materials, and compare these
results with a common CPU cluster.

In order to keep low requirements on the spatial and temporal resolution, the
k-space corrected pseudospectral method from the k-Wave toolbox was used [27].
The communication overhead is reduced by the local Fourier basis decomposition
[14] and the communication is overlapped with the computation in more than
50% of cases.

The performance was measured on a set of domain sizes starting from tiny
ones and growing to the edge of practical feasibility. During testing, many prob-
lems were encountered. The most significant one is the Infiniband network insta-
bility caused by the DAPL back-end in the Intel MPI. This bug made the use of
the native Infiniband impossible for jobs spreading over more than 32 accelera-
tors. Despite careful investigation and collaboration with the Salomon support,
this issue has not been resolved yet. The only solution to get large simulations
to work was to use a service Ethernet network. This naturally has a large impact
on performance. Regardless, the scaling was similar to the underlying cluster of
CPUs, which is caused by another issue related to the FFT performance, and the
absolute execution time is typically 4.3× longer. This is far from the expected
performance inferred from the theoretical parameters. When the size of the sim-
ulation is limited to fit within 32 accelerators, the Infiniband interconnection
remains stable. This yields much better performance, but still almost 1.9× lower
than CPUs.

The second big issue is the performance of 3D FFTs, which in some configura-
tions reaches only a fraction of the CPU performance. This is very likely caused
by a bug in the MKL library related to false sharing during the matrix trans-
position between particular 1D FFTs. The best performance obtained reached
about 50% of the CPU performance.

Despite all the mentioned troubles, we are still positive about the code deploy-
ment on the accelerated cluster. The main motivation is the accounting policy
on Salomon, where the use of accelerators is now for free. This allows us to run
large batches of independent simulations. In the future, we would also like to
implement a load-balancing algorithm that would allow us to use both the CPUs
and the accelerators in a single simulation.

Acknowledgement. This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustainability (NPU II) project
“IT4Innovations excellence in science - LQ1602” and by the IT4Innovations infras-
tructure which is supported from the Large Infrastructures for Research, Experimen-
tal Development and Innovations project “IT4Innovations National Supercomputing
Center - LM2015070”. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme H2020 ICT 2016–2017 under grant
agreement No. 732411 and is an initiative of the Photonics Public Private Partnership.

114 F. Vaverka et al.

This work was further supported in part by the Engineering and Physical Sciences
Research Council (EPRSC), UK, grant numbers EP/L020262/1 and EP/S026371/1.

References

1. Beard, P.: Biomedical photoacoustic imaging. Interf. Focus 1(4), 602–631 (2011)
2. Boyd, J.P.: A comparison of numerical algorithms for Fourier extension of the first,

second, and third kinds. J. Comput. Phys. 178(1), 118–160 (2002)
3. Boyd, J.P.: Asymptotic Fourier coefficients for a C∞ bell (Smoothed-“Top-Hat”)

& the Fourier extension problem. J. Sci. Comput. 29(1), 1–24 (2006)
4. Coloma, K., et al.: A new flexible MPI collective I/O implementation. In: 2006

IEEE International Conference on Cluster Computing, pp. 1–10. IEEE (2006)
5. Dubinsky, T.J., Cuevas, C., Dighe, M.K., Kolokythas, O., Joo, H.H.: High-

intensity focused ultrasound: current potential and oncologic applications. Am.
J. Roentgenol. 190(1), 191–199 (2008)

6. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the
HDF5 technology suite and its applications. In: Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases - AD 2011 (2011)

7. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005)

8. Gholami, A., Hill, J., Malhotra, D., Biros, G.: AccFFT: a library for distributed-
memory FFT on CPU and GPU architectures (2016)

9. Gu, J., Jing, Y.: Modeling of wave propagation for medical ultrasound: a review.
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(11), 1979–1992 (2015)

10. Howison, M., Koziol, Q., Knaak, D., Mainzer, J., Shalf, J.: Tuning HDF5 for Lustre
file systems. In: Proceedings of the Workshop on Interfaces and Abstractions for
Scientific Data Storage 5, IASDS 2010 (2012)

11. Intel Corporation: Math Kernel Library 11.3 Developer Reference. Intel Corpora-
tion (2015)

12. Israeli, M., Vozovoi, L., Averbuch, A.: Spectral multidomain technique with local
Fourier basis. J. Sci. Comput. 8(2), 135–149 (1993)

13. Jaros, J., Rendell, A.P., Treeby, B.E.: Full-wave nonlinear ultrasound simulation
on distributed clusters with applications in high-intensity focused ultrasound. Int.
J. High Perform. Comput. Appl. 30(2), 137–155 (2016)

14. Jaros, J., Vaverka, F., Treeby, B.E.: Spectral domain decomposition using local
Fourier basis: application to ultrasound simulation on a cluster of GPUs. Super-
comput. Front. Innov. 3(3), 40–55 (2016)

15. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Program-
ming. Elsevier Inc., Waltham (2013). No. 1

16. Klepárník, P., Bařina, D., Zemčík, P., Jaroš, J.: Efficient low-resource compression
of HIFU data. Information 9(7), 1–14 (2018). https://doi.org/10.3390/info9070155.
https://www.fit.vut.cz/research/publication/11764

17. Mast, T., Souriau, L., Liu, D.L., Tabei, M., Nachman, A., Waag, R.: A k-space
method for large-scale models of wave propagation in tissue. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 48(2), 341–354 (2001)

18. Meairs, S., Alonso, A.: Ultrasound, microbubbles and the blood-brain barrier. Prog.
Biophys. Mol. Biol. 93(1–3), 354–362 (2007)

https://doi.org/10.3390/info9070155
https://www.fit.vut.cz/research/publication/11764

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 115

19. Nandapalan, N., Jaros, J., Treeby, B.E., Rendell, A.P.: Implementation of 3D FFTs
across multiple GPUs in shared memory environments. In: Proceedings of the Thir-
teenth International Conference on Parallel and Distributed Computing, Applica-
tions and Technologies, pp. 167–172 (2012)

20. Nikl, V., Jaros, J.: Parallelisation of the 3D fast Fourier transform using the hybrid
OpenMP/MPI decomposition. In: Hliněný, P., et al. (eds.) MEMICS 2014. LNCS,
vol. 8934, pp. 100–112. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
14896-0_9

21. Pekurovsky, D.: P3DFFT: a framework for parallel computations of Fourier trans-
forms in three dimensions (2012)

22. Pinton, G.F., Dahl, J., Rosenzweig, S., Trahey, G.E.: A heterogeneous nonlinear
attenuating full-wave model of ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 56(3), 474–488 (2009)

23. Pippig, M.: PFFT-an extension of FFTW to massively parallel architectures. SIAM
J. Sci. Comput. 35(3), 213–236 (2013)

24. Sorensen, H., Jones, D., Heideman, M., Burrus, C.: Real-valued fast Fourier trans-
form algorithms. IEEE Trans. Acoust. Speech Signal Process. 35(6), 849–863
(1987)

25. Tabei, M., Mast, T.D., Waag, R.C.: A k-space method for coupled first-order acous-
tic propagation equations. J. Acoust. Soc. Am. 111(1 Pt 1), 53–63 (2002)

26. Tomov, S., Haidar, A., Ayala, A., Schultz, D., Dongarra, J.: FFT-ECP fast Fourier
transform, 01 2019 (2019)

27. Treeby, B.E., Jaros, J., Rendell, A.P., Cox, B.T.: Modeling nonlinear ultrasound
propagation in heterogeneous media with power law absorption using a k-space
pseudospectral method. J. Acoust. Soc. Am. 131(6), 4324–4336 (2012)

28. Tufail, Y., Yoshihiro, A., Pati, S., Li, M.M., Tyler, W.J.: Ultrasonic neuromodu-
lation by brain stimulation with transcranial ultrasound. Nat. Protoc. 6(9), 1453–
1470 (2011)

29. Vaverka, F., Treeby, B.E., Jaros, J.: Evaluation of the suitability of Intel Xeon Phi
clusters for the simulation of ultrasound wave propagation using pseudospectral
methods. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11538, pp.
577–590. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22744-9_45

30. Wang, E., et al.: High-Performance Computing on the Intel R© Xeon PhiTM.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06486-4

31. Yu, W., Mittra, R., Su, T., Liu, Y., Yang, X.: Parallel Finite-Difference Time-
Domain Method. Artech House, Inc., Norwood (2006)

https://doi.org/10.1007/978-3-319-14896-0_9
https://doi.org/10.1007/978-3-319-14896-0_9
https://doi.org/10.1007/978-3-030-22744-9_45
https://doi.org/10.1007/978-3-319-06486-4

Estimation of Execution Parameters
for k-Wave Simulations

Marta Jaros1(B) , Tomas Sasak1, Bradley E. Treeby2 , and Jiri Jaros1

1 Faculty of Information Technology, Centre of Excellence IT4Innovations,
Brno University of Technology, Bozetechova 2, 612 66 Brno, Czech Republic

{martajaros,jarosjir}@fit.vutbr.cz, xsasak01@stud.fit.vutbr.cz
2 Medical Physics and Biomedical Engineering, Biomedical Ultrasound Group,

University College London, Malet Place Engineering Building, London
WC1E 6BT, UK

b.treeby@ucl.ac.uk

Abstract. Estimation of execution parameters takes centre stage in
automatic offloading of complex biomedical workflows to cloud and high
performance facilities. Since ordinary users have no or very limited knowl-
edge of the performance characteristics of particular tasks in the work-
flow, the scheduling system has to have the capabilities to select appro-
priate amount of compute resources, e.g., compute nodes, GPUs, or pro-
cessor cores and estimate the execution time and cost.

The presented approach considers a fixed set of executables that can
be used to create custom workflows, and collects performance data of suc-
cessfully computed tasks. Since the workflows may differ in the structure
and size of the input data, the execution parameters can only be obtained
by searching the performance database and interpolating between simi-
lar tasks. This paper shows it is possible to predict the execution time
and cost with a high confidence. If the task parameters are found in the
performance database, the mean interpolation error stays below 2.29%.
If only similar tasks are found, the mean interpolation error may grow
up to 15%. Nevertheless, this is still an acceptable error since the cluster
performance may vary on order of percent as well.

Keywords: Workflow management system · Performance data
collection · Interpolation · Job scheduling · HPC as a service

1 Introduction

Computation of complex scientific applications may no longer be satisfied by
personal computers and small servers manually operated by highly experienced
users. First, the extent of data being processed and the computational require-
ments highly exceed the capacity of such machines. Increasing number of appli-
cations is thus moving to the cluster or cloud environments. Second, scientific
applications often feature a very complex processing workflows consisting of
many particular tasks employing different computer codes, and complex data
c© Springer Nature Switzerland AG 2021
T. Kozubek et al. (Eds.): HPCSE 2019, LNCS 12456, pp. 116–134, 2021.
https://doi.org/10.1007/978-3-030-67077-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67077-1_7&domain=pdf
http://orcid.org/0000-0002-7775-8106
http://orcid.org/0000-0001-7782-011X
http://orcid.org/0000-0002-0087-8804
https://doi.org/10.1007/978-3-030-67077-1_7

Estimation of Execution Parameters for k-Wave Simulations 117

dependencies. Third, scheduling, execution and monitoring of such workflows
require automated tools to remove the burden from the experienced users, enable
ordinary users to routinely execute their applications, and increase the through-
put of the computing facilities.

To face these challenges, the scientific and software development communities
have adopted the workflow paradigm to describe the processing flow. The most
common formalism used is the weighted directed acyclic graph (DAG) defining
computational tasks by the nodes, and the dependencies and data movements
by the edges. The weights in the nodes describe the computational requirements
while the weights on the edges denote the amount of data being transferred
between tasks [15].

In order to automate workflow execution, several workflow management sys-
tems (WMSs) have been developed and used within the scientific community.
The most popular tools such as Pegasus [2,3], Globus [4] or Kepler [12] now offer
automated execution of scientific workflows on remote computational resources
in a more or less general way. However, these tools focus on expert users who
know the behaviour of the computational codes used within the workflow, and
are able to estimate the amount of computational resources needed by each task.
The scheduling and mapping of the workflow on the computational resources are
usually left to the cluster batch processing systems such as PBS1 or Slurm2.

These task schedulers provide their best effort to execute the tasks in the
earliest possible time depending on the cluster workload and user/task priorities.
However, what they cannot deal with is the execution parameters settings. If
the user overestimates the amount of the computing resources, the tasks may
be waiting in the queue for much longer time while making only little benefit
from increased amount of resources, e.g., processor cores. On the other hand,
underestimating these requirements may lead to the premature task termination
due to exhausting the execution time.

This paper focuses on the heuristic-based selection of the execution param-
eters for a list of predefined computing codes used in the biomedical workflows
supported by the k-Wave toolbox [18]. Since all binaries are fixed and known in
advance, their performance characteristics such as strong and weak scaling can
be automatically collected and used for prediction. Limiting the users in upload-
ing their binaries also enables fine-grain performance tuning of the underlying
codes for target machines and simplifies the workflows composition by the use
of high-level processing blocks.

The next section describes the k-Plan system supporting the design of ultra-
sound workflows via a graphical user interface, and workflow offloading, schedul-
ing, execution and monitoring using the k-Dispatch module. Section 3 describes a
single pass optimization of the workflow execution parameters and related inter-
polation heuristics. Section 4 investigates the quality of interpolation for known
and unknown tasks, and Sect. 5 concludes the paper.

1 https://www.altair.com/pbs-works/.
2 https://slurm.schedmd.com/.

https://www.altair.com/pbs-works/
https://slurm.schedmd.com/

118 M. Jaros et al.

2 Automatic Offloading of k-Wave Workflows

The k-Wave toolbox [18] is an open source Matlab toolbox designed for the time-
domain simulation of acoustic waves propagating in tissues. The toolbox has a
wide range of functionality, but at its heart is an advanced numerical model that
can account for both linear and nonlinear wave propagation, an arbitrary dis-
tribution of heterogeneous material parameters, power law acoustic absorption
and its thermal effects on the tissue. During recent years, k-Wave has attracted
a lot of attention amongst biomedical physicists, ultrasonographers, neurologists
and oncologists. Many k-Wave-based applications have been reported in photoa-
coustic breast screening [13], transcranial brain imaging [14], and high intensity
focused ultrasound treatment planning for kidney [1,16], liver [7] or prostate
tumour ablations [17].

However, all these applications require very intensive computations. During
the last decade, the simulation core has been rewritten in C++ and parallelized
by various technologies, such as OpenMP for shared memory systems [19], CUDA
for GPU accelerated systems [10], and MPI for large distributed clusters [8].
These implementations now cover a wide range of ultrasound simulations in
domains of various sizes reaching the limits of the top supercomputers.

To support clinicians in executing ultrasound workflows, a complex system
called k-Plan [9], consisting of tree modules, is being developed, see Fig. 1:

1. TPM - Treatment Planning Module implements user front-end with the
graphical user interface to compose the processing workflow. Advanced users
may also use a Matlab interface or third-party applications.

2. DSM (k-Dispatch) - Dispatch Server Module is responsible for the workflow
offloading to remote computing facilities. It also schedules particular tasks,
estimates computing requirements, and monitors the workflow progress.

3. SEM - Simulation Execution Module covers the deployed binaries necessary
to run particular tasks. Due to strict medical restrictions, all binaries have to
be certified, thoroughly tested and properly deployed.

Although designed for the k-Wave toolbox, k-Dispatch remains as general
as possible to support other applications and workflow types. User applications
such as TPM communicate with k-Dispatch through the Web server, see Fig. 2.
The Dispatch database maintains users and groups, their resource allocations,
history of calculated and submitted workflows, available computing facilities,
executable binaries with their performance characteristics, etc. Besides decod-
ing the workflows, data transfers, monitoring and communication with remote
computing facilities, the k-Dispatch core performs the optimization of the work-
flow execution parameters.

Users can create new ultrasound procedures by altering predefined work-
flow templates and packing them with the patient’s data. Once delivered to
k-Dispatch, the execution workflow is constructed from the provided input file.
Next, the list of available computing resources is scanned to find a suitable one,
e.g., the one with the lowest actual workload. Consequently, appropriate bina-
ries for particular tasks are filled in to the workflow template according to the

Estimation of Execution Parameters for k-Wave Simulations 119

Fig. 1. Architecture of the k-Plan system. The dispatch server module (k-Dispatch)
arranges for the workload scheduling, execution, monitoring and data transfers between
client applications and computing facilities.

tasks input data size and available hardware. Since k-Dispatch knows the perfor-
mance scaling of the given binaries, it can optimize the amount of computational
resources (i.e., number of nodes) assigned to particular tasks and minimize sev-
eral objectives such as cost, execution time and queuing time, see Algorithm 1.

After the tasks have been submitted to the computational queues, k-Dispatch
keeps monitoring them, detects anomalies such as frozen/crashed jobs, and
restarts them if necessary. After the workflow computation has been completed,
the results are downloaded from the remote computing facility back to the k-
Dispatch and the user is notified that the results are available for download.

Fig. 2. k-Dispatch stands between user applications and remote computational
resources. The communication with user applications is based on standard web services
while the SSH protocol is used to communicate with remote computational resources.
The dispatch core is responsible for the workflow submission, monitoring and other
service mechanisms.

120 M. Jaros et al.

Algorithm 1: Adaptive execution planning algorithm

Presumptions :
1 Let G = (V, E) be a workflow where V is a set of tasks and E ⊆ V × V is a set

of task dependencies.
2 Let C be a set of active resource allocations with enough resources to satisfy the

workflow G. It holds C ⊆ A, where A is a set of all allocations the user has got
access to.

3 All executable binaries for supported task types available in a given allocation
a ∈ A are defined as D ∈ (B1, B2, . . . , BN), where N is the number of task
types within the workflow G, and Bi = {b1, b2, . . . , bM} is the set of available
binaries for a given task type. Bi may be an empty set.

4 Let p : G × C × D → R
+ be a price function returning the aggregated

computational cost of the workflow G.
5 Let t : G × C × D → R

+ be a function returning the aggregated execution time
of the workflow G. This value is calculated as a critical path through the
workflow considering both the net execution time e and the queuing time q.

6 Let workflow evaluation f serving as quality metric be defined as
f = α · p + (1 − α) · t, where α is a selectable ratio prioritizing the minimal
computational cost or the execution time.

Algorithm :
1 Create a workflow G = (V, E) from the workflow template and input data.
2 Select a set of candidate allocations

C = {c ∈ A+ | c.status == active ∧ c.hours left > 0.0}.
3 Set appropriate execution parameters for all tasks and evaluate the workflow G

for all combinations of candidate allocations C and binary executables D.
4 Return the best parameters for a given workflow G as argmin(c∈C,d∈D) f(G).

3 Optimization of Workflow Execution Parameters

A typical course an ordinary user takes when executing a complex workflow is to
use default execution parameters for each task, often consisting of one compu-
tational node and 24 h of wall time. If a task fails due to insufficient memory or
time, another node or more time is allocated and the workflow restarted. Never-
theless, experienced users usually run a few benchmarks with various input sizes
and number of nodes to create a strong scaling plot and predict the extent of
computational resources for each task, which is the idea k-Dispatch has adopted.

In [9], three levels of workflow optimization were introduced. The naive one
using the default execution parameters was implemented to compare k-Dispatch
with other WMSs which use firmly set values directly provided by the users.
This paper deals with a single-pass, task level optimization, processing each
task independently. As we will show later, this is a viable solution with a linear
time complexity providing sufficient results when execution cost and time is only
considered. However, optimizing also for the queuing time requires a multi-pass,
global optimization which may lead to an exponential time complexity, and needs
a cluster simulator loaded with actual snapshots of cluster workload.

Estimation of Execution Parameters for k-Wave Simulations 121

3.1 Single-Pass Optimization

The goal of the single-pass optimization is to independently find such execution
parameters for each task i that minimize the workflow evaluation given by

f =
N∑

i=1

(α ∗ pi + (1 − α) ∗ ei) (1)

where α is a weight preferring either execution cost or time, p is the execution
cost and e is the net execution time. The queuing time is omitted here. Currently,
the execution parameters to be optimized only cover the number of allocated
nodes/cores and the execution time. Nevertheless, it is straightforward to extend
the optimization to select the most suitable code, computational queue, node
type (accelerated/fat/slim), etc.

Figure 3 illustrates the optimization of the task execution parameters as a
black box with a task type and task input file provided by the workflow as the
inputs. The task input file is parsed to extract information necessary to estimate
the computational requirements. This information typically includes the size of
the simulation domain, the simulation timespan, type of the medium, transducer
definition, etc. Next, the collected performance data is searched to find similar
records. Having a filtered out performance dataset, the plot of strong scaling
can be constructed and several interpolation techniques can be used to estimate
the task duration and cost for suitable amounts of resources. Once the best
execution parameters are selected, the machine specific job scripts are generated
and submitted to the computing queue. After the task has been properly finished,
the performance data is used to update the performance database.

Fig. 3. Optimization of the execution parameter for a given task using a couple of
heuristics and historically collected performance data for known code types.

122 M. Jaros et al.

3.2 Interpolation Heuristics

The goal of interpolation heuristics is to estimate the execution time and cost
using the measured performance data from previous runs. Since the users are
not limited in the size of the simulation domain and many other simulation
parameters influencing the execution time, the performance data will never be
complete.

There are three basic situations which may happen during the execution time
and cost estimation:

1. The same simulation has been seen before. In such a case, the execution time
and cost can be taken as a median value over multiple records stored in the
database. If the values for particular amount of resources are unknown, an
interpolation is used. Figure 4a shows this situation for four different domain
sizes where the performance data are only known for 1, 2, 4 and 8 threads.
The values for other numbers of threads have to be interpolated, see the
question marks.

2. The simulation has not been seen before. In such a case, similar simulations
are sought for in the database. First, the total number of grid points is calcu-
lated as a product of the dimension sizes. This may, however, unfavourably
impact the estimation, since the actual shape does have an impact on the
execution time, see Sect. 3.3. Next, all simulations with the number of grid
points close to the one being estimated are selected. Finally, the execution
time and cost are interpolated from the selected data. Figure 4b shows a sit-
uation where the performance data was only measured for 4 different domain
sizes. The others have to be interpolated, see the yellow area.

3. The interpolation fails and it is necessary to use queue default wall time
and amount of compute resources. This may happen if the simulation is too
far from the known ones, or the interpolation method begins to oscillate
and produces, e.g., negative values. Fortunately, this is a transient situation
because as soon as the task is executed at least once, the measured values
can be used next time.

Four interpolation methods offered by the SciPy [20] Python package were
investigated in this paper:

– linear interpolation (LI),
– cubic spline interpolation (CS),
– nearest neighbour interpolation (NN),
– radial basis function interpolation (RBF).

As the quality measure for the interpolation methods, L1-, L2- and L-Infinity
norms were used [6]. Additionally, the mean percentage error of the obtained
data series with respect to the measured values was calculated using Eq. (2).

meanPercentError = mean(
|a − b|

|a|) × 100 (2)

where a is a vector of reference data series and b is a vector of interpolated data
series.

Estimation of Execution Parameters for k-Wave Simulations 123

(a) Simulation size already seen. (b) Simulation size not seen before.

Fig. 4. (a) The performance database misses data (highlighted in yellow) for some
numbers of threads. The interpolation works with the corresponding strong scaling
curves. (b) The performance database misses data for a range of domain sizes (high-
lighted by yellow areas). The interpolations works with several strong scaling curves
from the close proximity. (Color figure online)

3.3 k-Wave Workflow Properties

A typical biomedical ultrasound workflow consists of several data processing and
numerical simulation tasks. Together, they form a workflow with approximately
100 tasks. Figure 5 shows an example of the neurostimulation workflow. While
the pre- and post-processor tasks require only a single computing node, the
aberration correction, forward planning, and thermal simulations may employ
various executables to run on a single node, a single GPU, or multiple nodes.

The simulation domain size and timespan is given by the subject anatomy,
transducer position, and the ultrasound frequency. Considering small animal
neurostimulations, the domain sizes can be as small as 162 × 192 × 128 grid
points with 3,000 simulation time steps. The move towards human patients may
expand the simulation domain size up to 768×900×600 grid points with 16,800
simulation time steps.

Figure 6 shows the performance behaviour of the distributed MPI version
of the k-Wave toolbox for the largest practical domain normalised to a single
simulation time step. The execution times were measured on the Anselm super-
computer using 1 to 16 compute nodes, each of which with 16 cores and 64 GB
of memory. It can be seen that the performance scaling is not perfect with the
maximum speed-up of 6.5 yielding the parallel efficiency of 40%. The yellow,
green and orange dots mark the ideal amount of computational resources for
three different values of the α parameters. If the execution time is preferred, the
highest possible number of nodes is selected. On the other hand, if the execution

124 M. Jaros et al.

Fig. 5. A neurostimulation workflow consisting of several data processing and simula-
tion tasks. The task dependencies are shown by the arrows, meaning the simulations
depicted in red or blue may be executed concurrently. (Color figure online)

Fig. 6. Strong scaling of the MPI version of the k-Wave simulation in a domain con-
sisting of 768 × 900 × 600 grid points. The yellow, green and orange dots show the
best number of nodes when minimizing the computational time, computational cost,
or composite workflow evaluation, respectively. (Color figure online)

cost is preferred, a single node is selected. Finally, if both the time and cost have
the same weight, two computing nodes looks as a good compromise.

Estimation of Execution Parameters for k-Wave Simulations 125

Fig. 7. Strong scaling of the MPI version of the k-Wave simulation on a domain of
768 × 900 × 600 domain size executed with the maximum (blue line) and optimal
(orange line) numbers of MPI processes (np). (Color figure online)

When working with the MPI version of the k-Wave toolbox, balanced work
distribution must be paid attention to. Since the code uses a one-dimensional
grid decomposition over the z dimension, and the grid is z-y transposed several
times every time step, the z and y dimensions must be divisible by the number
of MPI processes. Otherwise, the work is not balanced evenly and the code does
not scale well. Figure 7 shows the scaling of the code executed with the maximum
numbers of MPI processes for given number of nodes, and with reduced numbers
of processes ensuring commensurability. It is obvious, the optimized numbers of
processes yield higher performance.

3.4 Typical Problems of Performance Data Interpolations

The interpolation and extrapolation methods have several drawbacks that will
be discussed in this section. We used measured performance data from Fig. 6
and tried to manually fit interpolation curves through the measured data.

Generally, the k-Wave codes have a linearithmic computation complexity
O(n·log·n) due to extensive use of 3D Fourier transform. However, the significant
amount of communication stemming from the distributed FFT may lead to
quadratic communication complexity. Moreover, the proper workload balancing
as well as other restrictions imposed on the domain size make the scaling even
more difficult to predict [5,8]. Therefore, there are significant differences in the
course of the scaling curves at low and high numbers of threads/nodes.

126 M. Jaros et al.

(a) Extrapolation based on the know-
ledge of scaling on 2, 4, 6 and 8 nodes.

(b) Interpolation based on the knowledge
of scaling on 1, 2, 4, 10 and 16 nodes.

(c) Interpolation based on the knowledge
of scaling on 2, 4, 10 and 16 nodes.

(d) Interval based interpolation, each in-
terpolation uses 2 or 3 closest values.

Fig. 8. (a) Unsuccessful extrapolation trained on a small number of nodes. (b) and
(c) Oscillation caused by distant known values. (d) Interval interpolation not suffering
from the oscillations.

Figure 8a shows a poor attempt to extrapolation where the performance data
is only known for 2, 4, 6 and 8 nodes. The estimation of the execution time for
number of nodes above 8 is not acceptable. The linear extrapolation as well as
cubic spline extrapolation predict much shorter execution time. Nevertheless,
the code scales much worse for higher number of nodes because the communica-
tion component starts to dominate. The nearest neighbour extrapolation could
be used as the worst case, however, Fig. 6 suggests that the performance can
even deteriorate with higher number of compute nodes. Finally, the radial basis
interpolation does not produce meaningful predictions.

Figure 8b and c point out the need to abide appropriate interval between
known values to eliminate oscillations. Figure 8b uses an additional value for one
node compared to Fig. 8c. This value is usually an outlier causing unintended
oscillations since having no communication. To reduce them, several interpola-
tions may be performed on smaller intervals. The impact of this technique is
shown in Fig. 8d, where the scaling data is divided into 5 intervals of 2 to 3
values. However, it is not clear how to determine the interval size automatically.

Estimation of Execution Parameters for k-Wave Simulations 127

4 Experimental Results

This section describes performed experiments and the results. The experi-
ments show the application of the selected interpolation methods in order to
autonomously find the suitable execution parameters.

Due to the necessity of collecting an extensive performance dataset, we lim-
ited ourselves to only consider the OpenMP k-Wave implementation running on
a single node, however, with various numbers of threads. The execution cost was
then calculated as a product of the execution time and the number of proces-
sor cores used. In principle, similar results are expected to be obtained for the
CUDA implementation of k-Wave. On the other hand, the MPI version poses
more restrictions and may feature different results, see Sect. 3.4.

The performance data collected for the OpenMP code was obtained on
Anselm with 16 cores per node, and Salomon with 24 cores per node. The per-
formance data was divided into the training and testing datasets both of which
containing over 6,500 records of the aberration correction k-Wave simulation
running over 24 different domain sizes (323 to 5123 grid points) and with various
number of threads.

4.1 Comparison of Interpolation Techniques for Known Simulation

We first investigated the behaviour of all four interpolation techniques on the
known domain size of 5123 grid points. The first experiment used 6 known exe-
cution times from the Anselm cluster measured for 1, 2, 4, 8, 12 and 16 threads.
Table 1 and Fig. 9 show the course of the interpolation functions. It can be seen
that the linear and cubic spline interpolation methods reached less than 3% mean
error. The linear interpolation can be thought of as a pessimistic one since over-
estimating the execution times. Although this may lead to a bit longer queuing
times, it is safer than underestimation produced by the cubic spline interpolation,
which may lead to premature termination of the simulation. The nearest neigh-
bour interpolation shows significantly worse accuracy as well as the radial basis
function interpolation deeply oscillating, especially for high numbers of threads.

The second experiment extended the number of measured values and also
included the Salomon cluster. For Anselm, the performance data was extracted
from the database for 1, 2, 4, 5, 8, 10, 13, and 15 threads, while for Salomon

Table 1. Comparison of selected interpolation methods for domain size of 5123 grid
points domain size and 6 known values measured on Anselm.

Interpolation method L1-Norm L2-Norm L2-Infinity Norm Mean error [%]

Linear 1.27 0.59 0.46 2.89

Cubic Spline 0.93 0.42 0.35 2.29

Nearest Neighbour 4.60 2.40 2.06 9.85

Radial Basis Function 3.41 1.37 0.79 8.77

128 M. Jaros et al.

Fig. 9. Comparison of various interpolation techniques for the OpenMP implementa-
tion of k-Wave running on Anselm with a domain size of 5123 grid points.

the set was further extended by performance data for 17, 20, 22, and 24 threads.
This covers 50% of all possible thread numbers usable on both clusters. The
domain size remained the same (5123 grid points).

Tables 2 and 3 show significant improvement in the prediction accuracy. The
mean error produced by the linear interpolation was reduced from 2.89% to
1.81%, and 1.27% on Anselm and Salomon, respectively. Even better results
were achieved for the cubic spline interpolation which produced estimation with
only 1.23% and 1.12% error. Even the other interpolation methods improved

Table 2. Comparison of selected interpolation methods for domain size of 5123 grid
points domain size and 8 known values measured on Anselm.

Interpolation method L1-Norm L2-Norm L2-Infinity Norm Mean error [%]

Linear 0.80 0.45 0.41 1.81

Cubic Spline 0.56 0.38 0.37 1.23

Nearest Neighbour 2.99 2.03 1.95 5.70

Radial Basis Function 1.61 0.90 0.67 4.67

Table 3. Comparison of selected interpolation methods for domain size of 5123 grid
points domain size and 12 known values measured on Salomon.

Interpolation method L1-Norm L2-Norm L2-Infinity Norm Mean error [%]

Linear 0.62 0.33 0.29 1.27

Cubic Spline 0.60 0.40 0.39 1.12

Nearest Neighbour 2.73 1.71 1.63 4.68

Radial Basis Function 1.08 0.69 0.66 2.01

Estimation of Execution Parameters for k-Wave Simulations 129

Fig. 10. Estimation of the best execution configuration according to the workflow
evaluation function for a domain size of 5123 grid points on the Anselm cluster produced
by linear and cubic spline interpolation.

the error close to or below 5%. This can be considered as a very good result
since there is always a slight variation in execution times between different runs
caused by the underlying cluster workload (mainly network and I/O parts), and
variations in clock frequency amongst different cluster nodes.

Figure 10 illustrates the result of the interpolation for linear and cubic spline
interpolation for the extended training set, and the domain size of 5123 grid
points. The curves show a very good agreement without any significant oscilla-
tions. The orange and grey curves are the visualizations of the workflow evalu-
ation functions with α = 0.5. If looking for the fastest solution, both the linear
and cubic spline interpolations predict 16 threads to be the best solution. In
the case the combined workflow evaluation metric is minimized, 3 and 5 threads
are predicted as best compromises by the cubic spline and linear interpolations,
respectively.

4.2 Comparison of Interpolation Techniques for Unknown
Simulations

This set of experiments evaluates the capabilities of the proposed interpolation
methods to estimate the execution time for simulations that have not been seen
before. In this case, the closest simulations in terms of the total number of grid
points are used to fit the interpolation curves. Since the results were similar for
both clusters, we only present measurements on Anselm.

Three different unknown domain sizes were tested:

1. Tested simulation size 256×2242, training set containing simulations of 2243,
2562 × 224, and 2242 × 192 grid points.

2. Tested simulation size 1602 ×128, training set containing simulations of 1443,
1603, and 132 × 1282 grid points.

130 M. Jaros et al.

3. Tested simulation size 1443, training set containing simulations of 1603, 160×
1282, and 132 × 1282 grid points.

Figure 11 shows the results of selected interpolations on the first two sim-
ulation domains. Both linear and cubic spline interpolations show a very close
agreement with the reference data stored in the testing set. As Tables 4 and 5
quantify, the mean error for the biggest domain reaches 4.7% and 3.1% for linear
and cubic spline interpolations, respectively. For the smaller domain, the error
decreases to 1.75% and 2.25%. Interestingly, the cubic spline produces slightly

(a) Domain size of 256× 2242 grid points

(b) Domain size of 1602 × 128 grid points

Fig. 11. Comparisons of linear and cubic spline interpolation methods for unknown
domain sizes. The reference data points are used for the error evaluation.

Estimation of Execution Parameters for k-Wave Simulations 131

Table 4. Comparisons of selected interpolation methods for an unknown domain sizes
of 256 × 2242 grid points.

Interpolation method L1-Norm L2-Norm L2-Infinity Norm Mean error [%]

Linear 0.17 0.056 0.034 4.724

Cubic Spline 0.11 0.037 0.025 3.073

Nearest Neighbour 0.84 0.271 0.191 22.35

Radial Basis Function 352 99.26 47.99 11492

Table 5. Comparisons of selected interpolation methods for an unknown domain sizes
of 1602 × 128 grid points.

Interpolation method L1-Norm L2-Norm L2-Infinity Norm Mean error [%]

Linear 0.015 0.005 0.003 1.75

Cubic Spline 0.023 0.007 0.005 2.25

Nearest Neighbour 0.252 0.089 0.068 17.7

Radial Basis Function 0.371 0.121 0.089 29.2

worse estimations here. The nearest neighbour interpolation gives much worse
estimation with a mean error of 22% and 18% for those two cases. Finally, the
radial basis interpolation appears to be unusable for the largest domain. The
extreme error is caused by high oscillations. In case of the medium-sized domain,
the error decreases to 29%. Unfortunately, this still exceeds acceptable values.

The smallest domain size of interest suffers from very poor results which are
summarized in Table 6 and Fig. 12. The only usable estimations are provided by
the linear interpolation, however, with a mean error of 16%. The cubic spline
completely fails in this case while the best estimation is surprising provided by
the nearest neighbour interpolation. The radial basis interpolation also fails on
this domain size. The overestimation is very likely caused by a small domain size
when a single grid can fit into L3 cache memory leading to much faster execution
of the Fourier transforms and overall algorithm speed-up. On the other hand,
even overestimation by 200% may be thought of as acceptable considering such
a simulation is executed within 2 min using 16 threads.

Table 6. Comparisons of linear and cubic spline interpolation methods for an unknown
domain sizes of 1443 grid points.

Interpolation method L1-Norm L2-Norm L2-Infinity Norm Mean difference [%]

Linear 0.196 0.061 0.041 15.99

Cubic Spline 2.080 0.527 0.185 212.6

Nearest Neighbour 0.177 0.064 0.050 13.40

Radial Basis Function 4.050 1.024 0.356 416.8

132 M. Jaros et al.

Fig. 12. Comparisons of linear and cubic spline interpolation methods for unknown
domain size of 1443. The reference data points are used for the error evaluation.

5 Conclusions

The need for offloading complex scientific workflows to cluster and cloud environ-
ment is ubiquitous. k-Dispatch is a workflow management system providing auto-
mated execution, planning and monitoring of biomedical workflows composed of
k-Wave ultrasound and thermal simulations. Its interface enables connection
of various user applications and unifies the access to different computational
resources.

One of the key challenges in automated execution of complex workflows is the
proper setting of execution parameters for particular tasks. Since the end users
have no or very limited knowledge about the amount of computational resources
to be allocated for each task, it is necessary to provide as good estimation as
possible based on the performance characteristics of particular codes and actual
input data. Unsuitable values may lead to long queueing times or early tasks
termination due to exhausted time allocation.

This paper has presented a single pass algorithm traversing the workflow
and optimizing the execution parameters for every task independently. For every
task, the input file is inspected, the task parameters retrieved, and the perfor-
mance database searched for similar ones. If there is a direct match, the execution
time and cost are loaded for known execution parameters, i.e., number of com-
pute nodes, GPUs, processor cores, etc. Missing values may be filled in using
interpolation techniques. However, if the task parameters have not been seen
before, the interpolation is used to estimate the execution time and cost using a
training set composed of tasks with similar parameters.

Four different interpolation techniques have been investigated. When the
task parameters have been seen before, the cubic spline interpolation showed
the best results with mean error between 1.12% and 2.29%. In the case the

Estimation of Execution Parameters for k-Wave Simulations 133

task parameters have not been seen before, the linear interpolation showed the
best results. Depending on the similarity of the records found in the performance
database, the mean error varies between 1.17% and 15%. It should be noted that
the highest error showed up only for very small tasks where the overestimation
of execution time or cost do not play a significant role.

5.1 Future Work

Future work will be focused on multi-pass optimization of workflow execution
parameters. The goal is to minimize not only the execution time and cost but
also the queuing times. This however requires the knowledge of the actual cluster
workload and queues occupancy as well as a cluster simulator to quickly estimate
the queuing times for the whole workflow under different execution parameters.
We are considering the adaptation of the ALEA simulator [11] to match the
scheduling algorithms and hardware configurations of IT4Innovations clusters,
and the characteristics of the k-Wave workflows.

We would also like to implement more sophisticated heuristics to select an
appropriate number of compute nodes as well as optimal number of MPI pro-
cesses for large simulations to avoid performance penalizations. Consequently,
we would like to study machine learning methods since we expect to have col-
lected large performance dataset, and perform experiments on both, artificial
and real-world workflows.

Acknowledgement. This work was supported by the FIT-S-17-3994 Advanced par-
allel and embedded computer systems project. This work was supported by The
Ministry of Education, Youth and Sports from the National Programme of Sustain-
ability (NPU II) project IT4Innovations excellence in science - LQ1602 and by the
IT4Innovations infrastructure which is supported from the Large Infrastructures for
Research, Experimental Development and Innovations project IT4Innovations National
Supercomputing Center - LM2015070. This work was supported by the Engineering and
Physical Sciences Research Council, United Kingdom, grant numbers EP/L020262/1,
EP/M011119/1, EP/P008860/1, and EP/S026371/1.

References

1. Abbas, A., Coussios, C., Cleveland, R.: Patient specific simulation of HIFU kidney
tumour ablation, vol. 2018, pp. 5709–5712 (July 2018). https://doi.org/10.1109/
EMBC.2018.8513647

2. Su, M.H.: Pegasus: a framework for mapping complex scientific workflows onto
distributed systems. Sci. Program. 13, 219–237 (2005)

3. Deelman, E., et al.: Pegasus: a workflow management system for science automa-
tion. Fut. Gener. Comput. Syst. 46, 17–35 (2014)

4. Foster, I.: Globus toolkit version 4: software for service-oriented systems. J. Comput.
Sci. Technol 21(4), 513–520 (2006). https://doi.org/10.1007/s11390-006-0513-y

5. Frigo, M., Johnson, S.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005). https://doi.org/10.1109/JPROC.2004.840301

https://doi.org/10.1109/EMBC.2018.8513647
https://doi.org/10.1109/EMBC.2018.8513647
https://doi.org/10.1007/s11390-006-0513-y
https://doi.org/10.1109/JPROC.2004.840301

134 M. Jaros et al.

6. Gradshtein, I.S.: Table of Integrals, Series, and Products. Academic Press, San
Diego (2000)

7. Grisey, A., Yon, S., Letort, V., Lafitte, P.: Simulation of high-intensity focused
ultrasound lesions in presence of boiling. J. Ther. Ultrasound (2016). https://doi.
org/10.1186/S40349-016-0056-9

8. Jaros, J., Rendell, A.P., Treeby, B.E.: Full-wave nonlinear ultrasound simulation
on distributed clusters with applications in high-intensity focused ultrasound. Int.
J. High Perform. Comput. Appl. 30(2), 137–155 (2016). https://doi.org/10.1177/
1094342015581024

9. Jaros, M., Treeby, B.E., Georgiou, P., Jaros, J.: k-Dispatch: a workflow manage-
ment system for the automated execution of biomedical ultrasound simulations on
remote computing resources. In: Proceedings of the Platform for Advanced Scien-
tific Computing Conference, PASC 2020. Association for Computing Machinery,
New York (2020). https://doi.org/10.1145/3394277.3401854

10. Kadlubiak, K., Jaros, J., Treeby, B.E.: GPU-accelerated simulation of elastic wave
propagation. In: 2018 International Conference on High Performance Computing
& Simulation (HPCS), pp. 188–195. IEEE (July 2018). https://doi.org/10.1109/
HPCS.2018.00044

11. Klusacek, D., Toth, S., Podolnikova, G.: Complex job scheduling simulations with
Alea 4. CEUR Workshop Proc. 1828, 53–59 (2017). https://doi.org/10.1145/1235

12. Ludäscher, B., et al.: Scientific workflow management and the Kepler system. Con-
currency Comput. Pract. Exp. 18(10), 1039–1065 (2006). https://doi.org/10.1002/
cpe.994

13. Manohar, S., Dantuma, M.: Current and future trends in photoacoustic breast
imaging. Photoacoustics 16, 100134 (2019). https://doi.org/10.1016/j.pacs.2019.
04.004

14. Mohammadi, L., Behnam, H., Tavakkoli, J., Avanaki, M.R.: Skull’s photoacoustic
attenuation and dispersion modeling with deterministic ray-tracing: towards real-
time aberration correction. Sensors (Switzerland) (2019). https://doi.org/10.3390/
s19020345

15. Robert, Y.: Task graph scheduling. In: Padua, D. (ed.) Encyclopedia of Paral-
lel Computing. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-09766-
4 42

16. Suomi, V., Jaros, J., Treeby, B., Cleveland, R.: Nonlinear 3-D simulation of high-
intensity focused ultrasound therapy in the Kidney. Conf. Proc. IEEE Eng. Med.
Biol. Soc., 5648–5651 (2016). IEEE. https://doi.org/10.1109/EMBC.2016.7592008

17. Suomi, V., et al.: Transurethral ultrasound therapy of the prostate in the presence
of calcifications: a simulation study. Med. Phys. 45, 4793–4805 (2018). https://
doi.org/10.1002/mp.13183

18. Treeby, B.E., Cox, B.T.: k-Wave: MATLAB toolbox for the simulation and recon-
struction of photoacoustic wave-fields. J. Biomed. Opt. 15(2), 021314 (2010)

19. Treeby, B.E., Jaros, J., Rendell, A.P., Cox, B.T.: Modeling nonlinear ultrasound
propagation in heterogeneous media with power law absorption using a k-space
pseudospectral method. J. Acoust. Soc. Am. 131(6), 4324–4336 (2012). https://
doi.org/10.1121/1.4712021

20. Virtanen, P., Gommers, R., Oliphant, T.E., et al.: SciPy 1.0: fundamental algo-
rithms for scientific computing in Python. Nat. Meth. 17, 261–272 (2020)

https://doi.org/10.1186/S40349-016-0056-9
https://doi.org/10.1186/S40349-016-0056-9
https://doi.org/10.1177/1094342015581024
https://doi.org/10.1177/1094342015581024
https://doi.org/10.1145/3394277.3401854
https://doi.org/10.1109/HPCS.2018.00044
https://doi.org/10.1109/HPCS.2018.00044
https://doi.org/10.1145/1235
https://doi.org/10.1002/cpe.994
https://doi.org/10.1002/cpe.994
https://doi.org/10.1016/j.pacs.2019.04.004
https://doi.org/10.1016/j.pacs.2019.04.004
https://doi.org/10.3390/s19020345
https://doi.org/10.3390/s19020345
https://doi.org/10.1007/978-0-387-09766-4_42
https://doi.org/10.1007/978-0-387-09766-4_42
https://doi.org/10.1109/EMBC.2016.7592008
https://doi.org/10.1002/mp.13183
https://doi.org/10.1002/mp.13183
https://doi.org/10.1121/1.4712021
https://doi.org/10.1121/1.4712021

Analysis and Visualization
of the Dynamic Behavior of HPC

Applications

Ondrej Vysocky(B) , Ivo Peterek, Martin Beseda , Matej Spetko ,
David Ulcak, and Lubomir Riha

IT4Innovations National Supercomputing Center,
VSB - Technical University of Ostrava, Ostrava, Czech Republic

{ondrej.vysocky,ivo.peterek,martin.beseda,matej.spetko,david.ulcak,
lubomir.riha}@vsb.cz

Abstract. The behavior of a parallel application can be presented in
many ways, but performance visualization tools usually focus on commu-
nication graphs and runtime of processes or threads in specific (groups
of) functions. A different approach is required when searching for the
optimal configuration of tunable parameters, for which it is necessary
to run the application several times and compare the resource consump-
tion of these runs. We present RADAR visualizer, a tool that was origi-
nally developed to analyze such measurements and to detect the optimal
configuration for each instrumented part of the code. In this case, the
optimum was defined as the minimum energy consumption of the whole
application, but any other metric can be defined.

RADAR visualizer presents the application behavior in several graph-
ical representations and tables including the amount of savings that can
be reached. Together with our MERIC library, we provide a complete
toolchain for HPC application behavior monitoring, data analysis, and
graphical representation. The final part is performing dynamic tuning
(applying optimal settings for each region during the application run-
time) for the production runs of the analyzed application.

Keywords: MERIC · READEX · Energy efficient computing ·
Performance analysis · HPC

1 Introduction

On the way to exascale supercomputing, the high performance computing com-
munity faces the problem of the power and energy consumption of these systems.
Consequently, many projects are focusing on solutions to optimize performance
under a specified power budget or maximize energy savings with minimal impact
on application performance [3,4,16]. Amongst these was a Horizon 2020 project
called READEX [14,17]. The main idea of the project is based on splitting
an application into parts, for which we expect different hardware requirements.
c© Springer Nature Switzerland AG 2021
T. Kozubek et al. (Eds.): HPCSE 2019, LNCS 12456, pp. 135–149, 2021.
https://doi.org/10.1007/978-3-030-67077-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67077-1_8&domain=pdf
http://orcid.org/0000-0001-7849-2744
http://orcid.org/0000-0001-5792-2872
http://orcid.org/0000-0002-5486-0503
http://orcid.org/0000-0002-1017-5766
https://doi.org/10.1007/978-3-030-67077-1_8

136 O. Vysocky et al.

The READEX tools tune available knobs to fit the application needs for each
of its instrumented parts to avoid wasting resources. We speak about dynamic
tuning, as opposed to static tuning, where only one configuration is set at the
beginning of the application execution.

As a member of the READEX project consortium, we have implemented
the lightweight C++ library MERIC [9,21] for parallel application resource con-
sumption measurement and hardware parameter tuning during application run-
time according to the READEX approach. This means that MERIC stores an
application profile under various hardware settings into an output record. This
record is searched for settings that consumed a minimal amount of energy, run-
time, and potentially other metrics. During an application run, MERIC may tune
CPU core (CF) and uncore (UnCF) frequency (on Intel processors it is frequency
of subsystems in the physical processor package that is shared by multiple pro-
cessor cores e.g., L3 cache or on-chip ring interconnect), RAPL power cap limit,
and number of active OpenMP threads if available on the target architecture.

MERIC output can be analyzed using the python tool RADAR [10,21] with
a graphical user interface RADAR visualizer. RADAR provides various rep-
resentations to compare the application resource consumption under different
parameter configurations and identifies which configuration of each region will
bring the maximum energy savings. There are many tools for application behav-
ior analysis, usually with their own profile visualization graphical tool, such
as Score-P [11] and Scalasca [6] that use Cube, TAU [20] and its ParaProf,
and Extrae [19] with a Paraver tool. These tools were originally implemented
to provide insight into an application behavior within a single run to compare
resource consumption between parallel processes or threads. This is not true for
the Open|SpeedShop tool, which allows comparison of up to eight database files,
where each contains information about one run of the analyzed application [18],
which is useful when a new improved implementation is done.

Our use case requires comparison of tens of runs of an application, each with a
different configuration. Moreover, each part of the application may have a unique
configuration during a single run. We evaluate these runs and automatically
identify the optimal configuration of each region of the application.

In contrast to the previously mentioned HPC application analysis tools, we
are not focused on presenting any details of application behavior below the socket
level, since energy measurement systems provide the consumption for each socket
(e.g. Intel RAPL counters [8], HDEEM [7]) and in some cases for the whole node
only (e.g. DiG [12]).

This paper follows up our previous work [10,21] presenting RADAR as a
command-line Python tool, which generates a LATEX document with series of
tables and graphs. The RADAR tool has been replaced with the RADAR visu-
alizer GUI application, that brings not only much higher user-friendliness, but
new visualisation elements and data analysis algorithms too.

Analysis and Visualization of the Dynamic Behavior of HPC Applications 137

2 Understanding Application Behavior

The RADAR visualizer provides a graphical representation of an analyzed appli-
cation behavior. It both visualizes the measured data, and also does its own anal-
ysis to find the optimal configuration of the application’s regions. The results of
the analysis are mostly presented in tables, explained into more detail later. The
optimal configuration can be also stored into a configuration file for MERIC, to
tune the application during its production runs.

The READEX approach, as well as all other energy-saving approaches,
reduces available resources, which obviously may cause an overhead. The reduc-
tion in performance stems from the balancing of energy savings against the
subsequent performance penalty. In the case of the READEX approach it is
possible for the production phase to exclude all configurations that cause any
overhead, or specify an acceptable limit.

To show an example of the dynamic behavior of a parallel application we will
present selected parts of the Lattice Boltzmann method (LBM) application anal-
ysis. This computational fluid dynamics simulation application is a good example
since it is a simple application that exhibits much exploitable dynamism [1,22].
The main loop contains two regions that behave very differently. First, the Propa-
gate part moves populations between lattice-sites and is strongly memory-bound,
then the compute intensive Collide region follows, which recomputes the values
of populations at each site. For the test, we selected a 4096 × 4096 points lattices
size and 25 iterations of the main loop. Such a high amount of iterations is not
required for the analysis, but can help us identify any inter-dynamism within
the regions. In this paper we use the application to depict the features of our
tools only; the achievable energy savings of this application have been already
presented in [2].

The presented values were measured on a single node of the TU Dresden
Taurus supercomputer powered by two Intel Xeon CPUs E5-2680v3 (codename
Haswell) with 12 cores each, which operates on a core frequency of 1.2–3.30 GHz
(2.5 GHz nominal frequency, in the following Sects. 2.6 GHz will represent the
turbo frequency) and 1.2–3.0 GHz uncore frequency. Taurus nodes accommodate
the HDEEM system, which was used for energy measurement. An exhaustive
space state search was applied with a 200 MHz step size for both CPU core and
uncore frequencies, and even numbers from 12 up to 24 active threads were used.

The RADAR visualizer does not have a single main window. When running
the tool a panel of buttons is displayed, each opening a new window with one of
the following representations of the application behavior.

2.1 Charts, Plots and Heatmaps

Regions’ Call-Path Structure. First of all, we should start with a look at the
whole application as MERIC sees it during the analysis. The application has been
divided into regions by MERIC’s instrumentation, which has been inserted man-
ually into the source code of the analyzed application or automatically directly

138 O. Vysocky et al.

to the application binary. When running the instrumented application MERIC
measures and records resources consumption for each region.

The RADAR visualizer provides a chart that shows the structure of calls
of the regions in the application. This RADAR window allows us to store the
chart as an image, or into yEd graph format1, which is useful for visualization
of complex graphs. The advantage of this chart format is that the RADAR
visualizer does not have to specify the exact location of each node, but the yEd
Graph editor provides several advanced automatic layout transformations.

Based on the call-path structure, or for example because of the region’s too
short runtime, the user may remove some of the regions from the analysis (the
region remains in the code) to make the process faster and the graphical presen-
tations of the results more lucid. The interface provides the option of automatic
region selection using time a filter or selection of all nested regions of one top-
level region.

Fig. 1. ESPRESO FETI solver regions’ callpath graph in a yEd graph. (Color figure
online)

The LBM application has a very simple structure with an initialization region
and one loop which contains Propagate and Collide regions. Therefore, in this
case, we use an example of a complex graph generated from the RADAR visu-
alizer in yEd format for the ESPRESO FETI solver [15]. The chart is shown in
Fig. 1. Under the Main region, only the last-level regions are selected for anal-
ysis (yellow color), from which one region is deselected (red color) for its short
runtime.
1 yEd Graph editor can be download from https://www.yworks.com/yed.

https://www.yworks.com/products/yed

Analysis and Visualization of the Dynamic Behavior of HPC Applications 139

Direct Values. Once we have selected the regions to analyze, we may evaluate
the behavior of the whole application and also each of its regions for various
configurations.

Even though the list of tuned parameters might be in general unlimited, we
provide visualization of the data in two-dimensional visual elements only to keep
the level of lucidity, and to be able to produce a printed report. The user must
specify which parameters should be shown on the x or y axes. For the rest of
the parameters, we select the optimal values of these parameters and inform the
user of the values.

The RADAR visualizer provides two visual elements, plot and heatmap, both
showing the same values measured by MERIC under specific configurations.
However, from the plot it is easier to see trends, and in the case of the heatmap
it is easier to present exact values. Furthermore, by clicking on a specific cell of
a heatmap, the user can get information about the values, from which the value
in the cell has been calculated. This might be useful for detecting outliers in a
measurement.

(a) Propagate region.

(b) Collide region.

Fig. 2. Heatmap representation of energy consumption in millijoules of the regions
Propagate and Collide when using 12 OpenMP threads, and CPU core and uncore
frequencies are tuned.

Figure 2 shows such heatmaps for energy consumption of the Propagate and
Collide regions when 12 threads are used. From these heatmaps, it is observable
that minimal energy consumption is reached via completely different configu-
rations, presenting the highest energy consumption in red cells at the opposite
sides of the heatmaps. To maximally reduce the energy consumption of the LBM
application it is necessary to switch from high CPU uncore and low core frequen-
cies, which are optimal for the Propagate region, to low uncore frequency and

140 O. Vysocky et al.

high core frequency when the Collide region starts, and then back to the previ-
ous configuration. For example, we can read from the heatmaps the difference
in minimum and maximum energy consumption; over 590 J for the Propagate
region and 1 370 J for the Collide region.

There is almost zero impact on Propagate region runtime when the CPU
core frequency is underclocked (Fig. 3). In this case, only CPU uncore frequency
influences the region runtime, which again confirms that the region is highly
memory-bound.

Fig. 3. Impact of the CPU core and uncore frequency tuning on the runtime of the
Propagate region. Zoomed to the 2.0–3.0 GHz uncore frequency.

Power Samples Visualization. Some energy measurement systems (those
supported by MERIC include HDEEM and DiG) provide not only energy con-
sumption in a specified time period but also access to power samples that have
been taken by the system. On user request the MERIC library may also store
these power samples in the output file2. These power samples hold much impor-
tant data that is worth investigating, especially in the default settings of the
2 By default, MERIC does not store the power samples because it creates a much larger

output. Both HDEEM and DiG work normally on a 1 kHz sampling frequency for the
blade, which means a thousand entries per second of the measurement. HDEEM also
has sensors on specific parts of the node (e.g. each CPU or each memory channel)
and measures them on 100 Hz sampling frequency, so in cases where these samples
are also included, the output size rises accordingly.

Analysis and Visualization of the Dynamic Behavior of HPC Applications 141

CPU, when the default governor tunes the frequencies itself, otherwise some
changes in the power consumption might be hidden.

The power timeline of both CPUs, and two of the four most significant mem-
ory channels of the LBM application single run when no specific hardware set-
tings are applied (the system scaled the frequencies automatically) is presented
in Fig. 4. In this chart the initialization and the following 25 iterations of the
loop with Propagate and Collide regions are clearly visible.

Fig. 4. Power timeline of a single run of the LBM application.

From our observation, the power consumption may slightly jitter around
some value, even when the node is under the same workload. Together with a
high frequency of sampling, the plot might be less informative about the trends
in power consumption. To overcome this problem we provide a possibility to
smooth the graph by applying a filter that inserts smoothed values calculated
from the surrounding n-samples into the graph. The smoothing is based on the
Savitzky–Golay filter without differentiating the data [13] where the user may
specify the window size (number of surrounding samples, default 11) and the
order of the polynomial (default 2) used to fit the power samples.

As an example of a smoothed power timeline, we show a fragment of power
consumption of the whole computational node during five iterations of the appli-
cation node in Fig. 5. The regions’ calls are inserted separately, so we can clearly
identify calls of the Propagate (blue) and Collide (red) regions.

When visualizing regions with more than one call using line plot, we add an
extra 0 W sample at the beginning and end of each region call (except at the
beginning of the first and end of the last call). In Fig. 5 you can see extra lines
going down and up, otherwise, there would be unwanted lines connecting the
first power sample with the last power sample of the previous region call.

142 O. Vysocky et al.

Fig. 5. Smoothed node power timeline of the main LBM loop containing Propagate
(blue) and Collide (red) regions (Color figure online).

The power timeline of a region carries important information; it may show
that the region should be split into two or more smaller regions if there are
continuous clusters of power samples with approximately the same value. If such
a region is not covered with one or more nested regions, we lose an opportunity
to exploit the dynamism. The RADAR visualizer provides a cluster analysis of
the power samples and informs the user that a region that is not covered by
nested ones should be split into smaller regions to obtain the maximum possible
savings.

The cluster analysis performed on the LBM run suggests splitting the region
Propagate into two regions of approximately the same size. The output can be
seen in Fig. 6, where the analysis was performed both on data from the blade
power sensor and one of the memory channels power sensors, respectively. The
figure is magnified to include four calls of the Propagate region only, where two
different parts of the region can be seen for each of the region’s calls in both
sub-figures. Standalone dots (samples) represent outliers not included in any of
the clusters.

The cluster analysis itself utilizes the DBSCAN algorithm [5], employing a
weighted Euclidean distance (1) as a metric. By setting (w1, w2) = (0.001, 0.85)
we managed to re-scale the x-axis to values of the same order as the y-axis
and slightly contract the y-axis. Thus we managed to diminish the oscillations
while preserving a significant difference in the power samples among regions.
Furthermore, a standard deviation s (2) multiplied by 0.85 was employed as a
guess for a sufficient neighborhood radius ε. The algorithm is set to identify all
regions of the minimum 100 ms size.

Analysis and Visualization of the Dynamic Behavior of HPC Applications 143

(a) Data from blade power sensor.

(b) Data from DDR EF power sensor.

Fig. 6. Detail at four consecutive calls of the Propagate region. The cluster analysis
performed by DBSCAN splits each call into two separate parts.

dwE(a, b) =
2∑

i=1

wi(ai − bi)2, a, b ∈ R
2 (1)

s =

√√√√ 1
n − 1

n∑

i=1

(xi − x), n ∈ N (2)

Another kind of dynamism can be detected when the cluster analysis does
not compare power samples during a single region call but within all the region’s

144 O. Vysocky et al.

calls. If the energy consumption or runtime is not stable, it may vary together
with a different region call-path or input parameters. This type of dynamism
detection is currently not supported by the RADAR visualizer.

2.2 Tables

The presented visual elements show all the raw data stored in the MERIC
analysis output, however, there is still more important information that can be
extracted too. To present it we have chosen a table representation as a compact
and lucid form.

Overall Application Summary. First of all, the user should be interested
in the Overall application summary table, which provides summary information
about the application resource consumption in its default settings, if the analysis
applied a static tuning then also in the best static configuration, and also in the
best configuration for each region if dynamic parameters tuning is applied. The
dynamic savings are evaluated in comparison to the best static configuration; the
overall savings of the dynamic savings are a summary of the static and dynamic
savings.

The Overall application summary table takes into account that you may not
want to reach the minimal energy consumption but rather tune for minimal
application runtime (e.g. reduce the number of threads in a specific part that is
influenced by the numa effect) or any other measured objective. Consequently
(Fig. 7), for the production runs of the LBM application, 23.7 % static and 6.2 %
dynamic energy savings can be reached, which makes 28.5 % overall savings, and
it could be possible to optimize the application runtime to about 6.8 s with-
out taking into account the energy consumption. The bottom row informs us
that the application will run about 2.76 s longer if the energy optimal dynamic
configuration were applied.

Fig. 7. Comparison of the time and energy consumption of the LBM application run
in the default, the optimal static, and the best dynamic configuration.

Analysis and Visualization of the Dynamic Behavior of HPC Applications 145

Average Program Start. The window Average program start lists all the
regions nested in the main region and presents their impact on the application.
For each region, the user has information about the percentage region size from
the consumption of the selected resource (time, energy, etc.) point of view. Per-
cents express the coverage of the region in the main region. This column follows
the optimal static configuration of the main region (it is the same for all the
nested regions) and resource consumption of each region in this configuration.
The best dynamic configuration is obviously an individual for each region. Also,
the subsequent column named Value presents the region’s consumption in the
best dynamic configuration. Finally, dynamic savings gives us information on
how much we save in comparison to the best static configuration of the main
region.

Fig. 8. Table of the selected nested regions of the LBM application and their optimal
dynamic configurations to reach minimal energy consumption.

When having a list of the nested regions we may see which regions consume
the most resources and focus our interest on them. In Fig. 8 we may see minimal
energy savings gained from dynamic tuning of the Propagate region. The region
takes over 45 % of the application runtime, so its optimal configuration almost
matches the optimal static configuration. On the other hand, the Collide region
achieves better energy consumption when 18 threads are active with 1.8 GHz
uncore and 1.4 GHz core CPU frequency. Such configuration brings 14.1 % of
savings for the Collide region and another 5 % of the energy consumed by the
Init region can be saved if it is switched to its optimal configuration.

Both absolute and percentage savings that come from the dynamic tuning
of these regions are summarized in the last five rows of the table. The table

146 O. Vysocky et al.

presents energy savings only, but the user may also select other objectives to be
presented in another table.

Nested Region Table. The last type of available table focuses again on just
one selected region behavior only. This table is designed for regions located
in an instrumented loop (such instrumentation is called a phase region in the
READEX terminology) and compares how the behavior of such regions changes
during the iterations.

Fig. 9. Table comparing the first three calls of the Propagate region.

Figure 9 shows only the beginning of the whole Nested region table. Due to
the size of the table, we show only the Energy consumption during the first
three iterations (Phase ID) of the loop. In the table, we can see how the optimal
configuration changes during iterations, and what the resource consumption is.

The goal of this kind of region behavior representation is the detection of
regions that behave differently every N iterations (e.g. storing output to a file
every ten iterations), which means that we should identify different optimal
configurations accordingly. In the future version of the RADAR visualizer, we
will also prepare a plot representation and automatic detection of this kind of
dynamism.

3 Conclusion

In this paper we present the RADAR visualizer, which provides graphical rep-
resentation and analysis of parallel applications’ resource consumption mea-
sured by the MERIC library, and tunes the application according the READEX
approach based on exploiting application dynamism. The application must be
measured in several configurations. These runs are then compared by our tool,
which identifies the optimal configuration for each instrumented part of the code.
The measurements are presented using several available visual representations; a
graph of regions’ callpath, a plot and heatmap comparing resource consumption

Analysis and Visualization of the Dynamic Behavior of HPC Applications 147

in various configurations, a power consumption timeline, and tables presenting
the available savings.

These visual elements can be directly exported into several image formats,
and can be arranged and combined to produce a final LATEX based report for the
presentation of the application behavior to the user or application developer.

Future work includes extending the RADAR visualizer with new graphical
representations (e.g. n-dimensional plots to visualize data from multiple com-
putational nodes side by side) and new algorithms for data analysis (e.g. add a
restriction for maximum impact of the configuration on the application runtime)
that can help us reach the maximum savings from various kinds of application
dynamism.

Acknowledgment. This work was supported by The Ministry of Education, Youth
and Sports from the Large Infrastructures for Research, Experimental Development
and Innovations project IT4Innovations National Supercomputing Center LM2015070.

This work was supported by The Ministry of Education, Youth and Sports from
the Large Infrastructures for Research, Experimental Development and Innovations
project ,,e-Infrastructure CZ - LM2018140”.

This work was supported by the Moravian-Silesian Region from the pro-
gramme “Support of science and research in the Moravian-Silesian Region 2017”
(RRC/10/2017).

This work was partially supported by the SGC grant No. SP2019/59 “Infrastructure
research and development of HPC libraries and tools”, VŠB - Technical University of
Ostrava, Czech Republic.

References

1. Calore, E., Gabbana, A., Schifano, S.F., Tripiccione, R.: Evaluation of DVFS tech-
niques on modern HPC processors and accelerators for energy aware applications.
Concurr. Comput. Pract. Exp. 29(12), e4143 (2017). https://doi.org/10.1002/cpe.
4143

2. Calore, E., Gabbana, A., Schifano, S.F., Tripiccione, R.: Energy-efficiency tuning of
a lattice Boltzmann simulation using MERIC. In: Wyrzykowski, R., Deelman, E.,
Dongarra, J., Karczewski, K. (eds.) PPAM 2019. LNCS, vol. 12044, pp. 169–180.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43222-5 15

3. Cesarini, D., Bartolini, A., Bonfà, P., Cavazzoni, C., Benini, L.: COUNTDOWN
- three, two, one, low power! A run-time library for energy saving in MPI com-
munication primitives (2018). CoRR abs/1806.07258. http://arxiv.org/abs/1806.
07258

4. Eastep, J., et al.: Global extensible open power manager: a vehicle for HPC commu-
nity collaboration on co-designed energy management solutions. In: Kunkel, J.M.,
Yokota, R., Balaji, P., Keyes, D. (eds.) ISC 2017. LNCS, vol. 10266, pp. 394–412.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58667-0 21

5. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD1996,
pp. 226–231. AAAI Press (1996)

https://doi.org/10.1002/cpe.4143
https://doi.org/10.1002/cpe.4143
https://doi.org/10.1007/978-3-030-43222-5_15
http://arxiv.org/abs/1806.07258
http://arxiv.org/abs/1806.07258
https://doi.org/10.1007/978-3-319-58667-0_21

148 O. Vysocky et al.

6. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
SCALASCA performance toolset architecture. Concurr. Comput. Pract. Exper.
22(6), 702–719 (2010). https://doi.org/10.1002/cpe.v22:6

7. Hackenberg, D., Ilsche, T., Schuchart, J., Schöne, R., Nagel, W.E., Simon, M.,
Georgiou, Y.: HDEEM: High definition energy efficiency monitoring. In: 2014
Energy Efficient Supercomputing Workshop, pp. 1–10 (2014).https://doi.org/10.
1109/E2SC.2014.13

8. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for
short code paths using RAPL. SIGMETRICS Perform. Eval. Rev. 40(3), 13–17
(2012). https://doi.org/10.1145/2425248.2425252

9. IT4Innovations: MERIC library. https://code.it4i.cz/vys0053/meric. Accessed 21
Apr 2019

10. IT4Innovations: READEX RADAR library. https://code.it4i.cz/bes0030/readex-
radar. Accessed 21 Aug 2019

11. Knüpfer, A., et al.: Score-p: a joint performance measurement run-time infrastruc-
ture for periscope, SCALASCA, TAU, and VAMPIR. In: Brunst, H., Müller, M.S.,
Nagel, W.E., Resch, M.M. (eds.) Tools for High Performance Computing 2011, pp.
79–91. Springer, Berlin Heidelberg (2012)

12. Libri, A., Bartolini, A., Benini, L.: Dwarf in a giant: Enabling scalable, high-
resolution HPC energy monitoring for real-time profiling and analytics (2018).
CoRR abs/1806.02698: http://arxiv.org/abs/1806.02698

13. Persson, P.O., Strang, G.: Smoothing by Savitzky-Golay and Legendre filters. In:
Rosenthal, J., Gilliam, D.S. (eds.) Mathematical Systems Theory in Biology, Com-
munications, Computation, and Finance, pp. 301–315. Springer, New York, New
York, NY (2003)

14. READEX: Horizon 2020 READEX project (2018). https://www.readex.eu
15. Riha, L., et al.: A massively parallel and memory-efficient fem toolbox with a

hybrid total FETI solver with accelerator support. Int. J. High Perform. Comput.
Appl. 0(0), 1094342018798452 (0). https://doi.org/10.1177/1094342018798452

16. Rountree, B., Lowenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W., Bletsch,
T.K.: Adagio: making DVS practical for complex HPC applications. In: Proceed-
ings of the 23rd International Conference on Supercomputing, ICS 2009, pp. 460–
469. ACM, New York, NY, USA (2009). https://doi.org/10.1145/1542275.1542340

17. Schuchart, J., et al.: The READEX formalism for automatic tuning for energy
efficiency. Computing 99(8), 727–745 (2017). https://doi.org/10.1007/s00607-016-
0532-7

18. Schulz, M., Galarowicz, J., Maghrak, D., Hachfeld, W., Montoya, D., Cranford, S.:
Open Speedshop: an open source infrastructure for parallel performance analysis.
Sci. Program. 16(2–3), 105–121 (2008). https://doi.org/10.1155/2008/713705

19. Servat, H., Llort, G., Huck, K., Giménez, J., Labarta, J.: Framework for a produc-
tive performance optimization. Parallel Comput. 39(8), 336–353 (2013). https://
doi.org/10.1016/j.parco.2013.05.004

20. Shende, S.S., Malony, A.D.: The TAU parallel performance system. Int. J.
High Perform. Comput. Appl. 20(2), 287–311 (2006). https://doi.org/10.1177/
1094342006064482

https://doi.org/10.1002/cpe.v22:6
https://doi.org/10.1109/E2SC.2014.13
https://doi.org/10.1109/E2SC.2014.13
https://doi.org/10.1145/2425248.2425252
https://code.it4i.cz/vys0053/meric
https://code.it4i.cz/bes0030/readex-radar
https://code.it4i.cz/bes0030/readex-radar
http://arxiv.org/abs/1806.02698
https://www.readex.eu
https://doi.org/10.1177/1094342018798452
https://doi.org/10.1145/1542275.1542340
https://doi.org/10.1007/s00607-016-0532-7
https://doi.org/10.1007/s00607-016-0532-7
https://doi.org/10.1155/2008/713705
https://doi.org/10.1016/j.parco.2013.05.004
https://doi.org/10.1016/j.parco.2013.05.004
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482

Analysis and Visualization of the Dynamic Behavior of HPC Applications 149

21. Vysocky, O., et al.: Evaluation of the HPC applications dynamic behavior in terms
of energy consumption. In: Proceedings of the Fifth International Conference on
Parallel, Distributed, Grid and Cloud Computing for Engineering, pp. 1–19 (2017),
paper 3, 2017. https://doi.org/10.4203/ccp.111.3

22. Vysocky, O., Riha, L., Zapletal, J.: A simple framework for energy efficiency evalua-
tion and hardware parameter tuning with modular support for different HPC plat-
forms. In: Proceedings of the Eighth International Conference on Advanced Com-
munications and Computation, pp. 25–30. IARIA (2018). http://www.thinkmind.
org/index.php?view=article&articleid=infocomp 2018 2 10 68005

https://doi.org/10.4203/ccp.111.3
http://www.thinkmind.org/index.php?view=article&articleid=infocomp_2018_2_10_68005
http://www.thinkmind.org/index.php?view=article&articleid=infocomp_2018_2_10_68005

A Convenient Graph Connectedness
for Digital Imagery

Josef Šlapal(B)

IT4Innovations Centre of Excellence, Brno University of Technology,
Brno, Czech Republic
slapal@fme.vutbr.cz

Abstract. In a simple undirected graph, we introduce a special connect-
edness induced by a set of paths of length 2. We focus on the 8-adjacency
graph (with the vertex set Z

2) and study the connectedness induced by
a certain set of paths of length 2 in the graph. For this connectedness, we
prove a digital Jordan curve theorem by determining the Jordan curves,
i.e., the circles in the graph that separate Z

2 into exactly two connected
components. These Jordan curves are shown to have an advantage over
those given by the Khalimsky topology on Z

2.

Keywords: Simple undirected graph · Connectedness · Digital plane ·
Khalimsky topology · Jordan curve theorem.

1 Introduction

In our increasingly digital world, digital images become an integral part of our
everyday life. They play an extremely important role in scientific data visualiza-
tion and this is the main reason for studying them in this paper.

In digital geometry for two-dimensional (2D for short) computer imagery, we
usually replace pixels of a computer screen by their center points so that the
screen is then represented by a finite section of the digital plane Z

2. But, instead
of such a section, we work with the whole digital plane Z

2. A 2D black and white
digital image is then a finite subset of Z2 and its elements are called black points.
The remaining elements of Z2, called white points, form the background of the
image. One of the basic problems of 2D digital image analysis and processing is
to find a convenient connectedness structure for the digital plane Z2. Since digital
images are simply digital approximations of the real ones, a connectedness being
convenient means that the digital plane provided with such a structure behaves
in much the same way as the Euclidean plane. In particular, it is required that
such a structure allows for a digital analogue of the Jordan curve theorem (recall
that the classical Jordan curve theorem states that a Jordan, i.e., simple closed,
curve in the Euclidean plane separates this plane into exactly two connected
components). In digital images, digital Jordan curves represent borders of objects
imaged and, therefore, play an important role in solving numerous problems such
as pattern recognition, memory usage compression, image reconstruction, etc.
c© Springer Nature Switzerland AG 2021
T. Kozubek et al. (Eds.): HPCSE 2019, LNCS 12456, pp. 150–162, 2021.
https://doi.org/10.1007/978-3-030-67077-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67077-1_9&domain=pdf
http://orcid.org/0000-0001-8843-6842
https://doi.org/10.1007/978-3-030-67077-1_9

A Convenient Graph Connectedness 151

The classical, graph-theoretic approach to solving the problem of providing
the digital plane with a convenient connectedness structure is based on using the
well-known 4- and 8-adjacency graphs (see e.g. [7,8,12–14,17]). A disadvantage
of this approach is that neither of the two graphs itself allows for a digital Jordan
curve theorem so that a combination of them has to be used. Therefore, in [3],
a new, topological approach to the problem was proposed based on employing
a single structure, the so-called called Khalimsky topology, to obtain a conve-
nient connectedness in the digital plane Z

2. The topological approach was then
developed by many authors - see, e.g., [4–6,9–11,15,16].

The Khalimsky topology has the property that its connectedness coincides
with the connectedness in a simple undirected graph with the vertex set Z

2,
namely the connectedness graph of the topology. Thus, to equip the digital
plane with a convenient connectedness structure, this graph, rather than the
Khalimsky topology itself, may be used. A drawback of this approach is that
Jordan curves in the (connectedness graph of the) Khalimsky topology may
never turn at the acute angle π

4 . It would, therefore, be useful to find some
new, more convenient structures on Z

2 that would allow Jordan curves to turn,
at some points, at the acute angle π

4 . In the present note, to obtain such a
convenient structure, we employ the 8-adjacency graph with connectedness given
by a certain set of paths of length 2 in the graph. For this connectedness, we
prove a digital Jordan curve theorem to show that the graph with the set of
paths provides a convenient structure on the digital plane for the study and
processing of digital images.

2 Preliminaries

For the graph-theoretic concepts used see, for instance, [1]. By a graph we always
mean an undirected simple graph without loops, hence and ordred pair (V,E) of
sets where E ⊆ {{a, b}; a, b ∈ V, a �= b}. The elements of V are called vertices
and those of E are called edges of the graph. If {a, b} ∈ E, then the vertices a
and b are said to be adjacent and the edge {a, b} is said to join the vertices a
and b. For an arbitrary vertex a ∈ V , we denote by E(a) the set of all vertices
adjacent to a, i.e., E(a) = {b ∈ V ; {a, b} ∈ E}. Clearly, {a, b} ∈ E if and only
if b ∈ E(a) or, equivalently, a ∈ E(b). Thus, the set E of edges of a graph may
be given by determining the set E(a) for every a ∈ V .

As usual, we graphically represent graphs by thinking of vertices as points
and edges as line segments whose end points are just the vertices they join.

A graph (U,F) is called a subgraph of a graph (V,E) if U ⊆ V and F ⊆ E.
If, moreover, F = E ∩ {{a, b}; a, b ∈ U}, then (U,F) is said to be an induced
subgraph of (V,E) being denoted briefly by U . A subgraph (U,F) of (V,E) is
called a factor of (V,E) if U = V .

Recall that a walk in a graph (V,E) is a finite sequence (ai| i ≤ n) =
(a0, a1, ..., an), n a non-negative integer, of vertices such that {ai−1, ai} ∈ E
whenever i ∈ {1, 2, ...n}. If all vertices ai, i ∈ {0, 1, ..., n}, are pairwise different,
then the walk (ai| i ≤ n) is said to be a path and the number n is called the

152 J. Šlapal

length of the path. Thus, also a single vertex is considered to be a path (of length
0). A circle in (V,E) is any walk (ai| i ≤ n) with n > 2 such that (ai| i < n) is
a path and a0 = an. A subset X ⊆ V is said to be connected if, for every pair
a, b ∈ X, there is a path (ai| i ≤ n) such that a0 = a, an = b and ai ∈ X for all
i ∈ {0, 1, ..., n}. A maximal (with respect to set inclusion) connected subset of
V is called a component of the graph (V,E).

A nonempty, finite and connected subset C of V is said to be a simple closed
curve in (V,E) if the set E(a) ∩ C has two elements for every a ∈ C. Clearly,
every simple closed curve is a circle. A simple closed curve in (V,E) is called a
Jordan curve in (V,E) if it separates the set V into exactly two components,
i.e., if the induced subgraph V − C of (V,E) has exactly two components.

For every point (x, y) ∈ Z
2, we put A4(x, y) = {(x + i, y + j); i, j ∈

{−1, 0, 1}, ij = 0, i + j �= 0} and A8(x, y) = A4(x, y) ∪ {(x + i, y + j); i, j ∈
{−1, 1}}. The points of A4(x, y) and A8(x, y) are said to be 4-adjacent and 8-
adjacent to (x, y), respectively. The graphs (Z2, A4) and (Z2, A8) are called the
4-adjacency graph and 8-adjacency graph, respectively, and are demonstrated in
Fig. 1.

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

0 1 2 3 4

1

2

3

4

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

0 1 2 3 4

1

2

3

4

Fig. 1. Portions of the 4- and 8-adjacency graphs.

In digital image processing, the 4-adjacency and 8-adjacency graphs are the
most frequently used structures on the digital plane. But, since the late 1980’s,
another structure on Z

2 has been used too, namely the Khalimsky topology [3].
It is the product of two copies of the topology on Z given by the subbase {{2k−
1, 2k, 2k + 1}; k ∈ Z} (for the basic concepts of general topology see [2]). Recall
that, given a topology T on a set X, the connectedness graph of T is the graph
with the vertex set X such that a pair of different points x, y ∈ X is adjacent if
and only if {x, y} is a connected subset of the space (X,T). Since the Khalimsky
topology is an Alexandroff topology (which means that the closure operator
in the topology is completely additive), the connectedness in the Khalimsky
topological space coincide with the connectedness in the connectedness graph of
the Khalimsky topology. We will call the connectedness graph of the Khalimsky
topology briefly the Khalimsky graph. The Khalimsky graph is the graph (Z2,K)
such that, for any (x, y) ∈ Z

2,

A Convenient Graph Connectedness 153

K(x, y) =
{
A8(x, y) if x and y have the same parity,
A4(x, y) if x and y have different parities.

A portion of the Khalimsky graph is demonstrated in Fig. 2. It is obvious
that the graph is a factor of the 8-adjacency graph.

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

0 1 2 3 4

1

2

3

4

Fig. 2. A portion of the Khalimsky graph.

The famous Jordan curve theorem proved for the Khalimsky topology in [3]
may be formulated as follows:

Theorem 1. In the Khalimsky graph, every simple closed curve with at least
four points is a Jordan curve.

We denote by (Z2, L) the factor of the Khalimsky graph (Z2,K) given by
L = K −

⋃
{{(x, y), (z, t)}; (x, y) ∈ Z

2, x and y are odd and (z, t) ∈ A4(x, y)}.
A portion of the graph (Z2, L) is demonstrated in Fig. 3.

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

0 1 2 3 4

1

2

3

4

Fig. 3. A portion of the graph (Z2, L).

The below corollary immediately follows from Theorem 1:

154 J. Šlapal

Corollary 1. Every circle in the graph (Z2, L) which does not turn, at any of
its points, at the acute angle π

4 is a Jordan curve in the connectedness graph of
the Khalimsky topology.

It is readily verified that a simple closed curve (and thus also a Jordan curve)
in the Khalimsky graph may never turn at the acute angle π

4 . It could therefore
be useful to replace the Khalimsky topology (Khalimsky graph) with some more
convenient structure on Z

2, another factor of the 8-adjacency graph, that would
allow Jordan curves to turn at the acute angle π

4 at some points. And this is
what we will do in the next section.

3 8-Adjacency Graph with a Set of Paths of Length 2

In the 8-adjacency graph (Z2, A8), the set A8(x, y) provides the digital plane Z
2

with a natural concept of neighborhood of any point (x, y) ∈ Z
2. Therefore, it

would be desirable to use the graph for structuring the digital plane. But the
usual concept of connectedness in the 8-adjacency graph does not alow for a
digital Jordan curve theorem. To solve this problem, we employ another concept
of connectedness.

Definition 1. Let (V,E) be a graph, B a set of paths of length 2 in the graph,
and n a nonnegative integer. A sequence C = (ci| i ≤ n) of elements of V is
called a B-walk if one of the the following three conditions is satisfied for every
i ∈ {0, 1,n − 1}:

(i) There exists (a0, a1, a2) ∈ B such that {ci, ci+1} = {a0, a1},
(ii) i > 0 and there exists (a0, a1, a2) ∈ B such that ci−1 = a0, ci = a1, and

ci+1 = a2,
(iii) i < n− 1 and there exists (a0, a1, a2) ∈ B such that ci = a2, ci+1 = a1, and

ci+2 = a0.

A B-walk (ci| i ≤ n) with the property that n ≥ 2 and ci = cj ⇔ {i, j} = {0, n}
is said to be a B-circle.

Observe that, if (x0, x1, ..., xn) is a B-walk, then (xn, xn−1, ..., x0) is a B-
walk, too (so that B-walks are closed under reversion) and, if (xi| i ≤ m) and
(yi| i ≤ p) are B-walks with xm = y0, then, putting zi = xi for all i ≤ m and
zi = yi−m for all i with m ≤ i ≤ m+ p, we get a B-walk (zi| i ≤ m+ p) (so that
B-walks are closed under composition).

Given a set B of paths of length 2 in a graph (V,E), a subset A ⊆ V is said
to be B-connected if, for every pair a, b ∈ A, there is a B-walk (ci| i ≤ n) such
that c0 = a, cn = b and ci ∈ A for all i ∈ {0, 1, ..., n}. A maximal (with respect
to set inclusion) B-connected subset of V is called a B-component of (V,E).

A Convenient Graph Connectedness 155

Definition 2. Let B be a set of paths of length 2 in a graph (V,E). A nonempty,
finite and B-connected subset J of V is said to be a B-simple closed curve if every
element (a0, a1, a2) ∈ B with {a0, a1} ⊆ J satisfies a2 ∈ J and every c ∈ J fulfills
one of the following two conditions:

(1) There are exactly two elements (a0, a1, a2) ∈ B satisfying both
{a0, a1, a2} ⊆ J and c ∈ {a0, a2} and there is no element (b0, b1, b2) ∈ B
satisfying both {b0, b1, b2} ⊆ J and c = b1.

(2) There is exactly one element (b0, b1, b2) ∈ B satisfying both
{b0, b1, b2} ⊆ J and c = b1 and there is no element (a0, a1, a2) ∈ B sat-
isfying both {a0, a1, a2} ⊆ J and c ∈ {a0, a2}.

Clearly, every B-simple closed curve is a B-circle.

Definition 3. Let B be a set of paths of length 2 in a graph (V,E). A B-simple
closed curve J is called a B-Jordan curve if the subset V − J ⊆ V consists (i.e.,
is the union) of exactly two B-components.

From now on, B will denote the set of paths of length 2 in the 8-adjacency
graph given as follows: For every ((xi, yi)| i ≤ 2) such that (xi, yi) ∈ Z

2 for every
i ≤ 2, ((xi, yi)| i ≤ 2) ∈ B if and only if one of the following eight conditions is
satisfied:

(1) x0 = x1 = x2 and there is k ∈ Z such that yi = 4k + i for all i ≤ 2,
(2) x0 = x1 = x2 and there is k ∈ Z such that yi = 4k − i for all i ≤ 2,
(3) y0 = y1 = y2 and there is k ∈ Z such that xi = 4k + i for all i ≤ 2,
(4) y0 = y1 = y2 and there is k ∈ Z such that xi = 4k − i for all i ≤ 2,
(5) there is k ∈ Z such that xi = 4k+ i for all i ≤ 2 and there is l ∈ Z such that

yi = 4l + i for all i ≤ 2,
(6) there is k ∈ Z such that xi = 4k+ i for all i ≤ 2 and there is l ∈ Z such that

yi = 4l − i for all i ≤ 2,
(7) there is k ∈ Z such that xi = 4k− i for all i ≤ 2 and there is l ∈ Z such that

yi = 4l + i for all i ≤ 2,
(8) there is k ∈ Z such that xi = 4k− i for all i ≤ 2 and there is l ∈ Z such that

yi = 4l − i for all i ≤ 2.

A portion of B is shown in Fig. 4. The paths of length 2, i.e., the ordered
triples, belonging to B are represented by line segments oriented from first to
last terms.

156 J. Šlapal

Fig. 4. A portion of the set B.

Further, we denote by (Z2, A) the factor of the 8-adjacency graph given as
follows:

A(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A8(x, y) if (x, y) = (4k, 4l), k, l ∈ Z,
A8(x, y) − A4(x, y) if (x, y) = (4k + 2, 4l + 2), k, l ∈ Z,
{(x − 1, y), (x + 1, y)} if (x, y) = (4k + i, 4l), k, l ∈ Z,

i ∈ {1, 2, 3},
{(x, y − 1), (x, y + 1)} if (x, y) = (4k, 4l + i), k, l ∈ Z,

i ∈ {1, 2, 3},
{(x − 1, y − 1), (x + 1, y + 1)} if (x, y) = (4k + i, 4l + i),

k, l ∈ Z, i ∈ {−1, 1},
{(x − 1, y + 1), (x + 1, y − 1)} if (x, y) = (4k + i, 4l − i),

k, l ∈ Z, i ∈ {−1, 1},
∅ otherwise.

A portion of the graph (Z2, A) is demonstrated by Fig. 5.

A Convenient Graph Connectedness 157

Fig. 5. A portion of the graph (Z2, A).

Theorem 2. Every circle in the graph (Z2, A) that does not turn at any point
(4k + 2, 4l + 2), k, l ∈ Z (i.e, any point denoted by a bold dot in Fig. 5) is a
B-Jordan curve.

Proof. Clearly, every circle in the graph (Z2, A) is a B-simple closed curve. Let
z = (x, y) ∈ Z

2 be a point such that x = 4k + p and y = 4l + q for some
k, l, p, q ∈ Z with pq = ±1. Then, we define the fundamental triangle T(z) to be
the fifteen-point subset of Z2 given as follows:

T (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(r, s) ∈ Z
2; 4k ≤ r ≤ 4k + 4, 4l ≤ s ≤ 4l + 4k + 4 − r}

if x = 4k + 1 and y = 4l + 1 for some k, l ∈ Z,
{(r, s) ∈ Z

2; 4k ≤ r ≤ 4k + 4, 4l ≤ s ≤ 4l + r − 4k}
if x = 4k + 3 and y = 4l + 1 for some k, l ∈ Z,

{(r, s) ∈ Z
2; 4k ≤ r ≤ 4l + 4, 4l + 4k + 4 − r ≤ s ≤ 4l + 4}

if x = 4k + 3 and y = 4l + 3 for some k, l ∈ Z,
{(r, s) ∈ Z

2; 4k ≤ r ≤ 4k + 4, 4l + r − 4k ≤ s ≤ 4l + 4}
if x = 4k + 1 and y = 4l + 3 for some k, l ∈ Z.

Graphically, every fundamental triangle T (z) consists of fifteen points and
forms a right triangle obtained from a 4 × 4-square by dividing it by a diagonal.
More precisely, each of the two diagonals divides the square into just two funda-
mental triangles having a common hypotenuse coinciding with the diagonal. In
every fundamental triangle T (z), the point z is one of the three internal points
of the triangle. The (four types of) fundamental triangles are demonstrated by
the below figure:

158 J. Šlapal

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

�
�

�
�

�
�

�
�

0 1 2 3 4

1

2

3

4

z1

z2z3

z4

T (z1)

T (z2)T (z3)

T (z4)

Given a fundamental triangle, we speak about its sides - it is clear from the
above picture which sets are understood to be the sides (note that each side
consists of five points and that two different fundamental triangles may have at
most one side in common).

Now, one can easily see that

(1) every fundamental triangle is B-connected and so is every subset of Z
2

obtained by subtracting, from a fundamental triangle, some of its sides.

Consequently,

(2) if S1, S2 are fundamental triangles having a common side D, then the set
(S1 ∪ S2) − M is B-connected whenever M is the union of some sides of S1

or S2 different from D.

It is also evident that,

(3) whenever S1, S2 are different fundamental triangles with a common side D
and X ⊆ S1 ∪ S2 is a B-connected subset with X ∩ S1 �= ∅ �= X ∩ S2, we
have X ∩ D �= ∅.

We will show that, for every circle C in the graph (Z2, A) which does not
turn at any point (4k + 2, 4l + 2), k, l ∈ Z, there are sequences SF ,SI of fun-
damental triangles, SF finite and SI infinite, such that, whenever S ∈ {SF ,SI},
the following two conditions are satisfied:

(a) Each member of S, excluding the first one, has a common side with at least
one of its predecessors.

(b) C is the union of those sides of fundamental triangles in S that are not
shared by two different fundamental triangles of S.

To this end, put C1 = C and let S1
1 be an arbitrary fundamental triangle with

S1
1 ∩ C1 �= ∅. For every k ∈ Z, 1 ≤ k, if S1

1 , S
1
2 , ..., S

1
k are defined, let S1

k+1 be
a fundamental triangle with the following properties: S1

k+1 ∩ C1 �= ∅, S1
k+1 has

a side in common with S1
k which is not a subset of C1 and S1

k+1 �= S1
i for all

i, 1 ≤ i ≤ k. Clearly, there will always be a (smallest) number k ≥ 1 for which
no such fundamental triangle S1

k+1 exists. Denoting by k1 this number, we have
defined a sequence (S1

1 , S
1
2 , ..., S

1
k1

) of fundamental triangles. Let C2 be the union
of those sides of fundamental triangles in (S1

1 , S
1
2 , ..., S

1
k1

) that are disjoint from

A Convenient Graph Connectedness 159

C1 and not shared by two different fundamental triangles in (S1
1 , S

1
2 , ..., S

1
k1

). If
C2 �= ∅, we construct a sequence (S2

1 , S
2
2 , ..., S

2
k2

) of fundamental triangles in a
way similar to the one used for constructing of (S1

1 , S
1
2 , ..., S

1
k1

) by taking C2

instead of C1 (and obtaining k2 in much the same way as we did k1). Repeating
this construction, we get sequences (S3

1 , S
3
2 , ..., S

3
k3

), (S4
1 , S

4
2 , ..., S

1
k4

), etc. We
put S = (S1

1 , S
1
2 , ..., S

1
k1
, S2

1 , S
2
2 , ..., S

2
k2
, S3

1 , S
3
2 , ..., S

3
k3
, ...) if Ci �= ∅ for all i ≥ 1

and S = (S1
1 , S

1
2 , ..., S

1
k1
, S2

1 , S
2
2 , ..., S

2
k2
, ..., Sl

1, S
l
2, ..., S

l
kl

) if Ci �= ∅ for all i with
1 ≤ i ≤ l and Ci = ∅ for i = l + 1.

Further, let S′
1 = T (z) be a fundamental triangle such that z /∈ S whenever

S is a member of S. Having defined S′
1, let S ′ = (S′

1, S
′
2, ...) be a sequence of

fundamental triangles defined analogously to S (by taking S′
1 instead of S1

1).
Then, one of the sequences S, S ′ is finite and the other is infinite. Indeed, S is
finite (infinite) if and only if its first member equals such a fundamental triangle
T (z) for which z = (k, l) ∈ Z

2 has the property that the cardinality of the set
{(x, l) ∈ Z

2; x > k} ∩ C is odd (even). The same is true for S ′. If we put
{SF ,SI} = {S,S ′} where SF is finite and SI is infinite, then the conditions (a)
and (b) are clearly satisfied.

Given a circle C in the graph (Z2, A) which does not turn at any point
(4k + 2, 4l + 2), k, l ∈ Z, let SF and SI denote the union of all members of SF

and SI , respectively. Then, SF ∪ SI = Z
2 and SF ∩ SI = C. Let S∗

F and S∗
I be

the sequences obtained from SF and SI by subtracting C from each member of
SF and SI , respectively. Let S∗

F and S∗
I denote the union of all members of S∗

F

and S∗
I , respectively. Then, S∗

F and S∗
I are connected by (1) and (2) and it is

clear that S∗
F = SF − C and S∗

I = SI − C. So, S∗
F and S∗

I are B-components
of Z2 − C by (3) (SF − C is called the inside component and SI − C is called
the outside component). We have proved that every cycle in the graph shown in
Fig. 5 that does not turn at any point (4k + 2, 4l + 2), k, l ∈ Z, is a B-Jordan
curve.

Example 1. Consider the set of points of Z2 demonstrated by Fig. 6, which rep-
resents the (border of) letter K. This set is a circle in the graph (Z2, A) that
turns only at some of the vertices (2k(n − 1), 2l(n − 1)), k, l ∈ Z, so that it
is a B-Jordan curve by Theorem 2. But, since the circle turns, at each of the
four bold points, at the acute angle π

4 , it is not a digital Jordan curve in the
Khalimsky graph. For the circle to be a Jordan curve in the Khalimsky graph,
it is necessary to remove, along with the four bold points, the four encircled
points (because, otherwise, the circle would not even be a simple closed curve
in the Khalimsky graph). But this would lead to a noticeable deformation of
the image (note that the points represent centers of pixels) if the resolution of
the computer screen used is not sufficiently high. This may be the case of some
industrial monitors or displays.

160 J. Šlapal

Fig. 6. A Jordan curve in (Z2, u2
3).

Remark 1. If we do not insist on structuring the digital plane by the 8-adjacency
graph but admit structuring it by a factor of the graph, we may find a graph G
with the vertex set Z2 having the property that every circle in the graph (Z2,A),
not only a cycle that does not turn at any point (4k + 2, 4l + 2), k, l ∈ Z, is a
Jordan curve in G (with respect to the natural connectedness in the graph G).
Let us call graphs G with this property sd-graphs. The sd-graphs are studied in
[18] where it is shown that the graph demonstrated in Fig. 7 is a minimal (with
respect to the set of edges) sd-graph. Note that this graph is even a factor of
the Khalimsky graph.

Fig. 7. A portion of a minimal sd-graph.

4 Conclusions

We have found a structure on the digital plane Z
2, the graph (Z2, A8) together

with the set B of paths of length 2, which provides the plane with a connected-
ness allowing for a digital analogue of the Jordan curve theorem (Theorem 2).

A Convenient Graph Connectedness 161

This means that the graph (Z2, A8) together with the set B may be used as a
background structure on the digital plane for the study and processing of digi-
tal images. An advantage of the B-Jordan curves in the graph (Z2, A) over the
Jordan curves in then Khalimsky plane is that they may turn, at some points,
at the acute angle π

4 . Hence, the graph (Z2, A8) endowed with the set B pro-
vides a variety of Jordan curves richer than the one provided by the Khalimsky
topology. Thus, the graph offers a convenient alternative to the topology. Since
Jordan curves represent borders of objects in digital images, the structure on Z

2

given by the graph (Z2, A8) with the set B may be used in digital image pro-
cessing for solving problems related to boundaries such as pattern recognition,
boundary detection, contour filling, data compression, etc.

Acknowledgement. This work was supported by the Ministry of Education, Youth
and Sports of the Czech Republic from the National Programme of Sustainability (NPU
II) project IT4Innovations excellence in science - LQ1602.

References

1. Chvátal, V.: Correction to: a de Bruijn-Erdős theorem in graphs? In: Gera, R.,
Haynes, T.W., Hedetniemi, S.T. (eds.) Graph Theory. PBM, pp. C1–C2. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-97686-0 15

2. Engelking, R.: General Topology. Państwowe Wydawnictwo Naukowe, Warszawa
(1977)

3. Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Computer graphics and connected
topologies on finite ordered sets. Topology Appl. 36, 1–17 (1990)

4. Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Boundaries in digital plane. J.
Appl. Math. Stochast. Anal. 3, 27–55 (1990)

5. Kiselman, C.O.: Digital jordan curve theorems. In: Borgefors, G., Nyström, I., di
Baja, G.S. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 46–56. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44438-6 5

6. Kong, T.Y., Kopperman, R., Meyer, P.: A topological approach to digital topology.
Amer. Math. Monthly 98, 902–917 (1991)

7. Kong, T.Y., Roscoe, W.: A theory of binary digital pictures. Comput. Vision
Graphics Image Proc. 32, 221–243 (1985)

8. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput.
Vision Graphics Image Proc. 48, 357–393 (1989)

9. Kopperman, R., Meyer, P.R., Wilson, R.G.: A Jordan surface theorem for three-
dimensional digital space. Discrete Comput. Geom. 6, 155–161 (1991)

10. Melin, E.: Digital surfaces and boundaries in Khalimsky spaces. J. Math. Imaging
Vision 28, 169–177 (2007)

11. Melin, E.: Continuous digitization in Khalimsky spaces. J. Approx. Theory 150,
96–116 (2008)

12. Rosenfeld, A.: Connectivity in digital pictures. J. Assoc. Comput. Math. 17, 146–
160 (1970)

13. Rosenfeld, A.: Digital topology. Amer. Math. Monthly 86, 621–630 (1979)
14. Rosenfeld, A.: Picture Languages. Academic Press, New York (1979)

https://doi.org/10.1007/978-3-319-97686-0_15
https://doi.org/10.1007/3-540-44438-6_5

162 J. Šlapal

15. Šlapal, J.: Jordan curve theorems with respect to certain pretopologies on Z
2. In:

Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp.
252–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04397-
0 22

16. Slapal, J.: A jordan curve theorem in the digital plane. In: Aggarwal, J.K., Barneva,
R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011.
LNCS, vol. 6636, pp. 120–131. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-21073-0 13

17. Šlapal, J.: Graphs with a path partition for structuring digital spaces. Inform. Sci.
233, 305–312 (2013)

18. Šlapal, J.: Convenient adjacencies on Z
2. Filomat 28, 305–312 (2014)

https://doi.org/10.1007/978-3-642-04397-0_22
https://doi.org/10.1007/978-3-642-04397-0_22
https://doi.org/10.1007/978-3-642-21073-0_13
https://doi.org/10.1007/978-3-642-21073-0_13

Author Index

Accaputo, Giuseppe 80
Altenbernd, Mirco 17
Arbenz, Peter 80

Bartolini, Andrea 1
Benini, Luca 1
Beseda, Martin 135
Börm, Steffen 60

Cavazzoni, Carlo 1

Derlet, Peter M. 80
Dreier, Nils-Arne 17

Engwer, Christian 17

Göddeke, Dominik 17

Jaros, Jiri 99, 116
Jaros, Marta 116

Of, Günther 39

Peterek, Ivo 135

Riha, Lubomir 135

Sasak, Tomas 116
Seyedkazemi Ardebili, Mohsen 1
Šlapal, Josef 150
Spetko, Matej 135

Treeby, Bradley E. 99, 116

Ulcak, David 135

Vaverka, Filip 99
Vysocky, Ondrej 135

Watschinger, Raphael 39

	Preface
	Organization
	Contents
	Thermal Characterization of a Tier0 Datacenter Room in Normal and Thermal Emergency Conditions
	1 Introduction and Related Works
	2 Methodology
	3 Experimental Results
	3.1 Spatial Study
	3.2 Temporal Study
	3.3 Thermal Emergency

	4 Conclusion
	References

	Towards Local-Failure Local-Recovery in PDE Frameworks: The Case of Linear Solvers
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Related Work

	2 Preliminaries
	2.1 DUNE – The Distributed Unified Numerics Environment
	2.2 Restoring MPI Communicators with ULFM and Distributed Exceptions
	2.3 Data-Driven Compression with the SZ Library

	3 Preparing Iterative Linear Solvers for LFLR
	3.1 Backup Creation and Compression
	3.2 Remote Storing of Backups
	3.3 Recovery Strategies
	3.4 Recovery of Iterative Solvers

	4 Implementation for Iterative Solvers in DUNE
	4.1 Framework Extensions
	4.2 Modifications for CG and GMRES(m)

	5 Numerical Examples
	5.1 Small-Scale Viability Tests
	5.2 Overhead Quantification at Scale

	6 Conclusions
	References

	Complexity Analysis of a Fast Directional Matrix-Vector Multiplication
	1 Introduction
	2 Derivation of the Fast Directional Method
	2.1 Box Cluster Trees
	2.2 A Directional Kernel Approximation
	2.3 Partitioning of the Matrix
	2.4 Choice of Directions
	2.5 Transfer Operations
	2.6 Main Algorithm
	2.7 Implementation Details

	3 Complexity Analysis
	4 Numerical Examples
	References

	Fast Large-Scale Boundary Element Algorithms
	1 Introduction
	2 H2-Matrices
	3 Hybrid Cross Approximation
	4 Green Cross Approximation
	5 Numerical Experiments
	References

	Solving Large-Scale Interior Eigenvalue Problems to Investigate the Vibrational Properties of the Boson Peak Regime in Amorphous Materials
	1 Introduction
	2 Numerical Solution Procedures
	2.1 Spectral Projector
	2.2 Chebyshev Polynomial Expansions
	2.3 Dealing with the Gibbs Phenomenon
	2.4 Counting the Eigenvalues in an Interval
	2.5 Computing a Basis of R(p[,])

	3 Implementation
	4 Numerical Experiments
	5 Physics Results
	6 Conclusions
	References

	Performance Evaluation of Pseudospectral Ultrasound Simulations on a Cluster of Xeon Phi Accelerators
	1 Introduction
	2 Local Fourier Basis Domain Decomposition
	3 Target Architecture
	4 Implementation
	4.1 Execution Mode
	4.2 Fast Fourier Transforms
	4.3 Overlap Exchanges
	4.4 Parallel Input and Output

	5 Scaling Results
	5.1 Overview
	5.2 Performance Scaling on Large Domains
	5.3 Performance Scaling on Small Domains
	5.4 Simulation Time Breakdown

	6 Platform Investigation
	6.1 Overview
	6.2 Performance of 3D FFTs on Intel Xeon Phi
	6.3 Performance of Intel MPI on Intel Xeon Phi

	7 Conclusion
	References

	Estimation of Execution Parameters for k-Wave Simulations
	1 Introduction
	2 Automatic Offloading of k-Wave Workflows
	3 Optimization of Workflow Execution Parameters
	3.1 Single-Pass Optimization
	3.2 Interpolation Heuristics
	3.3 k-Wave Workflow Properties
	3.4 Typical Problems of Performance Data Interpolations

	4 Experimental Results
	4.1 Comparison of Interpolation Techniques for Known Simulation
	4.2 Comparison of Interpolation Techniques for Unknown Simulations

	5 Conclusions
	5.1 Future Work

	References

	Analysis and Visualization of the Dynamic Behavior of HPC Applications
	1 Introduction
	2 Understanding Application Behavior
	2.1 Charts, Plots and Heatmaps
	2.2 Tables

	3 Conclusion
	References

	A Convenient Graph Connectedness for Digital Imagery
	1 Introduction
	2 Preliminaries
	3 8-Adjacency Graph with a Set of Paths of Length 2
	4 Conclusions
	References

	Author Index

