
1

Immersive Virtual Reality Malware Pandemics
and the Man-in-the-Room Attack

Abstract—In this work we present a primary account of the
first Virtual Reality (VR) Botnet, worm and Man-in-the-Room
attacks. We explore the applicability of old attacks in a new
technological medium and the severity of the impact of these
new attacks. We devise our proof-of-concept in the context of a
widely used VR social application – Bigscreen. Unsurprisingly,
our results illustrated a lack of security posture in the tested
application, but more importantly, the novelty of the work
is grounded in the severity impact of the malicious abuse of
Immersive Virtual Reality, and the uniqueness of being virtually
in the presence of others without their knowledge or consent.
Our work should inspire technical solutions to improve the state-
of-the-art in VR security, socio-behavioral research in VR, and
raise questions in the law and policy domains pertaining to VR
security and privacy.

Index Terms—Virtual Reality, Mixed Reality, VR Privacy,
Security Analysis, Network Traffic Analysis, Penetration Testing,
Reverse Engineering, Application Patching, Forensic Analysis,
Responsible Disclosure, Bigscreen, Unity.

I. INTRODUCTION

V IRTUAL reality is an exciting and promising new tech-
nology, and has found a home in a variety of application

including education, military and medical training and psy-
chological treatment. Recent technological and manufacturing
improvements in VR tilted the major use case towards enter-
tainment by home consumers. Steam, both a partial subject
of this study and popular game marketplace, estimates Virtual
Reality (VR) usage has doubled in 2018 [1].

While VR allows users to experience games, movies,
and events with much greater presence and immersion than
traditional mediums, the user’s ability to interact with the
Virtual Environment (VE) and peers elevates VR above other
entertainment sources. This has benefited social interactions
in particular, where not only are audio and video shared, but
also a common space and simulated movements. In a 2018
survey, 77% of respondents reported an interest in more VR
social interaction [2]. Many companies have brought social
networking to VR, such as Facebook, Microsoft, vTime,
VRChat and the target of this work Bigscreen [3]–[7].

Considering how lucrative social networks such as Facebook
and Twitter can be, along with an anticipated uptick in social
VR usage, an expected race would be fought to establish the
dominant market foothold. Undoubtedly, this pressure may
persuade developers to push their product to market without
extensive security testing or a full understanding of the new
technology. For this reason, we may expect small bugs or
errors would be present in this new medium. We posit that the
connectivity and medium of social VR applications drastically
escalate the potential for exploitation.

Malware authors often target social networks due to the high
degree of user connectivity. This allows malware to spread

rapidly and have far-reaching effects [8]. Although created
with no mal-intent, the Samy Worm (Section II) exemplifies
the potential for social network malware to propagate swiftly.
From a single user, the worm spread to over 1 million victims
in about 24 hours [9].

VR social networks are no exception to this possibility
and offer a new and largely untested attack surface. Where
traditional attacks might target intellectual property or aim
to disrupt a user or infrastructure, VR has the potential to
physically afflict the user. Furthermore, a wealth of informa-
tion is often provided by the both the application or the VR
system’s own tracking, which can then be leveraged against the
victim [10]. Simply put, a great deal can quickly go wrong for
a large number of people if the security of VR is not explored.

Securing both social applications and VR systems is a chal-
lenging task. Any product that receives considerable exposure
and handles complex interactions is subject to a wide range
of potential attacks. Thankfully, web technologies are well
seasoned (but not perfect) and attention has been turned
towards securing VR, Augmented Reality (AR), and Mixed
Reality (MR) alike. Although there have been efforts to
secure both input and output of these systems (Section II),
countermeasures often do not make their way from theory
to practice, as is often the case with emerging technology.
Of note is that this work was partly inspired by the idea of
how diseases spread in the real world upon person to person
contact or being in the physical vicinity of others - we thought
to ourselves, could current VR implementations support the
spread of diseases in a synonymous fashion?

In our work, we conduct an applied security analysis of
a popular VR social application – Bigscreen – and develop
attacks exploiting uncovered vulnerabilities. Our work con-
tributes the following:

• We are the first to coin and implement the Man-in-the-
Room Attack

• We offer the primary account for an implemented Proof-
of-Concept VR Worm & Botnet

• We Conduct a deep security evaluation of a widely used
immersive VR social application and show by example
the impact of known attacks on VR users

• We impacted practice as both the Bigscreen developer
has patched their application, and Unity Technologies
documented our newly discovered vulnerabilities and
exploits – which could have affected millions of users

The remainder of the paper is organised as follows. We
present related and background information about social net-
work worms and VR systems in section II. Our research
questions are specified in section III. The adversarial model
is defined in section IV. We then describe our methodology
and apparatus in section V, followed by our security analysis

2

in subsection V-C. Findings are presented in section VI with
section VII dedicated to our novel Man-in-the-Room (MitR)
attack. Possible mitigation and security suggestions are shared
in section VIII. Finally, we make concluding remarks, discuss
results and point towards new directions in section IX and
section X respectively.

II. RELATED WORK & BACKGROUND INFORMATION

A. Related Literature

A forensic study by [11] focused on VR social applications
and documented forensically significant artifacts which can be
used to reconstruct activities of VE participants. Several im-
mersive virtual reality attacks including example ransomware
which makes VR system unusable have been presented by
[10]. Because users are immersed in VE, these attacks even
managed to disorient and potentially physically hurt victims.
Researchers were able to force movement of victims in real
space without their knowledge or consent (Human Joystick
Attack) [10].

Security and privacy of VR technologies was also investi-
gated by [12]. The research exploited data from motion sensors
inside VR equipment to infer a user’s interaction with a virtual
keyboard and touchpad. Researchers further investigated ways
of interfering a user’s interaction with input devices in VE
based on stereo camera records of a user’s body movement

Reconstruction of forensic artifacts from memory of VR
devices was demonstrated by [13]. Testing an HTC Vive, re-
searchers extracted and visualised data about VE, VR devices,
room setup, and also about position and pose of a user.

Security challenges of MR application were highlighted by
[14]. [15] identified and responsibly disclosed several security
vulnerabilities in AR browsers. Some of these concerns are
relevant to VR, too. [16] inspected security risks related to
displaying information in AR in a scenario with malicious
applications and [17] then designed a AR platform architecture
with output security to limit abilities of individual applications
based on a configured output policy.

To the best of our knowledge, existing literature did not
cover the scope of our research. our work is the first to exploit
security vulnerabilities of a widely used VR social application,
create a proof-of-concept VR botnet and worm, and implement
the first Man-in-the-Room attack.

B. Background Information

We added this section to inform the reader on the top-
ics of Cross-site Scripting (XSS), worms, Man-in-the-Middle
(MitM) attacks, and Reverse Engineering (RE). Readers fa-
miliar with these concepts may want to skip this background
information.

In this work, we exploit several vulnerabilities in the target
application. Therefore, it is important that the reader be
familiar with XSS. In general, an XSS vulnerability would
be the result of poorly sanitised user input, which would in
turn allow an attacker elicit script execution in the victim’s
browser [18]. This often results in the disclosure of sensitive
data, such as passwords and cookies to the attacker. While
XSS vulnerabilities may exist either Client or Server-side,

XSS attacks typically fall into one of three categories: Per-
sistent, Non-Persistent and Document Object Model (DOM)-
based [19].

The most devastating, Persistent or Stored XSS attacks are
often the result of allowing users to contribute to a resource
managed by the web application [20]. An attacker provided
malicious script may be stored and served to an unwitting
requester, who need not be tricked into clicking a specially
crafted link [18]. Conversely, a Non-Persistent or Reflected
attack is the result of the web application dynamically incorpo-
rating user input into the response. This attack is often brought
about by links containing malicious JavaScript, which then
alter the response page [21]. Finally in a DOM-based attack,
the malicious script is not a part of the raw page, but rather
incorporated into an object by a otherwise benign script [19],
[22].

A Persistent XSS attack has the potential to replicate its pay-
load to every requester of the spoiled resource, thus allowing
for the creation of a Worm [9]. This is exasperated by the usage
of Asynchronous JavaScript and XML (AJAX) technology,
whereby Hypertext Transfer Protocol (HTTP) requests may be
made without user interaction or data transfer via WebSockets.
Online Social Networks (OSNs) being a prime candidate for
XSS Worm propagation, have given rise to several notable
outbreaks such as the Koobface, Mikey, and Samy Worms [23].

The Samy Worm demonstrated characteristics similar to the
Worm presented in this work. The Samy Worm, targeting
MySpace pages was brought about by the protagonist pur-
posefully infecting his own profile. The MySpace servers then
delivered the payload to any requester of the infected page
which then infected the victim’s profile [24]. While newly
infected profiles serve to propagate the Worm as well, [9] sug-
gests that the centralized distribution of the payload prevents
network congestion as caused by conventional Worms. This
example Worm is limited to the exposure of infected users
and still propagated at an alarming rate, however, the attack
we describe against the VR application is not limited by the
social network topology.

While we can reasonably expect XSS vulnerabilities to
continue to occur, the potential cost of a JavaScript Worm
necessitates preventative measures. [18] proposed the first
client side detection system, which monitors HTTP requests
containing self-replicating payloads. [23] suggests deploying
decoy profiles within a OSN, and [25] uses a proxy to tag and
monitor HTTP content propagation.

Security analysis and penetration testing methodology is in
detail examined by [26]. [27] further outlines security testing
techniques and sets of tools useful for individual phases of
a security assessment. Various approaches to security and
forensic analysis are demonstrated by [28]–[30]. Work by
[31] also includes implementation of Proof of Concept (PoC)
malware. [32], [33] published by Open Web Application Se-
curity Project (OWASP) offers a widely used web application
penetration testing methodology and framework.

A MitM attack can be utilised for intercepting and spoofing
secured network communication [34], [35]. Transparent prox-
ying allows for traffic interception without altering behaviour
of analysed software [36]. Security analysis can utilise this for

3

detecting possible information leak and for RE of application
protocols. For example, [37] utilised findings from network
traffic analysis of a popular mobile AR application; detected
patterns were used to infer the locations of users.

Applications can often utilise forms of obfuscation and anal-
ysis protections. This applies to both compiled and interpreted
programming languages [38]–[40]. [41], [42] demonstrate sev-
eral approaches to code obfuscation. [43] provides a survey of
tools for RE of C# & .NET and deobfuscation of Javascript
(JS) which help to learn inner logic of an application.

C. Bigscreen Application

Bigscreen is a VR telepresence platform for social activities.
It is intended not only for leisure (entertainment) activities
like playing computer games, watching movies and hanging
out, but also for productivity, work, meetings and collabo-
ration (Figure 1). The application is available for Windows
7, 8.1, 10 operating systems via Oculus Home, Steam, and
Microsoft Store.

Fig. 1. Productivity use cases of the Bigscreen application. [7]

In Bigscreen’s VE, every user is represented by an avatar,
which copies moves of the user’s head and hands in real-
ity (Figure 2). Users access virtual rooms, they can create
their own or join somebody else’s. While in a room, a user
can still use the computer via Head-mounted Display (HMD).
Room participants can enable sharing their computer screens,
computer audio, and microphone audio inside the room. The
application also supports sending chat messages.

Fig. 2. VR avatars of room participants in Bigscreen application. [7]

Each room is characterised by the following properties:
1) Name, 2) Category (e.g. games, productivity, NSFW),
3) Description, 4) 3D Environment. Code of Conduct in the
application stated the communication is Peer to Peer (P2P) and
encrypted. 3D drawing and streaming ability of participants
can be limited by a room admin using locks. Every room

has a unique Room ID in form of 8 alphanumeric characters
(e.g. room-9hckep83). A room can exist as a public, or
a private / invite-only. All public rooms are available on the
application’s main screen. Private rooms can be joined using a
confidential Room ID, and no further authorisation is required.

III. RESEARCH QUESTIONS

Before the security analysis was conducted, we had defined
the following research question/objectives:

• Can old attack techniques have new consequences in VR?
• Is a Man-in-the-Room attack possible/feasible in existing

VR applications?
• Can malicious viruses/worms spread in VR like diseases

in real life?

IV. ADVERSARIAL MODEL

While the adversary model is a result of our findings, we
present a formalisation of the adversary to highlight both
capabilities and consequences. We define the model such
that the adversary seeks to both expand adversary controlled
resources and harvest information from the target. Specifically,
materials presented and conversations held while in private
rooms.

The adversary does not require an environment or resources
atypical of a normal user. The attack is crafted such that the
adversary does not require prior knowledge of the target nor
special network topology. For testing purposes, we include the
assumption that the target is also VR capable and has or will
launch the application.

V. METHODOLOGY

Our security analysis included penetration testing, which
we categorise as: 1) External, 2) Black box, 3) Non-de-
structive, 4) Ethical, 5) In a controlled environment. The
security analysis for this work was divided into several phases
(Figure 3). These could be mapped to corresponding stages
defined by [27] with some adjustments. Our phases can be
briefly characterised as follows:
Reconnaissance focused on the examination of the Bigscreen

application and gathering of publicly available informa-
tion.

Laboratory Setup & Tool Sets phase consisted of prepara-
tion of laboratory equipment and software tools based on
identified areas of interest.

Security Analysis resulted in the outcome of our network
traffic analysis, penetration testing, and RE of protocols
and RE of the Bigscreen desktop application.

Exploit Development aimed at better assessment of the
severity and impact of discovered vulnerabilities. With
identified security flaws, we crafted corresponding ex-
ploits.

Tool Construction covered the aggregation of discovered at-
tacks and exploits into a comprehensive attacking tool.

Testing evaluated the success rate of exploits and of the tool
according to defined scenarios which confirmed the high
severity of our findings. Our findings were responsibly
disclosed through appropriate channels.

4

Phase II

Phase I

Reconnaissance

a)

Laboratory
Setup

Phase IV

Exploit Development

Phase V

Tool Construction

Phase VI

Testing

b)

Tool
Sets

Phase III

Security Analysis

Fig. 3. State diagram of the phases of the process of carried out security
analysis.

A. Apparatus

Testing and analysis described in the study was carried out
in a controlled laboratory environment similar to the work by
[11]. Two identical desktop computers (Table III) were used
to simulate two participants of the VR application. Equipment
used for VR included both the HTC Vive and Oculus Rift,
and the details are outlined in Table I and Table II. Overview
of tools useful for individual phases of the security analysis
is presented in Table IV.

TABLE I
APPLICATIONS

Application Version
Bigscreen Beta 0.34.0
Oculus App 1.36.0.215623
Steam 1549129917
SteamVR 1.2.10

TABLE II
VIRTUAL REALITY DEVICES

Device Component Firmware
Vive Headset Vive MV HTC 1462663157

Base HTC V2-XD/XE 436
Base HTC V2-XD/XE 436
Controller MV HTC (x2) 1533720215

Rift Headset Rift 709/b1ae4f61ae
Sensor (x2) 178/e9c7e04064ed1bd7a089
Left Touch f3c65f7a5f
Right Touch f3c65f7a5f

TABLE III
SYSTEM DETAILS

Device Details
Processor Intel Core i7-6700 CPU
System Type: 64-bit OS, x64 processor
Graphics Card NVDIA GeForce GTx 1070
Manufacturer iBUYPOWER
Installed Memory (RAM) 8.00 GB
Operating System Windows 10 (10.0.0.17134)

B. Scenarios

We defined multiple scenarios for maintaining a systematic
approach during the security analysis and during testing of
the results. Scenarios refer to actions of hypothetical legitimate
users (Alice, Bob) and attackers (Mallory, Trudy) as explained
in Figure 4. Individual steps are defined in Appendix A.
Scenarios cover standard usage of the application: 1) Passive
stay in the lobby 2) Creation of a public room 3) Creation of a
private room 4) Conducting a private meeting 5) Transitioning
between rooms

BobAlice Trudy

Bigscreen servers

Mallory

Fig. 4. Basic scenario for attacking the Bigscreen application. Alice and
Bob are legitimate users of the application, each in a different location.
Mallory is an attacker with maliciously patched Bigscreen application. Trudy
is an attacker with developed C&C server capable of attacking Bigscreen
users and controling created botnet. Mallory and Trudy aim at users of
the application and do not attack Bigscreen servers.

C. Security Analysis

1) Reconnaissance – Phase I: We focused on Open Source
Intelligence (OSINT) that could reveal inner parts of the
Bigscreen system. We analysed job offers from the Bigscreen
company1 and found out that the application’s codebase is
uses Unity3D and C#. Its P2P networking uses WebRTC and
backend servers utilise Node.js. Furthermore, Bigscreen’s blog
contained information about the application’s updates and
posts about their development2.

Previous forensic research [11] identified several artifacts
left on the hard drive by the Bigscreen application. We
examined two main locations, the first3 stored application’s

1https://bigscreenvr.com/careers/
2https://blog.bigscreenvr.com/
3AppData\LocalLow\Bigscreen, Inc_\Bigscreen

https://bigscreenvr.com/careers/
https://blog.bigscreenvr.com/

5

PC 1

Bigscreen serversInternet

PC 2

R 1

HTC Vive Oculus Rift

Fig. 5. Initial Experimental Setup

analytics, logs, and crash dumps. The second location4 held
the application’s executable, libraries, and data files. We
revealed that one of these folders also contained forgotten
testing and development example files. We uncovered that the
application’s User Interface (UI) elements (HTML, CSS) were
controlled by JS in a limited built-in web browser environment
and the UI layer had bindings to the application’s core layer.

2) Laboratory Setup & Tool Sets – Phase IIa & IIb: The
network topology for initial experiments is shown in Figure 5.
This was later adjusted for specific experiments. The tools
useful for the following security analysis are listed in Table IV.

TABLE IV
TOOLS FOR SECURITY ANALYSIS

Purpose Software
network traffic
analysis mitmproxy, wifimitm, Scapy, Wireshark, Netfox

Detective, NetworkMiner, tools from [27, A-1]
RE of C# and .NET
environment de4dot, Reflexil, ILSpy, dnSpy, JetBrains dot-

Peek, Progress R© Telerik R© JustDecompile
RE and deobfuscation
of JS JS Beautifier, JSNice, Prettier, Packer (un-

packer) by Dean Edwards, de4js, ESDeobfus-
cate, JStillery, JSDetox, dCode Javascript Un-
obfuscator

3) Security Analysis – Phase III: The following part
outlines a security and forensic analysis of Bigscreen’s net-
work traffic, a penetration testing of the application from the
network side, RE of application’s network protocols, and RE
of Bigscreen desktop application. Results from this phase are
summarised in Table V and Table VI.

a) MitM Attack against HTTPS & WSS: First network
traffic analysis was carried out in the initial topology (Figure 5)
according to defined scenarios (subsection V-B). Even though
the traffic capture contained some unencrypted REST API calls
via HTTP, most of the traffic generated by the application was
encrypted. This was circumvented using transparent proxy via
mitmproxy, where a temporary Certificate Authority (CA) was

4Steam\steamapps\common\Bigscreen

configured and trusted by the VR workstations (Figure 6). This
allowed us to decrypt HTTPS and WSS traffic.

b) Infrastructure Mapping: Throughout the network
analysis phase, the application’s network communications
were monitored allowing us to create a map of Bigscreen’s
network infrastructure (Figure 6).

c) REST API Analysis: By analysing traffic between the
application and Bigscreen’s servers, we gained knowledge
of individual REST endpoints. We observed the lack of
authentication and encryption at several endpoints (Table V).
We uncovered that the Bigscreen application updated its UI
by downloading it from the server using HTTP. Should the
attacker get into the MitM position for the victim, they can
spoof the UI files during download. Banlist including uuid,
reason and username was also publicly available.

d) UI Layer Analysis: The downloaded UI files repre-
sented JS environment which communicates with Bigscreen’s
C# core layer locally via JS-C# function bindings. This UI
layer also communicated with Bigscreen’s servers using WSS.
Obtained JS source code was obfuscated and minified, but after
extensive analysis and with a significant effort we managed to
reverse key parts.

During analysis of JS-C# bindings, we discovered a critical
security vulnerability in the C# Unity scripting API. A method
Application.OpenURL(url) is dangerously capable of
running programs, opening folders and files on the host
computer. This method can also be used to automatically
download and execute any payload (e.g. malware) on the host
computer.

e) Signalling Protocol Reverse Engineering: By moni-
toring and studying the network data, we were able to reverse
engineer Bigscreen’s signalling protocol. This signalling chan-
nel was used to manage VR rooms and establish multimedia
P2P channels. We observed WSS is encrypted, but used
without authentication and mainly without authorisation. This
meant that an encrypted, unauthenticated, and unauthorized
message is able to manage any room selected by Room ID.
This included changing settings and kicking users out of
rooms.

f) Penetration Testing of the UI Layer from the Network
Side: We were able to send a specially crafted message to the
victim using the signalling channel. At the network message
level, the attacker can set arbitrary values to username, room
name, room description, and room category. The attacker can
send a signalling message to the signalling server and the mes-
sage is forwarded to room participants or users in application’s
lobby. The application did not perform proper sanitization
of data received through encrypted signalling channel from
the signalling server. The Bigscreen application naively trusts
the Bigscreen signalling server. We have therefore discovered
a XSS in room participant name, room description, room
category, and room name.

g) Application Reverse Engineering: We managed to RE
and decompile portions of the application and DLLs into
corresponding logic in C#. This allowed us to explore the
inner structure of the application (Figure 7). We found out
that DLLs are loaded without integrity checks. This made the

6

http://prod.bigscreenvr.com/

ProxyBigscreen application

http://ip.bigscreenvr.com/

ui2/9.0/ui-min.html?version=0.34.0

blacklist?nocache=1539239667.147

json/

https://signal2.bigscreenvr.com/
event.json?_=1539239594923

roomstate?roomId=room-7rr7ko50

https://signal2adm.bigscreenvr.com/

http://signal.bigscreenvr.com/

http://signal3.bigscreenvr.com/

Fig. 6. Map of Bigscreen’s Network Infrastructure.

unauthorised patching of the Bigscreen application possible
(i.e. Application Crippling).

DLL

UI layer (JS)

Core layer (C#)

Operating System

Servers Peers

...Unity

WebRTC

Signaling

Fig. 7. Diagram of the Bigscreen application, which consists of several layers
as explained in paragraph V-C3g.

TABLE V
NETWORK CONNECTIONS

Endpoint Encryption Authentication
& Authorization

http://prod.bigscreenvr.com/ × ×
http://signal.bigscreenvr.com/ × ×
http://ip.bigscreenvr.com/ × ×
https://signal3.bigscreenvr.com/ Out of order
https://signal2adm.bigscreenvr.com/ X ×
https://signal2.bigscreenvr.com/ X ×
wss://signal2.bigscreenvr.com X ×
P2P WebRTC channels X ×

4) Exploit Development – Phase IV: In order to know
the severity of identified issues, we focused on ways how ma-
licious hackers could possibly abuse the Bigscreen application
and put its users at risk.

a) Room State Polling: The /roomstate endpoint had
no request limits. We developed a brute forcing script that
could search for private Room IDs. However, the size of
the target state space makes such a tool impractical.

b) Automated Room Creation: Lack of authentication
and authorisation in the signalling channel allowed us to
continuously request the server to allocate resources for a new
room. This could potentially lead to a DoS attack.

TABLE VI
MAIN VULNERABILITIES OF THE APPLICATION

Vulnerability Context Severity
RCE via Application.OpenURL Unity engine High
XSS in user name, room name, room
description, and room category

UI layer High

Information leak via RE of assemblies Application core Medium
Information leak via RE of obfuscated
and minified JS source code

UI layer Low

Patching DLLs without integrity check DLLs High
Lack of integrity, receiving data with-
out sharing any VR state

WebRTC High

Lack of authentication, connection
from a custom application

WebRTC Medium

Lack of authentication, connection
from a custom application

Signaling channel High

c) Kicking All Users from All Public Rooms: Forged
signalling messages can kick any user out of any room. The
only required information was the Room ID and identification
of a given user. This is a possible DoS attack.

d) JS RCE Using XSS through Signalling Channel: XSS
attack gains complete control over the UI layer of the victim’s
application. Two possible paths are illustrated in Figure 8.
Attacking the lobby can affect all users of the Bigscreen
application worldwide.

e) Eavesdropping Victim’s Computer Screen, Computer
Audio, and Microphone Audio: XSS attack can override vic-
tim’s multimedia sharing. Our PoC WebRTC application was
able to connect to legitimate Bigscreen application. With this
exploit, the victim would unknowingly send their multimedia
to the attacker.

f) JS Worm Spreading through the Whole Bigscreen
Community: Modifications by XSS attack can persist until
application reset. Victims can, therefore, propagate the payload
further. An attacker could modify the victims name to also
include an XSS payload, resulting in any future contact
with other users to disseminate the payload and also modify
their username, further circulating the attack (Figure 9). The
principle of the worm is illustrated in Appendix C.

g) Discovery of Private Rooms: The XSS attack can
force the victim to leak ID of a created room. Room ID is

http://prod.bigscreenvr.com/
http://signal.bigscreenvr.com/
http://ip.bigscreenvr.com/
https://signal3.bigscreenvr.com/
https://signal2adm.bigscreenvr.com/
https://signal2.bigscreenvr.com/
wss://signal2.bigscreenvr.com

7

A) room-create

wss://signal2.bigscreenvr.com

Bob

https://signal2adm.bigscreenvr.com/

Trudy

B) room-join

room created

A.2) roomstate

B) user-joined

A.1) room-latest

Fig. 8. Two possible paths of XSS attack over the network against Bigscreen
users. On path A, the attacker creates a new public room with payload
in room name, room description, or room category (room-create). Bob
requests list of all public rooms which causes XSS in application of all
users in the lobby (room-latest). Victim can also request details about
selected room which also delivers the XSS payload (roomstate). On path
B, the attacker sets payload as username and joins Bob’s room (room-join).
As soon as the attacker joins the room, XSS is executed in Bob’s application
(user-joined).

Attacker BobAliceAlice's room Bob's room

VR worm
join

create & join create & join

leave
leave

join
VR worm

infected infected

VR worm

VR worm

Fig. 9. Sequence diagram of of initial VR worm infection (in Alice’s room)
and propagation from one user to another when they meet in VR room (in
Bob’s room).

sent to the attacker’s C&C server.
h) Botnet of Infected Applications Controlled from C2

Server: When the victim gets infected by the worm, it
becomes a zombie, reports to our C&C Server, and awaits
commands. With this exploit, it is possible to create a botnet
of computers of the whole Bigscreen community and control
them from the attacker’s C&C Server.

i) Download & Execute Malware on Victim’s Computer:
Security flaw in Unity scripting API can be exploited to run
programs, open folders and files on the victim’s computer.
The attack downloads and executes malware, as illustrated in
Figure 10.

j) Man-in-the-Room Attack: A new cyber attack related
to VEs has been successfully realised during this research.
The section VII is dedicated to this novel attack.

5) Tool Construction – Phase V: To demonstrate our
findings understandably and to the fullest, we decided to
incorporate invented attacks into a single easy-to-use attacking
tool. The tool is able to execute individual attacks and it also
works as a C&C server which controls the entire botnet of
infected Bigscreen applications. This tools acts as a dashboard

DLL

UI layer (JS)

Core layer (C#)

Operating System

Servers Peers

...

Attacker

1) Lack of authentication

2) UI XSS

3) JS⇄C# bindings

4) Unity RCE Unity

WebRTC

Fig. 10. Diagram of developed exploit to download and execute malware
on victim’s computer. Bigscreen application consists of several layers and
communicates over network with its servers and peer users in the room.
Attacker sends payload to servers which distribute it to users. Payload arrives
to UI layer where it causes XSS attack. The attack propagates through bindings
from UI to core layer. Application core then calls method from Unity with
malicious payload which causes RCE. Attack escapes from the application,
downloads malware and executes it.

with all relevant information and controls available. It offers
functionality to release our first PoC VR worm. Malware
delivery & execution can be done with a single button. Tech-
nologies incorporated in the implemented tool are sumarised
in Table VII.

TABLE VII
TECHNOLOGIES OF THE C&C SERVER

Technology Reason
GUI Easy-to-use dashboard

Video & audio Eavesdropping on victim’s microphone audio, com-
puter audio, and computer screen

HTTP & HTTPS Interaction with Bigscreen servers
WSS Communication using Bigscreen’s signaling protocol

WebRTC Reception of P2P multimedia streaming
C&C protocol Control and monitoring of zombies in botnet
File hosting Malware distribution to victims

Dashboard’s functionality includes not only monitoring of
all public rooms, but also discovery & monitoring of private
rooms. The attacker can attack any room and take control over
the Bigscreen application of any room participant. Dashboard
can control multiple rooms at the same time using their Room
control (Figure 11). Once the attacker joins a room, chat
messages of room participants are eavesdropped and shown
in Room chat panel (Figure 11). The attacker can covertly
watch victim’s computer screen, listen to computer audio &
microphone audio using Room participant panel (Figure 11).

The tool monitors zombies and maintains connection with
them. Each zombie can be controlled using corresponding
Zombie control (Figure 11). Zombie’s chat messages and
application logs are continuously eavesdropped even after the
zombie changes rooms.

Clicking on the Control button opens the Control menu
(Figure 12) which offers a variety of prepared attacks, most
of them correspond to exploits summarised in Table IX,
Table X and Table XII. Another interesting attack is phishing
(Figure 13), which is not related to Remote Code Execution
(RCE) in Unity.

We have developed our basic C&C communication pro-
tocol to effectively control zombies from the C&C server

8

Zombie
control

Monitoring

Room
control

Room chat Room participant

Public rooms Private rooms Zombies

Fig. 11. Visualisation of the main parts of the C&C tool. Zombie control
and Room control can be opened and closed for each controlled zombie and
room. Each room can have multiple Room participants.

Fig. 12. Control menu gives the attacker ability to execute various attacks
against selected victim/zombie. The menu is available from Room participant
panel and similar menu can be opened from the Zombie control panel.

(Figure 14). Mechanism for controlling infected Bigscreen
applications is based on a combination of XSS vulnerability
in UI layer and lack of authentication in signaling protocol
(Figure 8).

To demonstrate possible malware outbreak, we developed
a demonstrative malware, which does not cause any harm to
an infected testing computer. It is used only to demonstrate
that discovered attack could download and execute malware.
Note that experiments during testing phase were carried out
in a controlled laboratory environment.

Fig. 13. Control menu also allows the attacker to execute phishing attack.
Victim’s Bigscreen application shows modal window asking the victim to
install some driver (malware). Clicking OK button downloads the malware.
This phishing is not related to RCE in Unity.

A)

B)

B)
A)

B) Bob to C&C

A) C&C to Alice

Alice Bob

Dashboard

Trudy

Relay server

Fig. 14. Network diagram of developed relay server. Trudy uses C&C
dashboard, which is connected to the relay server using WS as a client. Alice
and Bob are both zombies already. Relay server forwards messages. Path A
shows message sent from C&C to Alice, path B shows message sent from
Bob to C&C.

6) Testing – Phase VI: Testing was carried out according
to defined scenarios (subsection V-B and Appendix A). Goals
of the testing were mainly to:

• Validate success rate of individual attacks/exploits.
• Validate correct implementation of developed attacks in

our C&C server.
• Validate feasibility of developed C&C protocol for con-

trolling zombies.
• Describe critical impact of discovered vulnerabilities in

real-world situations (scenarios).
Except for the separate phishing attack (Figure 13), all

tested attacks require no action from the victim. Ap-
pendix B contains individual steps how the test cases were
evaluated. Results are summarised in Table VIII.

TABLE VIII
TEST RESULTS BASED ON INITIAL SCENARIOS

Scenario Test result
Passive stay in the lobby Attack successful

Created public room Attack successful
Created private room Attack successful

Private meeting Attack successful
Transition between rooms Attack successful

VI. FINDINGS

Table V presented weak points of individual connections
that the Bigscreen application establishes over the network. Ta-
ble VI summarised main discovered vulnerabilities. Table IX,

9

Table X, and Table XI) contain individual developed exploits
and attacks sorted according to the vulnerability they are
based on. Advanced attacks require a combination of several
discovered security flaws, as presented in Table XII.

There were also miscellaneous findings with low severity
such as development information leak (API key and SteamIDs
& Oculus IDs of developers) in JS UI source code, devel-
opment sample files leak in application’s directory, publicly
available blacklist containing information like uuid, ban
reason and username.

TABLE IX
DEVELOPED EXPLOITS BASED ON XSS VULNERABILITY

Category Attack/Exploit Severity
Botnet Control infected applications from C&C

server.
High

VR Worm Spread a worm infection through the whole
Bigscreen community.

High

JS RCE Remotely execute any JS code in the UI layer
of Bigscreen.

High

Privacy
violation

Discover private rooms. High

Privacy
violation

Eavesdrop computer screen, computer audio,
and microphone audio.

High

Privacy
violation

Persistently eavesdrop victim’s chat, even if
they go to another room.

High

Phishing Ask victim to install “required VR driver”.
This phishing is not related to RCE in Unity.

High

Privacy
violation

Toggle video, audio, and microphone shar-
ing.

High

Privacy
violation

Change signaling servers of victim’s
Bigscreen application.

High

DoS Remotely terminate Bigscreen application. Medium
Impersonation Spoof chat messages. Medium
Privilege
escalation

Set selected user as room admin. Medium

Phishing Redirect Bigscreen’s UI to any webpage. Medium
Privacy
violation

Gather all victim’s logs. Medium

DoS Ban selected victim until restart. Low
Miscellaneous Change victim’s avatar. Low
Miscellaneous Play sound effects from Bigscreen’s UI. Low

TABLE X
DEVELOPED EXPLOITS BASED ON THE LACK OF AUTHENTICATION

& AUTHORIZATION IN THE SIGNALING CHANNEL

Category Attack/Exploit Severity
DoS Kick any user from any room. High
Privilege
escalation

Change room’s settings (VR locks). Medium

Resource
exhaustion

Automatically create new rooms. Low

TABLE XI
DEVELOPED EXPLOITS BASED ON THE LACK OF REQUEST LIMITS

Category Attack/Exploit Severity
Privacy
violation

Enumerate (brute force) room ID of private
rooms.

Low

VII. NOVEL MAN-IN-THE-ROOM ATTACK

Due to the fact that the Bigscreen application loads DLLs
without integrity checking (Table VI), we managed to change

TABLE XII
DEVELOPED EXPLOITS BASED ON THE COMBINATION OF XSS, RCE IN

UNITY, AND APPLICATION PATCHING (APPLICATION CRIPPLING)

Category Attack/Exploit UI
XSS

Unity
RCE

App.
Patch

Severity

Privacy
violation

Man-in-the-Room. X × X High

RCE Download & execute
malware.

X X × High

RCE Run any program and
open any folder or file.

X X × High

the source code of selected libraries (patch) and the Bigscreen
application still used these libraries. This allowed us to change
selected behaviour. Our proof-of-concept patched Bigscreen
application was able to connect with legitimate Bigscreen
applications. This also gave us complete control over one
end of audio/video/microphone/data streams (Figure 16). We
were able to hide our presence from UI of others using
XSS payloads. Implemented Man-in-the-Room attack utilized
multiple discovered attacks (Table XII) in order to achieve
invisibility in VR & UI and to join even private rooms. Victims
would not have any information about the attacker being in
their room. The attacker could see victims in VR, see screens
of their computers, hear their audio/microphone (Figure 15).
Dr Baggili has named this novel privacy violation technique
in VR a Man-in-the-Room Attack.

VIII. MITIGATIONS & SUGGESTIONS

In this section, we present the mitigations we suggested to
Bigscreen and Unity Technologies. The companies have used
these measures to remedy the issues. However, these advices
can be applied by any other company to improve security of
their solution.

A. Bigscreen

Discovered weaknesses were caused by shortcomings
& vulnerabilities in authentication, authorisation, encryption,
data sanitization, integrity checking, or by a critical security
vulnerability in 3rd party software (Unity engine). Individual
flaws with smaller impact were chained together resulting in
attacks with critical impact. Therefore, we suggest addressing
the following.

1) Safe data manipulation and proper data sanitization:
Because the application’s UI is implemented with web tech-
nologies, it inherits security risks from the area of web
applications. Several injection points for XSS existed due to
unsafe Hypertext Markup Language (HTML) manipulation.
We recommend using safe data manipulation and proper data
sanitization at all times. We also recommend checking use
of methods which can directly create and manipulate HTML
without sanitizing data. One of the suggested solutions to this
issue is to use some templating engine which would offer
automatic escaping of data. Today’s templating engines also
often take care of context-aware escaping.

10

(a) (b)

Fig. 15. Our novel Man-in-the-Room attack. Figure on the left shows the view of the user Bob, figure on the right shows attacker Mallory who is invisible
while in the room with Bob. The attacker uses malicious version of the application, as shown in Figure 16.

Core layer (C#)

DLL

UI layer (JS)

Operating System

Servers

...Unity DLL

UI layer (JS)

Core layer (C#)

Operating System

... Unity

WebRTC

send

receive

receive

send

×

BobMallory

XSS

Fig. 16. The attacker Mallory uses patched (application crippling) version
of the application which does not send VR state to other room participants
and which also uses XSS payloads to hide traces of Mallory’s presence in
the room.

2) Secure authentication & authorisation: Both administra-
tive activities and private rooms should have secure authenti-
cation & authorisation to determine the validity of requests. In
order to join a private room, all that is required is the private
room-id. We recommend introduction of user accounts and
proper authentication & authorisation.

3) Cautious handling of insecure API: We suggest cautious
handling of insecure API, especially proper sanitization of
url parameter of the Application.OpenURL method
from the Unity Scripting API.

4) Encrypted communication: Our team also strongly sug-
gests using Hypertext Transfer Protocol Secure (HTTPS) com-
munication instead of unencrypted HTTP.

5) Integrity checking: It is further suggested to ensure that
the application and it’s dependencies have not been modified.
Methods like DLL integrity checking would be beneficial in
this approach.

6) Enforcing VR state sharing: The application should
monitor and enforce that all room participants correctly share
information about their avatar and position in VE.

7) Brute force protection: The Bigscreen’s server infras-
tructure should utilise brute force protection by for example
enforcing limits on the number and frequency of requests made
to the room status servers.

8) Confidential blacklist: We recommend changing the way
of checking username against blacklist, because the whole
blacklist should not be publicly available.

9) Removing development relics: Some of the debugging
functionality and testing files have aided in our investigation.
We recommend removing development relics and functionality
unnecessary for production software.

B. Unity Scripting API

We are concerned about the ability of the
Application.OpenURL method to run commands/pro-
grams and open directories/files on host systems (without
scheme). We consider such functionality to be a severe
security vulnerability. We suggest implementing parameter
validations inside this API, which would prevent this issue.

We agree, it is reasonable for Application.OpenURL
method to support various types of URL. However, some
schemes might be unexpected for a developer. Therefore, we
suggest considering their support. In case that support for
schemes like for example search-ms, ftp and SMB is
expected, we suggest one of following:

• Updating documentation with warning that developer has
to conduct proper sanitization of parameter string
url and also, warning about possible consequences
would be very helpful.

• Updating Application.OpenURL method so that de-
velopers have to provide a second parameter in form of
a scheme whitelist for a given method call.

IX. DISCUSSION & CONCLUSION

The results of our analysis clearly illustrated a lack of
security in the tested application. Compared to conventional
applications, we posit that VR vulnerabilities are more privacy
invasive. New VR systems collect a plethora of data such as
a physical room structure, eye movements, hand and body

11

movements etc. The technology presents new challenges that
users, developers and companies are less experienced in, and
for the users, it may be difficult for them to imagine that virtual
worlds also present a new platform for spreading malware.

There aren’t many platforms in which users may be edu-
cated about these new technologies. Most of the information
people see come from the companies selling VR products, who
naturally do not draw attention to potential risks. In addition,
the products they bring to market are often published during
development. We reacted to this by bringing our research to
public attention in global media. We managed to publish the
results together with explanation and recommendations for
common users and the scientific community at large. Our hope
is that it will help raise awareness of VR, its strengths and also
its associated dangers.

The Bigscreen company accepted all recommendations we
provided in the responsible disclosure and implemented ap-
propriate security measures so that the described attacks may
be mitigated.

Furthermore, Unity Technologies company addressed their
issue by updating documentation of the dangerous method, as
we suggested. After our responsible disclosure, several warn-
ings have been included, so developers using the OpenURL
method are now aware of its power and are instructed how to
utilise safely.

Our work has impacted practice, and both a major VR
application and a major development platform was improved
significantly. The broad userbase of affected software is pre-
sented in Table XIII.

In reference to our original research questions, we showed
that old attacks can be implemented in new mediums, thus hav-
ing a novel impact. Our work also presented an implemented
primary account of the first Virtual Reality Botnet, worm and
Man-in-the-Room attacks.

TABLE XIII
USERBASE

Software Reach
Bigscreen Beta over 500,000 users5

Unity 3,000,000,000 devices6

X. FUTURE WORK

Our work was limited to a single application. Future work
should explore the automation of our methodical approach so
that it may be expanded to other applications, as well as future
VR systems. Future work should also focus on the both the
legal and policy implications of our findings as VR technology
gains more momentum.

APPENDIX A
SCENARIOS DEFINITION

Scenarios assume that Alice and Bob already have the
Bigscreen application installed.

5https://bigscreenvr.com/press/
6https://unity3d.com/public-relations

A. Passive stay in the lobby
Alice starts the application. She is on the first screen

of the application, which is the lobby. List of all public
rooms is downloaded from the servers and is displayed in
the application’s UI. Alice stays passively in the lobby for
several seconds, then she terminates the application.

B. Created public room
Alice starts the application and enters the lobby. She creates

& joins her new public room. She stays in the VR room for
several seconds, then she leaves and terminates the application.

C. Created private room
Alice starts the application and she is in the lobby. She

creates & joins private room. After several seconds, she leaves
the room and terminates the application.

D. Private meeting
Alice starts the application. She waits in the lobby for

few seconds and then creates & joins private room. Bob
starts the application. Alice invites Bob, she shares her private
room ID with Bob. Bob joins Alice’s private room. Alice and
Bob exchange few chat messages and interact in VR. Both
participants leave the room after several seconds and both
terminate the application.

E. Transition between rooms
Alice starts the application and creates & joins her public

room. Bob creates & joins his public room. Alice stays for
several seconds in her public room alone and then leaves. Alice
joins Bob’s public room. Alice and Bob spend several seconds
together in the room and then they both leave and terminate
the application.

APPENDIX B
TESTING BASED ON SCENARIOS

Each test case starts by C&C server setup procedure, which
consists of following steps. The attacker starts the relay server
(Figure 14) and opens dashboard (Figure 11) which connects
to the relay server using dashboard-register message.
The dashboard connects to Bigscreen signaling servers and
obtains list of public rooms for monitoring. The attacker
ensures that testing malware is correctly prepared and available
from the web file hosting server.

A. Passive stay in the lobby
The C&C server sends special signaling messages to

Bigscreen signaling server which creates a public room with
XSS payload hidden in the room name. This corresponds to
path A in Figure 8. Alice downloads list of all public rooms.
XSS payload is executed and Alice becomes a zombie in our
botnet. Alice appears in zombie monitor in dashboard and
Trudy opens Zombie control. Trudy forces Alice to download
prepared testing malware and then forces Alice to execute it.
Malware takes control of Alice’s computer. The attack was
successful, Alice was hacked and all she did was just opening
Bigscreen application.

https://bigscreenvr.com/press/
https://unity3d.com/public-relations

12

B. Created public room

Attacker Trudy has an overview of all public rooms in
the dashboard. When Alice creates & joins her public room,
the room appears in Trudy’s dashboard. Trudy selects Alice’s
room and connects to it for eavesdropping using the dashboard.
Alice thinks she is alone in the room. Trudy uses control menu
to stealthily toggle Alice’s video sharing. Trudy can see screen
of Alice’s computer now. She can take control of Alice’s
Bigscreen application and also download & execute malware
on Alice’s computer. Alice’s has no suspicion that Trudy can
see her screen. Eavesdropping (attack) was successful.

C. Created private room

The attacker Trudy starts attacking the lobby according to
path A in Figure 8. As soon as Alice starts the application
and lobby loads list of public rooms, she is attacked and
her Bigscreen application becomes a zombie in our botnet.
Alice creates & joins private room, but because she is zombie
already, her application is automatically forced to leak con-
fidential private room ID to Trudy’s C&C server. The room
ID is sent using room-discovered message of our C&C
protocol. Alice’s private room has just been discovered and it
appears in monitor of private rooms in Trudy’s dashboard.
Trudy selects Alice’s private room and connects to it for
eavesdropping. Trudy toggles Alice’s video sharing as well.
Even though Alice created private room and she thinks she
is alone in a secure room, Trudy can now see screen of
Alice’s computer. Trudy can take control of Alice’s Bigscreen
application and distribute malware, too. The attack was
successful.

D. Private meeting

This scenario tests also the novel Man-in-the-Room
attack. This test scenario includes another malicious ac-
tor called Mallory. Mallory uses our patched (Application
Crippling) version of the Bigscreen application (Figure 16).
Attackers Mallory and Trudy can communicate and coordinate
the attack. However, this test scenario does not require Trudy
and Mallory to be different people, one attacker could easily
use the dashboard of C&C server and at the same time use
the patched Bigscreen application. For clarity purposes, this
test is described with both Trudy and Mallory. Trudy starts
attacking the lobby. Alice starts the Bigscreen application,
the lobby is opened, list of public rooms is loaded, Alice is
attacked and becomes a zombie. Trudy can see Alice in a list
of zombies. Trudy stops attacking the lobby. Alice creates &
joins private room, room ID is leaked to Trudy. As described
in the scenario, Alice gives Bob room ID and he joins Alice’s
private room. Trudy selects Alice’s private room from list of
discovered private rooms in the dashboard and connects to it
for eavesdropping. Trudy can now control both Alice and Bob,
she can also toggle their video sharing & see their screens.
Trudy can distribute malware at this point. As Alice and Bob
exchange chat messages, Trudy can see the messages in Room
chat panel (bottom left part of Figure 11). Trudy can also
spoof chat messages, for example impersonate Bob and write

messages in his name. However, we want to see inside the VE
of the VR room. Trudy shares obtained confidential private
room ID with Mallory. Mallory joins Alice’s room as invisible
user. Alice and Bob have no idea that Mallory is with them in
their private room. Mallory can move in virtual space, hear,
and see everything what is happening in the room. This way,
Mallory can literally look over their shoulders. This attack
including Man-in-the-Room attack was successful.

E. Transition between rooms

This test is focused on the worm attacking lobby and
spreading infection from one victim to another. Trudy starts
attacking the lobby with VR worm. Worm infection was during
testing limited to our testing users Alice and Bob. As Alice
starts the application, she is infected with the replicating worm
and becomes zombie. Trudy stops attacking the lobby. Alice
creates & joins her new public room. Bob creates & joins his
public room. Alice leaves her room and joins Bob’s public
room. As soon as Alice meets Bob in virtual space, our
VR worm duplicates and infects Bob. This procedure is
illustrated in Figure 9. Bob is now zombie, too. He also
propagates the infection. Trudy can now see both Alice and
Bob in list of zombies. Trudy can see that Alice’s room no
longer exists and that Alice and Bob are both in Bob’s room.
Trudy can eavesdrop on any room that Alice and Bob visit.
From this point on, Trudy can take control of every infected
victim that Alice or Bob meet in VR while they carry the worm
infection. Trudy can distribute malware to all these affected
computers. This attack including Man-in-the-Room attack
was successful.

APPENDIX C
JAVASCRIPT WORM EXAMPLE

Minimal example of self-replicating XSS payload in vari-
able NAME which can be used for the VR worm.

f u n c t i o n worm () {
/∗ p a y l o a d h e r e ∗ / ;
NAME=’<sc ’+ ’ r i p t >’+worm . t o S t r i n g () +
’ ; worm () ; < / sc ’+ ’ r i p t >John ’ ;

} ;
worm () ;

ACRONYMS

AJAX Asynchronous JavaScript and XML.
API Application Programming Interface.
AR Augmented Reality.
C&C Command & Control.
CA Certificate Authority.
CSS Cascading Style Sheets.
DLL Dynamic Link Library.
DOM Document Object Model.
DoS Denial of Service.
GUI Graphical User Interface.
HMD Head-mounted Display.
HTML Hypertext Markup Language.
HTTP Hypertext Transfer Protocol.

13

HTTPS Hypertext Transfer Protocol Secure.
JS Javascript.
MitM Man-in-the-Middle.
MitR Man-in-the-Room.
MR Mixed Reality.
OSINT Open Source Intelligence.
OSN Online Social Network.
OWASP Open Web Application Security Project.
P2P Peer to Peer.
PoC Proof of Concept.
RCE Remote Code Execution.
RE Reverse Engineering.
REST Representational State Transfer.
UI User Interface.
VE Virtual Environment.
VR Virtual Reality.
WS WebSockets.
WSS Secure WebSockets.
XSS Cross-site Scripting.

REFERENCES

[1] D. Heaney. (2019, January) Share of vr headsets on steam doubled in
2018. [Online]. Available: https://uploadvr.com/vr-steam-grew-2018/

[2] J. Koetsier, “Vr needs more social: 77% of virtual reality users
want more social engagement,” April 2018. [Online]. Available: https:
//www.forbes.com/sites/johnkoetsier/2018/04/30/virtual-reality-77-of-
vr-users-want-more-social-engagement-67-use-weekly-28-use-daily/

[3] Facebook, “Facebook spaces,” 2019. [Online]. Available: https:
//www.facebook.com/spaces

[4] Microsoft, “Altspacevr.” [Online]. Available: https://altvr.com/
[5] vTime Holdings Limited, “vtime.” [Online]. Available: https://vtime.net/
[6] V. Inc., “Create and play in virtual worlds.” [Online]. Available:

https://www.vrchat.net/
[7] Bigscreen, Inc., “Press kit,” Bigscreen, 10 2018, online. [Online].

Available: https://bigscreenvr.com/press/
[8] L. Danon, A. P. Ford, T. House, C. P. Jewell, M. J. Keeling, G. O.

Roberts, J. V. Ross, and M. C. Vernon, “Networks and the epidemiol-
ogy of infectious disease,” Interdisciplinary perspectives on infectious
diseases, vol. 2011, 2011.

[9] M. R. Faghani and H. Saidi, “Social networks’ xss worms,” in 2009
International Conference on Computational Science and Engineering,
vol. 4. IEEE, 2009, pp. 1137–1141.

[10] P. Casey, I. Baggili, and A. Yarramreddy, “Immersive virtual reality
attacks and the human joystick,” IEEE Transactions on Dependable and
Secure Computing, pp. 1–1, 2019.

[11] A. Yarramreddy, P. Gromkowski, and I. Baggili, “Forensic analysis of
immersive virtual reality social applications: A primary account,” in
2018 IEEE Security and Privacy Workshops (SPW). IEEE, 2018, pp.
186–196.

[12] Z. Ling, Z. Li, C. Chen, J. Luo, W. Yu, and X. Fu, “I know what you en-
ter on gear vr,” in Proceedings of IEEE Conference on Communications
and Network Security (CNS), Washington, D.C., USA, 6 2019.

[13] P. Casey, R. Lindsay-Decusati, I. Baggili, and F. Breitinger, “Inception:
Virtual space in memory space in real spacee – memory forensics of
immersive virtual reality with the htc vive,” Digital Investigation, 7 2019.

[14] F. Roesner, T. Kohno, and D. Molnar, “Security and privacy for
augmented reality systems,” Commun. ACM, vol. 57, no. 4, pp. 88–96,
Apr. 2014.

[15] R. McPherson, S. Jana, and V. Shmatikov, “No escape from reality:
Security and privacy of augmented reality browsers,” in Proceedings of
the 24th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2015, pp. 743–753.

[16] K. Lebeck, T. Kohno, and F. Roesner, “How to safely augment reality:
Challenges and directions,” in Proceedings of the 17th International
Workshop on Mobile Computing Systems and Applications, ser. HotMo-
bile ’16. New York, NY, USA: ACM, 2016, pp. 45–50.

[17] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner, “Securing augmented
reality output,” in 2017 IEEE Symposium on Security and Privacy (SP),
May 2017, pp. 320–337.

[18] F. Sun, L. Xu, and Z. Su, “Client-side detection of xss worms by
monitoring payload propagation,” in European Symposium on Research
in Computer Security. Springer, 2009, pp. 539–554.

[19] S. Gupta and B. B. Gupta, “Cross-site scripting (xss) attacks and defense
mechanisms: classification and state-of-the-art,” International Journal of
System Assurance Engineering and Management, vol. 8, no. 1, pp. 512–
530, 2017.

[20] Y. Wang, Z. Li, and T. Guo, “Program slicing stored xss bugs in web
application,” in 2011 fifth international conference on theoretical aspects
of software engineering. IEEE, 2011, pp. 191–194.

[21] A. Avancini and M. Ceccato, “Security testing of web applications: A
search-based approach for cross-site scripting vulnerabilities,” in 2011
IEEE 11th international working conference on source code analysis
and manipulation. IEEE, 2011, pp. 85–94.

[22] A. Klein, “Dom based cross site scripting or xss of the third kind,”
http://www. webappsec. org/projects/articles/071105. shtml, 2005.

[23] W. Xu, F. Zhang, and S. Zhu, “Toward worm detection in online
social networks,” in Proceedings of the 26th Annual Computer Security
Applications Conference. ACM, 2010, pp. 11–20.

[24] W. H. Securtiy, “Cross site scripting worms and viruses, the impending
threat and the best defense,” 2006.

[25] V. B. Livshits and W. Cui, “Spectator: Detection and containment of
javascript worms.” in USENIX Annual Technical Conference, 2008, pp.
335–348.

[26] P. Herzog and M. Barceló, The Open Source Security Testing
Methodology Manual, 3rd ed., Institute for Security and Open
Methodologies (ISECOM), 12 2010, online. [Online]. Available:
http://www.isecom.org/mirror/OSSTMM.3.pdf

[27] K. Scarfone, M. Souppaya, A. Cody, and A. Orebaugh, SP 800-
115: Technical Guide to Information Security Testing and Assessment,
National Institute of Standards and Technology, 9 2008.

[28] H. H. Alsaadi, M. Aldwairi, M. Al Taei, M. AlBuainain, and
M. AlKubaisi, “Penetration and security of openssh remote secure shell
service on raspberry pi 2,” in 2018 9th IFIP International Conference
on New Technologies, Mobility and Security (NTMS), 2 2018, pp. 1–5.

[29] G. Dorai, S. Houshmand, and I. Baggili, “I know what you did
last summer: Your smart home internet of things and your iphone
forensically ratting you out,” in Proceedings of the 13th International
Conference on Availability, Reliability and Security, ser. ARES 2018.
New York, NY, USA: ACM, 2018, pp. 49:1–49:10.

[30] X. Zhang, I. Baggili, and F. Breitinger, “Breaking into the vault: Privacy,
security and forensic analysis of android vault applications,” Computers
& Security, vol. 70, pp. 516 – 531, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404817301529

[31] T. Haigh, F. Breitinger, and I. Baggili, “If i had a million cryptos:
Cryptowallet application analysis and a trojan proof-of-concept,” in
Digital Forensics and Cyber Crime, F. Breitinger and I. Baggili, Eds.
Cham: Springer International Publishing, 2019, pp. 45–65.

[32] M. Meucci, A. Muller et al., OWASP Testing Guide 4.0 - Release.
The OWASP Foundation, 9 2014, online. [Online]. Available:
https://www.owasp.org/index.php/OWASP Testing Project

[33] A. van der Stock, B. Glas, N. Smithline, and T. Gigler, OWASP Top
10 – 2017, The OWASP Foundation, 2017, online. [Online]. Available:
https://www.owasp.org/index.php/top10

[34] M. Vondráček, J. Pluskal, and O. Ryšavý, “Automation of MitM Attack
on Wi-Fi Networks,” in Digital Forensics and Cyber Crime, P. Matoušek
and M. Schmiedecker, Eds. Cham: Springer International Publishing,
2018, pp. 207–220.

[35] ——, “Automated Man-in-the-Middle Attack Against Wi-Fi Networks,”
Journal of Digital Forensics, Security and Law, vol. 13, no. 1, pp. 59–80,
2018. [Online]. Available: https://commons.erau.edu/jdfsl/vol13/iss1/9

[36] A. Cortesi, M. Hils, T. Kriechbaumer, and contributors, “mitmproxy: A
free and open source interactive HTTPS proxy,” 2010–, [Version 4.0].
[Online]. Available: https://mitmproxy.org/

[37] G. Meyer-Lee, J. Shang, and J. Wu, “Location-leaking through network
traffic in mobile augmented reality applications,” in 2018 IEEE 37th
International Performance Computing and Communications Conference
(IPCCC), 11 2018, pp. 1–8.

[38] S. D. Paola, “Advanced js deobfuscation via ast and partial evaluation
(google talk wrapup),” Minded Security Blog, 10 2015, online.
[Online]. Available: https://blog.mindedsecurity.com/2015/10/advanced-
js-deobfuscation-via-ast-and.html

[39] G. Heyes, “Executing non-alphanumeric javascript without parenthesis,”
PortSwigger Web Security Blog, PortSwigger Ltd., 7 2016,
online. [Online]. Available: https://portswigger.net/blog/executing-
non-alphanumeric-javascript-without-parenthesis

https://uploadvr.com/vr-steam-grew-2018/
https://www.forbes.com/sites/johnkoetsier/2018/04/30/virtual-reality-77-of-vr-users-want-more-social-engagement-67-use-weekly-28-use-daily/
https://www.forbes.com/sites/johnkoetsier/2018/04/30/virtual-reality-77-of-vr-users-want-more-social-engagement-67-use-weekly-28-use-daily/
https://www.forbes.com/sites/johnkoetsier/2018/04/30/virtual-reality-77-of-vr-users-want-more-social-engagement-67-use-weekly-28-use-daily/
https://www.facebook.com/spaces
https://www.facebook.com/spaces
https://altvr.com/
https://vtime.net/
https://www.vrchat.net/
https://bigscreenvr.com/press/
http://www.isecom.org/mirror/OSSTMM.3.pdf
http://www.sciencedirect.com/science/article/pii/S0167404817301529
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/top10
https://commons.erau.edu/jdfsl/vol13/iss1/9
https://mitmproxy.org/
https://blog.mindedsecurity.com/2015/10/advanced-js-deobfuscation-via-ast-and.html
https://blog.mindedsecurity.com/2015/10/advanced-js-deobfuscation-via-ast-and.html
https://portswigger.net/blog/executing-non-alphanumeric-javascript-without-parenthesis
https://portswigger.net/blog/executing-non-alphanumeric-javascript-without-parenthesis

14

[40] P. Palladino, “Brainfuck beware: Javascript is after you!” Blog Patricio
Palladino, 8 2012, online. [Online]. Available: http://patriciopalladino.
com/blog/2012/08/09/non-alphanumeric-javascript.html

[41] M. Mateas and N. Montfort, “A box, darkly: Obfuscation, weird lan-
guages, and code aesthetics,” in Proceedings of the 6th Digital Arts and
Culture Conference, IT University of Copenhagen, 2005, pp. 144–153.

[42] N. Montfort, “Obfuscated code,” Software Studies: A Lexicon, pp. 193–
199, 2008.

[43] M. Vondráček, “Security Analysis of Immersive Virtual Reality and Its
Implications,” Master’s thesis, Brno University of Technology, Faculty
of Information Technology, 2019.

http://patriciopalladino.com/blog/2012/08/09/non-alphanumeric-javascript.html
http://patriciopalladino.com/blog/2012/08/09/non-alphanumeric-javascript.html

	Introduction
	Related Work & Background Information
	Related Literature
	Background Information
	Bigscreen Application

	Research Questions
	Adversarial Model
	Methodology
	Apparatus
	Scenarios
	Security Analysis
	Reconnaissance – Phase I
	Laboratory Setup & Tool Sets – Phase IIa & IIb
	Security Analysis – Phase III
	Exploit Development – Phase IV
	Tool Construction – Phase V
	Testing – Phase VI

	Findings
	Novel Man-in-the-Room Attack
	Mitigations & Suggestions
	Bigscreen
	Safe data manipulation and proper data sanitization
	Secure authentication & authorisation
	Cautious handling of insecure API
	Encrypted communication
	Integrity checking
	Enforcing VR state sharing
	Brute force protection
	Confidential blacklist
	Removing development relics

	Unity Scripting API

	Discussion & Conclusion
	Future Work
	Appendix A: Scenarios Definition
	Passive stay in the lobby
	Created public room
	Created private room
	Private meeting
	Transition between rooms

	Appendix B: Testing Based on Scenarios
	Passive stay in the lobby
	Created public room
	Created private room
	Private meeting
	Transition between rooms

	Appendix C: Javascript Worm Example
	References

