
Traffic Extraction and Classification in Network
Forensics

Blind Copy and Blind Copy

Blind Copy Blind Copy, Blind Copy Blind Copy, Blind Copy
Blind Copy@Blind Copy.Blind Copy

BlindCopyBlindCopy

https://pluskal.github.io/AppIdent/

Abstract. Network traffic classification is essential for network moni-
toring, security analysis and also digital forensics. Accurate classification
can reduce the amount of information that needs to be analyzed during
the investigation. In this paper, we present a study that compares three
different algorithms that according to the literature offer high accuracy
and acceptable performance. These algorithms are evaluated on their
ability to identify traffic classes at application protocol and also net-
work application software levels. Based on experiments, Random forest
algorithm gives promising results.

Key words: network forensics, network traffic classification, statistical
protocol identification

1 Introduction

Network traffic classification is a useful technique for network monitoring, se-
curity analysis, and digital forensics. For digital forensics, correct classification
of network traffic significantly reduces the volume of data that needs to be in-
spected manually.

In digital forensics, file types can be identified by the extension or by ex-
amining the beginning of the file searching for so-called magic numbers. Also,
databases of hash values are used to identify known files. Identification of file
types and filtering known files helps to reduce an amount of data that needs
to be analyzed. Doing the same with network traffic is, however, more com-
plicated as each data transfer contains specific and temporary characteristics.
Traditional traffic classification identifies applications based on the used TCP
or UDP ports. Port-based classification is of limited accuracy because many
application use random or non standard ports. Advanced traffic classification
employs payload analysis, statistical methods, machine learning algorithms, and
hybrid approaches. Each of these techniques has advantages and drawbacks.
For instance, payload-based analysis accuracy for encrypted communication is
unacceptably low. Machine learning is the promising approach offering several
benefits. Methods does not need to rely on the content of packets. It is possible

Blind Copy Blind Copy
https://pluskal.github.io/AppIdent/

2 Blind Copy, Blind Copy.

to combine structural and behavioral features to increase detection accuracy.
Unsupervised methods can identify unknown network traffic.

The ML approach to traffic classification has been widely studied by many
researchers. Most of the works present methods that aim to classify the net-
work traffic according to service protocol used. In this paper, we present results
of experiments with the use of machine learning algorithms adapted to iden-
tify network applications. Network application identification gives more infor-
mation about the network traffic comparing to what can be understood from
identified application protocol. The HTTPS is often used for communication
between clients and servers. For instance, Google Drive, iTunes, and OneDrive
use HTTPS for data transfer. Providing information on recognized application
instead of the protocol can be useful for various application domains.

1.1 Current State

Machine learning algorithms for network traffic classification have been stud-
ied since 1990’s. The most utilized algorithms comprise of support vector ma-
chine [1], decision tree algorithms [2], and probabilistic [3] or statistical meth-
ods [4, 5] which are instances of supervised learning methods. In the case of
unsupervised learning the clustering approach, namely K-means algorithm [6],
enables to group the traffic by their significant properties. If the feature set is
properly selected, then ML methods can exceed 90% accuracy [7].

A survey of classification methods based on ML can be found in [8] and
another that includes more recent results in [7]. Methods of classification of en-
crypted traffic were reviewed in [9]. Most of the existing literature deals with
traffic classification as a tool for intelligent network filtering or security moni-
toring. While the traffic classification for network forensics stems from the same
ideas there are certain differences:

– Network forensics can be performed as an off-line analysis of captured data.
In this case, the accuracy is more important than performance. Thus a combi-
nation of several methods or application of slower but more accurate methods
can be considered.

– The investigator can deal and compensate incorrect outcomes by performing
the additional manual inspection of results.

– Classification is expected to be deterministic as the forensic principles require
that all results are verifiable.

– Classification methods can be tuned by the investigator and classification can
be repeated with different parameters sets.

While traffic classification is under intensive research for applications in net-
work monitoring or security analysis, significantly less research was done on
traffic discrimination for network forensics. Recently, Al Khater and Overill [10]
have proposed to investigate the use of different machine learning algorithms
to improve traffic classification methods for digital forensics. Foroushani and
Nur Zincir-Heywood [11] demonstrated the possibility to identify high-level ap-
plication behaviors from encrypted communication of several network services.

Traffic Extraction and Classification in Network Forensics 3

Dai [12] and Miskovic et al. [13] described a method for fingerprinting mobile ap-
plications from their communication. Erman et al. [14] explored flow-based clas-
sification approach and proposed a semi-supervised classification method that
can accommodate both known and unknown applications.

1.2 Contribution

In this paper, we overview the results of experiments with three feature-based
classification algorithms for separation of the normal traffic to unknown (possible
suspect) traffic. Based on the results available from the literature, we selected two
machine learning algorithms, in particular, Bayesian Network Classifier and Ran-
dom forests and compared them to a statistical protocol fingerprinting method.
The contribution of the paper aims at showing how classification algorithms can
provide valuable information for digital investigation by identifying application
protocols and in some cases also communicating applications.

1.3 Paper Organization

The paper is organized as follows: Section 2 shortly describes how traffic data is
collected and prepared for classification. Issues related to correct identification
of conversations and application messages are discussed. Section 3 presents pro-
posed features and the method for elimination statistically dependent features.
Three classification methods are then briefly outlined. Section 4 details the ex-
perimental environment, data sources and reviews the results. Paper is concluded
in section 5 by summing the results and suggesting directions for future work.

2 Data Collection and Preprocessing

The input to classification is a collection of conversations that are composed of
packets read from PCAP files. A conversation is defined by a 5-tuple consisting
of the IP address of the pair of hosts, the (transport) protocol type and the port
numbers used by the two hosts. For all conversations, we apply validation steps
to ensure that the available information is correct. Also, we attempt to identify
application messages to improve the accuracy of the classification.

2.1 Data Preparation and Cleaning

Classifying communication at the conversation level usually provides more in-
formation to the classifier. While the reassembling procedure is quite straight-
forward, some subtle issues can negatively affect the classification results:

– For TCP session some important control information may be missing, e.g.,
synchronization segments or finalization segments.

– For long running TCP conversation, the sequence number overflow problem
may arise.

4 Blind Copy, Blind Copy.

– Capture file may contain incorrect or inaccurate frame timestamps.
– Some TCP segments may be duplicated or missing.

Ignoring some of these issues may lead to missing conversations or inaccurate
traffic classification [15].

2.2 Application Message Segmentation

The segmentation provides for each conversation a group of application messages.
While this represents an additional processing step, it can help to increase the
accuracy of classification by identification application communication patterns.
It also eliminates remnants of network packet fragmentation at the Internet layer
and TCP retransmission at the transport layer. Packet fragmentation and TCP
retransmission are independent of application communication patterns and thus
can negatively affect the classification.

An application message is identified in the reassembled stream depending on
the transport protocol by the following rules:

– If a stream uses UDP transport protocol, then the entire payload of each UDP
datagram is considered as a single application message.

– For TCP transport protocol, messages are separated by segments that contain
PSH, RST, or FIN flags.

The rules are simple to implement, but for most of the applications, they give
an accurate approximation of the applications message identification.

2.3 Traffic Class Levels

In general, traffic classification can be with different granularity. According to
Khalife et al. [16] traffic classes range from coarse-grained to fine-grained levels
as follows:

1. Application type level represents a group of traffic of the same kind, e.g.,
game, browsing or VoIP.

2. Application protocol level identifies a concrete protocol, e.g., HTTP, SMTP,
or FTP;

3. Application software level determines a specific client or server program re-
lated to the traffic, e.g., HTTP-Firefox, HTTPs-Chrome.

4. Message level detects a specific message exchange within application com-
munication, e.g., e-mail delivery, Google search, or Skype call.

Fine-grained level classification represents the most valuable information.
However, it is also the most difficult to get this classification accurate. Our
study focuses on classification at application protocol and application software
levels.

Traffic Extraction and Classification in Network Forensics 5

3 Classification Methods

Based on the literature survey, we identified three different classification methods
that give promising results for traffic identification. As we aim at identifying
applications at conversation level, we have revised the usually utilized feature
sets [17, 5] to include additional information that characterizes conversations
and application message abstractions, e.g., message timing vs. packet timing,
response patterns, etc. In this section, we describe the selected feature set, the
elimination of redundant features, and briefly recall the principles of considered
classification algorithms.

3.1 Feature Set

The quality of a set of features influences the classification accuracy [18]. Com-
monly used features of traffic classification are related to significant aspects of
packet communication and network architecture. Port numbers, transport pro-
tocol type, starting the sequence of payload bytes, pattern occurrence, packet
length, and packet timing are often used. We identified a list of possible features.
The proposed list consisting of 92 items can be found in the reference implemen-
tation 1. To develop the optimal set of features for the classifier, we analyzed the
original list and selected statistically independent features. Table 1 enumerates
a reduced collection of features that were finally used in the experiments. Most
of the features describe the characteristics of flows rather than individual pack-
ets. Not relying on the signature or some specific patterns in the content of the
packets gives better results for encrypted or less structured traffic. Also, statis-
tical representation of the application traffic can help to discriminate between
different applications utilizing the same application protocol.

3.2 Correlated Features Elimination

Machine learning methods are very sensitive to the feature selection. Best perfor-
mance is obtained when features are orthogonal, i.e., when there is no correlation
among features [19]. There are several approaches how to calculate a correlation
between features, e.g., Pearson, Spearman, Kendall correlation formulas [20] or
covariance matrix [21]. The covariance matrix shows a correlation value between
the pair of features.

Using correlation matrix, we can automate feature selection process to in-
crease accuracy and eliminate features which demonstrate a significant corre-
lation. This process is parameterized by maximally allowed correlation that is
acceptable. By our measurements, more than 80% of the features that we origi-
nally proposed showed 0.5 and higher correlation. Such features were eliminated.
In Table 1, the first column shows the correlation value for a group of features.

1 https://github.com/pluskal/AppIdent/blob/gh-pages/Pages/allFeatures.pdf

https://github.com/pluskal/AppIdent/blob/gh-pages/Pages/allFeatures.pdf

6 Blind Copy, Blind Copy.

Correlation Feature for 0.1 t/v ratio Feature for 0.2 t/v ratio

BytePairsReoccuringDownFlow

DirectionChanges

First3BytesEqualDownFlow First3BytesEqualDownFlow

FirstBitPositionUpFlow FirstBitPositionUpFlow

FirstPayloadSize

MinInterArrivalTimeDownFlow

MinInterArrivalTimePacketsUpAnd DownFlow MinInterArrivalTimePacketsUpAnd DownFlow

MinPacketLengthDownFlow MinPacketLengthDownFlow

NumberOfBytesDownFlow

NumberOfPacketsUpFlow

PacketLengthDistributionDownFlow PacketLengthDistributionDownFlow

PacketLengthDistributionUpFlow

ThirdQuartileInterArrivalTimeUp

ByteFrequencyUpFlow

MaxSegmentSizeDown

MaxSegmentSizeUp

MinInterArrivalTimePacketsUpFlow

NumberOfBytesUpFlow

ThirdQuartileInterArrivalTimeDown

<0.25 PUSHPacketsDown PUSHPacketsDown

ThirdQuartileInterArrivalTimeDown

NumberOfBytesUpFlow

<0.3 FirstPayloadSize

ByteFrequencyUpFlow

MinPacketLengthUpFlow MinPacketLengthUpFlow

NumberOfPacketsPerTimeUp

DirectionChanges

BytePairsReoccuringDownFlow

<0.4 MeanPacketLengthUpFlow

<0.5 MeanPacketLengthUpFlow

Table 1: Enumeration of features remained after feature elimination on sample
data with 0.1 and 0.2 training to verification ratios (t/v). These feature sets are
used for classification with Bayesian and Random forests classifiers.

3.3 Statistical Protocol Identification

Statistical Protocol Identification (SPID) was originally developed by Erik
Hjemvik to be used with NetworkMiner tool2. The method performs application
protocol classification based on a database of protocol fingerprints. Protocol fin-
gerprints are computed in the learning phase. A feature set utilized by SPID is
called protocol attribute meters, and each item may represent a different kind
of information. Some items can be scalar values representing, e.g., payload data
size, the number of packets in the session, or port number. Other items can
be composite values, for instance, a tuple consisting of packet direction, packet
order, packet size, byte value frequency.

The SPID classifier computes the distance of the attribute to the actual data
of the analyzed conversation using Kullback-Leibler divergence. The best match-
ing protocol model is the one that has the smallest sum of KL-divergences of
all attributes. Kohnen et al. [5] developed a new version of the SPID algorithm
by incorporating other attributes to increase the accuracy of this method. The
method, utilized in our experiments referred as ESPI, is a version of Kohnen’s

2 http://www.netresec.com/?page=NetworkMiner

http://www.netresec.com/?page=NetworkMiner

Traffic Extraction and Classification in Network Forensics 7

SPID. Comparing to Kohen’s SPID methods, we use a different set of 92 fea-
tures and the algorithm for computing similarity of measured values to protocol
fingerprint.

Each feature is associated with function f to compute the divergence of a
measured value to the model values, the function g to compute the normalized
feature value from the actual measured value, the function w to define a weight
of the feature for the protocol fingerprint. Similarity is based on the computation
of Euclidian distance [22] of weighted divergences for individual features. The
classification stands for computing a distance of the actual flow represented by
attribute values x1, ..., xn to protocol fingerprint c, see Equation 1.

dx,c =

√√√√ n∑
i=0

(w·fi (g(xi) − ci))
2

(1)

A difference dx,cj for each protocol fingerprint cj is computed. The class of
the flow corresponds to the protocol k such that dx,ck = min(dx,c1 . . . dx,cm).

In comparison with ML methods, ESPI does not suffer overfitting related to
the use of correlated features because ESPI assigns weights on per feature basis.
This property makes ESPI easily extendable for classification of new protocols
and introduction of new features that are unique for those protocols but may be
correlated with other features for other protocols.

3.4 Bayesian Network Classifier

The algorithm that powers the Bayesian network classifier [23] stems from the
Bayes’ theorem, which defines the probability of an event considering conditions
related to the occurrence of the event. The classifier is composed of Bayesian
belief networks that are built during the learning phase. Recall that Bayesian
network is a directed acyclic graph and a set of conditional probability tables.
Nodes represent feature variables, and edges represent conditional dependencies.
Probability tables provide probability functions for nodes. The application pro-
tocol is identified by finding a node (or a set of nodes) that has for the given input
feature values the highest probability. The advantage of this classifier is that it
also computes the probability of which the conversation belongs to the identi-
fied class. This information may be useful for the examiner to decide whether to
analyze the traffic.

3.5 Random Forests Classifier

Random forest is, in a context of this paper, an ensemble method construct-
ing multiple C4.5 decision trees in training phase, used for classification in
verification phase where a mode of partial results is selected as the resultant
class [24]. This makes Random forests prone to overfitting [25]. Random forests
are parametrized by multiple variables, e.g., forest count, join, and training to
verification ratio. Optimal values used for these parameters can be found by a

8 Blind Copy, Blind Copy.

cross-validation and computation of an out-of-bag-error (OOB) to estimate the
performance of particular parameter combination. Because the algorithm com-
putes OOB error, there is no need to have separate verification data. Therefore,
the algorithm can be trained on the whole data set. Although, this approach
was proven to be computationally very expensive.

4 Experiments And Results

A set of experiments was conducted to evaluate properties of three classification
methods. An annotated data set was prepared using Microsoft Network Monitor
which provides application labels for most of the conversations. The data set
comprise of a regular network traffic of eight user stations running Windows
operating system. The captured traffic has the following characteristics3:

– PCAP file size: 19.5GB
– PCAP Format: Microsoft NetMon 2.x
– Capture duration: 119h
– Number of packets: 27616138
– Number of L7 conversations: 269459

The PCAP file was processed using an engine of Netfox Detective [15]. This
engine tracked application conversations (L7), reassembled transport protocol
streams to create an approximation of application messages, and served as a
middleware to access captured data. Features were extracted and stored as a
separate binary file. ESPID method was implemented from scratch. Random
Forest and Bayesian network classifier were implemented using Accord.NET li-
brary4 of machine learning algorithms.

4.1 The Scheme of Experiments

Experiments with all classification algorithms followed the same procedure. This
procedure consists of the following steps:

1. The data source was split into two disjoint data sets according to the par-
ticular case. One data set was used for learning and the other was used for
evaluation.

2. All feature vectors were annotated with label depending on the level of clas-
sification. The label was represented as:
a) a tuple containing a transport protocol type, destination transport layer

port or manually assigned label, and application process info, for identi-
fication of applications, e.g., tcp http skypeexe.

b) a tuple containing an destination transport protocol type, transport layer
port or manually assigned label, for identification of application protocols,
e.g., tcp http.

3 https://github.com/pluskal/AppIdent/blob/gh-pages/Pages/captureStats.pdf
4 http://accord-framework.net/

https://github.com/pluskal/AppIdent/blob/gh-pages/Pages/captureStats.pdf
http://accord-framework.net/

Traffic Extraction and Classification in Network Forensics 9

3. [Training phase] Classifier was created and trained using the learning data
set:
a) Enhance Statistical Protocol Identification – For each group, an applica-

tion protocol model was computed using the g function.
b) Bayesian network classifier – For each group, a Bayesian network clas-

sifier was trained.
c) Random forests – Optimal parameters leading to the most accurate

model were computed. A cross-validation phase was used to determine
the best model.

4. [Verification phase] Created classifiers were used to identify a class label for
each conversation from the validation data set:
a) Multi-label results

i. Enhance Statistical Protocol Identification - Each feature vector
symbolizing an L7 verification conversation was compared to each
application protocol model using a Euclidean distance.

ii. Bayesian network classifier – Each Bayesian classifier yielded a prob-
ability of which an L7 verification conversation belonged to the class
represented by that classifier.

iii. The classification resulted in a set of distances or probabilities. The
set was ordered, and the protocol fingerprint with the smallest dis-
tance or the highest probability was selected as a label.

b) Single-label results
i. Random forests – Classifier yielded a resulting label.

5. The label was compared to the annotation, and statistical properties of the
classification were computed.

4.2 The Summary of Results

The first goal was to compare results yielded by machine learning and statistical
methods that are based on completely different bases but share the same feature
set. The second goal was to observe a dependency between a size of the training
set and a feature elimination ratio to find the best-suited combination for clas-
sification of application protocols and network applications. The third goal was
to prove that using application classifiers we are also able to classify the traffic
with respect to network applications.

Figure 1 and Figure 2 summarize best results of classification. Only a top 20
most accurately identified classes were selected for presentation in this paper.
Other classes are presented as aggregated statistics in Table 35. Results achieved
by the different methods are evaluated using the F-Measure, which is also known
as the balanced F-score [19]. This single score stands for the harmonic mean of
precision and recall, and is computed by Equation 2.

5 The complete results for protocol classification can be found at https://github.

com/pluskal/AppIdent/blob/gh-pages/Pages/comparisonPA.pdf or for applica-

tion identification at https://github.com/pluskal/AppIdent/blob/gh-pages/Pages/

comparisonPAAppTags.pdf

https://github.com/pluskal/AppIdent/blob/gh-pages/Pages/comparisonPA.pdf
https://github.com/pluskal/AppIdent/blob/gh-pages/Pages/comparisonPA.pdf
https://github.com/pluskal/AppIdent/blob/gh-pages/Pages/comparisonPAAppTags.pdf
https://github.com/pluskal/AppIdent/blob/gh-pages/Pages/comparisonPAAppTags.pdf

10 Blind Copy, Blind Copy.

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00

B1 B2 B3 ESPI1 RF1 RF2

tcp_pop3tlsssl tcp_teamviewer tcp_icslap udp_spotify tcp_netbiosss

udp_wsd udp_mdns udp_https udp_dhcps udp_teamviewer

udp_onlinegames udp_stun tcp_http udp_dns tcp_https

udp_ssdp udp_llmnr udp_natpmp udp_netbiosdgm udp_sapv1

Fig. 1: Performance of application protocol classifiers using F-measure. Abbre-
viations explained in Table 2.

Method Abbreviation Training to verification ration Feature selection ratio

Bayesian classifier

B1 0.1 0.3
B2 0.2 0.5
B3 0.5 0.5
B4 0.1 0.2
B5 0.2 0.25
B6 0.5 0.25

ESPI
ESPI 1 0.7 1
ESPI 2 0.2 1

Random forests
RF1 0.1 0.4
RF2 0.2 0.4
RF3 0.2 0.5

Table 2: Configuration of classification methods.

F1 = 2 × precision× recall

precision+ recall
(2)

GreaterOrEqual

F-measure
B1 B2 B3 ESPI1 RF1 RF2 B4 B5 B6 ESPI 2 RF3

0 58 58 58 58 58 58 93 93 93 93 93

0,1 21 19 23 33 47 51 22 25 36 43 83

0,5 14 14 22 28 37 41 19 22 29 31 63

0,6 13 14 22 26 36 39 16 20 27 27 58

0,7 12 13 21 24 34 37 15 17 26 22 47

0,8 11 12 19 21 32 36 13 13 26 20 41

0,9 8 12 18 17 26 31 7 12 15 17 28

Table 3: Summary of classification methods’ performance. Numbers show, how
many classes were classified with equal or greater F-measure.

Traffic Extraction and Classification in Network Forensics 11

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00

B4 B5 B6 ESPI 2 RF3

tcp_smtptlsssl-thunderbirdexe tcp_https-firefoxexe tcp_https-svchostexe

tcp_http-steamwebhelperexe tcp_icslap-system tcp_https-onedriveexe

tcp_https-skypeexe tcp_http-utorrentexe tcp_http-teamviewer_serviceexe

tcp_skype-skypeexe tcp_https-itunesexe tcp_https-utorrentexe

tcp_dns-system tcp_ssh-winscpexe tcp_pop3tlsssl-thunderbirdexe

tcp_http-spotifyexe tcp_tripe-spotifyexe tcp_jabberssl-apsdaemonexe

tcp_jabber-pidginexe tcp_netbiosss-system

Fig. 2: Performance of application classifiers using F-measure. Abbreviations
explained in Table 2.

Figure 1 visualizes the identification of application protocols. We can observe
that both Random forest classifiers (RF1, RF2) are very accurate. Bayesian clas-
sifier (B3) also performs very well but it requires a larger training set with ratio
0.5 and more features, see Table 2. The time needed for various steps, such as fea-
ture selection, data loading, training, and classification, was also measured and
is presented in Figure 3 along with a performance comparison of each evaluated
method.

Figure 2 provides a visual representation of results for the classification of
applications. It can be seen that Random Forest classifier again provides the
best results. In this case, Bayesian classifier was outperformed by ESPI which
also shown the best trade-off between performance and accuracy.

To resolve an issue with an application protocol ambiguity when clas-
sifying traffic that cannot be classified on network applications level, i.e.,
tcp http skypeexe is classified a tcp http firefoxexe, and vice-versa. We propose to
apply a hierarchical clustering based on ESPI protocol fingerprints. The investi-
gator can infer the actual application protocol classes by visual cluster analysis.
This method was also used to perform manual corrections in the dataset.

5 Conclusions

We have presented a study on the usage of protocol classifiers for separating reg-
ular traffic generated by known networking applications and unknown possibly
suspect traffic. The approach described in this paper focuses on the identification
of network applications in addition to the classification of application protocols.
Because of this, the input to the classification contains features that characterize

12 Blind Copy, Blind Copy.

AppProtocol B1 B2 B3 ESPI1 RF1 RF2

Time [h] 1:01 1:08 1:13 0:50 2:41 13:21

tcp_pop3tlsssl 0,00 0,00 0,00 0,00 0,92 0,97

tcp_teamviewer 0,10 0,49 0,94 0,94 0,94 0,97

tcp_icslap 0,29 0,97 0,99 0,27 0,96 0,98

udp_spotify 0,99 0,99 1,00 0,15 0,99 0,99

tcp_netbiosss 0,00 0,00 1,00 0,97 0,99 0,99

udp_wsd 0,00 0,08 0,98 0,98 0,99 0,99

udp_mdns 0,00 0,00 0,91 0,92 1,00 0,99

udp_https 0,88 0,95 0,95 0,92 0,99 0,99

udp_dhcps 0,83 0,91 0,98 0,99 0,99 0,99

udp_teamviewer 0,00 0,00 0,00 0,66 0,93 0,99

udp_onlinegames 0,98 0,98 0,99 0,04 0,99 0,99

udp_stun 0,00 0,39 0,99 0,96 1,00 1,00

tcp_http 0,97 0,99 1,00 0,96 1,00 1,00

udp_dns 0,99 0,99 0,99 0,93 1,00 1,00

tcp_https 1,00 1,00 1,00 0,99 1,00 1,00

udp_ssdp 0,96 0,97 0,98 0,00 1,00 1,00

udp_llmnr 0,99 0,99 0,99 1,00 1,00 1,00

udp_natpmp 0,00 0,00 0,00 0,96 0,88 1,00

udp_netbiosdgm 0,98 0,98 0,95 0,94 1,00 1,00

udp_sapv1 0,00 0,00 0,00 0,75 1,00 1,00

(a) Application protocol classifiers

AppProtocol B4 B5 B6 ESPI 2 RF3

Time [h] 0:53 1:03 2:00 1:11 23:20

tcp_smtptlsssl-thunderbirdexe 0,00 0,00 0,00 0,03 0,75

tcp_https-firefoxexe 0,88 0,93 0,91 0,41 0,77

tcp_https-svchostexe 0,00 0,00 0,00 0,00 0,77

tcp_http-steamwebhelperexe 0,00 0,00 0,38 0,52 0,79

tcp_icslap-system 0,00 0,00 0,00 0,00 0,81

tcp_https-onedriveexe 0,00 0,03 0,82 0,00 0,81

tcp_https-skypeexe 0,86 0,99 0,87 0,53 0,82

tcp_http-utorrentexe 0,01 0,11 0,32 0,01 0,83

tcp_http-teamviewer_serviceexe 0,00 0,00 0,00 0,87 0,86

tcp_skype-skypeexe 0,27 0,24 0,00 0,96 0,87

tcp_https-itunesexe 0,86 0,89 0,89 0,65 0,87

tcp_https-utorrentexe 0,00 0,00 0,00 0,00 0,89

tcp_dns-system 0,00 0,00 0,00 0,97 0,89

tcp_ssh-winscpexe 0,00 0,00 0,00 0,51 0,91

tcp_pop3tlsssl-thunderbirdexe 0,00 0,00 0,00 0,00 0,92

tcp_http-spotifyexe 0,93 0,91 0,93 0,90 0,93

tcp_tripe-spotifyexe 0,00 0,00 0,92 0,91 0,94

tcp_jabberssl-apsdaemonexe 0,00 0,72 0,81 0,91 0,95

tcp_jabber-pidginexe 0,00 0,00 0,00 0,97 0,97

tcp_netbiosss-system 0,00 0,00 0,90 0,44 0,99

(b) Application classifiers

Fig. 3: Comparison of top 20 classifier’s performance. Abbreviations explained
in Table 2.

application behavior, such as message timing, content length, TCP’s PUSH flags
usage, etc. The presented results suggest the following conclusions:

– The particular type of applications can be classified with high confidence. For
instance, NetBIOS service or DNS were identified accurately. Also, several
common applications that use HTTP(s) application protocol were identified.
Similarly, it is possible to distinguish the communication traces of OneDrive,
Skype, iTunes, Spotify, Steam or µTorrent clients although all of them use the
same application protocol (HTTPS).

– In our experiments, Random forest classifier gives the best results. It is not sur-
prising and it agrees with conclusions of other researchers experimenting with
different ML algorithms for traffic classification, e.g. [26] or [27]. In addition to
traffic classification, we focused on distinguishing communicating applications
using the same protocol. In this case, Random forest method demonstrated
its ability to identify most of the applications correctly.

Further research should be conducted in different directions, namely:

– Systematical analysis of feature sets to improve the accuracy and robustness
of classification methods. Classification accuracy is mainly determined by the
quality of selected features. In the presented work, we have proposed features
based on previous observations and intuition rather than applying a systematic
approach.

– Further research on hierarchical classification. Hierarchical classifiers may pro-
vide viable information on the traffic being examined. Sometimes it is not
possible to accurately determine the network application, but the classifiers
can identify application protocol with high confidence. Also, extending this

Traffic Extraction and Classification in Network Forensics 13

approach to other levels, e.g., message level, represents an added value for
network forensics.

– The combination of the different classifiers [28] to increase the confidence of
the results. While a single method can better fit the classification of a certain
kind of application traffic, by combining several classifiers, we may get more
accurate overall classification score.

– Adaptation of semi-supervised classification method [29] that enables to cre-
ate models from partially labeled data. Because network forensics includes a
significant amount of human labor, this can be used to guide the classifier
during the model construction stage.

– Further experimentation to extend the classification models of the classifiers
and evaluate the properties of other data sets. Considered classification meth-
ods depend on the accurately created models. These models require analyzing
an amount of traffic that contains enough samples to construct application
protocol fingerprints correctly.

Reference implementation of classification algorithms is available under the
MIT license on GitHub: https://pluskal.github.io/AppIdent/.

References

1. G. Gómez Sena and P. Belzarena, “Early traffic classification using support vector
machines,” in Proceedings of the 5th International Latin American Networking
Conference, pp. 60–66, ACM, 2009.

2. Y. Luo, K. Xiang, and S. Li, “Acceleration of decision tree searching for ip traffic
classification,” in Proceedings of the 4th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, pp. 40–49, ACM, 2008.

3. E. Bursztein, “Probabilistic identification for hard to classify protocol,” in IFIP
International Workshop on Information Security Theory and Practices, pp. 49–63,
Springer, 2008.

4. E. Hjelmvik, “The spid algorithm-statistical protocol identification,” Gävle, Swe-
den, October, 2008.

5. C. Köhnen, C. Überall, F. Adamsky, V. Rakocevic, M. Rajarajan, and R. Jäger,
“Enhancements to statistical protocol identification (spid) for self-organised qos in
lans.,” in ICCCN, pp. 1–6, 2010.

6. A. Finamore, M. Mellia, and M. Meo, “Mining unclassified traffic using automatic
clustering techniques,” in Lecture Notes in Computer Science, vol. 6613 LNCS,
pp. 150–163, 2011.

7. N. Namdev, S. Agrawal, and S. Silkari, “Recent advancement in machine learning
based internet traffic classification,” Procedia Computer Science, vol. 60, pp. 784–
791, 2015.

8. T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic clas-
sification using machine learning,” IEEE Communications Surveys & Tutorials,
vol. 10, no. 4, pp. 56–76, 2008.

9. P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A survey of methods for en-
crypted traffic classification and analysis,” International Journal of Network Man-
agement, vol. 25, no. 5, pp. 355–374, 2015.

https://pluskal.github.io/AppIdent/

14 Blind Copy, Blind Copy.

10. N. Al Khater and R. E. Overill, “Forensic network traffic analysis,” in Proceedings
of The Second International Conference on Digital Security and Forensics, Cape
Town, South Africa, 2015.

11. V. A. Foroushani and A. N. Zincir-Heywood, “Investigating application behavior
in network traffic traces,” in Computational Intelligence for Security and Defense
Applications (CISDA), 2013 IEEE Symposium on, pp. 72–79, IEEE, 2013.

12. S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song, “NetworkProfiler: To-
wards automatic fingerprinting of Android apps,” Proceedings - IEEE INFOCOM,
pp. 809–817, 2013.

13. S. Miskovic, G. M. Lee, Y. Liao, and M. Baldi, “AppPrint: Automatic fingerprint-
ing of mobile applications in network traffic,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 8995, pp. 57–69, Springer Verlag, 2015.

14. J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Offline/realtime
traffic classification using semi-supervised learning,” Performance Evaluation,
vol. 64, no. 9-12, pp. 1194–1213, 2007.

15. P. Matoušek, J. Pluskal, O. Ryšavý, V. Veselý, M. Kmeť, F. Karṕı̌sek, and
M. Vymlátil, “Advanced techniques for reconstruction of incomplete network
data,” Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, vol. 2015, no. 157, pp. 69–84, 2015.

16. J. Khalife, A. Hajjar, and J. Diaz-Verdejo, “A multilevel taxonomy and require-
ments for an optimal traffic-classification model,” International Journal of Network
Management, vol. 24, no. 2, pp. 101–120, 2014.

17. A. Moore, D. Zuev, and M. Crogan, “Discriminators for use in flow-based classifi-
cation,” tech. rep., 2013.

18. L. Zhen and L. Qiong, “A new feature selection method for internet traffic classi-
fication using ml,” Physics Procedia, vol. 33, pp. 1338–1345, 2012.

19. J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 3rd ed., 2011.

20. I. Žežula, “On multivariate gaussian copulas,” Journal of Statistical Planning and
Inference, vol. 139, no. 11, pp. 3942–3946, 2009.

21. I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”
Journal of machine learning research, vol. 3, no. Mar, pp. 1157–1182, 2003.

22. M. M. Deza and E. Deza, “Encyclopedia of distances,” in Encyclopedia of Dis-
tances, pp. 1–583, Springer, 2009.

23. N. Friedman, D. Geiger, M. Goldszmidt, G. Provan, P. Langley, and P. Smyth,
“Bayesian Network Classifiers,” Machine Learning, vol. 29, pp. 131–163, 1997.

24. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.
25. J. Friedman, T. Hastie, and R. Tibshirani, “The elements of statistical learning:

Data mining, inference, and prediction,” Springer Series in Statistics, 2009.
26. J. Li, S. Zhang, Y. Xuan, and Y. Sun, “Identifying skype traffic by random forest,”

in 2007 International Conference on Wireless Communications, Networking and
Mobile Computing, WiCOM 2007, pp. 2841–2844, 2007.

27. Y. Wang and S. Z. Yu, “Machine learned real-time traffic classifiers,” in Proceed-
ings - 2008 2nd International Symposium on Intelligent Information Technology
Application, IITA 2008, vol. 3, pp. 449–454, 2008.

28. J. Kittler, “Combining classifiers: A theoretical framework,” Pattern analysis and
Applications, vol. 1, no. 1, pp. 18–27, 1998.

29. J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Offline/realtime
traffic classification using semi-supervised learning,” Performance Evaluation,
vol. 64, no. 9, pp. 1194–1213, 2007.

	Traffic Extraction and Classification in Network Forensics
	Blind Copy, Blind Copy.

