
1

Rise of Immersive Virtual Reality Malware
and the Man-in-the-Room Attack

BLINDED, BLINDED, BLINDED

Abstract—In this work we present a primary account of the
first Virtual Reality (VR) Worm & Botnet, and VR Man-in-the-
Room (MitR) attack. We explore the applicability of old attacks
in a new technological medium and the severity of the impact of
these new attacks. We define abstract and formal foundations
of VR Worms and MitR attacks against VR applications &
platforms. We then devise our Proof of Concept (PoC) in the
context of a widely used VR social application – Bigscreen.
Unsurprisingly, our results illustrated a lack of security posture
in the tested application, but more importantly, the novelty of the
work is grounded in the severity impact of the malicious abuse of
Immersive Virtual Reality, and the uniqueness of being virtually
in the presence of others without their knowledge or consent.
We share demonstrative attacking tools and used exploits. But
we also focus on prevention, as we implement and publish a series
of analytical tools, vulnerability signatures, and a dataset. Our
work should inspire technical solutions to improve the state-of-
the-art in VR security, socio-technical research in VR, and raise
questions in the law and policy domains pertaining to VR security
and privacy.

Index Terms—Virtual Reality, Mixed Reality, VR Privacy,
Security Analysis, Network Traffic Analysis, Penetration Testing,
Reverse Engineering, Application Patching, Forensic Analysis,
Responsible Disclosure, Bigscreen, Unity, Static Analysis Security
Testing, Obfuscation, Deobfuscation, CodeQL.

I. INTRODUCTION

V IRTUAL reality is an exciting and promising new tech-
nology, and has found a home in a variety of application

including education, military and medical training and psy-
chological treatment. Recent technological and manufacturing
improvements in VR tilted the major use case towards enter-
tainment by home consumers. Steam, both a partial subject of
this study and popular game marketplace, estimates VR usage
has doubled in 2018 [1].

While VR allows users to experience games, movies,
and events with much greater presence and immersion than
traditional mediums, the user’s ability to interact with the
Virtual Environment (VE) and peers elevates VR above other
entertainment sources. This has benefited social interactions
in particular, where not only are audio and video shared, but
also a common space and simulated movements. In a 2018
survey, 77% of respondents reported an interest in more VR
social interaction [2]. Many companies have brought social
networking to VR, such as Facebook, Microsoft, vTime,
VRChat and the target of this work Bigscreen [3]–[7].

Considering how lucrative social networks such as Facebook
and Twitter can be, along with an anticipated uptick in social
VR usage, an expected race would be fought to establish the
dominant market foothold. Undoubtedly, this pressure may
persuade developers to push their product to market without
extensive security testing or a full understanding of the new

technology. For this reason, we may expect small bugs or
errors would be present in this new medium. We posit that the
connectivity and medium of social VR applications drastically
escalate the potential for exploitation.

Malware authors often target social networks due to the high
degree of user connectivity. This allows malware to spread
rapidly and have far-reaching effects [8]. Although created
with no mal-intent, the Samy Worm (section II) exemplifies
the potential for social network malware to propagate swiftly.
From a single user, the worm spread to over 1 million victims
in about 24 hours [9].

VR social networks are no exception to this possibility
and offer a new and largely untested attack surface. Where
traditional attacks might target intellectual property or aim
to disrupt a user or infrastructure, VR has the potential to
physically afflict the user. Furthermore, a wealth of informa-
tion is often provided by the both the application or the VR
system’s own tracking, which can then be leveraged against the
victim [10]. Simply put, a great deal can quickly go wrong for
a large number of people if the security of VR is not explored.

Securing both social applications and VR systems is a chal-
lenging task. Any product that receives considerable exposure
and handles complex interactions is subject to a wide range of
potential attacks. Thankfully, web technologies are well sea-
soned (but not perfect) and attention has been turned towards
securing VR, Augmented Reality (AR), and Mixed Reality
(MR) alike. Although there have been efforts to secure both
input and output of these systems (section II), countermeasures
often do not make their way from theory to practice, as is
often the case with emerging technology. Of note is that this
work was partly inspired by the idea of how diseases spread
in the real world upon person to person contact or being in
the physical vicinity of others - we thought to ourselves, could
current VR implementations support the spread of diseases in
a synonymous fashion?

In our work, we deliver novel VR attack concepts supported
by a model realisation. We further conduct an applied security
analysis of a popular VR social application Bigscreen. Our
work contributes the following:

• We are the first to coin and implement the Man-in-the-
Room Attack

• We offer the primary account for an implemented Proof-
of-Concept VR Worm & Botnet

• We conduct a deep security evaluation of a widely used
immersive VR social application and show by example
the impact of carried out attacks on VR users

• We impacted practice as both the Bigscreen has patched
their application, and Unity Technologies documented our

2

newly discovered vulnerabilities and exploits – which
could have affected millions of users

• We improve state of the art of vulnerability detection
& prevention, as we implement and publish a series of
analytical tools and vulnerability signatures as free and
open-source software (FOSS)

• We create and publicly share a new and needed dataset for
evaluation of Javascript (JS) Static Application Security
Testing (SAST) focused on jQuery

• We share our demonstrative attacking tools and used
exploits for research purposes as FOSS

The remainder of the paper is organised as follows. We
present related and background information about social net-
work worms and VR systems in section II. In section III
we introduce novel attacks relevant to VR applications and
platforms in general. Our research questions are specified in
section IV. The adversarial model is defined in section V. We
then describe our methodology and apparatus in section VI,
followed by our security analysis. Findings are presented in
section VII with a concrete realisation of MitR attack and
VR worm. section VIII further documents how we improve
current state of security and privacy. Possible mitigation and
security suggestions are shared in section IX. Finally, we make
concluding remarks, discuss results and point towards new
directions in section X and section XI respectively.

II. RELATED WORK & BACKGROUND INFORMATION

A. Related Literature

A forensic study by [11] focused on VR social applica-
tions and documented forensically significant artifacts which
can be used to reconstruct activities of VE participants.
Several immersive virtual reality attacks including example
ransomware which makes VR system unusable have been
presented by [10]. Because users are immersed in VE, these
attacks even managed to disorient and potentially physically
hurt victims. Researchers were able to force movement of
victims in real space without their knowledge or consent
(Human Joystick Attack) [10].

Security and privacy of VR technologies was also investi-
gated by [12]. The research exploited data from motion sensors
inside VR equipment to infer a user’s interaction with a virtual
keyboard and touchpad. Researchers further investigated ways
of interfering a user’s interaction with input devices in VE
based on stereo camera records of a user’s body movement

Reconstruction of forensic artifacts from memory of VR
devices was demonstrated by [13]. Testing an HTC Vive, re-
searchers extracted and visualised data about VE, VR devices,
room setup, and also about position and pose of a user.

Security challenges of MR application were highlighted
by [14]. [15] identified and responsibly disclosed several
security vulnerabilities in AR browsers. Some of these con-
cerns are relevant to VR, too. [16] inspected security risks
related to displaying information in AR in a scenario with
malicious applications and [17] then designed an AR platform
architecture with output security to limit abilities of individual
applications based on a configured output policy.

With respect to the existing literature, our work is the
first to exploit security vulnerabilities of a widely used VR
social application, create a proof-of-concept VR botnet and
VR worm, and implement the first Man-in-the-Room attack.

B. Background Information
We added this section to inform the reader on the top-

ics of Cross-site Scripting (XSS), worms, Man-in-the-Middle
(MitM) attacks, and Reverse Engineering (RE). Readers fa-
miliar with these concepts may want to skip this background
information.

In this work, we exploit several vulnerabilities in the target
application. Therefore, it is important that the reader is familiar
with XSS. In general, an XSS vulnerability would be the result
of poorly sanitised user input, which would in turn allow an
attacker elicit script execution in the victim’s browser [18]–
[22]. This often results in the disclosure of sensitive data, such
as passwords and cookies to the attacker.

A Persistent XSS attack has the potential to replicate its pay-
load to every requester of the spoiled resource, thus allowing
for the creation of a Worm [9]. This is exasperated by the usage
of Asynchronous JavaScript and XML (AJAX) technology,
whereby Hypertext Transfer Protocol (HTTP) requests may be
made without user interaction or data transfer via WebSockets.
Online Social Networks (OSNs) being a prime candidate for
XSS Worm propagation, have given rise to several notable
outbreaks such as the Koobface, Mikey, and Samy Worms [23].

The Samy Worm demonstrated characteristics similar to the
Worm presented in this work. The Samy Worm, targeting
MySpace pages was brought about by the protagonist pur-
posefully infecting his own profile. The MySpace servers then
delivered the payload to any requester of the infected page
which then infected the victim’s profile [24]. While newly
infected profiles serve to propagate the Worm as well, [9] sug-
gests that the centralized distribution of the payload prevents
network congestion as caused by conventional Worms. This
example Worm is limited to the exposure of infected users
and still propagated at an alarming rate, however, our attack
against the VR application is not limited by the social network
topology.

While we can reasonably expect XSS vulnerabilities to
continue to occur, the potential cost of a JavaScript Worm
necessitates preventative measures. [18] proposed the first
client side detection system, which monitors HTTP requests
containing self-replicating payloads. [23] suggests deploying
decoy profiles within an OSN, and [25] uses a proxy to tag
and monitor HTTP content propagation.

Security analysis and penetration testing methodology is
in detail examined by [26]. [27] further outlines security
testing techniques and sets of tools useful for individual
phases of a security assessment. Various approaches to security
and forensic analysis are demonstrated by [28]–[30]. Work
by [31] also includes implementation of PoC malware. [32],
[33] published by Open Web Application Security Project
(OWASP) offers a widely used web application penetration
testing methodology and framework.

A MitM attack can be utilised for intercepting and spoofing
secured network communication [34], [35]. Transparent prox-

3

ying allows for traffic interception without altering behaviour
of analysed software [36]. Security analysis can utilise this for
detecting possible information leak and for RE of application
protocols. For example, [37] utilised findings from network
traffic analysis of a popular mobile AR application; detected
patterns were used to infer the locations of users.

Applications can often utilise forms of obfuscation and anal-
ysis protections. This applies to both compiled and interpreted
programming languages [38]–[40]. [41], [42] demonstrate sev-
eral approaches to code obfuscation. [43] provides a survey of
tools for RE of C# & .NET and deobfuscation of JS which
help to learn inner logic of an application.

C. Bigscreen Application

Bigscreen is a VR telepresence platform for social activities.
It is intended not only for leisure (entertainment) activities
like playing computer games, watching movies and hanging
out, but also for productivity, work, meetings and collabo-
ration (Figure 1). The application is available for Windows
7, 8.1, 10 operating systems via Oculus Home, Steam, and
Microsoft Store.

Fig. 1. Productivity use cases of the Bigscreen. [7]

In Bigscreen’s VE, every user is represented by an avatar,
which copies moves of the user’s head and hands in real-
ity (Figure 2). Users access virtual rooms, they can create
their own or join somebody else’s. While in a room, a user
can still use the computer via Head-mounted Display (HMD).
Room participants can enable sharing their computer screens,
computer audio, and microphone audio inside the room. The
application also supports sending chat messages.

Fig. 2. VR avatars of room participants in the Bigscreen. [7]

Each room is characterised by the following properties:
1) Name, 2) Category (e.g. games, productivity, NSFW),
3) Description, 4) 3D Environment. Code of Conduct in the
application stated the communication is Peer to Peer (P2P) and

encrypted. 3D drawing and streaming ability of participants
can be limited by a room admin using locks. Every room has
a unique Room ID in the form of 8 alphanumeric characters
(e.g. room-9hckep83). A room can exist as public, or
private / invite-only. All public rooms are available on the
application’s main screen. Private rooms can be joined using a
confidential Room ID, and no further authorisation is required.

III. FOUNDATIONS OF MAN-IN-THE-ROOM ATTACK & VR
WORM AGAINST VR APPLICATIONS & PLATFORMS

One of the approaches for building VR applications is
the principle of virtual rooms. Users can usually create their
own rooms or join existing ones. These virtual rooms serve
as a place for interaction between users or with VE. Leisure
activities, games, dating, productivity, collaboration, but even
work meetings can take place in these rooms. VR also finds
industrial applications. A private VR room may contain con-
fidential information and interactions between users with a
heightened privacy level than ordinary chat or video call. Users
are immersed into this virtual world and lose awareness that
they are still using a computer program. Their interactions
are unrestrained. As the environment gets closer to what they
know from the real world, they may assume that the real
world’s rules apply. Thus, users would not expect an invisible
intruder (an invisible peeping tom) in their real living room,
watching their activities and every move. Therefore, they may
not expect this to happen in their VE either. Unfortunately, we
proved that this assumption can be very wrong. We believe
this intrusion can disturb people’s privacy on a very personal
level, compared to prior security work that has focused on
non-immersive, or traditional computing environments.

We coined the concept of a novel MitR attack as follows.
Assume that legitimate users communicate in a private virtual
room. They can move in space, see actions of their avatars, and
hear their voices. The attacker would then leverage security
vulnerabilities in the employed VR software or infrastructure
to gain unauthorised access to a private VR room. The attacker
can then stealthily move around the virtual room while being
invisible to everyone else in it. The concept of MitR means
that the attacker is able to hear and see everything happening
inside otherwise private VR rooms without victim’s knowledge
or consent. BLINDED has coined this novel privacy violation
technique in VR a Man-in-the-Room Attack. The possibility of
this attach would critically affect security and privacy of VR.

Our concept of a VR Worm is based on characteristics of
regular computer worms, but with novel implications for VEs.
A VR worm infects users of VR who become its hosts. A VR
worm can then spread between users in a similar fashion when
compared to a real disease – by contact with an infected person
in virtual space. We therefore illustrate that users should be
careful who they meet virtually meet in VR.

The MitR attack and VR worm described above are at-
tack concepts which are applicable to VR applications and
platforms in general. These attacks have clear goals – com-
promising a user’s security and privacy. We further identify
general prerequisites as main building blocks for a successful
realisation of these attacks.

4

MITR

AR(aa, r)

V (aa, r) C(r)

CM(p)

K(p) RE(p)

HP (ui, p)

¬I(p) V (ui)

Fig. 3. Concept of a generic MitR attack against any VR application/platform
defined as a proof tree, tree notation based on [44]. See Equation 1 for more
details.

A successful outbreak of VR worms and their botnets
throughout any VR platform depends on the following:

• Vulnerable persistent environment in a victim’s VR
application to host malicious code of a worm,

• Functionality for duplication of a worm to infect other
vulnerable victims and spread through the platform,

• Communication channel for C&C protocol to allow
control and monitoring of infected zombies in a botnet.

To perform a MitR attack in any selected VR application,
the attacker is looking for the following:

• Vulnerabilities in authentication & authorization
mechanisms or credentials to access protected private
rooms,

• RE of multimedia sharing protocol to connect to
victim’s VR audio & video streams if the protocol in
not well-known,

• Lack of integrity checks (or incorrect checks) to hide
traces of attacker’s presence in the VR room and also
vulnerabilities in User Interface (UI) to remove traces
in UI.

We further define MitR, it’s sub-goals, and requirements
formally in Equation 1 and Figure 3. Successful realisation of
the attack against room r of targeted VR application/platform,
which is using communication & multimedia sharing protocol
p, authentication & authorization mechanism aa, and informa-
tion is presented to user via UI component ui can be specified
as a formula MITR(p, ui, aa, r). Therefore, when we ask
whether MitR attack is possible for a selected application
t, we are looking for model Mt and valuation v such that
Mt |= MITR[v] (Mt satisfies MITR with v). These formal
definitions are later utilized in subsection VII-B.

MITR(p, ui, aa, r) = R(r) ∧ P (p)

∧AA(aa, r) ∧ UI(ui)

∧AR(aa, r)

∧ CM(p)

∧HP (ui, p)

MITR(p, ui, aa, r) = R(r) ∧ P (p)

∧AA(aa, r) ∧ UI(ui)

∧ (V (aa, r) ∨ C(r))

∧ (K(p) ∨RE(p))

∧ (¬I(p) ∧ V (ui))

(1)

where:
R(x) = x is a VR room instance
P (x) = x is communication & multimedia sharing

protocol of VR application/platform
AA(x, y) = x is authentication & authorization

mechanism for a room y
UI(x) = x is UI component of VR

application/platform
AR(x, y) = sub-goal to access room x with

authentication & authorization mechanism y
CM(x) = sub-goal to connect multimedia with

protocol x
HP (x, y) = sub-goal to hide presence in room from UI

component x and from VE via y
V (x) = x is vulnerable
V (x, y) = x in combination with y is vulnerable
C(x) = possession of credentials for x
K(x) = details of x are publicly known
RE(x) = successful Reverse Engineering (RE) of x
I(x) = integrity checks for x are performed correctly

IV. RESEARCH QUESTIONS

Before the analysis was conducted, we had defined the
following research question/objectives:

• Is a MitR attack possible/feasible in existing VR appli-
cations?

• Can malicious viruses/worms spread in VR like diseases
in real life?

• Can old attack techniques have new consequences in VR?
For the evaluation of these research questions, we chose

a widely used immersive VR social application called
Bigscreen (subsection II-C).

V. ADVERSARIAL MODEL

We define the model such that the adversary seeks to both
expand adversary controlled resources and harvest information
from the target. Specifically, materials presented and conver-
sations held while in private rooms.

The adversary does not require an environment or resources
atypical of a normal user. The attack is crafted such that the
adversary does not require prior knowledge of the target nor
special network topology. For testing purposes, we include the
assumption that the target is also VR capable and has or will
launch the application.

5

VI. METHODOLOGY – SECURITY ANALYSIS
OF BIGSCREEN

We aim to deliver a concrete realisation of our coined
MitR attack and VR Worm & Botnet which would be carried
out against the Bigscreen application (subsection II-C). We
also want to show by example the impact of carried out
attacks on VR users. Our security analysis included penetration
testing, which we categorise as: 1) External, 2) Black box,
3) Non-destructive, 4) Ethical, 5) In a controlled environment.
The security analysis for this work was divided into several
phases (Figure 4). These could be mapped to corresponding
stages defined by [27] with some adjustments. Our phases can
be briefly characterised as follows:
Reconnaissance focused on the examination of the Bigscreen

and gathering of publicly available information.
Laboratory Setup & Tool Sets phase consisted of prepara-

tion of laboratory equipment and software tools based on
identified areas of interest.

Security Analysis resulted in the outcome of our network
traffic analysis, penetration testing, and RE of protocols
and RE of the Bigscreen desktop application.

Exploit Development aimed at better assessment of the im-
pact of discovered vulnerabilities. With identified security
flaws, we crafted corresponding exploits.

Tool Construction covered the aggregation of discovered at-
tacks and exploits into a comprehensive attacking tool.

Testing evaluated the success rate of exploits and of the tool
according to defined scenarios which confirmed the high
severity of our findings. Our findings were responsibly
disclosed through appropriate channels.

A. Apparatus

Testing and analysis described in the study was carried out
in a controlled laboratory environment similar to the work
by [11]. Equipment used for VR included both the HTC
Vive and Oculus Rift, the details are outlined in Table XV,
Table XIII and Table XIV. Overview of tools useful for
individual phases of the security analysis is presented in
Table I.

B. Scenarios

We defined multiple scenarios for maintaining a systematic
approach during the security analysis and during testing of
the results. Scenarios refer to actions of hypothetical legitimate
users (Alice, Bob) and attackers (Mallory, Trudy) as explained
in Figure 5. Individual steps are defined in Appendix A.
Scenarios cover standard usage of the application: 1) Passive
stay in lobby 2) Creation of a public room 3) Creation of a
private room 4) Conducting a private meeting 5) Transitioning
between rooms

C. Reconnaissance – Phase I
We focused on Open Source Intelligence (OSINT) that

could reveal inner parts of the Bigscreen system. We anal-
ysed job offers from the Bigscreen company and found out

Phase I

Reconnaissance

Phase IV

Exploit Development

Phase V

Tool Construction

Phase VI

Testing

Iterate with new findings?

No Yes

Phase III

Security Analysis

Phase II

 Laboratory Setup & Tool Sets

Fig. 4. State diagram of the phases of the process of carried out security
analysis.

BobAlice Trudy

Bigscreen servers

Mallory

Fig. 5. Basic scenario for attacking the Bigscreen application. Alice and
Bob are legitimate users of the application, each in a different location.
Mallory is an attacker with maliciously patched Bigscreen application. Trudy
is an attacker with developed C&C server capable of attacking Bigscreen
users and controling created botnet. Mallory and Trudy aim at users of
the application and do not attack Bigscreen servers.

how does application’s codebase look like.1 Furthermore,
Bigscreen’s blog contained information about the application’s
updates and posts about their development.2

Previous forensic research [11] identified several artifacts
left on the hard drive by the Bigscreen application. We
uncovered that the application’s UI elements were controlled
by JS in a limited built-in web browser environment and the
UI layer had bindings to the application’s core layer.

1https://bigscreenvr.com/careers/
2https://blog.bigscreenvr.com/

https://bigscreenvr.com/careers/
https://blog.bigscreenvr.com/

6

PC 1

Bigscreen serversInternet

PC 2

R 1

HTC Vive Oculus Rift

Fig. 6. Initial Experimental Setup

D. Laboratory Setup & Tool Sets – Phase II

The network topology for initial experiments is shown in
Figure 6. This was later adjusted for specific experiments.
The tools useful for the following security analysis are listed
in Table I.

TABLE I
TOOLS FOR SECURITY ANALYSIS

Purpose Software
network traffic
analysis mitmproxy, wifimitm, Scapy, Wireshark, Net-

fox Detective, NetworkMiner, tools from [27,
A-1]

RE of C# and .NET
environment de4dot, Reflexil, ILSpy, dnSpy, JetBrains dot-

Peek, Progress R© Telerik R© JustDecompile
RE and deobfuscation
of JS JS Beautifier, JSNice, Prettier, Packer (un-

packer) by Dean Edwards, de4js, ESDeob-
fuscate, JStillery, JSDetox, dCode Javascript
Unobfuscator

E. Security Analysis – Phase III

The following part outlines a security and forensic analysis
of Bigscreen’s network traffic, a penetration testing of the
application from the network side, RE of application’s network
protocols, and RE of Bigscreen desktop application. Results
from this phase are summarised in Table XII and Table II.

a) MitM Attack against HTTPS & WSS: First network
traffic analysis was carried out in the initial topology (Figure 6)
according to defined scenarios (subsection VI-B). Even though
the traffic capture contained some unencrypted Application
Programming Interface (API) calls via HTTP, most of the
traffic generated by the application was encrypted. This was
circumvented using transparent proxy via mitmproxy, where
a temporary Certificate Authority (CA) was configured and
trusted by the VR workstations (Figure 7). This allowed us
to decrypt Hypertext Transfer Protocol Secure (HTTPS) and
Secure WebSockets (WSS) traffic.

b) Infrastructure Mapping: Throughout the network
analysis phase, the application’s network communications
were monitored allowing us to create a map of Bigscreen’s
network infrastructure (Figure 7).

c) API Analysis: By analysing traffic between the ap-
plication and Bigscreen’s servers, we gained knowledge of
individual endpoints. We observed the lack of authentication
and encryption at several endpoints (Table XII). We uncovered
that the Bigscreen application updated its UI by downloading
it from the server using HTTP. Should the attacker get into
the MitM position for the victim, they can spoof the UI files
during download. Banlist including uuid, reason and username
was also publicly available.

d) UI Layer Analysis: The downloaded UI files repre-
sented JS environment which communicates with Bigscreen’s
C# core layer locally via JS-C# function bindings. This UI
layer also communicated with Bigscreen’s servers using WSS.
Obtained JS source code was obfuscated and minified, but after
extensive analysis and with a significant effort we managed to
reverse key parts. We later implemented a deobfuscator for
this format (subsection VIII-C).

During analysis of JS-C# bindings, we discovered a critical
security vulnerability in the C# Unity scripting API. A method
Application.OpenURL(url) is dangerously capable of
running programs, opening folders and files on the host
computer. This method can also be used to automatically
download and execute any payload (e.g. malware) on the host
computer.

e) Signalling Protocol Reverse Engineering: By moni-
toring and studying the network data, we were able to reverse
engineer Bigscreen’s signalling protocol. This signalling chan-
nel was used to manage VR rooms and establish multimedia
P2P channels. We observed WSS is encrypted, but used
without authentication and mainly without authorisation. This
meant that an encrypted, unauthenticated, and unauthorized
message is able to manage any room selected by Room ID.
This included changing settings and kicking users out of
rooms.

f) Penetration Testing of the UI Layer from the Network
Side: We were able to send a specially crafted message to the
victim using the signalling channel. At the network message
level, the attacker can set arbitrary values to username, room
name, room description, and room category. The attacker can
send a signalling message to the signalling server and the mes-
sage is forwarded to room participants or users in application’s
lobby. The application did not perform proper sanitization
of data received through encrypted signalling channel from
the signalling server. The Bigscreen application naively trusts
the Bigscreen signalling server. We have therefore discovered
a XSS in room participant name, room description, room
category, and room name.

g) Application Reverse Engineering: We managed to
RE and decompile portions of the application and Dynamic
Link Libraries (DLLs) into corresponding logic in C#. This
allowed us to explore the inner structure of the application
(Figure 8). We found out that DLLs are loaded without
integrity checks. This made the unauthorised patching of the
Bigscreen application possible (i.e. Application Crippling).

7

http://prod.bigscreenvr.com/

ProxyBigscreen application

http://ip.bigscreenvr.com/

ui2/9.0/ui-min.html?version=0.34.0

blacklist?nocache=1539239667.147

json/

https://signal2.bigscreenvr.com/
event.json?_=1539239594923

roomstate?roomId=room-7rr7ko50

https://signal2adm.bigscreenvr.com/

http://signal.bigscreenvr.com/

http://signal3.bigscreenvr.com/

Fig. 7. Map of Bigscreen’s Network Infrastructure.

DLL

UI layer (JS)

Core layer (C#)

Servers Peers

...Unity

WebRTC

Signaling

Fig. 8. Diagram of the Bigscreen application, which consists of several layers
as explained in paragraph VI-E0g.

TABLE II
MAIN VULNERABILITIES OF THE APPLICATION

Vulnerability Context Severity
RCE via API call to
Application.OpenURL

Unity engine High

XSS in user name, room name, room
description, and room category

UI layer High

Information leak via RE of assemblies Application core Medium
Information leak via RE of obfuscated
and minified JS source code

UI layer Low

Patching DLLs without integrity check DLLs High
Lack of integrity, receiving data with-
out sharing any VR state

WebRTC High

Lack of authentication, connection
from a custom application

WebRTC Medium

Lack of authentication, connection
from a custom application

Signaling channel High

F. Exploit Development – Phase IV
In order to know the severity of identified issues, we focused

on ways how malicious hackers could possibly abuse the
Bigscreen application and put its users at risk.

a) Room State Polling: The /roomstate endpoint had
no request limits. We developed a brute forcing script that
could search for private Room IDs. However, the size of
the target state space makes such a tool impractical. Dictionary
attacks are not feasible, because Room ID consists of random
8 alphanumeric characters like room-9hckep83.

b) Automated Room Creation: Lack of authentication
and authorisation in the signalling channel allowed us to

continuously request the server to allocate resources for a new
room. This could potentially lead to a Denial of Service (DoS)
attack.

c) Kicking All Users from All Public Rooms: Forged
signalling messages can kick any user out of any room. The
only required information was the Room ID and identification
of a given user. This is a possible DoS attack.

A) room-create

wss://signal2.bigscreenvr.com

Bob

https://signal2adm.bigscreenvr.com/

Trudy

B) room-join

room created

A.2) roomstate

B) user-joined

A.1) room-latest

Fig. 9. Two possible paths of XSS attack over the network against Bigscreen
users. On path A, the attacker creates a new public room with payload
in room name, room description, or room category (room-create). Bob
requests list of all public rooms which causes XSS in application of all
users in the lobby (room-latest). Victim can also request details about
selected room which also delivers the XSS payload (roomstate). On path
B, the attacker sets payload as username and joins Bob’s room (room-join).
As soon as the attacker joins the room, XSS is executed in Bob’s application
(user-joined).

d) JS RCE Using XSS through Signalling Channel: XSS
attack gains complete control over the UI layer of the victim’s
application. Two possible paths are illustrated in Figure 9.
Attacking the lobby can affect all users of the Bigscreen
application worldwide.

e) Eavesdropping Victim’s Computer Screen, Computer
Audio, and Microphone Audio: XSS attack can override vic-
tim’s multimedia sharing. Our PoC WebRTC application was
able to connect to legitimate Bigscreen application. With this
exploit, the victim would unknowingly send their multimedia
to the attacker.

8

f) Discovery of Private Rooms: The XSS attack can force
the victim to leak ID of a created room. Room ID is sent to
the attacker’s C&C server.

g) Download & Execute Malware on Victim’s Computer:
Security flaw in Unity scripting API can be exploited to run
programs, open folders and files on the victim’s computer.
The attack downloads and executes malware, as illustrated in
Figure 10.

DLL

UI layer (JS)

Core layer (C#)

Operating System

Servers Peers

...

Attacker

1) Lack of authentication

2) UI XSS

3) JS⇄C# bindings

4) Unity RCE Unity

WebRTC

Fig. 10. Diagram of developed exploit to download and execute malware
on victim’s computer. Bigscreen application consists of several layers and
communicates over network with its servers and peer users in the room.
Attacker sends payload to servers which distribute it to users. Payload arrives
to UI layer where it causes XSS attack. The attack propagates through bindings
from UI to core layer. Application core then calls method from Unity with
malicious payload which causes RCE. Attack escapes from the application,
downloads malware and executes it.

h) Botnet and VR Worm Spreading through the Whole
Bigscreen Community: Combination of several discovered
vulnerabilities allowed for realisation of VR worm, implemen-
tation is described in section VII.

i) Man-in-the-Room Attack: A new cyber attack related
to VEs has been successfully realised during this research
(details in section VII).

G. Tool Construction – Phase V
To demonstrate our findings understandably and to the

fullest, we decided to incorporate invented attacks into a single
easy-to-use attacking tool. The tool is able to execute individ-
ual attacks and it also works as a C&C server which controls
the entire botnet of infected Bigscreen applications. This tools
acts as a dashboard with all relevant information and controls
available. It offers functionality to release our first PoC VR
worm. Malware delivery & execution can be done with a single
button. Technologies incorporated in the implemented tool are
sumarised in Table XVI.

Dashboard’s functionality includes not only monitoring of
all public rooms, but also discovery & monitoring of private
rooms. The attacker can attack any room and take control over
the Bigscreen application of any room participant. Dashboard
can control multiple rooms at the same time using their Room
control (Figure 11). Once the attacker joins a room, chat
messages of room participants are eavesdropped and shown
in Room chat panel (Figure 11). The attacker can covertly
watch victim’s computer screen, listen to computer audio &
microphone audio using Room participant panel (Figure 11).

The tool monitors zombies and maintains connection with
them. Each zombie can be controlled using corresponding

Zombie control (Figure 11). Zombie’s chat messages and
application logs are continuously eavesdropped even after the
zombie changes rooms.

Zombie
control

Monitoring

Room
control

Room chat Room participant

Public rooms Private rooms Zombies

Fig. 11. Visualisation of the main parts of the C&C tool. Zombie control
and Room control can be opened and closed for each controlled zombie and
room. Each room can have multiple Room participants.

Clicking on the Control button opens the Control menu
(Figure 12) which offers a variety of prepared attacks, most
of them correspond to exploits summarised in Table VIII,
Table XI and Table X. Another interesting attack is phishing
(Figure 13), which is not related to RCE in Unity.

Fig. 12. Control menu gives the attacker ability to execute various attacks
against selected victim/zombie. The menu is available from Room participant
panel and similar menu can be opened from the Zombie control panel.

9

Fig. 13. Control menu also allows the attacker to execute phishing attack.
Victim’s Bigscreen application shows modal window asking the victim to
install some driver (malware). Clicking OK button downloads the malware.
This phishing is not related to RCE in Unity.

We have developed our basic C&C communication pro-
tocol to effectively control zombies from the C&C server
(Figure 14). Mechanism for controlling infected Bigscreen
applications is based on a combination of XSS vulnerability
in UI layer and lack of authentication in signaling protocol
(Figure 9).

A)

B)

B)
A)

B) Bob to C&C

A) C&C to Alice

Alice Bob

Dashboard

Trudy

Relay server

Fig. 14. Network diagram of developed relay server. Trudy uses C&C
dashboard, which is connected to the relay server using WS as a client. Alice
and Bob are both zombies already. Relay server forwards messages. Path A
shows message sent from C&C to Alice, path B shows message sent from
Bob to C&C.

To demonstrate possible malware outbreak, we developed
a demonstrative malware, which does not cause any harm to
an infected testing computer. It is used only to demonstrate
that discovered attack could download and execute malware.

Implemented demonstrative attacking tool, including
the dashboard, C&C server, relay server, and payloads to
execute all exploits (subsection VI-F) is available online for
research purposes.3

H. Testing – Phase VI
Testing was carried out according to defined scenarios (sub-

section VI-B and Appendix A). Note that experiments were
carried out in a controlled laboratory environment. Attacks
were limited to users and VR rooms created in our laboratory,
as described in scenarios. Goals of the testing were mainly to:

• Validate success rate of individual attacks/exploits.
• Validate correct implementation of developed attacks in

our C&C server.
• Validate feasibility of developed C&C protocol for con-

trolling zombies.

3BLINDED

• Describe critical impact of discovered vulnerabilities in
real-world situations (scenarios).

Except for the separate phishing attack (Figure 13), all
tested attacks require no action from the victim. Ap-
pendix B contains individual steps how the test cases were
evaluated. Results are summarised in Table III.

TABLE III
TEST RESULTS BASED ON INITIAL SCENARIOS

Scenario Test result
Passive stay in the lobby Attack successful

Created public room Attack successful
Created private room Attack successful

Private meeting Attack successful
Transition between rooms Attack successful

VII. FINDINGS

Table II summarised main discovered vulnerabilities of
the Bigscreen application. Infrastructure connections are in
Table XII. Table VIII, Table XI, and Table IX contain in-
dividual developed exploits and attacks sorted according to
the vulnerability they are based on. Advanced attacks require
a combination of several discovered security flaws, as pre-
sented in Table X. Details are available in BLINDED.

We now explain how requirements of general attack con-
cepts (section III) were fulfilled in the case of Bigscreen.
We were able to use well-known techniques (e.g. XSS) for
individual small steps. However, when chained together, they
enabled these novel attacks with new and critical implications
for VR users.

Attacker BobAliceAlice's room Bob's room

VR worm
join

create & join create & join

leave
leave

join
VR worm

infected infected

VR worm

VR worm

Fig. 15. Sequence diagram of of initial VR worm infection (in Alice’s room)
and propagation from one user to another when they meet in VR room (in
Bob’s room).

A. VR Worm in Bigscreen

a) Vulnerable persistent environment: Modifications by
XSS attack can persist until application reset. Victims can,
therefore, propagate the payload further.

b) Functionality for duplication of a worm: An attacker
could modify the victim’s name to also include an XSS
payload, resulting in any future contact with other users to
disseminate the payload and also modify their username,
further circulating the attack (Figure 15). The principle of the
worm is illustrated in Appendix D.

10

c) Communication channel: When the victim gets in-
fected by the worm, it becomes a zombie, reports to our C&C
Server via WS established in context of UI layer (JS), and
awaits commands (messages in Figure 14). With this exploit,
it is possible to create a botnet of computers of the whole
Bigscreen community and control them from the attacker’s
C&C Server.

B. Man-in-the-Room Attack in Bigscreen

a) Vulnerabilities in authentication & authorization:
XSS through signalling channel was utilised to leak confiden-
tial Room IDs which were then used to access private rooms.

b) RE of multimedia sharing protocol: Due to the fact
that the Bigscreen application loads DLLs without integrity
checking (Table II), we managed to change the source code
of selected libraries (patch) and the Bigscreen application
still used these libraries. This allowed us to change selected
behaviour. Our proof-of-concept patched Bigscreen applica-
tion was able to connect with legitimate Bigscreen applica-
tions. This also gave us complete control over one end of
audio/video/microphone/data streams (Figure 17).

c) Lack of integrity checks: We were able to hide our
presence from UI of others using XSS payloads. Implemented
Man-in-the-Room attack utilized multiple discovered attacks
(Figure 17, Table X) in order to achieve invisibility in VR &
UI. Victims would not have any information about the attacker
being in their room. The attacker could see victims in VR,
see screens of their computers, hear their audio/microphone
(Figure 16).

We can now utilize formal definition from section III to
specify how MitR attack was successful in Bigscreen appli-
cation. Formula MITR(p, ui, aa, r) represents a successful
attack. For model MBigscreen, we consider predicate symbols
from Equation 1 defined as follows, then we define valuations
v1 and v2:

R = {(”any public room”),

(”private room seen by infected user”),

(”unseen private room”)}
P = {(”proprietary over WebRTC & WS”)}

AA = {(”public id knowledge”,

”any public room”),

(”confidential id knowledge”,

”private room seen by infected user”),

(”confidential id knowledge”,

”unseen private room”)}
UI = {(”limited JS”)}
V = {(”limited JS”)}
V = {(”confidential id knowledge”,

”private room seen by infected user”)}
C = {(”any public room”)}
K = {}

RE = {(”proprietary over WebRTC & WS”)}
I = {}

(2)

v1 : p 7→ ”proprietary over WebRTC & WS”

ui 7→ ”limited JS”

aa 7→ ”public id knowledge”

r 7→ ”any public room”

(3)

v2 : p 7→ ”proprietary over WebRTC & WS”

ui 7→ ”limited JS”

aa 7→ ”confidential id knowledge”

r 7→ ”private room seen by infected user”

(4)

When we evaluate the formula with v1 and with v2, we
see that MBigscreen |= MITR[v1] and MBigscreen |=
MITR[v2].

VIII. IMPROVING STATE OF THE ART OF VULNERABILITY
DETECTION & PREVENTION

During our research, we implemented a series of analytical
tools and vulnerability signatures. We decided to publish them
as FOSS to further contribute to the state of the art of vulner-
ability detection & prevention. MitR attack was possible due
to vulnerabilities that could had been prevented. Developers
and researchers can now use our tools to make other software
more secure.

A. Dataset – Unsafe jQuery Method Calls

To evaluate abilities of our above-mentioned analyser and
to compare it with other tools, we created a specific dataset. It
consists of nearly 400 different samples of code and focuses
on unsafe jQuery method calls. Samples are divided into two
groups:

1) Context Awareness,
2) Taint & Data Flow Analysis.
The first group of samples includes code with various

contexts, therefore trivial tools without context-aware parsers
are eliminated from comparison. The second group includes
code where ability to perform taint analysis and data flow
analysis is required. This means the tool must understand
whether and how are malicious data sanitised on paths from
sources to vulnerable sinks; also how are these sources & sinks
propagated through expressions.

B. jQuery XSS Static Analyser

XSS in Bigscreen’s UI layer was caused by unsafe Hy-
pertext Markup Language (HTML) manipulation with jQuery
methods. HTML can be manipulated in a safe way by alterna-
tive approaches, so this was clearly a preventable development
mistake.

To prevent such vulnerabilities, we implemented a static
analyser for JS which can detect use of unsafe jQuery methods
which are vulnerable to XSS attack. This analyser is available
as a Command-line Interface (CLI) program, but also as a
plugin for Coala static analysis system4. Plugins for Coala are

4https://coala.io/

https://coala.io/

11

Fig. 16. Our novel Man-in-the-Room attack. Figure on the left shows the view of the user Bob, figure on the right shows attacker Mallory who is invisible
while in the room with Bob. The attacker uses malicious version of the application, as shown in Figure 17.

Core layer (C#)

DLL

UI layer (JS)

Operating System

Servers

...Unity DLL

UI layer (JS)

Core layer (C#)

Operating System

... Unity

WebRTC

send

receive

receive

send

×

BobMallory

XSS

Fig. 17. The attacker Mallory uses patched (application crippling) version
of the application which does not send VR state to other room participants
and which also uses XSS payloads to hide traces of Mallory’s presence in
the room.

called bears5 and this jQuery XSS Static Analyser is released
as JSjQueryXssUnsafeBear. For example, it can be used as part
of SAST stage of Continuous Integration (CI) (standalone or
as a Coala plugin) by developers to make their software safer.
The analyser is a FOSS and available from its repository6.

To evaluate our tool, we use the above-described dataset.
We also use this dataset to compare our tool with ESLint7,
ESLint with jquery-unsafe plugin8. Results of the evaluation
of tools are shown in Table IV, Table V, and Table VI.

TABLE IV
CONFUSION MATRIX FOR EVALUATION OF ESLINT TOOL WITH THE

DATASET.

Context Awareness Taint & Data Flow
P N P N

eslint P 0 0 0 0
N 72 291 19,83% 12 12 50,00%

0% 0% 0% 0%

We can see that ESLint lacks the ability to detect jQuery
unsafe calls.

5https://github.com/coala/coala-bears
6BLINDED
7https://eslint.org/
8https://github.com/cdd/eslint-plugin-jquery-unsafe

TABLE V
CONFUSION MATRIX FOR EVALUATION OF ESLINT TOOL WITH

JQUERY-UNSAFE PLUGIN WITH THE DATASET.

Context Awareness Taint & Data Flow
P N P N

eslint
+plugin

P 21 7 75,00% 0 7 0%
N 51 284 15,22% 12 5 70,59%

29,17% 2,41% 0% 58%

TABLE VI
CONFUSION MATRIX FOR EVALUATION OF OUR JQUERY XSS STATIC

ANALYSER WITH THE DATASET.

Context Awareness Taint & Data Flow
P N P N

jqxss P 72 0 100% 0 12 0
N 0 291 0,00% 12 0 100,00%

100% 0% 0% 100%

ESLint with a plugin cannot perform taint analysis or data
flow analysis. It failed in all cases when data flow analysis was
required to detect jQuerry access through several variables.
In cases where taint analysis was required, because unsafe
method was called with safe/sanitized value, it scored some
true negatives. However, these true negatives are caused by the
fact, that the tool does not know all unsafe methods. When
an unsafe method unknown to it was tested, the code was
marked as safe not because of understood sanitization, but
because the tool thinks the tested method is safe. The tool
has many false negatives as it cannot recognize more complex
ways of calling unsafe methods, but its internal list of unsafe
methods is incomplete. On the other hand, we can see some
false positives, where it incorrectly detected method calls not
related to jQuery.

Our analyser utilizes power of a parser and detailed knowl-
edge of unsafe jQuery methods. This way we managed to
eliminate false positives and false negatives in the context-
aware part of the dataset. On the other hand, our tool does not
aim to perform taint or data flow analysis. We decided that
these techniques were out of scope during the implementation.
Obviously, this sets some limitations for our tool. As we can
see, it failed in taint & data flow section of the dataset because
it does not implement required techniques. Results in this
section are worse for our tool in comparison with ESLint with
a plugin, but that’s because ESLint with a plugin is not aware

https://github.com/coala/coala-bears
https://eslint.org/
https://github.com/cdd/eslint-plugin-jquery-unsafe

12

of all unsafe methods, so it flags unknown ones as safe.
We can see that our tool reaches 100%TPR, 0%FPR,

100%PPV , 0%FOR, for part of the dataset focused on
context awareness.

The dataset, test scripts, and results of the evaluation are
publicly available9.

C. JavaScript Array Ref Deobfuscator

Our deobfuscator is a CLI program which can revert Array
Ref obfuscation format of JS. This format is characteristic
by global array in the beginning of the file containing all
values and method names used in the original source code.
Obfuscated code then uses references to this global array
instead of literals and methods. This makes manual analysis of
the code very time-consuming, as production code can easily
contain thousands of items in mentioned global obfuscation
array. For example, UI layer of Bigscreen was obfuscated
in this format. We have decided to share our deobfuscator
with the professional community, it is published as FOSS and
available from its repository10.

D. BLINDED Fork

The above mentioned deobfuscator and static analyser need
to be able to correctly parse JS source code and build corre-
sponding Abstract Syntax Tree (AST). Use of a context-aware
parser is essential for both minimizing false positives of static
analysis, and delivering correct deobfuscation.

We decided to integrate the BLINDED library11. It primarily
offers a JS minifier, but also serves as a library with a JS parser.
Unfortunately, BLINDED parser was missing some features
that our implemented tools needed. So we decided to create
our fork12 and extend it with needed functionality. Original
library is available under MIT license, our fork is also available
under MIT license and we plan to suggest merging updates
from our fork to the main repository13.

E. CodeQL Signature for Unity OpenURL Vulnerability

CodeQL allows for powerful SAST including taint analysis
and data flow analysis. For example, GitHub is using it for
batch scanning for vulnerabilities. However, CodeQL database
creation is currently available only as a per-request service on
LGTM14. In case of C# projects, CodeQL supports Microsoft
visual Studio builds with msbuild. Unity-based projects can
be compiled into resulting application with Unity’s own build
system. Unfortunately, CodeQL and LGTM lack direct support
for projects based on Unity build system and buildless parser
does not have UnityEngine API available. To leverage the
power of CodeQL and achieve successful build by LGTM,
we decided to use API placeholders for UnityEngine
namespace, as the application compiled by LGTM is intended

9BLINDED
10BLINDED
11BLINDED
12BLINDED
13BLINDED
14https://lgtm.com/

only for CodeQL analysis. This way, Unity-based projects can
be built in LGTM to extract information for CodeQL queries.

We defined a CodeQL query and a build configuration
which can detect vulnerability in Unity’s OpenURL method.
This is the vulnerability that we discovered and responsibly
disclosed. The vulnerability signature is publicly available at
the repository15.

F. Unity OpenURL Exploit Demo

We implemented an example Unity application to fully
demonstrate all the possible cases how the vulnerable
OpenURL can be exploited. Our aim is to raise developers’
awareness about this vulnerability. The demo exploit applica-
tion is available from its repository16.

IX. MITIGATIONS & SUGGESTIONS

In this section, we present the mitigations we suggested to
Bigscreen and Unity Technologies. The companies have used
these measures to remedy the issues. However, these advices
can be applied by any other company to improve security of
their solution.

A. Bigscreen

Discovered weaknesses were caused by shortcomings
& vulnerabilities in authentication, authorisation, encryption,
data sanitization, integrity checking, or by a critical security
vulnerability in 3rd party software (Unity engine). Individual
flaws with smaller impact were chained together resulting in
attacks with critical impact. Therefore, we suggest addressing
the following.

a) Safe data manipulation and proper data sanitiza-
tion: Because the application’s UI is implemented with web
technologies, it inherits security risks from the area of web
applications. Several injection points for XSS existed due to
unsafe HTML manipulation. We recommend using safe data
manipulation and proper data sanitization at all times. We also
recommend checking use of methods which can directly create
and manipulate HTML without sanitizing data. One of the
suggested solutions to this issue is to use some templating
engine which would offer automatic escaping of data. Today’s
templating engines also often take care of context-aware
escaping.

b) Secure authentication & authorisation: Both adminis-
trative activities and private rooms should have secure authen-
tication & authorisation to determine the validity of requests.
In order to join a private room, all that is required is the private
room-id. We recommend introduction of user accounts and
proper authentication & authorisation.

c) Cautious handling of insecure API: We suggest cau-
tious handling of insecure API, especially proper sanitization
of url parameter of the Application.OpenURL method
from the Unity Scripting API.

d) Encrypted communication: Our team also strongly
suggests using HTTPS communication instead of unencrypted
HTTP.

15BLINDED
16BLINDED

https://lgtm.com/

13

e) Integrity checking: It is further suggested to ensure
that the application and it’s dependencies have not been
modified. Methods like DLL integrity checking would be
beneficial in this approach.

f) Enforcing VR state sharing: The application should
monitor and enforce that all room participants correctly share
information about their avatar and position in VE.

g) Brute force protection: The Bigscreen’s server infras-
tructure should utilise brute force protection by for example
enforcing limits on the number and frequency of requests made
to the room status servers.

h) Confidential blacklist: We recommend changing the
way of checking username against blacklist, because the whole
blacklist should not be publicly available.

i) Removing development relics: Some of the debugging
functionality and testing files have aided in our investigation.
We recommend removing development relics and functionality
unnecessary for production software.

B. Unity Scripting API

We are concerned about the ability of the
Application.OpenURL method to run commands/pro-
grams and open directories/files on host systems (without
scheme). We consider such functionality to be a severe
security vulnerability. We suggest implementing parameter
validations inside this API, which would prevent this issue.

We agree, it is reasonable for Application.OpenURL
method to support various types of URL. However, some
schemes might be unexpected for a developer. Therefore, we
suggest considering their support. In case that support for
schemes like for example search-ms, ftp and SMB is
expected, we suggest one of following:

• Updating documentation with warning that developer has
to conduct proper sanitization of parameter string
url and also, warning about possible consequences
would be very helpful.

• Updating Application.OpenURL method so that de-
velopers have to provide a second parameter in form of
a scheme whitelist for a given method call.

X. DISCUSSION & CONCLUSION

With respect to research questions, we proved with ex-
periments that MitR attack is possible in an existing VR
application and that VR Worm can spread between VR users
like disease in real life. We showed that with new mediums,
well-known attack techniques can evolve into new attacks with
a novel impact. Compared to conventional applications, we
posit that VR vulnerabilities are more privacy invasive. New
VR systems collect a plethora of data such as a physical room
structure, eye movements, hand and body movements etc. The
technology presents new challenges that users, developers and
companies are less experienced in, and for the users, it may be
difficult for them to imagine that virtual worlds also present a
new platform for spreading malware.

There aren’t many platforms in which users may be edu-
cated about these new technologies. Most of the information
people see come from the companies selling VR products, who

naturally do not draw attention to potential risks. In addition,
the products they bring to market are often published during
development. We reacted to this by bringing our research to
public attention in global media. We managed to publish the
results together with explanation and recommendations for
common users and the scientific community at large. Our hope
is that it will help raise awareness of VR, its strengths and also
its associated dangers.

The Bigscreen company accepted all recommendations we
provided in the responsible disclosure and implemented ap-
propriate security measures so that the described attacks may
be mitigated.

Furthermore, Unity Technologies company addressed their
issue by updating documentation of the dangerous method, as
we suggested. After our responsible disclosure, several warn-
ings have been included, so developers using the OpenURL
method are now aware of its power and are instructed how to
utilise it safely.

We help to prevent and detect vulnerabilities which were
discovered and exploited during this research. We published
several analytical or attacking tools, example exploits, evalu-
ation dataset, and vulnerability signatures so that the profes-
sional community can collaborate on making software more
secure.

Our work has impacted practice, and both a major VR
application and a major development platform was improved
significantly. The broad userbase of affected software is pre-
sented in Table VII.

We delivered a concept of novel VR attacks and we further
identified key requirements for their realisation in any VR ap-
plication or platform. Our work also presented an implemented
primary account of the first Virtual Reality Worm, Botnet, and
Man-in-the-Room attacks.

TABLE VII
USERBASE

Software Reach
Bigscreen Beta over 500,000 users17

Unity 3,000,000,000 devices18

XI. FUTURE WORK

Our attacks were demonstrated on a single application.
Future work should explore the automation of our methodical
approach so that it may be expanded to other applications,
as well as future VR systems. Published analytic tools and
vulnerability signatures can be easily utilised. Future work
should also focus on both legal and policy implications of
our findings as VR technology gains more momentum.

REFERENCES

[1] D. Heaney. (2019, January) Share of vr headsets on steam doubled in
2018. [Online]. Available: https://uploadvr.com/vr-steam-grew-2018/

[2] J. Koetsier, “Vr needs more social: 77% of virtual reality users
want more social engagement,” April 2018. [Online]. Available: https:
//www.forbes.com/sites/johnkoetsier/2018/04/30/virtual-reality-77-of-
vr-users-want-more-social-engagement-67-use-weekly-28-use-daily/

17https://bigscreenvr.com/press/
18https://unity3d.com/public-relations

https://uploadvr.com/vr-steam-grew-2018/
https://www.forbes.com/sites/johnkoetsier/2018/04/30/virtual-reality-77-of-vr-users-want-more-social-engagement-67-use-weekly-28-use-daily/
https://www.forbes.com/sites/johnkoetsier/2018/04/30/virtual-reality-77-of-vr-users-want-more-social-engagement-67-use-weekly-28-use-daily/
https://www.forbes.com/sites/johnkoetsier/2018/04/30/virtual-reality-77-of-vr-users-want-more-social-engagement-67-use-weekly-28-use-daily/
https://bigscreenvr.com/press/
https://unity3d.com/public-relations

14

[3] Facebook, “Facebook spaces,” 2019. [Online]. Available: https:
//www.facebook.com/spaces

[4] Microsoft, “Altspacevr.” [Online]. Available: https://altvr.com/
[5] vTime Holdings Limited, “vtime.” [Online]. Available: https://vtime.net/
[6] V. Inc., “Create and play in virtual worlds.” [Online]. Available:

https://www.vrchat.net/
[7] Bigscreen, Inc., “Press kit,” Bigscreen, 10 2018, online. [Online].

Available: https://bigscreenvr.com/press/
[8] L. Danon, A. P. Ford, T. House, C. P. Jewell, M. J. Keeling, G. O.

Roberts, J. V. Ross, and M. C. Vernon, “Networks and the epidemiol-
ogy of infectious disease,” Interdisciplinary perspectives on infectious
diseases, vol. 2011, 2011.

[9] M. R. Faghani and H. Saidi, “Social networks’ xss worms,” in 2009
International Conference on Computational Science and Engineering,
vol. 4. IEEE, 2009, pp. 1137–1141.

[10] P. Casey, I. Baggili, and A. Yarramreddy, “Immersive virtual reality
attacks and the human joystick,” IEEE Transactions on Dependable and
Secure Computing, pp. 1–1, 2019.

[11] A. Yarramreddy, P. Gromkowski, and I. Baggili, “Forensic analysis of
immersive virtual reality social applications: A primary account,” in
2018 IEEE Security and Privacy Workshops (SPW). IEEE, 2018, pp.
186–196.

[12] Z. Ling, Z. Li, C. Chen, J. Luo, W. Yu, and X. Fu, “I know what you en-
ter on gear vr,” in Proceedings of IEEE Conference on Communications
and Network Security (CNS), Washington, D.C., USA, 6 2019.

[13] P. Casey, R. Lindsay-Decusati, I. Baggili, and F. Breitinger, “Inception:
Virtual space in memory space in real spacee – memory forensics of
immersive virtual reality with the htc vive,” Digital Investigation, 7 2019.

[14] F. Roesner, T. Kohno, and D. Molnar, “Security and privacy for
augmented reality systems,” Commun. ACM, vol. 57, no. 4, pp. 88–96,
Apr. 2014.

[15] R. McPherson, S. Jana, and V. Shmatikov, “No escape from reality:
Security and privacy of augmented reality browsers,” in Proceedings of
the 24th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2015, pp. 743–753.

[16] K. Lebeck, T. Kohno, and F. Roesner, “How to safely augment reality:
Challenges and directions,” in Proceedings of the 17th International
Workshop on Mobile Computing Systems and Applications, ser. HotMo-
bile ’16. New York, NY, USA: ACM, 2016, pp. 45–50.

[17] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner, “Securing augmented
reality output,” in 2017 IEEE Symposium on Security and Privacy (SP),
May 2017, pp. 320–337.

[18] F. Sun, L. Xu, and Z. Su, “Client-side detection of xss worms by
monitoring payload propagation,” in European Symposium on Research
in Computer Security. Springer, 2009, pp. 539–554.

[19] S. Gupta and B. B. Gupta, “Cross-site scripting (xss) attacks and defense
mechanisms: classification and state-of-the-art,” International Journal of
System Assurance Engineering and Management, vol. 8, no. 1, pp. 512–
530, 2017.

[20] Y. Wang, Z. Li, and T. Guo, “Program slicing stored xss bugs in web
application,” in 2011 fifth international conference on theoretical aspects
of software engineering. IEEE, 2011, pp. 191–194.

[21] A. Avancini and M. Ceccato, “Security testing of web applications: A
search-based approach for cross-site scripting vulnerabilities,” in 2011
IEEE 11th international working conference on source code analysis
and manipulation. IEEE, 2011, pp. 85–94.

[22] A. Klein, “Dom based cross site scripting or xss of the third kind,”
http://www. webappsec. org/projects/articles/071105. shtml, 2005.

[23] W. Xu, F. Zhang, and S. Zhu, “Toward worm detection in online
social networks,” in Proceedings of the 26th Annual Computer Security
Applications Conference. ACM, 2010, pp. 11–20.

[24] W. H. Securtiy, “Cross site scripting worms and viruses, the impending
threat and the best defense,” 2006.

[25] V. B. Livshits and W. Cui, “Spectator: Detection and containment of
javascript worms.” in USENIX Annual Technical Conference, 2008, pp.
335–348.

[26] P. Herzog and M. Barceló, The Open Source Security Testing
Methodology Manual, 3rd ed., Institute for Security and Open
Methodologies (ISECOM), 12 2010, online. [Online]. Available:
http://www.isecom.org/mirror/OSSTMM.3.pdf

[27] K. Scarfone, M. Souppaya, A. Cody, and A. Orebaugh, SP 800-
115: Technical Guide to Information Security Testing and Assessment,
National Institute of Standards and Technology, 9 2008.

[28] H. H. Alsaadi, M. Aldwairi, M. Al Taei, M. AlBuainain, and
M. AlKubaisi, “Penetration and security of openssh remote secure shell
service on raspberry pi 2,” in 2018 9th IFIP International Conference
on New Technologies, Mobility and Security (NTMS), 2 2018, pp. 1–5.

[29] G. Dorai, S. Houshmand, and I. Baggili, “I know what you did
last summer: Your smart home internet of things and your iphone
forensically ratting you out,” in Proceedings of the 13th International
Conference on Availability, Reliability and Security, ser. ARES 2018.
New York, NY, USA: ACM, 2018, pp. 49:1–49:10.

[30] X. Zhang, I. Baggili, and F. Breitinger, “Breaking into the vault: Privacy,
security and forensic analysis of android vault applications,” Computers
& Security, vol. 70, pp. 516 – 531, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404817301529

[31] T. Haigh, F. Breitinger, and I. Baggili, “If i had a million cryptos:
Cryptowallet application analysis and a trojan proof-of-concept,” in
Digital Forensics and Cyber Crime, F. Breitinger and I. Baggili, Eds.
Cham: Springer International Publishing, 2019, pp. 45–65.

[32] M. Meucci, A. Muller et al., OWASP Testing Guide 4.0 - Release.
The OWASP Foundation, 9 2014, online. [Online]. Available:
https://www.owasp.org/index.php/OWASP Testing Project

[33] A. van der Stock, B. Glas, N. Smithline, and T. Gigler, OWASP Top
10 – 2017, The OWASP Foundation, 2017, online. [Online]. Available:
https://www.owasp.org/index.php/top10

[34] M. Vondráček, J. Pluskal, and O. Ryšavý, “Automation of MitM Attack
on Wi-Fi Networks,” in Digital Forensics and Cyber Crime, P. Matoušek
and M. Schmiedecker, Eds. Cham: Springer International Publishing,
2018, pp. 207–220.

[35] ——, “Automated Man-in-the-Middle Attack Against Wi-Fi Networks,”
Journal of Digital Forensics, Security and Law, vol. 13, no. 1, pp. 59–80,
2018. [Online]. Available: https://commons.erau.edu/jdfsl/vol13/iss1/9

[36] A. Cortesi, M. Hils, T. Kriechbaumer, and contributors, “mitmproxy: A
free and open source interactive HTTPS proxy,” 2010–, [Version 4.0].
[Online]. Available: https://mitmproxy.org/

[37] G. Meyer-Lee, J. Shang, and J. Wu, “Location-leaking through network
traffic in mobile augmented reality applications,” in 2018 IEEE 37th
International Performance Computing and Communications Conference
(IPCCC), 11 2018, pp. 1–8.

[38] S. D. Paola, “Advanced js deobfuscation via ast and partial evaluation
(google talk wrapup),” Minded Security Blog, 10 2015, online.
[Online]. Available: https://blog.mindedsecurity.com/2015/10/advanced-
js-deobfuscation-via-ast-and.html

[39] G. Heyes, “Executing non-alphanumeric javascript without parenthesis,”
PortSwigger Web Security Blog, PortSwigger Ltd., 7 2016,
online. [Online]. Available: https://portswigger.net/blog/executing-
non-alphanumeric-javascript-without-parenthesis

[40] P. Palladino, “Brainfuck beware: Javascript is after you!” Blog Patricio
Palladino, 8 2012, online. [Online]. Available: http://patriciopalladino.
com/blog/2012/08/09/non-alphanumeric-javascript.html

[41] M. Mateas and N. Montfort, “A box, darkly: Obfuscation, weird lan-
guages, and code aesthetics,” in Proceedings of the 6th Digital Arts and
Culture Conference, IT University of Copenhagen, 2005, pp. 144–153.

[42] N. Montfort, “Obfuscated code,” Software Studies: A Lexicon, pp. 193–
199, 2008.

[43] M. Vondráček, “Security Analysis of Immersive Virtual Reality and Its
Implications,” Master’s thesis, Brno University of Technology, Faculty
of Information Technology, 2019.

[44] A. Kishimoto, M. Winands, M. Mller, and J.-T. Saito, “Game-tree search
using proof numbers: The first twenty years,” ICGA journal, vol. 35, pp.
131–156, 09 2012.

APPENDIX A
SCENARIOS DEFINITION

Scenarios assume that Alice and Bob already have the
Bigscreen application installed.

a) Passive stay in the lobby: Alice starts the application.
She is on the first screen of the application, which is the lobby.
List of all public rooms is downloaded from the servers and
is displayed in the application’s UI. Alice stays passively
in the lobby for several seconds, then she terminates the
application.

b) Created public room: Alice starts the application and
enters the lobby. She creates & joins her new public room.
She stays in the VR room for several seconds, then she leaves
and terminates the application.

https://www.facebook.com/spaces
https://www.facebook.com/spaces
https://altvr.com/
https://vtime.net/
https://www.vrchat.net/
https://bigscreenvr.com/press/
http://www.isecom.org/mirror/OSSTMM.3.pdf
http://www.sciencedirect.com/science/article/pii/S0167404817301529
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/top10
https://commons.erau.edu/jdfsl/vol13/iss1/9
https://mitmproxy.org/
https://blog.mindedsecurity.com/2015/10/advanced-js-deobfuscation-via-ast-and.html
https://blog.mindedsecurity.com/2015/10/advanced-js-deobfuscation-via-ast-and.html
https://portswigger.net/blog/executing-non-alphanumeric-javascript-without-parenthesis
https://portswigger.net/blog/executing-non-alphanumeric-javascript-without-parenthesis
http://patriciopalladino.com/blog/2012/08/09/non-alphanumeric-javascript.html
http://patriciopalladino.com/blog/2012/08/09/non-alphanumeric-javascript.html

15

c) Created private room: Alice starts the application
and she is in the lobby. She creates & joins private room.
After several seconds, she leaves the room and terminates
the application.

d) Private meeting: Alice starts the application. She
waits in the lobby for few seconds and then creates & joins
private room. Bob starts the application. Alice invites Bob,
she shares her private room ID with Bob. Bob joins Alice’s
private room. Alice and Bob exchange few chat messages and
interact in VR. Both participants leave the room after several
seconds and both terminate the application.

e) Transition between rooms: Alice starts the application
and creates & joins her public room. Bob creates & joins his
public room. Alice stays for several seconds in her public room
alone and then leaves. Alice joins Bob’s public room. Alice
and Bob spend several seconds together in the room and then
they both leave and terminate the application.

APPENDIX B
TESTING BASED ON SCENARIOS

Each test case starts by C&C server setup procedure, which
consists of following steps. The attacker starts the relay server
(Figure 14) and opens dashboard (Figure 11) which connects
to the relay server using dashboard-register message.
The dashboard connects to Bigscreen signaling servers and
obtains list of public rooms for monitoring. The attacker
ensures that testing malware is correctly prepared and available
from the web file hosting server.

a) Passive stay in the lobby: The C&C server sends
special signaling messages to Bigscreen signaling server which
creates a public room with XSS payload hidden in the room
name. This corresponds to path A in Figure 9. Alice downloads
list of all public rooms. XSS payload is executed and Alice
becomes a zombie in our botnet. Alice appears in zombie
monitor in dashboard and Trudy opens Zombie control. Trudy
forces Alice to download prepared testing malware and then
forces Alice to execute it. Malware takes control of Alice’s
computer. The attack was successful, Alice was hacked and
all she did was just opening Bigscreen application.

b) Created public room: Attacker Trudy has an overview
of all public rooms in the dashboard. When Alice creates &
joins her public room, the room appears in Trudy’s dashboard.
Trudy selects Alice’s room and connects to it for eavesdrop-
ping using the dashboard. Alice thinks she is alone in the
room. Trudy uses control menu to stealthily toggle Alice’s
video sharing. Trudy can see screen of Alice’s computer now.
She can take control of Alice’s Bigscreen application and also
download & execute malware on Alice’s computer. Alice’s has
no suspicion that Trudy can see her screen. Eavesdropping
(attack) was successful.

c) Created private room: The attacker Trudy starts at-
tacking the lobby according to path A in Figure 9. As soon
as Alice starts the application and lobby loads list of public
rooms, she is attacked and her Bigscreen application becomes
a zombie in our botnet. Alice creates & joins private room, but
because she is zombie already, her application is automatically
forced to leak confidential private room ID to Trudy’s C&C

server. The room ID is sent using room-discovered
message of our C&C protocol. Alice’s private room has just
been discovered and it appears in monitor of private rooms
in Trudy’s dashboard. Trudy selects Alice’s private room and
connects to it for eavesdropping. Trudy toggles Alice’s video
sharing as well. Even though Alice created private room and
she thinks she is alone in a secure room, Trudy can now see
screen of Alice’s computer. Trudy can take control of Alice’s
Bigscreen application and distribute malware, too. The attack
was successful.

d) Private meeting: This scenario tests also the novel
MitR attack. This test scenario includes another malicious
actor called Mallory. Mallory uses our patched (Application
Crippling) version of the Bigscreen application (Figure 17).
Attackers Mallory and Trudy can communicate and coordinate
the attack. However, this test scenario does not require Trudy
and Mallory to be different people, one attacker could easily
use the dashboard of C&C server and at the same time use
the patched Bigscreen application. For clarity purposes, this
test is described with both Trudy and Mallory. Trudy starts
attacking the lobby. Alice starts the Bigscreen application,
the lobby is opened, list of public rooms is loaded, Alice is
attacked and becomes a zombie. Trudy can see Alice in a list
of zombies. Trudy stops attacking the lobby. Alice creates &
joins private room, room ID is leaked to Trudy. As described
in the scenario, Alice gives Bob room ID and he joins Alice’s
private room. Trudy selects Alice’s private room from list of
discovered private rooms in the dashboard and connects to it
for eavesdropping. Trudy can now control both Alice and Bob,
she can also toggle their video sharing & see their screens.
Trudy can distribute malware at this point. As Alice and Bob
exchange chat messages, Trudy can see the messages in Room
chat panel (bottom left part of Figure 11). Trudy can also
spoof chat messages, for example impersonate Bob and write
messages in his name. However, we want to see inside the VE
of the VR room. Trudy shares obtained confidential private
room ID with Mallory. Mallory joins Alice’s room as invisible
user. Alice and Bob have no idea that Mallory is with them in
their private room. Mallory can move in virtual space, hear,
and see everything what is happening in the room. This way,
Mallory can literally look over their shoulders. This attack
including MitR attack was successful.

e) Transition between rooms: This test is focused on
the worm attacking lobby and spreading infection from one
victim to another. Trudy starts attacking the lobby with VR
worm. Worm infection was during testing limited to our testing
users Alice and Bob. As Alice starts the application, she
is infected with the replicating worm and becomes zombie.
Trudy stops attacking the lobby. Alice creates & joins her
new public room. Bob creates & joins his public room. Alice
leaves her room and joins Bob’s public room. As soon as Alice
meets Bob in virtual space, our VR worm duplicates and
infects Bob. This procedure is illustrated in Figure 15. Bob is
now zombie, too. He also propagates the infection. Trudy can
now see both Alice and Bob in list of zombies. Trudy can see
that Alice’s room no longer exists and that Alice and Bob are
both in Bob’s room. Trudy can eavesdrop on any room that
Alice and Bob visit. From this point on, Trudy can take control

16

of every infected victim that Alice or Bob meet in VR while
they carry the worm infection. Trudy can distribute malware
to all these affected computers. This attack including MitR
attack was successful.

APPENDIX C
OVERVIEW OF FINDINGS

TABLE VIII
DEVELOPED EXPLOITS BASED ON XSS VULNERABILITY

Category Attack/Exploit Severity
Botnet Control infected applications from C&C

server.
High

VR Worm Spread a worm infection through the
whole Bigscreen community.

High

JS RCE Remotely execute any JS code in the UI
layer of Bigscreen.

High

Privacy violation Discover private rooms. High
Privacy violation Eavesdrop computer screen, computer

audio, and microphone audio.
High

Privacy violation Persistently eavesdrop victim’s chat,
even if they go to another room.

High

Phishing Ask victim to install “required VR
driver”. This phishing is not related to
RCE in Unity.

High

Privacy violation Toggle video, audio, and microphone
sharing.

High

Privacy violation Change signaling servers of victim’s
Bigscreen application.

High

DoS Remotely terminate victim’s Bigscreen
application.

Medium

Impersonation Spoof chat messages. Medium
Privilege
escalation

Set selected user as room admin. Medium

Phishing Redirect Bigscreen’s UI to any webpage. Medium
Privacy violation Gather all victim’s logs. Medium
DoS Ban selected victim until restart. Low
Miscellaneous Change victim’s avatar. Low
Miscellaneous Play sound effects from Bigscreen’s UI. Low

TABLE IX
DEVELOPED EXPLOITS BASED ON THE LACK OF REQUEST LIMITS

Category Attack/Exploit Severity
Privacy
violation

Enumerate (brute force) room ID of private
rooms.

Low

TABLE X
DEVELOPED EXPLOITS BASED ON THE COMBINATION OF XSS, RCE IN

UNITY, AND APPLICATION PATCHING

Attack UI
XSS

Unity
RCE

App.
Patch

Severity

Man-in-the-Room. X × X High
VR Worm. X × × High
Download & execute malware. X X × High
Run any program and open any
folder or file.

X X × High

TABLE XI
DEVELOPED EXPLOITS BASED ON THE LACK OF AUTHENTICATION

& AUTHORIZATION IN THE SIGNALING CHANNEL

Category Attack/Exploit Severity
DoS Kick any user from any room. High
Privilege
escalation

Change room’s settings (VR locks). Medium

Resource
exhaustion

Automatically create new rooms. Low

TABLE XII
NETWORK CONNECTIONS

Endpoint Enc.19 A. & A.20

http://prod.bigscreenvr.com × ×
http://signal.bigscreenvr.com × ×
http://ip.bigscreenvr.com × ×
https://signal3.bigscreenvr.com Out of order
https://signal2adm.bigscreenvr.com X ×
https://signal2.bigscreenvr.com X ×
wss://signal2.bigscreenvr.com X ×
P2P WebRTC channels X ×

APPENDIX D
JAVASCRIPT WORM EXAMPLE

Minimal example of self-replicating XSS payload in vari-
able NAME which can be used for the VR worm.

function worm(){
/* payload here */;
NAME=’<sc’+’ript>’+worm.toString()+
’;worm();</sc’+’ript>John’;

};
worm();

APPENDIX E
HARDWARE AND SOFTWARE DETAILS

TABLE XIII
APPLICATIONS

Application Version
Bigscreen Beta 0.34.0
Oculus App 1.36.0.215623
Steam 1549129917
SteamVR 1.2.10

TABLE XIV
VIRTUAL REALITY DEVICES

Device Component Firmware
Vive Headset Vive MV HTC 1462663157

Base HTC V2-XD/XE 436
Base HTC V2-XD/XE 436
Controller MV HTC (x2) 1533720215

Rift Headset Rift 709/b1ae4f61ae
Sensor (x2) 178/e9c7e04064ed1bd7a089
Left Touch f3c65f7a5f
Right Touch f3c65f7a5f

19Encryption
20Authentication & Authorization

http://prod.bigscreenvr.com
http://signal.bigscreenvr.com
http://ip.bigscreenvr.com
https://signal3.bigscreenvr.com
https://signal2adm.bigscreenvr.com
https://signal2.bigscreenvr.com
wss://signal2.bigscreenvr.com

17

TABLE XV
SYSTEM DETAILS

Device Details
Processor Intel Core i7-6700 CPU
System Type: 64-bit OS, x64 processor
Graphics Card NVDIA GeForce GTx 1070
Manufacturer iBUYPOWER
Installed Memory (RAM) 8.00 GB
Operating System Windows 10 (10.0.0.17134)

TABLE XVI
TECHNOLOGIES OF THE C&C SERVER

Technology Reason
GUI Easy-to-use dashboard

Video & audio Eavesdropping on victim’s microphone au-
dio, computer audio, and computer screen

HTTP & HTTPS Interaction with Bigscreen servers
WSS Communication using Bigscreen’s signaling

protocol
WebRTC Reception of P2P multimedia streaming

C&C protocol Control and monitoring of zombies in botnet
File hosting Malware distribution to victims

	Introduction
	Related Work & Background Information
	Related Literature
	Background Information
	Bigscreen Application

	Foundations of Man-in-the-Room Attack & VR Worm against VR Applications & Platforms
	Research Questions
	Adversarial Model
	Methodology – Security Analysis of Bigscreen
	Apparatus
	Scenarios
	Reconnaissance – Phase I
	Laboratory Setup & Tool Sets – Phase II
	Security Analysis – Phase III
	Exploit Development – Phase IV
	Tool Construction – Phase V
	Testing – Phase VI

	Findings
	VR Worm in Bigscreen
	Man-in-the-Room Attack in Bigscreen

	Improving State of the Art of Vulnerability Detection & Prevention
	Dataset – Unsafe jQuery Method Calls
	jQuery XSS Static Analyser
	JavaScript Array Ref Deobfuscator
	BLINDED Fork
	CodeQL Signature for Unity OpenURL Vulnerability
	Unity OpenURL Exploit Demo

	Mitigations & Suggestions
	Bigscreen
	Unity Scripting API

	Discussion & Conclusion
	Future Work
	References
	Appendix A: Scenarios Definition
	Appendix B: Testing Based on Scenarios
	Appendix C: Overview of Findings
	Appendix D: Javascript Worm Example
	Appendix E: Hardware and Software Details

