
Defense Against SYN Flood DoS Attacks Using
Network-based Mitigation Techniques

Patrik Goldschmidt
CESNET a.l.e., Prague, Czech Republic

goldschmidt@cesnet.cz

Jan Kučera
CESNET a.l.e., Prague, Czech Republic

jan.kucera@cesnet.cz

Abstract—TCP SYN Flood is one of the most widespread
DoS attack types performed on computer networks nowadays.
As a possible countermeasure, we implemented and deployed
modified versions of three network-based mitigation techniques
for TCP SYN authentication. All of them utilize the TCP three-
way handshake mechanism to establish a security association
with a client before forwarding its SYN data. These algorithms
are especially effective against regular attacks with spoofed
IP addresses. However, our modifications allow deflecting even
more sophisticated SYN floods able to bypass most of the con-
ventional approaches. This comes at the cost of the delayed first
connection attempt, but all subsequent SYN segments experience
no significant additional latency (<0.2ms). This paper provides
a detailed description and analysis of the approaches, as well
as implementation details with enhanced security tweaks. The
discussed implementations are built on top of the hardware-
accelerated FPGA-based DDoS protection solution developed by
CESNET and are about to be deployed in its backbone network
and Internet exchange point at NIX.CZ.

Index Terms—TCP SYN Flood, DDoS mitigation, TCP SYN
Authentication, RST Cookies, SYN Drop, TCP Handshaker

I. INTRODUCTION

Transmission control protocol (TCP) is an integral part of

the Internet protocol suite. As its importance is fundamental

for the operation of the Internet, it is often misused to

cause various cybersecurity threats. Data from the past several

years show a strong trend towards TCP abuse to perform

Distributed Denial of Service (DDoS) attacks. The report from

Q2 2020 by Kaspersky Lab states that the most frequent way

of a DDoS was TCP SYN flooding, utilized by 94.7% of all the

attacks [1]. According to Cisco, the number of DDoS attacks

will double to 14.5 million p.a. by 2022 [2].

The purpose of this paper is to describe details of this weak-

ness, present existing countermeasures, and most importantly,

convey our experience with the implementation and evaluation

of three network-based SYN Flood mitigation strategies. Our

implementations have been designed as a part of the DDoS

protection for high-speed networks developed by CESNET [3].

In this work, we extend the device’s mitigation capabilities

by developing network-based heuristic approaches to miti-

gate SYN Flood attacks. The discussed methods are not as

This research was supported by the Security Research Programme of the
Czech Republic 2015 – 2022“ (BV III/1 – VS) granted by the Ministry of the
Interior of the Czech Republic under No. VI20192022137 Adaptive protection
against DDoS attacks.

widespread as end-host TCP SYN Cookies but are way more

effective in certain situations, such as when dealing with an

enormous amount of spoofed IP addresses, and enable flexible

utilization according to the current attack surface. Proposed

algorithms are used only as a reactive defense against ongoing

cyber-attacks, hence not affecting the traffic when no threats

are detected. With the use of high-capacity data structures

posing as IP whitelist and blacklist, our robust solution also

supports SYN limiting, creating an especially strong mitigation

mechanism even against more sophisticated attacks.

II. TCP SECURITY CONSIDERATIONS

The creation of a reliable data channel required by the TCP

is achieved by a three-way handshake. The process starts with

an initiating host (client). The client sends a segment with

the SYN flag set and generates a pseudo-random value of x
used as the Sequence number (SEQx). The receiving host

(server) then generates its SEQy , acknowledges the client’s

data by setting its ACK to the received segment SEQx +1, and

enables SYN and ACK flags. The client also acknowledges the

received segment, and the channel setup is completed.

A. Known Vulnerabilities and Attacks

Attacks on the TCP are classified as either flood-based or

injection-based. Flood attacks aim to exhaust the target’s re-

sources by flooding with bogus packets, making it inaccessible

for regular clients, hence creating a denial of service. On

the other hand, injection attacks are based on eavesdropping

on the communication and injecting crafted segments into

the TCP session. Injected data may contain malicious code,

compromise the user’s privacy [4], or reset the session [5].

The functionality of the most popular attack – TCP SYN

Flood depends on the 3-way-handshake mechanism, during

which the server waits for the arrival of the final ACK to

mark the connection as established. The rationale behind a suc-

cessful DoS assumes that the victim allocates a new state for

every received SYN segment and that there is a limit of such

states that can be stored. These are defined in RFC 793 [6]

as Transmission Control Block (TCB) data structures. TCBs

are used to store necessary state information for each TCP

connection, and so they require a new memory allocated for

each received SYN [7].

Operating system kernels typically try to protect host mem-

ory from exhaustion by implementing a limit of contemporary978-3-903176-32-4 ©2021 IFIP

2021 IFIP/IEEE International Symposium on Integrated Network Management (IM): Experience Sessions
772

Authorized licensed use limited to: Brno University of Technology. Downloaded on July 10,2021 at 14:49:55 UTC from IEEE Xplore. Restrictions apply.

TCB structures called backlog. When its limit is reached,

either incoming SYN segments are ignored, or uncompleted

connections in the backlog are replaced. The primary goal of

the SYN flooding is thus to exhaust the target’s backlog with

half-open connections. For this purpose, spoofed IP addresses

that do not generate replies to SYN-ACKs, are often used.

Other attacks include various types of floods, e.g., SYN-

ACK, RST, and FIN flood. More sophisticated techniques,

such as Fake session, include ACK and FIN segments along-

side many SYNs to simulate a real client’s traffic. Another

technique is Session attack, which utilizes a botnet to create

many valid TCP connections at once and stretch them as long

as possible, making the victim server inaccessible.

B. SYN Flood Mitigation Techniques

Modern operating systems provide relatively large back-

logs, being less vulnerable to regular SYN flooding attacks.

However, backlogs can not cover distributed variants of the

attack, so specialized methods are still required. Linux kernels

historically provided robust security by implementing two end-

host countermeasures – SYN cookies and SYN caching [8].

SYN cache method utilizes hashing to store a lightweight

fingerprint for every incoming TCP connection. This way, the

operating system does not need to allocate the whole TCB, but

only a fragment of the original memory is required. Therefore,

it is able to queue more requests and so is harder to exhaust [8].

In contrast to SYN cache, the SYN cookies method does

not need to store any state information at all. Essential data

defining the connection alongside a timestamp and a secret are

hashed into a 32-bit value representing the SEQ number of the

SYN-ACK segment. Upon ACK response receipt, the server

can reconstruct original SYN parameters and successfully

establish a connection. However, the method denies SYN-ACK

retransmission and also restricts TCP options usage [9].

A little-used but interesting approach is TCP Random drop.

Its principle is to replace a random half-open connection when

the backlog is full and another SYN is received. Replacement

is done by sending a RST segment, discarding the TCB struc-

ture, and allocating a new one for the incoming connection.

Dropped legitimate clients are expected to try to reestablish

a connection. Its rationale is that by making the queue large

enough, a server under attack can still offer a high probability

of successful connection establishment, but legitimate sessions

may still be occasionally denied [10].

Although often effective, the presented end-host mitigation

techniques are not suitable in all scenarios. Some of them

could be implemented as a part of the intermediary device

software, but their usage would require a mapping between

different SEQ and ACK numbers, making their operation rather

inefficient. Therefore, other specialized approaches also exist.

Various TCP extensions and modifications with anti-DoS

capabilities like TCP Cookie Transactions [11] and TCP Fast

Open [12] are also available. However, none of them is

globally used, mainly due to the lack of support from vendors.

Other network-based countermeasure techniques include

traffic filtering [13] and its improved variant reverse-path for-
warding [14]. Their fundamental idea is to deny all incoming

traffic that does not match its source network prefix. This

allows discarding all traffic from spoofed IP addresses, but

its deployment would be necessary on the majority of Internet

service providers, which cannot be generally relied on [15].

SYN Flood attacks were historically mitigated by firewalls,

proxies, or IDS/IPS systems, which usually used SYN-ACK

spoofing or ACK spoofing techniques [15] [16]. These prac-

tices are mostly present to this day but often reside in the cloud

as a part of virtualized IDS/IPS systems instead of traditional

per-network defense [17]. The methods mentioned above are,

however, not always optimal. SYN-ACK spoofing does not

solve the mentioned problem with degraded performance due

to the required SYN/ACK values mapping. ACK spoofing can

protect the server’s backlog but distributed SYN floods may

still cause network congestion or high processor utilization of

the security intermediary device or the server itself. Therefore,

another three methods providing both good performance and

decent SYN-flood protection are introduced in Section III.

Both end-host and network-based techniques are frequently

employed, and they generally do not interfere when used

in combination [15]. Newer trends in DDoS mitigation also

utilize artificial intelligence and machine learning principles,

such as [18], which are generally able to protect against

a wider range of attacks but suffer from a poorer performance

when compared to their previously mentioned counterparts.

III. NETWORK-BASED MITIGATION METHODS

The SYN Cookies end-host mitigation principle proved to

provide adequate protection against SYN Flooding attacks, but

its usage may be undesirable in certain situations. Since servers

are typically busy handling clients’ requests, it may be prefer-

able to filter the traffic on the network level, thus not wasting

their resources by processing potentially malicious traffic. For

this purpose, three TCP SYN authentication algorithms are

presented in the following subsections.

A. SYN Drop

SYN Drop mitigation method is based on a simple principle

to limit the maximum number of sent SYNs from a single IP

address. For this reason, the module needs to keep an internal

state for all clients, monitor their connections, and count the

number of SYNs and ACKs received from them. The number

of allowed SYNs is given by soft (S) and hard (H) thresholds.

When no ACK from the corresponding IP address is received

in the particular time window, the soft threshold, allowing only

a couple of packets, is active. If at least one ACK is received,

SYNs are limited by the hard threshold, which may allow up

to hundreds of connections in a few seconds. Additionally,

the first SYN in the soft threshold’s case is always dropped to

prevent SYN port scanning (Fig. 1a).

The described mechanism effectively denies dummy heavy-

hitters by policing the maximum number of SYNs a single host

can send. Nevertheless, attackers utilizing massive IP address

spoofing may produce enough traffic, managing to take down

2021 IFIP/IEEE International Symposium on Integrated Network Management (IM): Experience Sessions
773

Authorized licensed use limited to: Brno University of Technology. Downloaded on July 10,2021 at 14:49:55 UTC from IEEE Xplore. Restrictions apply.

Client SYN Drop Server

SYN

Forwarded SYN

1st

2nd

Hth

...

Sth

...

...

SYN
1st

2nd
...

Sth
...

Forwarded SYN

ACK = 0

ACK > 0

(a) SYN Drop functionality.

Client RST Cookies Server

SYN

Invalid SYN-ACK

RST

SYN
Forwarded SYN

1st

Add client to
the whitelist

2nd

Hth
SYN

...

3rd

(b) RST Cookies functionality.

Client TCP Handshaker Server

SYN

Valid SYN-ACK

ACK

RST

SYN
Forwarded SYN

1st

Add client to
the whitelist

2nd

Hth
SYN

...

(c) TCP Handshaker functionality.

Fig. 1: Network-based TCP SYN Flood mitigation techniques using TCP SYN authentication.

the server with only the soft threshold active. Alternatively,

ACK messages injection or Fake session attacks would be

able to fool the mechanism and make it ineffective. Therefore,

we also present other SYN Flood mitigation methods in

subsections III-B and III-C.

B. RST Cookies

The first mention of the RST Cookies approach can be

traced back to 1996 [10]. Unfortunately, the method was never

officially published, and the original proposal was only in the

form of e-mail communication. It was also never popularized

due to incompatibility with Windows 95 [19] and potential

performance issues on slow networks. Mentioned e-mails

were probably deleted, and so only a few resources exist to

this day. For the purpose of our custom implementation, the

method needed to be “reinvented”, estimating the behavior of

the clients according to the specification and actually testing

various operating systems for the expected compatibility.

RST Cookies is a heuristic mitigation technique utilizing

the 3-way handshake mechanism while relying on the client’s

behavior as defined in RFC 793. Its fundamental idea is to

establish a security association with clients before allowing

their connection requests. This is achieved by crafting an inten-

tionally invalid SYN-ACK response to the first SYN received

from a client. RFC 793 [6] defines the behavior as follows:

If the connection is in any non-synchronized state, and
the incoming segment acknowledges something not yet
sent (carries an unacceptable ACK), a reset is sent.

To distinguish whether the RST segment is associated with

the invalid SYN-ACK reception, RFC 793, section 3.4 [6] also

defines requirements on the sent RST:

If the incoming segment has an ACK field, the reset
takes its sequence number from that ACK field.

According to these preconditions, we can distinguish a legit-

imate client from an attacker without storing any state infor-

mation locally. Instead, the client’s authentication is performed

solely on the value stored in the ACK field of the SYN-ACK

reply. The first SYN from a new (not whitelisted) client is

dropped, and an invalid SYN-ACK reply is used to verify its

validity (Fig. 1b). The regular client will send a valid RST

reply, whereas the attacker without the real TCP stack will

not. When the valid RST is received, a security association is

established by whitelisting the client’s IP address. SYN traffic

originating from whitelisted IP addresses is forwarded to its

desired destination without further tampering (Fig. 1b).

The algorithm hence blocks all received SYN segments

from unknown hosts until a security association with them is

established. On account of this behavior, the protected server

does not initially know about the intentions to establish a ses-

sion and thus no state information are allocated until the client

is considered legitimate. This mechanism effectively denies

all attacks from spoofed IP addresses, which can not generate

a valid reply. Random RST segments can not fool the security

mechanism because the specific SEQ value is expected. For

the attacker without a valid TCP stack, it is rather problematic

to inject a RST segment with the desired SEQ. Therefore,

the only viable way is to use legitimate (non-spoofed) clients.

As further discussed in Section IV, we enhanced the original

algorithm by implementing a hard threshold to limit the

maximum number of SYNs from already-validated clients

(Fig. 1b), thus merging it with the functionality of SYN Drop.

C. TCP Handshaker

SYN Authentication with TCP Handshaker is practically

a version of the end-host SYN Cookies method ported to

the network-based environment. As outlined in Section II-B,

the trustworthiness of the initiating host is verified by setting

a specific SEQ in the SYN-ACK response and then verifying

the value from the ACK segment the client returns.

The TCP Handshaker method (Fig. 1c) works according

to this principle, where a specific SEQ value is set in the

SYN-ACK response and expects the client to confirm its

validity by responding with a required value of SEQ+1 in

its ACK segment. If the values are matched, its IP address

is added to the whitelist, and its SYN data are not intervened

anymore. However, after the client sends an ACK finalizing the

handshake, it thinks that the session is established because the

3-way handshake was successfully finished from its perspec-

tive. The problem at this point is that the server knows nothing

about the session since the client’s SYN was intercepted by the

algorithm, and thus never reached the server. To synchronize

nodes in this state, the TCP Handshaker needs to send a RST

2021 IFIP/IEEE International Symposium on Integrated Network Management (IM): Experience Sessions
774

Authorized licensed use limited to: Brno University of Technology. Downloaded on July 10,2021 at 14:49:55 UTC from IEEE Xplore. Restrictions apply.

1: entry ← IP data from association table
2: if (entry == NIL):
3: send (invalid) SYN-ACK; drop SYN and exit;
4: else if (ts − entry.ta > tm):
5: delete IP from association table;
6: send (invalid) SYN-ACK; drop SYN and exit;
7: if (SYN limiting enabled):
8: if (ts − entry.window start ≥ 1s):
9: entry.syn cnt ← 0;

10: entry.window start ← ts;
11: else if (entry.syn cnt ≥ SYN limit):
12: if (Blacklist enabled):
13: add IP to blacklist;
14: delete IP from association table;
15: drop SYN and exit;
16: entry.syn cnt ← entry.syn cnt+ 1;
17: allow SYN and exit;

Fig. 2: SYN Processing of RST Cookies / TCP Handshaker.

for the client’s session after its ACK is processed. When

the RST is received, the client closes its session and may

start another one automatically based on its implementation

(Fig. 1c). This behavior is further discussed in Section V.

IV. DESIGN AND IMPLEMENTATION REMARKS

Since the SYN Drop technique is rather simple, this section

will mostly focus on the problematics related to RST Cookies

and TCP Handshaker. The following subsections discuss SYN

processing and the client authentication process in more detail.

A. SYN Processing

All of the presented methods require to process all ingress

SYN segments. In addition, RST Cookies and TCP Hand-

shaker have to process all RSTs or ACKs, respectively. When

a SYN is received, the algorithm must determine whether

it originates from a new client or a client that is already

verified. For this purpose, we use a hash table with the source

IP address as its key. The contents of its entries depend on the

mitigation method, but various timestamps and counters have

to be used. For example, each entry for RST Cookies or TCP

Handshaker contains a timestamp specifying when the associa-

tion has been created (ta), allowing entries to age. Therefore,

upon a SYN segment arrival (ts), these algorithms have to

check whether the IP address is contained in the whitelist and

its entry timestamp does not exceed the maximum specified

age time (tm), thus validating the condition: ts − ta > tm. If

the condition is met, the SYN is dropped, and a valid or invalid

SYN-ACK is assembled and sent as a response. Otherwise, the

processed SYN is forwarded to its desired destination.

A regular version of SYN processing is depicted in Fig. 2

(lines 1-6). We enhanced the algorithm functionality by adding

a counter (syn cnt) and timestamp (window start) to the hash

table alongside the existing association timestamp. These are

used to implement the hard SYN threshold functionality for

already associated clients (lines 7-16). The modified algorithm

with the hard limit will successfully block sending large

amounts of SYNs by any sophisticated attackers, who would

manage to guess the whitelisted IPs or somehow pass through

the security association phase. When combined with a black-

list, an ability to detect these smart attackers and deny their

traffic entirely is available as well (lines 12-13).

Src IP
32/128-bits

Secret
32-bits

Timestamp
32-bits

Src port
16-bits

Dst port
16-bits

Hash
32-bits

Time data
12-bits+ = ACK/SEQ value

32-bits

1-sec timestamp
32-bits >> 2 4-sec timestamp

30-bits mod 212

Hash
first 20-bits

Fig. 3: SYN-ACK generation – the hashing method.

B. Validation Packets Processing

RST segments for RST Cookies and ACKs for TCP Hand-

shaker are used for client validation and thus need to be treated

differently in these particular methods. These algorithms have

to decide whether the RST/ACK is a part of its authentication

mechanism or belongs to the regular TCP traffic. This is done

by looking at the SEQ (for RSTs) or ACK (for ACKs) of

the obtained data. If this value is equal to the expected value

defined by the algorithm, it is probably a response to its

previously sent SYN-ACK. In this case, the processed segment

is dropped, and the client’s IP address whitelisted. Otherwise,

the algorithm has to forward the segment to its destination.

C. ACK/SEQ Values Generation and Validation

The key concept of both RST Cookies and TCP Handshaker

is to generate either valid or invalid SYN-ACKs and use their

ACK or SEQ values for future client authentication. In the

RST Cookies’ case, an invalid SYN-ACK is crafted by setting

its ACK value differently from the SEQ+1 of the SYN it

is referring to. TCP Handshaker requires a valid SYN-ACK,

but we are still free to set its SEQ as desired. Both of the

algorithms hence need to generate a value that cannot be

easily guessed by an attacker and which they can reconstruct

when required. The simplest solution to this is a constant value

placed in each SYN-ACK response and then checked for the

match in the RST/ACK. This approach would be functional,

but a smart attacker could monitor the traffic and inject the

required type of packet with the given constant to trick the

security mechanisms. To tackle this issue, we propose a system

of dynamic TCP number generation and validation.

Our design of the dynamic TCP number generator and

validator uses two policies with two security levels. The first

policy generates random numbers periodically and assigns the

values to SYN-ACK segments according to the generation

time. When a client’s response is being processed, the al-

gorithm iterates over the structure of these lastly generated

values and searches for a match between the generated and the

value read from the segment. The number of iterated elements

depends on the generation period and the validity of generated

values. When configured sensibly, this method is faster and

allows considerably better throughput than its counterpart.

The second approach is somewhat inspired by SYN Cook-

ies. As illustrated in Fig. 3, a unique hash is computed for

every connection. The source IP, a 32-bit secret, source and

destination ports, as well as a 32-bit timestamp, are hashed into

a 32-bit string. Its 12 least significant bits are replaced with

a modulo of the timestamp shifted to 4-second precision. This

technique provides a reasonable trade-off between security

2021 IFIP/IEEE International Symposium on Integrated Network Management (IM): Experience Sessions
775

Authorized licensed use limited to: Brno University of Technology. Downloaded on July 10,2021 at 14:49:55 UTC from IEEE Xplore. Restrictions apply.

1000.88 1000.93

1008.90

1000

1005

1010

SYN Drop RST Cookies TCP Handshaker

Initial delay [ms]

(a) Initial session delay.

0.081

0.1351 0.1317

0

0.05

0.1

0.15

SYN Drop RST Cookies TCP Handshaker

Subsequent
delay [ms]

(b) Subsequent session delay.

Fig. 4: SYN session delays (including 3-way handshake).

and performance because the attacker would have to guess

220 possibilities from the hash alongside four different times-

tamps. Four-second precision protects against a replay attack

for 22
12

s ∼ 194 days (required for the timestamp repetition).

Received value verification is then done by reconstructing the

timestamp by deriving its value before the modulo opera-

tion was applied. This process involves shifting back to the

1-second precision and computing the hash function for every

possible second in the given time window. If the reconstructed

timestamp is within the timeout range and the first 20-bits of

the computed hash match the first 20-bits of the SEQ (ACK) in

the analyzed RST (ACK), the client is considered legitimate.

This method undoubtedly provides stronger security since

unique values are generated per connection instead of the

single value for all connections in the given time window.

Both policies can further be combined with two security

modes – crypto- and non-cryptographic. The cryptographic

mode uses cryptographically-secure hashing and number gen-

eration, aiming to deny generated values guessing and esti-

mation completely. On the other hand, the non-cryptographic

variant utilizes regular hashing and pseudo-random numbers,

providing high performance at the cost of lowered security.

V. RESULTS AND CLOSING REMARKS

Firstly, the compatibility of the presented methods with

modern operating systems has been confirmed. This was done

with a browser and various console applications, which were

supposed to establish a connection to a server protected by our

algorithm implementations. As expected, all three methods al-

ways caused the first session establishment to fail, and a client

had to react accordingly. Our results show that systems without

any IPS activated, namely Windows XP – Windows 10, Linux

kernels 3, FreeBSD 11, Apple iOS 12, macOS 10.14, and

higher are all respecting the TCP standard, and thus being

fully compatible. All the methods behave transparently to

the protected devices, and all OSes tried to automatically

re-establish the session, making the methods transparent for

user applications as well. However, we discovered that newer

Fedora-based distributions utilize nftables stateful connection

tracking to drop invalid packets. Such configuration effectively

prevents the OS from receiving invalid SYN-ACK responses,

making it RST Cookies-incompatible.

The client’s behavior is fully dependent on the used method

because it defines how the session fails. The following para-

graphs will examine these behaviors, whereas Fig. 4 summa-

rizes the initial and subsequent session establishment delays

for an average of 10k netcat data transfers on CentOS 7.8.

SYN Drop causes the session to fail by dropping the first

received SYN. The time of its retransmission depends on the

client’s TCP stack, influenced either by an operating system or

an application. The most frequent value we came across was

1000ms (Fig. 4a), but other values may also be present [20].

RST Cookies brings a session into an erroneous state by an

invalid ACK. In this case, the client is supposed to reply with

a RST segment and try to reestablish the session on the same

port. This process is also application and host-dependent. The

typical period we encountered was also 1000ms (Fig. 4a) on

Windows OSes and most *nix (including Android and iOS)

applications and popular browsers (Chrome, Edge).

TCP Handshaker closes the first client’s session with a RST.

In this case, the session needs to be reestablished on a different

source port, which OSes and simple programs typically do

not perform. However, more robust applications tend to open

a new port automatically after a certain period. Since this

process requires OS kernel intervention, the initial session

delay is slightly higher as in the previous methods (Fig. 4a).

While simple programs like netcat rely on an OS’s TCP

stack and a single port, more sophisticated applications usually

initiate multiple TCP connections at once for a single user

request. Two to four sessions are opened initially, followed

by another after 200-300ms (e.g., Chrome). Although the

retransmission period of 1s is rather high, additional attempts

after 200ms are typically sufficient to set up a TCP channel

since the client’s IP address is already whitelisted. Such appli-

cations are thus able to successfully establish the connection

without waiting for a retransmission timer. Fig. 4b shows that

subsequent whitelisted connections experience no significant

delay (<0.2ms). We evaluated all the values for the worst-

case scenario using cryptographic hashing. Therefore, simpler

security mechanisms like non-cryptographic random number

generation tend to reduce these delays slightly. Though delays

up to 1s may seem high, it is important to realize that these

methods are activated only when an ongoing attack is detected.

Therefore, no delays occur during a regular operation, and

a slight initial delay is highly preferable to service unavail-

ability while an attack is in progress.

Memory requirements and packet throughput shall be con-

sidered as well. All the presented methods require a whitelist

data structure to monitor SYN-sending IP addresses and store

state information for decision-making. RST Cookies and TCP

Handshaker require 20B per whitelisted client if SYN limiting

is enabled. For example, peaks on the CESNET’s network

from March to August 2020 reached up to 540k TCP flows

per second. For this purpose, only 640 MiB of memory would

be needed for 33.55M client entries, hence containing all of

them for a period of one minute. Although the SYN Drop

method requires only 13B per client, it needs to store state

information for all (also spoofed) clients.

Packet throughput is mostly influenced by the number of

processed hash functions. Our implementations contain at least

one hashing per TCP segment to access the whitelist. When the

hashing security mechanism is used, two hashes per SYN and

up to five per RST (RST Cookies) or ACK (TCP Handshaker)

segments are needed to validate them. Fig. 5a shows the

2021 IFIP/IEEE International Symposium on Integrated Network Management (IM): Experience Sessions
776

Authorized licensed use limited to: Brno University of Technology. Downloaded on July 10,2021 at 14:49:55 UTC from IEEE Xplore. Restrictions apply.

0
10
20
30
40
50
60
70
80
90

100

SYN Drop RST Cookies TCP Handshaker

Th
ro

ug
hp

ut
 (M

pp
s) Numbers regular

Numbers crypto
Hash regular
Hash crypto

(a) Single core / thread.

SYN Drop RST Cookies TCP Handshaker

(b) 8 cores / threads.

Fig. 5: Mitigation methods performance comparison.

throughput comparison of these mitigation methods during

the simulated SYN Flood attack. The attack was composed

of SYN packets originating from randomized IP addresses

and ports. As expected, the SYN Drop method performed the

best, achieving a throughput of 29.69Mpps. Usage of more

sophisticated mitigation furthermore reduced the throughput

to less than 15Mpps according to the used security mode.

Modern network interface cards support a mechanism called

RSS (Receive Side Scaling), enabling to distribute packets into

multiple receive queues, which can be processed by separate

CPUs. Therefore, we commonly run numerous instances of

these algorithms on multiple CPU cores. This way, a through-

put of more than 97Mpps (∼71Gbps) on 8 independent queues

can be achieved (Fig. 5b). In this case, the packet rate of

more robust methods is higher than of the SYN Drop. This is

due to the nature of mixed IPv4/IPv6 segments with different

lengths, which have to be forwarded as they are. For this

reason, the TX interface buffers are used inefficiently, and

so the overall performance decreases. On the other hand, our

custom-generated SYN-ACKs are padded, so the performance

for these high-speed packet rates may be significantly higher.

Alongside legitimate and attack data, RST Cookies and TCP

Handshaker have to cope with responses to the traffic they

generate as well. Its volume could become rather significant

as the clients not contained on whitelists try to establish

new connections. For this reason, we also provide throughput

comparisons with a changing vector of clients’ RST (ACK)

messages in contrast to the received number of SYNs. Note

that SYN analysis requires one memory access for whitelist

search and an alternative SYN-ACK generation if the client

is not verified. In contrast, RST/ACK analysis requires to

validate their ACK value, either by memory access for the

random numbers variant or up to four extra hash computations.

As expected, only hashing security policies are affected since

memory access is negligible when compared to hashing.

For example, consider a RST:SYN ratio of 0.1 for non-

cryptographic RST Cookies hashing and suppose that all the

RSTs are destined to the mitigation mechanism, the throughput

for 1 thread is 10.4Mpps. If the ratio increases to 1.0 (all

SYN senders need to verify themselves with a certain RST),

the throughput falls to 9.6Mpps. Even more significant decline

can be observed for the cryptographic hash policy, which falls

from 4.0Mpps to 2.3Mpps per thread. Since TCP Handshaker

uses the same mechanism for ACK generation and validation,

its results are quite the same as the cases described here.

VI. CONCLUSIONS

This paper has focused on the analysis of the TCP SYN

Flood attack and discussed three network-based mitigation

methods as its possible countermeasure. Presented experimen-

tal results are based on a custom implementation and evalua-

tion with commonly used operating systems and applications.

The simplest method, SYN Drop, offers sufficient protection

against pure SYN Floods from regular or spoofed IP addresses.

Advanced algorithms – RST Cookies and TCP Handshaker,

allow detection and blocking of more sophisticated attacks,

able to bypass conventional techniques by simulating the

traffic of a real client. The mitigation can function on up to

97Mpps, but prolongs the establishment of the first session.

Further optimizations for better performance and memory

requirements can still be conducted. Used memory can be

minimized by probabilistic data structures such as Bloom

filters. Appropriate hash functions could also improve the

overall throughput significantly. Even bigger performance de-

mands may lead to offloading a part of SYN Flood mitigation

algorithms into the FPGA device programmable dataplane.

Our future work will focus on observation and analysis of

attack vectors of real-world situations, given our experience

with DDoS protection solution deployment in operational

environments at CESNET’s backbone and NIX.CZ.

REFERENCES

[1] Kupreev et al., “DDoS Attacks in Q2 2020,” Kaspersky Lab, Tech. Rep.,
Aug 2020, https://securelist.com/ddos-attacks-in-q2-2020/98077.

[2] Cisco Systems, “Cisco Visual Networking Index: Forecast and Trends,
2017–2022 White Paper,” Tech. Rep., Jan 2017.

[3] CESNET a.l.e., “DDoS Protector,” Sep 2020, https://www.liberouter.org/
technologies/ddos-protector/.

[4] B. Harris and R. Hunt, “TCP/IP security threats and attack methods,”
Computer Communications, vol. 22, no. 10, 1999.

[5] P. A. Watson, “Slipping in the Window: TCP Reset Attacks,” Jan 2004.
[6] J. Postel, “Transmission Control Protocol,” RFC 793, IETF, Sept 1981.
[7] W. Eddy, “TCP SYN Flooding Attacks and Common Mitigations,” RFC

4987, IETF, Aug 2007.
[8] J. Lemon, “Resisting SYN Flood DoS Attacks with a SYN Cache,” in

Conference on the BSD operating system (BSDCon), 2002.
[9] D. J. Bernstein and E. Schenk, “SYN Cookies proposal,” Sept 1996,

http://cr.yp.to/syncookies/archive.
[10] L. Ricciulli, “TCP SYN Flooding Defense,” in Communication Networks

and Distributed Systems Modeling and Simulation (CNDS), 1999.
[11] W. Simpson, “TCP Cookie Transactions,” RFC 6013, IETF, Jan 2011.
[12] Y. Cheng, J. Chu et al., “TCP Fast Open,” RFC 7413, IETF, Dec 2014.
[13] P. Fergusson and D. Senie, “Network Ingress Filtering: Defeating Denial

of Service Attacks,” RFC 2827, IETF, May 2000.
[14] Baker, F. and Savola, P., “Ingress Filtering for Multihomed Networks,”

RFC 3704, IETF, Mar 2004.
[15] W. M. Eddy, “Defenses Against TCP SYN Flooding Attacks,” The

Internet Protocol Journal, vol. 9, no. 4, Dec 2006.
[16] C. L. Schuba, I. V. Krsul et al., “Analysis of a Denial of Service Attack

on TCP,” in Symposium on Security and Privacy (SP), 1997.
[17] O. Osanaiye et al., “Distributed denial of service (DDoS) resilience in

cloud,” Journal of Network and Computer Applications, vol. 67, 2016.
[18] C. Li et al., “Detection and defense of DDoS attack-based on deep

learning,” International Journal of Communication Systems, 2018.
[19] Linux Kernel Mailing List Archive, “T/TCP: SYN and RST Cookies,”

Apr 1998, https://lists.gt.net/linux/kernel/12829.
[20] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s

Retransmission Timer,” RFC 6298, IETF, June 2011.

2021 IFIP/IEEE International Symposium on Integrated Network Management (IM): Experience Sessions
777

Authorized licensed use limited to: Brno University of Technology. Downloaded on July 10,2021 at 14:49:55 UTC from IEEE Xplore. Restrictions apply.

