
NTPAC: A Distributed System for Network

Forensics

Viliam Letavay, Jan Pluskal, and Ondrej Rysavy

Brno University of Technology, Bozetechova 2, Brno, Czech Republic

{iletavay, ipluskal, rysavy}@fit.vutbr.cz

http://www.fit.vutbr.cz/

Abstract. The Internet brought new opportunities for cybercrime ac-

tivities. Security administrators and LEA (Law Enforcement Agency)

officers call for powerful tools for high-speed network communication

analysis of an enormous amount of traffic. This paper presents a novel

tool capable of both real-time and post-mortem network traffic analysis.

The system enables to extract information up to an application layer.

The scalability is achieved by employing the distributed computation

model. Moreover, the presented solution includes heuristics to analyze

incomplete communication.

Keywords: Network forensics, Network traffic processing, Actor model,

Distributed Computing, Tool Implementation

1 Introduction

In network forensic investigation, the network traffic is collected, and captured

packets are further processed and analyzed. For investigators, the evidence is pri-

marily located in application messages such as instant messaging, emails, voice,

RTP, localization information, documents, pictures, etc. The amount of data

that needs to be processed to extract evidence from the network communication



2 V. Letavay, J. Pluskal, O. Rysavy.

is enormous. Also decoding packets up to application messages and retrieving

artifacts is not a trivial task. Today computers offer tremendous computation

power thanks to their multi-core architecture. However, modifying a program

to use multi-core processing is relatively complex and usually require extensive

modification. Often, a different computation model is required. Carl Hewitt de-

veloped the actor model of computation in 1973, and it gained its popularity

only recently because of the availability of hardware and infrastructure having

the necessary capabilities.

In our paper, we propose a proof of concept (PoC) of our distributed net-

work forensic tool the NTPAC (Network Traffic Processing and Analysing Clus-

ter), based on actor model that provides an efficient and scalable system for

packet decoding and artifacts extraction. We overview the tool design, discuss

its main functionality and evaluate its performance. We directly compare it to

the VAST [1] system, which also employs the actor model, but it is intended

for interactive real-time analysis and supports a limited application protocol

decoding capabilities.

2 Background

2.1 Network Forensics

Network forensics has been widely neglected in recent years as Vallentin has

shown [1]. Majority of authors threats it as a part of Digital forensics and con-

tinues to threat it as such. There is a vast difference between typical digital

forensics and network.

In digital forensics, the first thing that investigator should do is reconnais-

sance. He needs to be assured that volatile information is not lost during the

acquisition of evidence [2]. Mostly, this first part is protruded by operatives from

LEA lines, and a probability of volatile information loss is high, because of the



NTPAC 3

lack of expert knowledge. This state unimaginably threatens the success of an

investigation as a whole. Just recently, vast sums are spent on development and

teaching of digital forensics curricula to the first line operatives to be able to

capture volatile information with advanced techniques to obtain an image of

otherwise encrypted hard-drive or operation memory. The expert investigator

works with a data source that is not volatile afterward, but backed up and prop-

erly archived with consistency ensured. Evidence obtained from such data can

be validated and repeatably carved by a multiplicity of tools and techniques.

Network forensics, on the other hand, is a process that identifies, captures and

analyzes network traffic [2]. Network traffic is totally volatile. Information that

is not captured on the first time is lost forever. Identification of proper network

line to TAP is not a trivial task because of poor network documentation from

an Internet Service Provider (ISP) part, asymmetric routing, network dynamic

nature, and an error rate of the actual physical connections and so on. Just

theoretically abandoning legality concerns that enforce strict rules on traffic

interception, unabridged analysis of all traffic of a simple home connection would

require wast computational resources and investigator’s time to manually analyze

all extracted fragments from the communication.

This kind of Network forensic techniques, as we also understands it, was

implemented in several network forensic frameworks [3–8] and tools. PyFlag,

CapAnalysis, Xplico and NetworkMiner are examples of widely used network

forensic tools. These tools are usually meant to run on investigator’s machine

and process a small part of filtered communication with the highest probability

of evidence containment.

There is also another direction of Network forensics that is most concerned

with the security of computer systems or network infrastructure of large orga-



4 V. Letavay, J. Pluskal, O. Rysavy.

nizations. This part of network forensics is building Intrusion Detection and

Intrusion Prevention Systems and grows in its importance swiftly.

Majority of authors does not make this distinction and mentioning Network

forensics they mean IDS/IPS tools and not network forensic tools that helps

LEA investigators.

2.2 Actor Model of Computation

The actor model is one of the attractive solutions that solve the problems related

to distributed computing elegantly and efficiently. The actor model was first

introduced as a theoretical computation model highly influenced by Lisp, Simula

and packet switching in computer networks [9]. It defines a primitive concept

called actor system that is composed of tiny building blocks called actors that

execute independently and massively in parallel. The actor is in the distributed

world an abstraction of what is an object in Object Oriented Programming.

Actors communicate asynchronously via message passing, that is managed

by the actor system which guarantees at most one delivery. This means that

any message can get lost in any time but cannot be delivered twice or more.

Actor’s state changes only as a reaction on a received message. Actor’s behavior

determines how to process the incoming message by creating another actor,

sending a message to another actor, changing its state.

Composition of actors in actor system is hierarchical. Each actor is responsi-

ble for any other actor it creates, i.e., creation of parent-child relationship. Actor

is designed to be as simple as possible without complex inner integrity checks,

exception handling, etc. Thus, it can crash at any time. Parent actor is respon-

sible for its children and knows how to deal with children’s failure. This concept

greatly simplifies the computation model and forces programmer to focus only

on the most important part that is the functionality and not the handling of

exceptional states.



NTPAC 5

3 Related Work

Network forensic analysis methods were implemented in various tools. General

purpose tools include network analyzers (Wireshark, TCP dump), IDS systems

(Snort, Bro), fingerprinting tools (Nmap, p0f), and tools to identify and analyze

security threats.

PyFlag is a general purpose forensic package which can be used as disk foren-

sics, memory forensics, and network forensics tool. PyFlag is designed around

the Virtual File System concept. For each supported data source a specific loader

is implemented. PyFlag enables to reassemble the content of the communication,

e.g., web pages, email conversation, etc. Network Miner is an open source tool

that integrates packet sniffer and higher-layer protocol analyzers into a tool for

passive network traffic monitoring and analysis. Xplico is a modular tool aimed

at the reconstruction of the data content carried in the network traffic. The soft-

ware consists of the input module handling the loading source data, decoding

module equipped with protocol dissectors for decoding the traffic and export-

ing the content, and the output module organizing decoded data and presenting

them to the user. Xplico is a client-server application that can analyze PCAP

files as large as several gigabytes. While all of these tools are very valuable for in-

vestigators, they have problems when processing capture files bigger than several

gigabytes.

Lukashin et al. [10] presented a scalable internet traffic analysis system, which

can process multi-terabytes libpcap dump files. It utilizes Apache Spark for data

processing to analyze captured packets. The system performs basic analysis and

lacks some advanced features required by network forensics. Other approaches

to the big data network security analysis were presented in [11], [12], and [13].

Currently, Apache Metron1 and Apache Spot2 projects are the most vital. They

1 http://metron.apache.org/
2 http://spot.incubator.apache.org/



6 V. Letavay, J. Pluskal, O. Rysavy.

are frameworks for security analysis of IT threats, enabling to process also fire-

wall and application logs, emails, intrusion-detection reports, etc. Although they

are primarily focusing on network security, they can be valuable as sources of

forensic data.

Agent-based systems for digital forensics were considered in the literature [14–

16]. These models are more suitable for real-time network forensic analysis from

multiple sources, such as logs and captured communication. In these systems,

numerous agents perform data collection tasks. The extracted information is

then sent to the forensic server and analyzed on this single node [17] only, which

makes this node to be the bottleneck of the whole system. The VAST system

builds upon Vallentin’s previous work (The NIDS Cluster) [18] which distributes

the workload across multiple workers running Bro to investigate online network

traffic and extract Bro events. The VAST system itself goes further and dis-

tributes Bro events to workers running in a computing cluster which allows for

on-line analysis and interactive queries. Distribution of raw packets is also sup-

ported as a 4-tuple with payload [19] up to the speed of 3.1 Gbps (the libpcap

reading speed) without no guarantee that the storage will be able to keep up

with the incoming traffic of this speed.

We were inspired by the VAST to employ agent design in our system proto-

type. Each actor represents an independent processing unit. The communication

between actors is conducted via message passing. The actor has no shared state;

thus all actors work in parallel. If actors run on the same node, the message

passing has a little overhead compared to a function call or a loop. However, if

actors scale over multiple nodes, messages need to be serialized. The serialization

process introduces latency and adds overhead. Nevertheless, such design lacks

a single point of failure and enables scalability across multiple physical nodes.

Moreover, dynamic resizing of the computing cluster is possible.



NTPAC 7

Network 1 h 1 d 1 w 1 m

1 Mbps 9 GB 216 GB 1.5 TB 6.5 TB
100 Mbps 90 GB 2.2 TB 15.1 TB 64.8 TB
1000 Mbps 900 GB 21.6 TB 151.2 TB 648 TB

Table 1: Maximum size of a capture file for different network types.

4 Problem Statement

Network forensics is a tedious work that strictly relies on completeness and pre-

cision of all undertaken steps to gain a piece of a puzzle that fits together as a

shred of evidence. Considering the current network speeds, an unabridged anal-

ysis would require enormous computation resources. Table 1 presents maximal

sizes of capture files depending on the network speed and the data acquisition

interval. Note that for 1Gbps network the duplex communication can produce

up to 250MB of data each second. To get evidence from network communication,

captured packets have to be thoroughly analyzed which amounts to perform sev-

eral nontrivial operations such as flow identification and reconstruction, protocol

decoding and artifact extractions.

The goal of network forensics is to extract evidence from network commu-

nication. The content of the communication is the ultimate evidence desired by

investigators. However, in many cases, it is not possible to obtain the plain con-

tent from the communication because of encryption. Then the available evidence

may be one of the following:

– identification of communicating users [20];

– identification of communicating devices [21];

– identification of communicating applications [22];

– proof of user’s presence at home, work, etc.



8 V. Letavay, J. Pluskal, O. Rysavy.

In all these cases, we do not need to keep the full content of the communication

but rather its subset carrying enough information to support the correctness of

the extracted evidence. If we want to reduce the size of captured data, the neces-

sary packet processing must be done in near real-time. It means that the system

should be able to analyze about 250MB of packets every second for 1Gbps link

speed. From our previous experience based on experiments and measurements,

we know that to perform all required operations in real-time and over long peri-

ods of time is challenging on a standard-issue PC despite its relatively high per-

formance. Dissection of frames and grouping packets in conversations followed

by decoding protocols up to the application layer is a time-consuming opera-

tion. We wrote a tool that was able to reach processing speed of 300 Mbps [23,

pp. 45-51] on the commodity machine. Several vendors offer specialized boxes

for packet capturing and with limited processing capabilities for speeds above

1Gbps, and these come at a high price. Our aim is different and can be expressed

as follows:

– We seek the solution for providing packet capture analysis in high-speed

networks using a computing cluster developed from commodity hardware.

This way, the tool will be more affordable for investigators.

– The solution should be easily extensible with new features. One should be

able to write a new module and plug it to the processing pipeline of the

system. This is hard to achieve in optimized and closed tools.

– We aim to provide a scalable solution capable of processing data at various

speeds depending on the available hardware resources.

– We aim at providing an open interface so that the solution can be integrated

with other 3rd party tools.



NTPAC 9

5 System Design

We intended to design NTPAC with as a flexible PoC solution to be deployable

on a single machine as well as a cluster of commodity servers, desktop computers

or any other system running Linux or Windows. In this section, we describe pro-

cessing pipeline based on actor model architecture that enables feasible scaling

from one to N machines. Next, we discuss possible network topologies that can

be employed to interconnect computation nodes resides in one computer network

or several like it is usual in data-center deployments. We conclude this section by

the detailed description of particular actor groups to outline their functionality

and intercommunication.

5.1 Processing Pipeline

Incomplete data provided by unreliable traffic interception can lead to skewed

results; some information may be lost, some unconsciously fabricated by recon-

struction process. Keeping these facts in mind, the processing cannot strictly

follow RFCs and behave like a kernel network stack implementation, but it has

to incorporate heuristics and additional constraints to prevent data manipulation

from happening. For example, the reconstruction process needs to mark missing

gaps in communication and to consider these marks during application protocol

processing, or never to join multiple frames into a single conversation unless it

passes more advanced heuristics and checks. Network forensic tools which we

have worked with do mostly respect RFCs and thus may produce misleading

results as we have shown in our previous research [24].

We propose a distributed architecture with no single point of failure, com-

posed of commodity hardware that will be capable of linear scalability, and fine

resource utilization. See Figure 1 for design details. In our solution, every mes-

sage is acknowledged to ensure that no data-loss can occur. We rather slow down



10 V. Letavay, J. Pluskal, O. Rysavy.

Fig. 1: Architecture diagram shows the proposed system’s nodes with information
flow between them. Interconnections between agents are logical, independent of
underlying hardware architecture. The solution is to be deployed on a single
node or scale up in a distributed environment.

the processing in favor of speed to eliminate a risk that any packet is drooped.

This design decision distinguish NTPAC aside from Suricata, VAST, Moloch,

and any other IDS/IPS system.

At the top level, we have divided the entire process into the two main stages:

Data preprocessing Reconstruction of conversations at the application layer

(L7 conversations) from the captured traffic. Each of these conversations

holds information about the source and destination endpoints, time stamps

and reassembled payloads of exchanged application messages. The outputs

are meta information describing conversation and the abstract data structure

containing reassembled payloads.

Data analysis Identification of application protocols in reconstructed L7 con-

versations and subsequent use of a proper application protocol dissector to

reconstruct application events from given conversations (e.g., visited web

pages, sent emails, ...). The output of this stage is a set of forensic artifacts.

In this paper, we focus mainly on the Data preprossessing part of our work,

but we also briefly touch Data analysis as well. For the data reconstruction

part, the same techniques described in our previous work [24] can be applied.

Because data are stored in the distributed database – Cassandra, they are highly



NTPAC 11

available, and concurrent reading/writing operations do not impact performance,

as they would have if the system were running on a single machine.

5.2 Physical Topology

In order for a system to be distributed, it needs to run in multiple instances

that are interconnected and creates particular network topology. These days, we

recognize several network topologies that may serve our needs:

– Full-mesh topology would be the ideal, bandwidth maximal, but is also the

least cost-efficient. Each node is connected to any node in topology, creating

maximal possible network bisection which results in low utilization.

– Star topology uses a switching device to connect all nodes. As long as switch-

ing plane is sufficient to withstand full line speed of all connected nodes and

nodes are connected to the switch with interfaces of adequate speed, the

intercommunication is no longer a bottleneck, but costs are kept to a min-

imum. For redundancy purposes and to eliminate a single point of failure,

two or more switch devices are commonly used.

– Partial-mesh topology is a trade-off between star and full-mesh in both

performance and cost. Only selected nodes are interconnected, and routing

needs to be applied.

– Custom topology is used when the particular logical topology is mapped

to physical. Nodes that exchange the most amount of data are directly con-

nected. Performance is similar to star but without a need of the switch.

We chose to test star and custom topologies, see details in Preliminary

Performance Evaluation section6.1. Full-mesh and Partial-mesh topology types

were considered inefficient for our use-case and not considered further.

Custom topology BPI-R2 Our custom topology was created for a Banana

PI R2 cluster to test our hypothesis whether it is efficient to conduct traffic



12 V. Letavay, J. Pluskal, O. Rysavy.

LB

R

DB
R

R

R

DB

e0
e1

e0

e0

e0

e0

e1

e1

e1

e1

e1

e1

e0

e0

10.0.1.0/24
10.0.2.0/24

10.0.3.0/24

10.0.4.0/24

Fig. 2: The figure describes our custom topology used during the development
of our solution. The network is divided into four IP networks. Interfaces e0 are
network cards, e1 interface is a four-port physical switch with one extra virtual
port connected to BPI-R2.

processing on low-cost single-board computers. Topology is shown on Figure 2.

We used this topology for development purposes only, because of its scalability

limits. BPI-R2 board contains two network card. First network cards are ded-

icated, second is virtually shared with a four-port switch. This is a limitation,

because one LoadBalancer can be connected up to four Reassembling nodes.

This topology also has benefits like a creation of multiple networks and the

use of the separate interface for a particular given task. In this case, LoadBal-

ancer can process live traffic captured on e0 and forward it on reassembler nodes

using interface e1 with a full link bandwidth to its disposal. Management net-

work is created using WLAN integrated on the board. This way, we guarantee

that no peak in any network traffic can interfere or dominate over another and

manageability all-the-time is ensured.

Star topology The star topology is the most commonly used topology inter-

connecting devices in TCP/IP based computer networks. In our use-case, we

eliminate a single point of failure and increase throughput using two switches.

If we connected this topology in a naive way, Spanning Tree Protocol (STP)

would cut off redundant lines. We want to increase bandwidth by a factor of

redundancy thus we have following options:



NTPAC 13

– Network per node-switch connection would require a fast dynamic routing

protocol (e.g., EIGRP) to be set up on all nodes and switches and L3 switches

would be required.

– Bonding of multiple interfaces into one logical IP network. As long as

switches are not interconnected, we can shut down all switch ports in a

case that one port fails to prevent data loss.

– SDN to achieve custom virtual topology and create end-to-end host connec-

tions with Link Aggregation Control Protocol (LACP). This would require

Open vSwitch or any other switch supporting OpenFlow.

We have experimented with all solutions and determined that Network and

SDN are most suitable for production deployment but harder to set-up. For

development and testing purposes is simplest to set-up Bonding.

To ensure that all nodes are reachable even when a network is saturated by

data traffic, we need to consider the creation of the management network. Using

separate physical network would waste resources thus we are left with the choice

to divide physical network using:

– VLANs and configure IP networks manually. This technique can be applied

only on one L2 broadcast domain.

– VXLAN to overcome L2 broadcast boundary and scale up our topology

over multiple physical networks.

We use Docker Swarm for deployment and usage of VXLAN that is Swarm’s

default configuration. See Figure 3 for topology details.

5.3 Logical Processing Phases

Using physical topologies described in Section 5.2, we will discuss logical inter-

connections and topology of execution units, in our case the Actors. The NTPAC



14 V. Letavay, J. Pluskal, O. Rysavy.

LB LB LB R R R DB DB DB

Fig. 3: The figure describes a star topology with a single IP network and redun-
dancy formed by a pair of switches. Therefore, devices are interconnected with
a bandwidth of factor of network interfaces.

system as a whole is visualized on Figure 4 that describes the implementation

of actors and messages passed between them. This figure respects architecture

design described in Figure 1.

We can see major components grouped into groups:

– OnlineLoadBalancer represents actors running on a loadbalancing node

that ingest data into the cluster.

– OfflineLoadBalancer represents actors that similarly as OnlineLoadBal-

ancer ingest data, but not into the cluster but into CaptureTracking actors

running in the same process, thus on the same node.

– CaptureTracking actors dissect ingested packets, create conversations, re-

assemble and store them in a distributed database.

– CaptureController is an actor that is used in cluster mode during online

load balancing. It receives ingested data and passes them into the same group

of CaptureTracking actors that are used in both cluster (Online) and non-

cluster (Offline) setups.

Messages passed between actors can carry data, or are used for synchroniza-

tion, i.e., notification of a state change, or operation finish. Management of actor

model cluster is under the control of AKKA.NET framework. AKKA takes care

of fair scheduling of actors on CPU cores, memory management, message pass-

ing, data serialization and exchange between nodes, etc. NTPAC PoC based on



NTPAC 15

AKKA.NET framework is designed to operate on a single host (i.e., process) or

multiple nodes.

Clustered solution can run directly on host OS or is deployed with Docker

Swarm to ease orchestration burden and set required number of LoadBalancers

and Reassemblers. It consists of OnlineLoadBalancer, CaptureController, and

CaptureTracking actor groups, see Figure 4. The OnlineLoadBalancer runs as

one application called LoadBalancer, CaptureController and CaptureTracking as

another that we call Reassembler. Both are part of architecture design presented

on Figure 1.

Single host solution runs under one process under single Common Language

Runtime (CLR). This is very effective, because there is no need for costly seri-

alization of inter-node messages. Nevertheless, processing speed of single host is

finite. See Figure 8 compares these two approaches. This single host application

consists of OfflineLoadBalancer and CaptureTracking groups, see Figure 4.

Loadbalancing In the simplest use-case, we have one source stream (i.e., one

PCAP file) which we want to analyze. Therefore to utilize more than one Re-

assembler instance, we have to split packets from this stream into a smaller

sub-streams, which will be distributed among multiple Reassembler instances.

For this split, we can not use a naive method such as Round Robin. Reassembler

nodes operate independently on each other and to fully reconstruct L7 conver-

sations (each can consist of multiple packets), they have to obtain all the pieces

of the particular L7 conversation.

Using this simple method, a situation can occur when a half the packets from

one L7 conversation will end up in one Reassembler node and a second half in

some other. Thus both nodes would end up with incomplete data, and none of

them would be able to reconstruct the conversation entirely.



16 V. Letavay, J. Pluskal, O. Rysavy.

Fig. 4: The figure shows the interconnection of Actors and Passed Messages.



NTPAC 17

Solution to this problem is another type of node called LoadBalancer, which

will be positioned in front of the Reassembler nodes. They will extract source and

destination IP addresses, ports and transport protocol type from each packet of

the source stream, and we will use them to decide to which instance of Reassem-

bler should forward the packet concerning its context. This way, all packets of

a particular L4 conversation will always be forwarded to precisely one Reassem-

bler instance. We need have to keep in mind also a IPv4 fragmentation that

splits originally one transport packet (L4 segment) to multiple IP packets. Con-

sequent IP packets lack the transport protocol headers directly, therefore, IPv4

defragmentation is required on LoadBalancer node.

Reassembling From received packets, Reassembler instances can reconstruct

L7 conversations in the process called L7 reassembling. Every reconstructed L7

conversation holds information about its endpoints (source and destination IP

addresses, ports, and transport protocol), timestamp and a sequence of an L7

PDUs (Protocol Data Units). L7 PDU represents transmitted application data.

The process of reassembling has to be designed with incomplete and damaged

data capture in mind such as the capture of only unidirectional traffic or loss

of particular packets (for example packets of the TCP handshake). It has to be

able to cope with this situations and retrieve as much information from captured

traffic as possible.

To achieve this, we have designed a custom heuristic to reassemble L7 con-

versations. This process begins by separating the packets into the corresponding

L3 conversations based on their source and destination IP address and IP pro-

tocol tuple. Packets from each L3 conversation are then further separated into

corresponding L4 conversations based on their source and destination port and

transport protocol type tuple as shown on figure 5.



18 V. Letavay, J. Pluskal, O. Rysavy.

With packets separated into L4 conversations, we can reassemble (possibly

multiple because of port reuse) L7 conversations from each of this L4 conversa-

tion individually. At this point the process of reassembling splits into two possi-

ble sub-processes based on used transport protocol, UDP Conversation Tracker

and TCP Conversation Tracker. Every L4 conversation has a designated con-

versation tracker which processes only its L4 conversation’s packets. Both types

of conversation trackers share a common approach to reassembling as both of

them process packets separately in individual directions (to and from commu-

nication initiator), creating unidirectional fragments of L7 conversations. These

fragments – flows, store sequences of L7 PDUs in a certain direction. Up Flow

holds packets in the direction from communication initiator and on the other

hand, Down Flow holds those in the opposite direction – to communication

initiator. Reconstructed flows are finally paired with their counterparts (oppo-

site flows) and form L7 conversations. Pairing heuristics depends on concrete

conversation tracker, whether it is by computing of flows’ overlaps in time for

UDP Conversation Tracker, or by comparing flows’ identifiers which are based

on TCP connections’ Initial Sequence Numbers for TCP Conversation Tracker.

In cases of processing of unidirectional captures, unpaired flows form unidirec-

tional L7 conversations. This was the motivation behind the usage of the system

of separate flows, and not processing packets in individual L4 conversations as

they are, in both directions, together. For more details concerning precise re-

assembling algorithm see [24].

Storage The reconstructed L7 conversations are stored in a distributed database,

ready to be retrieved in the second stage of the execution. We are using ab-

stracted data access layer to stay database agnostic. Currently, NTPAC sup-

ports MSSQL (sharded), ArangoDB, and Cassandra. We achieved the best per-



NTPAC 19

L7 PDU

L3
Conversation

IP1 <--> IP2

L3
Conversation

IP3 <--> IP4

L4
Conversation

Port1 <--> Port2

L7
Conversation

Up Flow

Down Flow

L7 PDU
L7 PDU

L7 PDU
L7 PDU

L7 PDU

L7
Conversation

L4
Conversation

Port3 <--> Port4Source
packet
stream

Port1 <--> Port2, TCP

Port1 <--> Port2, UDP

Fig. 5: Separation of packets into distinct L3 conversations, L4 conversations and
finally L7 conversations. L7 conversations consists of Up flow and Down flow,
which contain sequence of reconstructed L7 PDUs.

formance results with Cassandra, so all results are measured with the Cassandra

database.

The database, if poorly chosen, would become a bottleneck for the whole

processing. The sequential, append-only network data ideally requires to write

optimized database that is capable of tens of thousand write operations per

second. Cassandra by its distributed design, configurable replication factor per

keyspace and consistency factor per query shows ideal properties.

During the capture processing, we need to store only meta information de-

scribed on listing 1.1 and listing 1.2. These tables serve as the simplified example

of data that are stored. In production, tables need to be optimized by queries

that process them. In NoSQL (non-relational) databases, it is preferred to stored

denormalized data in opposite to third normal form because of performance con-

siderations.

Queries returning data for further analysis need to be designed in a way

that ensures that only one node is queried. Thus, the whole partition key is

specified in the query. In Cassandra, there is a support for a special type of query

(ALLOW FILTERING modifier) that runs on all nodes, but its performance hurt

is unpredictable.



20 V. Letavay, J. Pluskal, O. Rysavy.

Listing 1.1: Capture table

CREATE TABLE
ntpac . capture (
c a p t u r e i d uuid ,
f i r s t s e e n timestamp ,
l 7 c o n v e r s a t i o n c o u n t int ,
l a s t s e e n timestamp ,
proce s s ed timestamp ,
reas semble r addr text ,
u r i text ,
PRIMARY KEY ( c a p t u r e i d )
)

Listing 1.2: L7Conversation table

CREATE TABLE
ntpac . l 7 c o n v e r s a t i o n (
c a p t u r e i d uuid ,
dst ip endpo int ,
f i r s t s e e n timestamp ,
l a s t s e e n timestamp ,
pdus ∗< l i s t <∗<l7pdu>>>,
p r o t o c o l t y p e int ,
r e a s s addr text ,
s r c ip endpo int ,
PRIMARY KEY
( ( capture id , r e a s s addr ) ,

l a s t s e e n ) )

Fig. 6: This listing shows the CSQL description of data tables created to
store meta information about the capture and L7 conversations. Capture ta-
ble stores record generated by each Reassember nodes that participate in data
processing, thus, the whole information must be retrieved as an aggregate. The
L7Conversation table stores a record for each completely tracked L7 conversa-
tion. It also contains a list of L7PDU that put together contains reassembled
conversation and are used for further processing and extraction of data from
application protocols.



NTPAC 21

Analysis In the second stage, a subset of reconstructed L7 conversations is

retrieved from the distributed database (by using manual or automatic selection

with specified rules) and delivered to the Snooper nodes. They identify used

application protocol and use proper application protocol dissector module to

extract data from the L7 conversation. Extracted data are stored back into the

distributed database.

Each instance of a particular node acts as an individual actor in the system,

communicating with other actors by message passing. Thanks to this design,

we can distribute the computation across multiple machines maintaining the

scalability.

6 Preliminary Evaluation

This section provides a brief overview of our designated testing deployments ac-

companied with testing scenarios. We describe the differences to other solutions

like IDS/IPS systems that may on the first glance does the similar processing

but as shown by Table 5 they primary focus quite different.

6.1 Processing Performance and Scalability

We build our evaluation based on a scalability of our solution instead of to-

tal throughput. We have developed a proof of concept solution that is not a

production-ready implementation with performance optimization at each level

of the architecture, but an experimental piece of software that gives us insight

into the distributed processing of network communication for forensic purposes.

We do measure total performance based on total throughput, but we use it for

comparison of scalability factor. We are confident that maintaining designed ar-

chitecture and reimplementation in some much lover level programming language



22 V. Letavay, J. Pluskal, O. Rysavy.

like Rust, C++, Go instead of C#, we would obtain a much faster solution. Nev-

ertheless, we have chosen C# because it can be used for rapid development and

multiplatform deployment as well in combination with .NET Core 2.1 runtime.

We tested two test-cases. The first one, how fast is captured traffic processed

on a single machine under one process. This test-case shows total throughput of

our processing algorithms on given machine type. Because the whole processing

is running under one Common Language Runtime (CLR), it is expected to be

faster than distributed processing with a low count of nodes.

The second test-case revels scalability of our solution. We are testing the

cooperation of several nodes in the distributed computation of capture traffic

processing. The first kind of node Load balancer is loading a PCAP file and

distributing its content to Reassembler nodes. With the increasing count of load

balancing and reassembling nodes, we show the scalability that our PoC solution

is capable. To separate the impact of persistence storage, we provide one set of

results that does not store its results, i.e., conversations are discarded after they

processed, and the second result set that does the full processing and storage in

Cassandra database.

We chose to test our solution in three different environments:

– BPI-R2 cluster that we have built. It consists of 7 router boards equipped

with Quad-core ARM Cortex-A7 CPU (4 physical cores running at 1.3GHz),

2 GB RAM, two pcs of gigabit network adapters. This cluster interconnected

according to our custom topology described in Section 5.2. Operating system

is custom Linux build with 4.4.70 kernel.

– Desktop computer in a laboratory environment. The cluster consists of

20 computers equipped with i5-3570K CPU (4 physical cores running at

3.40GHz), 8 GB RAM and two pcs of gigabit network adapters and 7200 rpm

hard-drives. The operating system is CentOS 7 with 3.10 kernel.



NTPAC 23

– Google Cloud Platform Compute Engine with 12 n1-highcpu-4 instances

equipped with Xeon CPU (2 physical cores, 4 logical cores running at 2.60GHz),

8 GB RAM and 10 Gbps network adapters. The operating system is Ubuntu

16.04.2 with the 4.15.0-36 kernel.

We have used testing PCAP file with the following characteristics – file

length: 1024 MB; file format: libpcap/tcpdump; encapsulation: Ethernet; cap-

ture’s time span: 02:10:31; packets: 1, 306, 262; average packet size: 767 B; L7

conversations: 34764. We choose this PCAP file because of its good representa-

tive features. It was captured on a live network3. The capture file size is sufficient

to reduce communication overhead to a negligible portion in the initialization

phase and allows us to run all designated testing cases in available time. Us-

age of a larger capture file does not make measurement more accurate but only

prolongs it.

We have conducted a series of experiments described above. Each experiment

was repeated 10-times, and resulting speed was averaged. Because of the non-

deterministic behavior of the distributed system and internal operating system

processes, the standard deviation was in the range of 5−10%. The standard devi-

ation together with passing the optimal ratio of load balancing and reassembling

nodes may cause a drop of performance, as seen in the Figure 2 R:6→8, LB:1

617 Mbps→615 Mbps.

In Table 2, we compare performance and scalability measured on the desk-

top computer. The raw throughput that discards processed data in the left table

to be compared with the full processing and storing of L7 conversations in the

right table. For visual comparison, we provide Figure 8 to show scalability trend.

Performance increases with the increasing number of reassembling nodes up to a

point when one load balancer cannot satisfy reassemblers’ processing speed, and

3 We are willing to share it upon a written email request.



24 V. Letavay, J. Pluskal, O. Rysavy.

throughput stops increasing. Adding more load balancing nodes increase utiliza-

tion of the whole cluster up until the reassembling nodes are fully saturated, and

processing speed once again stops increasing. Incrementing both counts of load

balancers and reassemblers continues to shows an increase in total throughput

and scalability of our PoC solution. To compare with the performance of the

only one node processing with the distributed version, see the speed on Figure 2

R:0, LB:1.

Consequently, we repeated this same series of experiments on Google Cloud

Platform (GCP), Compute Engine (CE) vitalization solution. We were inter-

ested to see, whether it is the difference in performance on networks with higher

throughput or performance is limited by processes in our application. See Table 3

and Figure 9b for detailed results. We can observe that with the current load

balancer implementation, larger network throughput does not provide additional

performance. We can conclude that current implementation is limited more by

the number of CPU cores and frequency than network speed. The less amount

of test-cases in the case of GCP occurred because Compute Engine’s limitation

to run more than 48 CPUs with our trial account.

To conclude our testing scenario and confirm our findings regarding bottle-

necks in our implementation, we have conducted last performance measurements

on low-cost ARM based devices Banana PI R2. Table 4 shows performance re-

sults but limited by cluster architecture to only one reassembling node. We can

observe the same trend that occurs in both previous measurements Table 2 and

Table 3.

6.2 Function Comparison

In Table 5, we compare various related tools to the presented system according

to the several criteria important for the network forensics.



NTPAC 25

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12

1

2

3

4

5

Metadata discarded

0

500

1000

1500

2000

0 2 4 6 8 10 12

1

2

3

4

5

Metadata stored in Cassandra

Fig. 8: Performance measurements conducted on laboratory computers
equipped with i5-3570K CPU (4 physical cores running at 3.40GHz), 8 GB
RAM, two pcs of gigabit network adapters and 7200 rpm hard-drives. The x
axis denotes count of reassembling nodes, z axis denotes count of load balancing
nodes. The total processing speed represents the y axis.

LB
R

0 2 4 6 8 10 12

1 526 458 552 617 615 627 631
2 560 992 1011 1130 1028 1202
3 645 1021 1422 1641 1684 1609
4 654 1228 1472 1637 2014 2007
5 736 1267 1769 1997 2033 2063

LB
R

0 2 4 6 8 10 12

1 351 296 449 501 536 535 542
2 351 682 737 877 987 980
3 309 743 1094 1196 1247 1250
4 311 592 1162 1050 1299 1412
5 305 654 1235 1307 1573 1583

Table 2: Performance measurements conducted on laboratory computers
equipped with i5-3570K CPU (4 physical cores running at 3.40GHz), 8 GB
RAM, two pcs of gigabit network adapters and 7200 rpm hard-drives. The left
table shows the absolute throughput of NTPAC PoC solution for benchmark-
ing purposes to be compared with the right table that shows throughput when
metadata is stored in the distributed Cassandra database (using R Cassandra
nodes or 1 in the case of single node processing). Values are denoted in Mbps.
The combination of one load balancer with zero reassemblers denotes single node
processing inside one CLR.



26 V. Letavay, J. Pluskal, O. Rysavy.

0

200

400

600

800

1000

1200

0 2 4 6 8

1

2

3

4

Metadata discarded

0

100

200

300

400

500

600

700

0 2 4 6 8

1

2

3

4

Metadata stored in Cassandra

Fig. 10: Performance measurements conducted on Google Cloud Platform –
Compute Engine with 12 n1-highcpu-4 instances equipped with Xeon CPU (2
physical cores, 4 logical cores running at 2.60GHz), 8 GB RAM and 10 Gbps
network adapters. The operating system is Ubuntu 16.04.2 with the 4.15.0-36
kernel. The x axis denotes count of reassembling nodes, z axis denotes count of
load balancing nodes. The total processing speed represents the y axis.

LB
R

0 2 4 6 8

1 274 260 272 282 280
2 364 519 549 559
3 405 591 750 836
4 489 603 864 1062

LB
R

0 2 4 6 8

1 160 153 159 168 170
2 211 315 323 329
3 240 348 458 509
4 279 368 519 647

Table 3: Performance measurements conducted on Google Cloud Platform –
Compute Engine with 12 n1-highcpu-4 instances equipped with Xeon CPU (2
physical cores, 4 logical cores running at 2.60GHz), 8 GB RAM and 10 Gbps
network adapters. The operating system is Ubuntu 16.04.2 with the 4.15.0-36
kernel. The left table shows the absolute throughput of NTPAC PoC solution
for benchmarking purposes to be compared with the right table that shows
throughput when metadata is stored in the distributed Cassandra database (us-
ing R Cassandra nodes or 1 in the case of single node processing). Values are
denoted in Mbps. The combination of one load balancer with zero reassemblers
denotes single node processing inside one CLR.



NTPAC 27

LB
R

0 1 2 3 4

1 49 32 65 68 72

LB
R

0 1 2 3 4

1 32 19 36 41 45

Table 4: Performance measurements conducted Banana PI R2 cluster
equipped with Quad-core ARM Cortex-A7 CPU (4 physical cores running at
1.3GHz), 2 GB RAM, two pcs of gigabit network adapters. Router boards were
interconnected according to our custom topology described in Section 5.2. The
left table shows the throughput of NTPAC PoC solution for benchmarking pur-
poses to be compared with the right table that shows throughput when meta-
data is stored in the distributed Cassandra database (using exactly 2 Cassandra
nodes). Values are denoted in Mbps. The combination of one load balancer with
zero reassemblers denotes single node processing inside one CLR.

– Live data capture is an ability to process network packets directly captured

on network interface instead of PCAP file.

– Supported capture files is a range of PCAP file formats supported by an

application.

– IPv6 defines whether the application can process IPv6 traffic.

– Encapsulation protocols defines a range of encapsulation protocols that

the application can decapsulate data.

– OS Fingerprinting defines an ability to deduce used operating system and

version.

– Application Protocol Identification is a range of mechanisms used to

identify application protocol used in tracked conversation.

– Applications Identification is an ability to identify the application that

communicated, e.g., Firefox vs. Chrome.

– Exported application protocols is a range of application protocols that

the application can extract information.

– Credentials Extraction is an ability to obtain credentials from application

traffic if it contains them.



28 V. Letavay, J. Pluskal, O. Rysavy.

– Incomplete or malformed communication is an ability to process even

malformed communication and recover from failure when some part of traffic

is missing or is malformed.

– Processing speed defines an approximate speed of traffic processing.

– Multiple data sources marks an application able to process multiple data

sources at once.

– Advanced analytic views shows whether the application supports some

advanced visualization of processed data.

– Persistent storage defines a range of possible persistent storage providers

implemented in the application.

– Querying defines how the data are queried after processing.

– PCAP-over-IP defines an ability to process data that are captured on

remote point and encapsulated in IP tunnel and send to the processing server.

We continue our work on Netfox Detective and utilize experience gained to

create a tool with its broad functionality but in the distributed environment.

With the Netfox Detective, we have reached limits what we can extract from

the captured communication on a single machine. In time, we will extend the

NTPAC PoC solution with all of the Netfox Detective functionality and many

more new features.

7 Conclusion

We have proposed the system for distributed real-time forensic network traffic

analysis at high-speed networks. The system design follows an actor model that

scales nicely and can run on a single machine as well as on a computing clus-

ter. The primary goal of the system is to provide a scalable platform for on-line

processing of network communication, but it can also be used as an off-line tool

for processing large PCAP files. We compared the prototype implementation



NTPAC 29

Feature
Tool

NTPAC Netfox Detective Network Miner XPlico PyFlag Moloch VAST

Live data capture YES NO YES YES NO YES YES
Supported capture
files

libPcap, pcap-ng libPcap, pcap-ng, mnm libPcap, pcap-ng libPcap libPcap libpcap libpcap

IPv6 YES YES YES YES NO YES YES
Encapsulation pro-
tocols

Not implemented yet GRE, GSE GRE, 802.1Q,
PPPoE, LLMNR,
VXLAN, Open-
Flow, SOCKS,
MPLS and EoM-
PLS

L2TP,
VLAN, PPP

NO NO NO

OS Fingerprinting Not implemented yet YES (using typical appli-
cations)

YES NO NO NO Bro

Application Proto-
col Identification

Not implemented yet SPID, NBAR, ESPI,
Bayessian, Random
Forests

SPID, PIPI PIPI NO NO Bro

Applications Identi-
fication

Not implemented yet YES NO NO NO NO NO

Exported applica-
tion protocols

Not implemented yet HTTP, SSL/TLS, MAFF.
XMPP, YMSG, OSCAR,
Facebook Messanger,
Hangouts, Twitter,
XChat, IMAP, POP3,
SMTP, Gmail, Yahoo,
RTP, SIP, Minecraft,
Warcraft, Facebook, Stra-
tum, DNS, FTP, SPDY,
MQTT

FTP, TFTP,
HTTP, SMB,
SMB2, SMTP,
POP3, IMAP,
YouTube

HTTP,
POP3,
SMTP,
IMAP, SIP,
RTP, SDP,
FTP, DNS,
IRC, IPP,
PJL, MMS,
SLL

DNS,
HTTP,
MSN,
Gmail

DHCP, DNS,
HTTP, IRC,
KRB5,
LDAP,
MYSQL,
QUIC, RA-
DIUS, SMB,
SOCKS,
SSH, TLS

NO

Credentials Extrac-
tion

Not implemented yet Facebook, IMAP, SMTP,
POP3

SMTP, HTTP Di-
gest Autentization

NO NO HTTP NO

Incomplete or mal-
formed communica-
tion

TCP data loss, IPv4
fragmentation

TCP data loss, IPv4 frag-
mentation

? NO NO ? NO

Processing speed Scales – Gbps, see fig-
ures 7a, 7b

264 Mbps 11.92-18.48 Mbps ? ? Scales –
Gbps

Scales –
Gbps

Multiple data
sources

YES YES NO YES NO YES YES

Advanced analytic
views

NO YES NO YES NO YES NO

Persistent storage SQL, Cassandra,
ArangoDB

SQL CSV / Excel /
XML / CASE /
JSON-LD

SQL VFS ElasticSearch Hash
and Tree
Indexes

Querying 3-rd party tools on
database

3-rd party tools on SQL
database

keyword search 3-rd party
tools on SQL
database

YES YES YES

PCAP-over-IP YES NO YES YES NO NO NO

Table 5: Network forensic tools capability overview. Open-source or freeware
tools were selected for comparison. Details were gathered from propagation ma-
terials, documentation, and study of source code. It is probable that some fea-
tures will change over time.



30 V. Letavay, J. Pluskal, O. Rysavy.

of the system with relevant existing tools and showed the results of the per-

formance evaluation. Prototype evaluation was done in different environments,

e.g., cloud environment, laboratory environment, ARM-based low power envi-

ronment, demonstrating that the proposed solution can be deployed in multiple

ways according to the specific needs. In our settings, we were able to achieve a

processing speed necessary to capture and analyze full duplex 1 Gbps network

communication. Conducted experiments demonstrated the feasibility of the pro-

posed approach although much work remains for implementation optimization

and further tuning of various parameters that influence the achievable processing

speed.

References

1. M. Vallentin, Scalable Network Forensics. PhD thesis, UC Berkeley, 2016.

2. E. S. Pilli, R. C. Joshi, and R. Niyogi, “Network forensic frameworks: Survey and

research challenges,” digital investigation, vol. 7, no. 1-2, pp. 14–27, 2010.

3. S. Rekhis, J. Krichene, and N. Boudriga, “Digfornet: digital forensic in net-

working,” in IFIP International Information Security Conference, pp. 637–651,

Springer, 2008.

4. A. Almulhem and I. Traore, “Experience with engineering a network forensics sys-

tem,” in International Conference on Information Networking, pp. 62–71, Springer,

2005.

5. W. Wang and T. E. Daniels, “A graph based approach toward network foren-

sics analysis,” ACM Transactions on Information and System Security (TISSEC),

vol. 12, no. 1, p. 4, 2008.

6. N. L. Beebe and J. G. Clark, “A hierarchical, objectives-based framework for the

digital investigations process,” Digital Investigation, vol. 2, no. 2, pp. 147–167,

2005.



NTPAC 31

7. S. Perumal, “Digital forensic model based on malaysian investigation process,”

International Journal of Computer Science and Network Security, vol. 9, no. 8,

pp. 38–44, 2009.

8. W. Halboob, R. Mahmod, M. Abulaish, H. Abbas, and K. Saleem, “Data warehous-

ing based computer forensics investigation framework,” in Information Technology-

New Generations (ITNG), 2015 12th International Conference on, pp. 163–168,

IEEE, 2015.

9. C. Hewitt, P. Bishop, and R. Steiger, “Session 8 formalisms for artificial intelligence

a universal modular actor formalism for artificial intelligence,” in Advance Papers

of the Conference, vol. 3, p. 235, Stanford Research Institute, 1973.

10. A. Lukashin, L. Laboshin, V. Zaborovsky, and V. Mulukha, “Distributed packet

trace processing method for information security analysis,” in Internet of Things,

Smart Spaces, and Next Generation Networks and Systems (S. Balandin, S. An-

dreev, and Y. Koucheryavy, eds.), (Cham), pp. 535–543, Springer International

Publishing, 2014.

11. M. Wullink, G. C. M. Moura, M. Mller, and C. Hesselman, “Entrada: A high-

performance network traffic data streaming warehouse,” in NOMS 2016 - 2016

IEEE/IFIP Network Operations and Management Symposium, pp. 913–918, April

2016.

12. M. Aupetit, Y. Zhauniarovich, G. Vasiliadis, M. Dacier, and Y. Boshmaf, “Visu-

alization of actionable knowledge to mitigate drdos attacks,” in 2016 IEEE Sym-

posium on Visualization for Cyber Security (VizSec), pp. 1–8, Oct 2016.

13. N. Promrit and A. Mingkhwan, “Traffic flow classification and visualization for net-

work forensic analysis,” in 2015 IEEE 29th International Conference on Advanced

Information Networking and Applications, pp. 358–364, March 2015.

14. W. Ren and H. Jin, “Distributed agent-based real time network intrusion forensics

system architecture design,” in Advanced Information Networking and Applica-

tions, 2005. AINA 2005. 19th International Conference on, vol. 1, pp. 177–182,

IEEE, 2005.



32 V. Letavay, J. Pluskal, O. Rysavy.

15. W. Ren, “On a reference model of distributed cooperative network, forensics sys-

tem.,” in iiWAS, 2004.

16. D. Wang, T. Li, S. Liu, J. Zhang, and C. Liu, “Dynamical network forensics based

on immune agent,” in Natural Computation, 2007. ICNC 2007. Third International

Conference on, vol. 3, pp. 651–656, IEEE, 2007.

17. S. Khan, A. Gani, A. W. A. Wahab, M. Shiraz, and I. Ahmad, “Network foren-

sics: Review, taxonomy, and open challenges,” Journal of Network and Computer

Applications, vol. 66, pp. 214–235, 2016.

18. M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B. Tierney, “The nids

cluster: Scalable, stateful network intrusion detection on commodity hardware,” in

International Workshop on Recent Advances in Intrusion Detection, pp. 107–126,

Springer, 2007.

19. M. Vallentin, V. Paxson, and R. Sommer, “Vast: A unified platform for interactive

network forensics.,” in NSDI, pp. 345–362, 2016.

20. L. Polčák, R. Hranický, and T. Mart́ınek, “On identities in modern networks,” The

Journal of Digital Forensics, Security and Law, vol. 2014, no. 2, pp. 9–22, 2014.

21. L. Polčák and B. Franková, “Clock-skew-based computer identification: Traps and

pitfalls,” Journal of Universal Computer Science, vol. 21, no. 9, pp. 1210–1233,

2015.

22. J. Pluskal, O. Lichtner, and O. Rysavy, “Traffic classification and application iden-

tification in network forensics,” in IFIP International Conference on Digital Foren-

sics, pp. 161–181, Springer, 2018.

23. J. Pluskal, “Framework for captured network communication processing,” Master’s

thesis, Vysoké učeńı technické v Brně, Fakulta informačńıch technologíı, 2014.

24. P. Matousek, J. Pluskal, O. Rysavy, V. Vesely, M. Kmet, F. Karpisek, and M. Vym-

latil, “Advanced techniques for reconstruction of incomplete network data,” in In-

ternational Conference on Digital Forensics and Cyber Crime, pp. 69–84, Springer,

2015.


