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Babel systems at BUT 

Similarly to last period before,  BUT is producing systems with two different toolkits: one set of systems 

is created with the HTK/STK/TNet toolkits – referred to as “STK” systems and one set of systems 

is created with the Kaldi toolkit – referred to as “Kaldi” systems. The STK and Kaldi systems 

described here are the final systems that were used in the development and surprise language 

evaluations in March/April/May/June. The details on system development and insights are 

described in the following sections. 
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VAD system (multi-lingual) 

Since the multi-lingual VAD is used in both the STK and Kaldi systems we describe it before the 

systems themselves. 

  

During the OP2 period, we have completely re-designed the infrastructure for Voice Activity 

Detection (VAD). In the previous version, we used language-specific neural network trained with 

TNet and HMM-decoder to extract the segments. While in new version the network is trained 

with Kaldi on multi-lingual corpus and the segments are obtained by applying a threshold to 

smoothed per-frame scores. 

 

Our multi-lingual VAD consists of 2 carefully designed parts: a neural network (NN) which 

produces per-frame scores and post-processing which creates the segments from the scores. 

 

The NN is trained multi-lingually on all FLP Y1+Y2 train sets (11 languages), which makes 842 

hours in total. The NN is relatively small, it has only 277k parameters. The input dimension is 

288, while there are 2 hidden layers, each with 400 sigmoid neurons, and the final softmax layer 

has 2 outputs, corresponding to the classes: speech, non-speech. The training targets were 

prepared by mapping from the mono-lingual forced-alignments (generated with GMM/HMM 

model). 

 

The input features for the NN consist of 15 log-Mel filterbank outputs and 3 kaldi-pitch features 

[Ghahremani 2013]. We apply per-speaker mean and variance normalization estimated on the 

whole unsegmented recordings. Then we apply frame splicing with 31 frame-long context, where 

the temporal trajectory of each feature is scaled by a Hamming window and reduced to 16 

dimensions by discrete Cosine Transform. The final 288-dimensional features are globally 

shifted and scaled to have zero mean and unit variance on the NN input.  

 

In the post-processing we take the pre-softmax NN-outputs, convert them to logit-posteriors and 

apply smoothing which averages over 31 frames. In the next step the “initial” segments are 

extracted by using a threshold -0.5, to retrieve a little more speech than with the implicit zero 

threshold. Finally, the initial speech segments are extended by adding 30 frames on both ends, 

which merges some of the segments. Because it is time-consuming to process too long 

segments, we re-split those longer than 15 seconds in the middle third at the frame with the 

lowest score. 

 

With the current version it is very easy to change setup for specific speech tasks by adjusting the 

threshold and frame-extension. For example in ASR/KWS we typically have longer segments 

with some silence inside. On the other hand for Speaker identification we need to remove all the 

silence frames, while it is acceptable if we remove small amount of speech, which would be 

harmful for ASR. An example of distribution of per-frame scores is in Fig.1, the threshold is set 

to -0.5.  
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Figure 1: Distribution of scores in unsegmented recording 

 

VAD version WER [%] 

Multi-lingual on unseen language 43.8 

TokPisin FLP 43.8 

TokPisin VLLP 43.9 

Cantonese FLP on unseen language 44.1 

 
Table 1: TokPisin VLLP dev results, the multi-lingual VAD 

generalized to unseen language (TokPisin). 
 

Table 1 shows how the multi-lingual VAD generalizes to a new language. We compare the 

multi-lingual VAD applied to unseen language (TokPisin) with respect to VADs which 

are trained on the target language (using FLP 40h or VLLP 3h). The ASR performance is 

evaluated using TokPisin VLLP system. We see that the multi-lingual VAD works equally 

well as language-specific VADs. On the other if we use a mono-lingual VAD trained on different 

language (Cantonese, FLP 138h), the WER performance is worse by 0.3%. 
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STK systems 

These systems were built mainly using the HTK toolkit (http://htk.eng.cam.ac.uk/) and STK 

(http://speech.fit.vutbr.cz/software/hmm-toolkit-stk/) – an HMM modeling toolkit developed at 

BUT. It provides similar interface and functionality as HTK, while supporting several extensions 

(e.g. re-estimation of linear transformations MLLT, LDA, HLDA within the training process and 

use of recognition networks for training).  

TNet (http://speech.fit.vutbr.cz/software/neural-network-trainer-tnet) is a fast tool for parallel 

training of neural networks (NN) for classification, allowing for the NN tricks such as 

convolutive-bottleneck networks with shared weights [Vesely(2011b)]. We use the STK systems 

mainly to build discriminative features based on Neural Networks and Region Dependent 

Transforms – often referred to as “BUT features”. The BUT features are based on the 

concatenation of two feature streams: 

1. PLP HLDA (39 dimensional). 

2. Stacked Bottle-Neck Neural Network (SBN) [Grezl et al.(2009)] (30 dimensional) 

which is hierarchical composition of two NN (context-1stageNN and merger-2stageNN) 

followed by MLLT transform for better de-correlation. 

This results in a 69-dimensional feature stream which is further processed by Region Dependent 

Transforms (RDT) [Zhang et al.(2006)] . The transformation is generated on the feature stream 

rotated by a single speaker specific CMLLR transform.  

The STK speech recognition systems are HMM-based with cross-word tied-states triphones. 

They were trained from scratch using mix-up maximum likelihood (ML) training. Plain SBN 

systems (no SAT, RDT) were built for a big part of the analysis, they are referred later as STK 

BN systems.  

In the final system, the SBN architecture was extended by adding: 

 Speaker adaptive transform between the first and second stage NN - these 1st stage SAT 

features were very successfully used as input features for the Kaldi based Deep Neural 

Net (DNN) system. 

 Multilingual fine-tuning – the multilingual NN was fine-tuned into target language 

domain in two steps using these datasets: 

1. Supervised+unsupervised data – Semi-Supervised Training (SST). 

2. Supervised data. 

http://speech.fit.vutbr.cz/software/hmm-toolkit-stk/
http://speech.fit.vutbr.cz/software/neural-network-trainer-tnet
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Stacked Bottle-Neck feature extraction  

The SBN structure introduced in [Grezl et al.(2009)] contains two NNs:  the BN outputs from the 

first one are stacked, down-sampled, and taken as an input vector for the second NN. This second 

NN has again a BN layer, of which the outputs are taken as input features for GMM/HMM 

recognition system. Our previous study [Vesely(2011a)] has shown that BN neurons with linear 

activation functions provide better performance.  

Mel filter-bank outputs were preprocessed for NN training according to Figure 2. We used 24 

Critical-Band Energies (CRBE) with 10 F0-related coefficients.  The filter-bank spans 

frequencies from 64Hz to 3800Hz. The F0-related coefficients consist of  F0 and probability of 

voicing estimated according to [Talkin 1995] and smoothed by dynamic programming, F0 

estimates obtained by Snack tool(http://www.speech.kth.se/snack) function getf0 and seven 

coefficients of Fundamental Frequency Variations spectrum [Laskowski, et al, 2008].  

Conversation-side-based mean was subtraction applied. Next, we stack 11 frames of these 

features and multiply by Hamming window along the temporal axis. Finally, the temporal 

trajectories are decorrelated by a DCT transform with 0th to 5th basis.   

 

 

Figure 2: Generating NN input features.  

The Stacked Bottle-Neck architecture involves two NNs:  the BN outputs from the first one are 

stacked, down-sampled, and taken as an input vector for the second NN. This second NN has 

again a BN layer, of which the outputs are taken as input features for GMM/HMM recognition 

system. 

http://speech.fit.vutbr.cz/software/hmm-toolkit-stk/
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Figure 3: Stacked Bottle-Neck Neural Network. 

 

NN topology 

Our experiments questioned the necessity of the hidden layers (HLs) after the BN. Two kinds of 

SBN hierarchies were trained. The first one following the original description is called IN-HL-

HL-BN-HL-OUT. In the second case, the hidden layer after the bottle-neck was omitted and the 

NNs have the following topology:  IN-HL-HL-BN-OUT with a direct BN-layer -- output-layer 

connection.  

The recognition results using these two variations of DNNs are shown in the first two lines of 

Table 2. To our surprise, the second version of DNN provided better results than the original 

structure. Encouraged by these results, a third version of SBNs was trained. It had one more 

hidden layer before the BN, thus a having topology IN-HL-HL-HL-BN-OUT.  This version has a 

similar number of parameters as the original structure. Results using this structure are on the 

third line of Table 2. For Haitian and Lao, a further improvement was achieved, however, a slight 

degradation is observed for Zulu. 

 

                                          

 

 

 

 

Table 2: Performance of SBN systems employing DNNs with different topologies. 

NN type Haiti  

%WER 

Lao 

%WER 

Zulu 

%WER 

in-hl-hl-BN-hl-out 65.7 62.4 73.4 

in-hl-hl-BN-out 65.0 62.1 73.1 

in-hl-hl-hl-BN-out 64.4 61.6 73.3 
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Multilingual feature extraction 

Fully language-independent multilingual feature extraction should generate a better starting point 

when the system is ported to a new language. Naturally, all of the trainable front-end blocks 

could be trained in multilingual fashion to maximally use the multilingual resources. The 

availability of a sufficient amount of data from other BABEL languages and their admission in 

this year’s primary condition motivated us to investigate in building a fully multilingual feature-

extraction. As mentioned before, the STK front-end can be decomposed into the following steps:  

1. Concatenation of SBN and PLP HLDA: 

 Multilingual version of PLP HLDA was investigated in [karafiat 2012]. We 

found that the HLDA transform does not need to be trained on the target 

language, therefore the Tamil HLDA was selected for further experiments. 

 The Multilingual SBN is the consistent focus of our interest.  

2. Region Dependent Transforms (RDT) - Initial experiments with multilingual version 

were presented in [karafiat:ICASSP2012:MultRDT], therefore we further work in this 

field. 

3. Voice Activity Detection (VAD) generates segmentation for Cepstral Mean and Variance 

Normalization (CMN, CVN).  

Multilingual SBN systems 

 In the previous years of the Babel program [grezl 2014b, grezl 2014c], we already experimented 

with the training of Multilingual SBN. The following setup was established: 

 The “block-softmax” architecture (Figure 4.) - divides the output layer into parts 

according to each individual language. During the training, only the part of the output 

layer is activated, which corresponds to the language that the given target belongs to. 

This approach was successfully used in [Vesely et al.(2012)].  

 2 NNs with 4 hidden layers (1500 neurons each) – the third layer was a BN. 

 The context-independent phoneme states were used as training targets in multilingual NN 

training. 
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Figure 4: Block-softmax multilingual NN. 

 

This multilingual NN provided the starting point for the final “fine-tuning” to the target 

language.  It is done in two steps: 

1. Training of the last layer - the last layer of the multilingual NN was dropped and a new 

one is initialized randomly with the number of outputs given by the number of tied states 

in the target language. Only this layer is trained keeping the rest of the NN fixed. 

2. Retraining of the whole NN - the remaining layers were released and the whole NN was 

retrained. The starting learning rate for this phase was set to one tenth of the usual value. 

3. The best performing scenario from our previous work [Grezl 2014] was to let both NNs 

from the SBN hierarchy undergo the same porting process described here.  Even if 

porting the first NN basically changes the inputs to the second one, so that problems with 

adaptation could be expected, the experiments revealed that the second NN can also adapt 

to slight changes of the input features.  

Multilingual SBN system – porting  

Since the topology of DNNs in the target language SBN feature extraction is inherited from the 

multilingual one, the next step was to train the multilingual DNNs with original topology (IN-

HL-HL-BN-HL-OUT), and with the best topology (IN-HL-HL-HL-BN-OUT) and to evaluate the 

ported system.  The multilingual NN was trained on the year 1 Babel languages. 
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NN type in final language Haiti  

%WER 

Lao 

%WER 

Zulu 

%WER 

5lang multiling. NN:   in-hl-hl-BN-hl-out 

in-hl-hl-BN-hl-out 

(baseline) 

61.7 57.6 71.1 

in-hl-hl-BN-out 61.4 57.1 70.8 

5lang multiling. NN:   in-hl-hl-hl-BN-hl-out 

in-hl-hl-hl-BN-hl-out 61.5 57.4 70.8 

in-hl-hl-hl-BN-out 61.0 56.9 70.8 

5lang multiling. NN:   in-hl-hl-hl-BN-out 

in-hl-hl-hl-BN-out 64.4 60.9 73.0 

Table 3: Multilingual SBN – new versus old topology 

 

The modified DNN topology in the multilingual scenario does not perform as well as expected. 

According to table 3, a 2-3% degradation is observed when using the multilingual NN without 

the hidden layer before output layer – it is not well suited for the subsequent porting.  

To be able to utilize both positive aspects – having an output layer right after the Bottle-Neck 

layer for monolingual NNs and having a (large) hidden layer between the Bottle-Neck and output 

layers - we need to change the porting procedure. The multilingual DNN will be trained with 

hidden layer between Bottle-Neck and output layer. Then: 

1. All layers after bottle-neck will be cut off. A new BN-to-output layer will be initialized 

randomly and trained, keeping the rest of the NN fixed. 

2. The whole network will be retrained as in previous cases. 

The modified porting procedure can be found in Table 3. A 0.3-0.7% absolute improvement was 

reached by adding one more layer in the multilingual NN and by removing the last hidden layer 

during the porting of the NN into a new language.  
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Next, we were interested in the effect of adding more data. Therefore, we trained the multilingual 

NN on 10 languages (year 1 + 2, without Tamil) and applied the new porting approach to Tamil 

and TokPisin. 

NN type in final language Tamil  

%WER 

TokPisin 

%WER 

5lang multiling. NN:   in-hl-hl-hl-BN-hl-out 

in-hl-hl-hl-BN-hl-out 76.9 52.2 

in-hl-hl-hl-BN-out 76.5 51.7 

10lang multiling. NN:   in-hl-hl-hl-BN-hl-out 

in-hl-hl-hl-BN-hl-out 76.0 50.6 

in-hl-hl-hl-BN-out 75.9 50.0 

                   

Table 4. Porting multilingual SBN - 10 languages. 

The direct BN output -- output-layer connection (IN-HL-HL-HL-BN-OUT) shows a 0.1-0.6% 

absolute improvement in comparison to the hidden layer after the BN layer (IN-HL-HL-HL-BN-

HL-OUT), see Table 4. Using more training data for the multilingual NN gives 0.6-1.7% absolute 

improvement.  

Multilingual vs. monolingual system 

According to our previous work on LLP [grezl 2014b], most of the gain from multilingual 

training disappears when SST was also used. The quality of the initial unsupervised transcripts is    

significantly influencing the performance of the final system, therefore we were interested in 

similar experiments in the VLLP condition. The acoustics model of the monolingual system is 

significantly weaker due to lack of data, therefore the effect of the multilingual system should 

result in a bigger difference. 
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System Seed flat-start features TokPisin dev 

WER[%] 

No SST, just PLP align PLP 52.3 

1iter. of SST PLP 48.9 

2iter. of SST PLP 47.9 

3iter. of SST PLP 47.3 

4iter. of SST PLP 47.5 

Multi-10L -> SST ->VLLP Multi-10L 45.4 

Table 5: Monolingual vs. multilingual system with SST.  

 

Table 5 shows a 0.4% absolute improvement by building a system seeded from multilingual BN 

features instead of PLPs. We can see that after the third iteration of SST, the performance of the 

purely monolingual system saturates. Moreover, the PLP based initialization does not reach the 

performance of the multilingual based system (2% absolute difference). 
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Multilingual RDT features 

RDT are estimated using gradient-descent algorithm. To obtain shared update statistics, it is 

enough to sum statistics from language-specific speech recognition systems. Computing 

derivatives and estimation of the new RDT update follows the standard procedure. It is an 

iterative procedure, so the updated transformation is cloned to all language-specific systems, new 

HMM models are re-estimated and new statistics are collected. This process is repeated till 

convergence is reached. 

The RDT were trained on Year 1 (5lang.) or all Y1+Y2 (11) languages. It is applied to the 

concatenated feature stream (PLPHLDA+MultNN, trained on 10 languages using old topology 

(IN-HL-HL-BN-HL-OUT) in the previous section). The training followed this procedure: 

The initial language specific models were estimated by Single-Pass-Retraining (SPR) and the 

shared transforms were initialized with identity matrices for the central context and with zero for 

the others.  

Language specific gradients were estimated, averaged and the transforms were updated in 

gradient descent fashion.  

Finally, new language specific models were trained. This process was repeated till convergence 

was reached.  

 

Training data  GMM  WER 

Vietnamese Vietnamese 53.3 

Vietnamese Multilingual – 125G 53.3 

Y1 Multilingual – 125G 53.6 

Y1 Multilingual – 500G 53.7 

Y1 Multilingual– 1000G 53.9 

Y1+Y2 Multilingual – 125G 53.2 

Table 6: Multilingual RDT tested on Vietnamese FLP - one of the training languages. 
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Table 6 shows the results on one of the training languages, Vietnamese, with various 

configurations. We see no difference from using multilingual regions instead of language specific 

ones. A bigger number of regions (richer coverage of the feature space) also do not give any 

gain, probably due to over-training. More training data achieves a 0.4% gain, but only a tiny 

improvement is reached over the language-specific system. This outcome was expected as the 

amount of training data for each language is already high, therefore using information from other 

languages is not beneficial. However, adding data from more languages naturally covers more 

variability, therefore it should generalize better to new, previously unseen, languages.  

Application of multilingual RDT on unseen languages 

Next, we investigated the performance of using the previously trained RDT on Y1+Y2 languages 

to a new unseen language, where the amount of training data is limited. TokPisin from the Y3 

languages was chosen. The initial PLP based HMM system was trained on the Very Limited 

Language Pack (VLLP), which contains about 3h of data. The input features 

(PLPHLDA+MultNN) were processed through different RDT configurations that we tested and 

new models were trained with using SPR. 

 

Training data  GMM  WER 

TokPisin VLLP TokPisin VLLP - 125G 51.2 

Tagalog FLP Tagalog FLP - 125G 52.0 

Y1 Multilingual – 125G 50.3 

Y1+Y2 Multilingual – 125G 50.2 

Table 7: Multilingual RDT on TokPisin 

Table 7 shows the dependency of RDT on the target data. 0.8% degradation was observed when 

the RDT was borrowed from other language. On the other hand, using multilingual RDT 

presented a 1.7% absolute improvement when it was trained on 5 (Y1) languages and 1.8% on 11 

(Y1+Y2) languages. 

Therefore, a configuration with 125 regions generated by GMM, and RDT trained on 11 

languages was fixed as a standard recipe for further experiments and denoted later as 

``MultRDT''. 

Flat Start training with multilingual RDT features 

Next, we were interested in building the TokPisin VLLP HMM system from scratch on various 

features. The NN based features are trained to learn acoustics clues, therefore straightforward 

Maximum Likelihood (ML) flat-start models should perform significantly better than traditional 

spectrum-based features (PLPs).  Moreover, the NN-based features should provide a significantly 

faster convergence with less Gaussians due to the emergence of articulatory clusters. 
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Input features  WER[%] 

PLP 70.0 

Multilingual NN Y1only - 5L                       53.7 

Multilingual NN Y1+Y2 no Tamil - 10L  51.9 

NNltilingual NN Y1+Y2 - 11L                    50.7 

MultRDT   50.0 

Table 8: Various flat-start features on TokPisin. Initial ML results. 

 

Table 8 presents a huge 16% absolute improvement over the simple ML VLLP system when 

multilingual NN based (Y1 - 5languages) features were used. By adding more data into the 

training, we obtained another significant improvement. Another gain comes from adding Tamil, 

probably due to its varying recording conditions that were the most variable/difficult across all 

Babel languages so far. Next, adding multi-lingual RDT gave a 1.9% absolute improvement 

compared to the MultNN features trained on 10 languages (same NN features were used to RDT 

input). 

Data augmentation 

Next, we experimented with artificially generation/cloning the data due to lack of transcribed 

data in the VLLP condition.   

Vocal Tract Length Perturbation 

The data was cloned by regenerating of features with various warping factors similarly to 

experiments proposed by [Cui 2014] and [Jaitly 2013]. Both approaches were compared on  

simple ML NN based system trained on TokPisin VLLP:  

 v1 - Generating of random warping factors (Jaitly 2013) 

 v2 – Warping factor shifts (Cui 2014). 
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System WER [%] 

Baseline  56.6 

VTLP v1 56.5 

VTLP v2 56.5 

Table 9: VTLP on TokPisin VLLP. 

 

Table 9 presents minor 0.1% absolute improvement from VTLP therefore we further focused on 

data augmentations by waveform modifications.  

Noising/Reverberation of data 

We generated a parallel corpus by adding various distortions: noises, reverberations, pitch 

modifications. This allows us to train the VLLP system on more data. Last year on Tamil we 

found a significant increase in system robustness. All features (PLP, FBANK) were regenerated 

and the NN training targets were copied from the clean data.  

 

Reverberation 

We generated artificial room impulse responses (IR) using the "Room Impulse Response 

Generator" tool from E. Habets (http://www.audiolabs-erlangen.de/content/05-fau/professor/00-

habets/05-software/01-rir-generator/rir_generator.pdf). The tool can model the size of room (3 

dimensions), the reflectivity of each wall, the type of microphone, the position of source and 

microphone, the orientation of the microphone towards the audio source and the number of 

bounces (reflections) of the signal. Each room model consists of a triplet of IR. One is used for 

the speech source, one for the inside-room noise, and one for the on-the-wall noise. We randomly 

set all parameters of the room for each room model. Just the coordinates of the audio source 

differ for each of the IRs in a-triplet. The constraint was that the distance of speech- and inside-

room noise sources from any of the walls should be larger than 0.5~m. On contrary, the distance 

between a given wall and the on-the-wall noise source should be smaller than 0.5~m. Each 

dimension of a room was limited to the range 2--5 meters. For a given room model, speech was 

reverberated (convolution with room IR) using the speech source IR. The noise was reverberated 
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by randomly chosen noises inside or noises-on-the-wall IR. The speech signal was compensated 

for the delay caused by the reverberation (to match the timing with the original one). 

We used the fant tool [Hirsch 2005] to mix the reverberated speech and the reverberated noise at 

a given SNR. 

Cloning the data by using pitch variations 

Here we used the “sox” tool to modify the pitch in the recordings. We used the following pitch 

modification parameters (-300 -200 -100 100 200 300) and created 8 copies of the Swahili 

database.  

Composition of the training set 

The training database was cloned 3x with three levels of noise (low, mid, high). The noises were 

extracted using VAD (non-speech segments) from the recordings of the Year 1+2 languages for 

the VLLP conditions and from the language specific recordings in the FLP conditions. We also 

extracted babble noises using the VAD and the BABEL Y1 and Y2 data. Here we overlap 50 

speakers per each language.  

Three sets of SNR levels for speech and noise mixing were generated. These sets are denoted by 

``high SNR'' for 25-45dB, ``mid SNR'' for 15-25dB and ``low SNR''  for 0-15dB. We selected 

randomly the noise or babbling noise, the SNR level, the room IR and modified the Swahili data.  

Each speaker was cloned by 4x random noise/reverb-modifications and 4x random pitch 

modifications. Therefore, total trainable amount of data was 9x bigger than original size. 
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Experiments 

Complete system (NN feature extraction + GMM) on development languages was trained on 

noised data. The pitch modifications were used later. 

System Lihuanian 

WER[%] 

Kurdish 

WER[%] 

Cebuano 

WER[%] 

Kazakh WER[%] 

Clean 
54.0 71.9 61.5 59.1 

Noised 4x 52.0 70.2 60.3 56.9 

 

System Cebuano Kurdish 

MTWVnorm[%] Oracle[%] MTWVnorm[%] Oracle[%] 

Clean  
25.64 36.31 13.76 24.93 

Noised 4x 27.58 37.52 16.79 29.43 

Table 10: Training on noise: ASR and KWS results  

Table 10 shows about 2% WER and 2-3% on MTWV absolute improvement by training on 

noised data. 

 

The using of noise modifications shows quite promising improvement on all development 

languages. Consequently we applied this technique on surprise language – Swahili. Here we also 

investigated the effect of all particular noise/pitch modification on each system part.   

The effect of noise on GMM system only was evaluated by generation of multilingual RDT 

features on distorted wave files. It follows by basic flat-start ML GMM training. The WEB data 

LM was used. 
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Training data Swahili dev  

WER[%] 

Baseline – no noise added 
54.7 

 Original + 4x noise cloning 54.1 

Original + 8x noise cloning 53.9 

Original + 4xPitch variations 53.2 

Original + 4x noise cloning + 4xpitch variations 53.0 

Table 11: Flat-start GMMs trained on various waveform modifications.  

Table 11 presents impressive 1.5% absolute gain from pitch variations. Adding noise variations 

shows a slight 0.2% improvement. It seems that pitch modifications are not complementary to 

pitch modifications.  

Next, we trained ML GMMs on clean VLLP data only and built only NN front-end on noises. 

They were trained in SST manner on VLLP +unsupervised transcripts. Moreover, the data was 

cloned to one noise specific mirror, so the NN was trained on original data plus one noise 

variation.  

 

NN training data – noise type 

Noise Level 

Low noise 

level 

WER[%] 

Middle noise 

level 

WER[%] 

High noise 

level 

WER[%] 

Baseline – NN on clean only 
53.6 

 No reverberation; Babble noise 53.5 53.1 53.4 
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No reverberation; Background noise 53.2 53.1 52.9 

Reverberation; Babble noise 53.2 53.0 53.1 

Reverberation; Background noise 52.9 53.1 52.8 

Table 12: Effect of noises on front-end level 

 

Table 12 presents smaller improvements from cloning the data on front-end level than on GMM 

level. Next, it seems that reverberation and high level background noise is beneficial and babble 

noise is less effective than background noise. 

In the same way, we investigated an effect of pitch variations on NN front-end level. Again, the 

NN was trained on original data and single type of pitch varied clone  

  

Size of pitch change   Swahili dev  

Slow 

WER[%] 

Fast  

WER[%] 

Original data only 
53.6 

1 semitone 
54.2 53.6 

2 semitone 54.2 53.7 

3 semitone 54.0 53.8 

4 semitone 54.1 54.0 

Table 13:  Effect of pitch variations on front-end level 
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Table 13 shows no improvement from pitch variation in NN training. Therefore it seems that 

pitch variations are effective only on GMM training. 

Similarly to development languages, we built the full GMM system on Swahili VLLP on noised 

data.  The distortions were applied during the NN training and GMM training. NN was trained 

by fine-tuning from multilingual NN (trained on year 1 + year 2 = 11languages) to SST data 

which were cloned to various noises. 

System Swahili dev  

WER[%] 

no noise added 
50.4 

4xnoises 49.4 

4x noises + 4xpitches 48.9 

Table 14: Final GMM system with training on noises. 

Table 14 presents 1% absolute improvement by cloning the data by adding the noise. Next 0.5% 

improvement can be reached by pitch modifications.  

With using last year training recipe we also build DNN hybrid classifier in Kaldi toolkit. It 

contained  pre-training, SST, sMBR… 

 System Swahili tune  

WER[%] 

Swahili dev 

WER[%] 

no noise added 
53.2 48.5 

4x noises 50.7 - 

Table 15: Final DNN system trained on noises 

Table 15 presents 2.5% absolute improvement by noising the data which is even more than in 

GMM training. It seems that noising the data is mainly effective on classifier level, which is 

DNN in this case.  



 

21 

The noising of the data is a cheap technique which can cope insufficient train data issue, like in 

VLLP. Therefore we were interested in effect of this technique in FullLP condition. The final 

STK GMM and DNN systems were using the same recipe like last year as the multilingual 

training was not allowed in FLP condition. The noises were generated in same way like VLLP 

with difference that only parts from Swahili LP were taken (background noises, speech for 

babbling). 

GMM systems Swahili dev 

WER[%] 

no noise added  
44.1 

4x noises 42.0 

 

DNN systems Swahili dev 

WER[%] 

no SST 
41.5 

SST 
40.8 

4x noises – no SST 40.9 

No SST, no Noises – Appen dictionary 39.8 

Table 16: Noising the data: GMM and DNN systems on FLP conditions. 

Table 16 presents 2% absolute improvement from noises on GMM system and 

0.6% improvement on DNN. Moreover 0.7% absolute improvement from SST 

was reached on DNN system.  

Next, we investigated the effect of grapheme-based dictionary on system 

performance. Table 16 shows 1.7% improvement by using original expert based 

Appen dictionary.   
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Kaldi systems 

Kaldi [Povey et al.(2011)] is a speech recognition toolkit, which has become popular in the 

research community due to its open spirit and flexibility. It features many traditional state-of-the-

art techniques as well as the recent ones, such as exact lattice generation, subspace Gaussian 

mixture models (SGMMs) with speaker adaptive and discriminative training and Deep Neural 

Network (DNN) training. A big advantage of Kaldi is that it includes a set of recipes to build 

state-of-the-art speech recognition systems. These were adapted and extended for the purposes of 

our experiments. 

In the OP2 period, we used Kaldi mainly to build the VLLP systems. The recipe is the following: 

we initially build GMM-HMM models to get tied-state decision trees and transcription forced-

alignments. Then we import multi-lingual features from the 1st bottleneck of the SBN 

architecture. And finally we build a DNN on top. Note that prior to the import, the multi-lingual 

features were adapted both to a target language by “fine-tuning” and target speaker by CMLLR 

transform. 

The language models were produced by interpolation of 2 LMs. A first LM trained on VLLP 

transcripts and a second LM trained on Web-data, the vocabulary of second LM was limited 

vocabulary to 50k words.  

To build the initial GMM-HMM models we use flat-start mixing-up ML, using PLP + Kaldi-

pitch features. We add cross-word triphone tied-states (steps ”tri1”,”tri2b”), LDA+MLLT 

transform on a splice of 9 speech frames (step ”tri4b”), and speaker dependent fMLLR transform 

(step ”tri5b”). We used approximately 1700 tied-states, where each state is modelled by 9 

Gaussians. Both the LDA+MLLT features and fMLLR features are 40 dimensional. This fMLLR 

system is later used to produce DNN training targets by forced-alignment, also the tied-state 

decision trees are re-used for DNN training. 

The DNN training recipe features generative RBM pre-training, frame classification training, 

sequence-discriminative training, and semi-supervised training. A more detailed description will 

appear later in this document.  
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Kaldi-GMM input features 

Our GMM feature set are PLPs (13 dimensions) concatenated with Kaldi-pitch (3 dimensions). 

All features (16 dim) were normalized by CMN/CVN and then either deltas/double deltas were 

applied or we splice 9 frames and estimate LDA+MLLT transform. In the final SAT stage we 

estimate per speaker fMLLR transforms (40x40 dim): 

 

Figure 5: Feature extraction pipeline for Kaldi GMM systems 

The Kaldi pitch [Ghahremani 2013] is composed of 3 features: the pitch, delta-pitch and voicing 

feature.  The pitch is smoothed by dynamic programming without making hard-decision about 

voicing. Further it is normalized by using floating window of 151 frames. The delta-pitch is 

computed from unnormalized pitch.  

Kaldi Deep Neural Network systems 

The Deep Neural Networks (DNNs) are very popular in acoustic modeling. The DNNs typically 

produce triphone tied-state posterior probabilities, and these are used as emission probabilities in 

HMM decoder. To convert the posteriors into ``log-likelihoods’’ we divide them by the tied-state 

priors. Historically this setup is called as a ``hybrid’’ because it is a combination of a neural 

network and an HMM.  

The advantage of DNN over GMMs is that they are trained discriminatively to classify frames, 

while GMMs are trained generatively. Another good property of a DNN is that the weights 

specific to tied-states are only in the last layer, while the hidden layers are shared by all the 

states. Next advantage is that DNN input features are not required to be decorrelated, so we can 

easily create temporal context by splicing several frames. All these advantages translate into 

excellent performance of DNN systems. 

On the other hand, a performance of a GMM system can be greatly improved when using Bottle-

Neck features (called ``tandem systems’’), which leads to performance commensurate to DNNs, 

while giving complementary outputs. Our STK system is an example of a tandem system. 

In the first and second year of the Babel program we were both using and developing these 

training techniques: 

 Generative RBM pre-training, using the Contrastive divergence algorithm with one 

step of Gibbs sampling. 
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 Mini-batch Stochastic Gradient Descent optimizing the frame-level cross-entropy, 

using GMM alignments as training targets. The triphone tree is inherited from the initial 

GMM system. 

 Sequence discriminative training optimizing the sMBR criterion - done by Stochastic 

Gradient Descent with per-utterance updates [Vesely et al.(2013)a]. This aims to 

maximize the expected frame accuracy within a population of alternative hypotheses 

represented as a lattice, while the reference path is obtained by forced-alignment. 

In this year there were enhancements to sMBR training : a) the objective function was 

modified to penalize insertions b) we re-estimate the tied-state priors after last epoch of 

sMBR training by forwarding the training data and calculating average posterior vector. 

 Semi-supervised training with frame-weighted SGD training based on per-frame 

confidences derived from lattice posteriors of states on best path [Vesely et al.(2013)b]. 

The original recipe from the paper was simplified in the second year by down-scaling the 

lattice-posteriors which leads to confidences which closely match the ideal confidence, 

i.e. the  probability of a label being correct. The transcribed data are included only once 

into the train-set, and we no longer needed frame-rejection. As mentioned in the paper, 

the semi-supervised training is applied only to the per-frame cross-entropy training. 

Kaldi-DNN input features (BN) 

As mentioned above, we used the multi-lingual STK features on the input to Kaldi DNN. These 

80-dimensional features were extracted from the first stage bottleneck, from a network which 

was previously “fine-tuned” to target language, while we also applied per-speaker CMLLR 

transforms. On the DNN input we have spliced 11 frames from consecutive interval -5..+5, while 

we also added 2 extra frames with offsets -10 and +10 w.r.t. the central frame. 

Given the success of STK bottleneck features on DNN input from second year, we have been 

working on producing BN features with Kaldi, and we have successfully replicated the results 

with Bengali mono-lingual LLP system, see Table 17. In this year, it happened to be crucial to 

have multi-lingual features for a good VLLP performance, which is why we have again used 

STK bottleneck features. 
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DNN systems, Bengali LLP, mono-lingual dev WER[%] 

1xSST on STK BN features (2x SST) 
56.8 

1xSST on fMLLR features 
59.6 

1xSST on Kaldi BN features 57.9 

1xSST on Kaldi BN features 56.6 

Table 17: Replicating the Bengali LLP  STK-BN feature result with Kaldi bottlenecks 

 

Table 18 demonstrates the importance of using multi-lingual bottleneck features for obtaining a 

good performance on VLLP languages. We have observed huge absolute improvement in range 

4.2-6.6%, compared to mono-lingual systems which were entirely trained in Kaldi. Both systems 

were using bottleneck features and semi-supervised training applied to both the BN features and 

the DNN. 

DNN input Kurdish 

WER [%] 

TokPisin 

WER [%] 

Cebuano 

WER[%] 

Kazakh 

WER[%] 

Telugu 

WER[%] 

Lithuanian 

WER[%] 

Kaldi BN -  

monolingual SST 

76.2 47.0 63.7 64.1 79.7 61.0 

STK BN - 

multilingual SST 

70.1 42.8 58.9 58.7 73.1 56.5 

Table 18: Importance of using multi-lingual BN features for good VLLP performance 
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Improvements from Web-data 

In table 19 we show the gains coming from ‘Web-data’ added to language model training. The 

language models were produced by interpolation of 2 LMs. A first LM trained on VLLP 

transcripts and a second LM trained on Web-data, the vocabulary of second LM was limited 

vocabulary to 50k words. We see big differences in the absolute WER improvements across 

languages from 0.2% (TokPisin) to 6.3% (Lithuanian). 

LM corpora Kurdish 

WER [%] 

TokPisin 

WER [%] 

Cebuano 

WER[%] 

Kazakh 

WER[%] 

Telugu 

WER[%] 

Lithuanian 

WER[%] 

VLLP transcripts 70.1 42.8 58.9 58.7 73.1 56.5 

VLLP transcripts   

+ Web-data 

69.6 42.6 58.1 55.7 72.4 50.2 

Table 19: Improvement from adding Web-data to LM training corpora. 

Augmenting data for surprise language 

For the VLLP surprise language task, we made experiments with perturbing the input data. We tried 

separately adding noise and adjusting the pitch of the original speaker. The data augmentation was 

applied during semi-supervised training where the supervision was generated on clean data. From the 

results in table 20, we see that noising is very efficient perturbation technique, while the pitch adjustment 

did not lead to an improvement. This conclusion is contradictory to the observation from STK system. 

 

Perturbation in BN features  

on DNN input (DNN on hours) 

VLLP, Swahili 

Cross-Entropy  

WER [%] 

sMBR 

WER [%] 

MTWV 

(FST) 

None (73h) 54.2 53.2 0.430 

Adding noise (340h) 52.2 50.7 0.456 

Pitch adjustment (292h) 54.1 53.2 - 

 

Table 20: Augmenting data for both BN and DNN training by perturbation
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Kaldi decoding and Keyword spotting 

We use the Kaldi recipe to generate the decoding network, we generate lattices in Kaldi-WFST 

format, by using DNN acoustic scores (pre-softmax tiedstate scores with log-priors subtracted) 

while decoding with the HCLG recognition network. 

 

We tuned the acoustic-scale to obtain optimal OracleTWV on tune-set, while we also made sure 

that the pruning beams are large enough. 

 

In total, we generated 3 types of lattices: 

I. Word lattices 

II. Phone lattices 

III. BBN sub-word lattices 

 

For all the 3 lattice-types, the recognition networks were based on the trigram LMs. The word-

based LM was obtained by interpolation of two LMs, an LM trained on 3 hours of transcripts, 

and second LM trained on pre-processed web-data LM. The final LM was pruned with a 

threshold 1e-8. The BBN sub-word LM was pruned with threshold 1e-7. For the pruning we used 

SRILM toolkit. 

 

The lattices I. and III. were converted to HTK format and delivered to BBN for processing in the  

BBN keyword spotting engine. 

Kaldi Keyword spotting 

Two KWS engines were used for keyword search: 

A. Kaldi search in pre-computed FST indices [Can et al. 2011] (used with lattices I.) 

B. Latt2Multigram search in phone confusion networks [Szöke(2010)]  

(used with lattices I.,II.,III.) 

 

The FST-based engine “A.” is efficient for in-vocabulary keywords. For out-of-vocabulary 

keywords we need engine “B.”, in this case the lattices are converted into phone-confusion 

networks by Minimum Bayes Risk decoding, where a scale of 0.7 is used to both the acoustic 

and graph scores. Then an exact match search in the phone confusion network is performed, 

using a phone sequence of the searched term. During the search, we prune-out tokens with sum 

of log-posterior scores below -25.0, or alternatively the tokens get pruned if a temporal gap 

between 2 phones is larger than 0.3s. 

 

Kaldi KWS system contains a basic hit-list score calibration techniques: KST (keyword-specific 

threshold) for FST engine ‚A‘, and STO (sum to one) for confusion-network based engine ‚B‘. 

For this reason the OracleTWV is more interesting measure than MTWV, if we assume that the 

more powerful BBN calibration is almost optimal. 
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Language Lattices, KWS engine 

MTWVnorm [%] 

(basic calibration) 

Oracle 

(IV/OOV)[%] 

 

Cebuano 

 

I.A. : Word,FST 20.4 34.7(40.8/0.0) 

I.B. : Word,CN 14.7 32.0(31.7/34.0) 

II.B. : Phone,CN 11.3 27.9(27.1/32.9) 

III.B. : Subword,CN 13.3 30.0(29.5/32.6) 

 

Kazakh 

I.A. : Word,FST 
29.1 44.2(51.0/0.0) 

I.B. : Word,CN 17.0 34.3(35.4/27.1) 

II.B. : Phone,CN 11.9 28.0(28.1/27.4) 

III.B. : Subword,CN 15.4 32.1(32.6/29.2) 

 

Kurdish 

I.A. : Word,FST 
10.8 23.9(27.6/0.0) 

I.B. : Word,CN 6.0 21.3(22.3/15.1) 

II.B. : Phone,CN 5.1 17.8(18.2/15.1) 

III.B. : Subword,CN 6.2 20.7(21.0/18.2) 

 

Lithuanian 

I.A. : Word,FST 
37.0 48.8(57.2/0.0) 

I.B. : Word,CN 28.3 44.4(44.4/43.9) 
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II.B. : Phone,CN 19.2 34.3(33.7/37.5) 

III.B. : Subword,CN 26.7 42.2(41.3/47.3) 

 

Telugu 

I.A. : Word,FST 
14.1 26.7(32.8/0.0) 

I.B. : Word,CN 10.1 25.3(25.9/22.7) 

II.B. : Phone,CN 6.5 18.0(17.8/18.9) 

III.B. : Subword,CN 9.4 24.2(24.1/24.8) 

 

TokPisin 

I.A. : Word,FST 
32.4 47.7(51.4/0.0) 

I.B. : Word,CN 19.8 36.5(37.3/25.8) 

II.B. : Phone,CN 12.6 29.3(29.9/21.3) 

III.B. : Subword,CN 18.1 34.4(35.0/27.0) 

 
Table 21: KWS results for tune-set of dev-languages, VLLP, using dev+tune+eval keywords 

 

From table 21, it is clear that the best Oracle-TWV for In-Vocabulary keywords (IV) is with the 

combination ‘I.A.’ which corresponds to FST engine applied to word lattices. The best 

combination for the Out-Of-Vocabulary (OOV) keywords is ‘III.B.’, i.e. the sub-word lattices 

converted into confusion networks with phones, where we match the phonetic pronunciation of a 

keyword. On the other hand the other systems can still be complementary, which is why the 

‘raw’ hit-lists from all the 4 systems were delivered to BBN for further processing. 
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Babel-related Scholarly Activities including papers published and 

presentations given during this period 

 

Presented 2 papers at Interspeech 2014: 

Martin Karafiat, František Grézl, Karel Vesely, Mirko Hannemann, Jan Cernocky: „BUT 

2014 Babel System: Analysis of adaptation in NN based systems“ 

Frantisek Grezl, Martin Karafiat: „Combination of Multilingual and Semi-Supervised 

Training for Under-Resourced Languages 

Presented 2 papers at SLT 2014: 

Martin Karafiat, Karel Vesely, Igor Szoke, Lukas Burget, František Grezl, Mirko 

Hannemann, Jan Cernocky: „BUT ASR System for Babel Surprise Evaluation 2014“ 

Frantisek Grezl, Ekaterina Egorova, Martin Karafiat: „Further Investigation into 

Multilingual Training and Adaptation of Stacked Bottle-Neck Neural Network Structure“ 
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GLOSSARY 

ASR Automatic Speech Recognition  

CER, SER, WER: Character-, Syllable-, Word Error Rate 

CN: Confusion Network  

DBN: Deep Belief Network 

DNN: Deep Neural Network 

FLP: Full Language Pack 

GMM: Gaussian Mixture Model 

KWS: Keyword Spotting 

LLP: Limited Language Pack 

LM: Language Model 

MLP: Multi-Layer Perceptron 

ML: Maximum Likelihood 

MMIE: Maximum Mutual Information Estimation 
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MTWV: Maximum Term-Weighted Value 

OOV: Out-Of-Vocabulary 

PLP: Perceptual Linear Predictive features 

RBM: Restricted Boltzmann Machine 

RDT: Region Dependent Transform 

SAT: Speaker Adaptive Training 

SGD: Stochastic Gradient Descent 

SST: Semi-Supervised Training 

STT: Speech-To-Text 

VAD: Voice Activity Detection 

VLLP: Very Limited Language Pack 

VTLP: Vocal Tract Length Perturbations 

 


