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Abstract. Therapeutic ultrasound plays an increasing role in dealing
with oncological diseases, drug delivery and neurostimulation. To maxi-
mize the treatment outcome, thorough pre-operative planning using com-
plex numerical models considering patient anatomy is crucial. From the
computational point of view, the treatment planning can be seen as the
execution of a complex workflow consisting of many different tasks with
various computational requirements on a remote cluster or in cloud. Since
these resources are precious, workflow scheduling plays an important part
in the whole process.

This paper describes an extended version of the k-Dispatch workflow
management system that uses historical performance data collected on
similar workflows to choose suitable amount of computational resources
and estimates execution time and cost of particular tasks. This paper
also introduces necessary extensions to the Alea cluster simulator that
enable the estimation of the queuing and total execution time of the
whole workflow. The conjunction of both systems then allows for fine-
grain optimization of the workflow execution parameters with respect to
the current cluster utilization. The experimental results show that this
approach is able to reduce the computational time by 26%.
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1 Introduction

The use of ultrasound as a diagnostic imaging tool is well-known, particularly
during pregnancy where ultrasound is used to create pictures of developing
babies. In recent years, a growing number of therapeutic applications of ultra-
sound have also been demonstrated [17]. The goal of therapeutic ultrasound is
to modify the function or structure of biological tissue in some way rather than
produce an anatomical image. This is possible because the mechanical vibrations
caused by ultrasound waves can affect tissue in different ways, for example, by
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causing the tissue to heat up or by generating internal forces that can agitate the
cells or tissue scaffolding. These ultrasound bioeffects offer enormous potential
to develop new ways to treat major diseases. In the last few years, clinical trials
of different ultrasound therapies have demonstrated the ability of ultrasound to
destroy cells through rapid heating for the treatment of cancer and neurologi-
cal disorders, target the delivery of anticancer drugs, stimulate or modulate the
excitability of neurons, and temporarily open the blood-brain barrier to allow
drugs to be delivered more effectively [12]. These treatments are all completely
noninvasive and have the potential to significantly improve patient outcomes.

The fundamental challenge shared by all applications of therapeutic ultra-
sound is that the ultrasound energy must be delivered accurately, safely, and
noninvasively to the target region within the body identified by the doctor. This
is difficult because bones and other tissue interfaces can severely distort the shape
of the ultrasound beam. In principle, it is possible to predict and correct for these
distortions using models of how ultrasound waves travel through the body. How-
ever, the underlying physics is complex and typically must consider nonlinear
wave propagation through absorbing media with spatially varying material prop-
erties. Simple formulas do not exist for this scenario, so models used for studying
therapeutic ultrasound are instead based on the numerical solution of the wave
equation (or the corresponding constitutive equations) [19].

The k-Wave toolbox designed for the time-domain simulation of acoustic
waves in biomedical materials has become very popular in the international
ultrasonic community [18]. Nevertheless, modelling ultrasound treatments using
this toolbox requires very complex and intensive computations that generally
cannot be satisfied by desktop computers or small servers [6]. It is thus essential
to offload the computational work to cloud or HPC clusters. Unfortunately,
using these facilities and composing the processing workflow representing the
treatment is complex even for experienced developers. Therefore, it is crucial to
offer clinical end-users a middleware layer that features a simple interface (e.g.,
web page, medical GUI, etc.) to upload treatment setups with related data and
automate the execution. This middleware layer is implemented by our software
package called k-Dispatch [9].

k-Dispatch, however, offers much more than simple job submission with semi-
automated execution and monitoring such as HTCondor [8] or Pegasus [3]. k-
Dispatch additionally provides a low level automatization by selecting suitable
execution parameters specifying the amount of compute resources and estimates
required execution time for particular tasks. This is enabled by a fixed set of
medically certified binaries serving as building blocks for user’s workflows, and
collected performance data updated after every successful run. Based on the task
input data, k-Dispatch searches the performance database to estimate scaling of
particular binaries on the fly, and tune the execution parameters to minimize
execution time and/or computational cost. Nevertheless, since the computational
resources are shared by multiple users and workflows, the queuing times and user
interference may depreciate the execution plan.
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Therefore, this paper deals with the extension of the Alea cluster simula-
tor [10] to estimate the workflow makespan, i.e., the overall execution time
including the queuing times as well as the computational cost for complex
biomedical ultrasound workflows. For every workflow, k-Dispatch prepares a can-
didate set of execution parameters and passes them to Alea which simulates the
workflow execution with respect to the cluster parameters, job scheduling system
setup, and background workload.

This paper is organized as follows. In Sect. 2, the considered workflow schedul-
ing problem is discussed thoroughly. Section 3 describes the Alea simulator
and its new workflow-related functionality. Next, Sect. 4 demonstrates the newly
developed simulation capabilities which are crucial for the k-Dispatch’s schedul-
ing module when analyzing the quality of considered workflow execution plan(s).
The paper is concluded and the future work is discussed in Sect. 5.

2 Problem Description

The k-Dispatch’s mission is to enable fully automated offloading of biomedical
ultrasound workflows built on the top of the acoustic k-Wave toolbox to the
HPC and cloud environment. These workflows are used for pre-operative treat-
ment planning based on the patient specific images to maximize the treatment
outcome. Every treatment plan consists of many tasks carrying out data pro-
cessing, ultrasound sonications, and thermal and tissue model evaluations. Their
orchestration is encoded in the form of a directed acyclic graph (DAG) describ-
ing the data dependency and precedence relations [14]. Every task is evaluated
by an appropriate piece of software included in the k-Wave toolbox. The most
time consuming ultrasound tasks can be executed by a variety of simulation
codes optimized for particular hardware platform including shared memory sys-
tems, single Nvidia GPU, and distributed memory CPU and GPU clusters. Each
binary is suitable for a different simulation size and complexity and has associ-
ated a different simulation cost. The shared memory/GPU versions can be used
for treatment planning in small volumes such as prostate, while the distributed
versions are suitable for large treatments in the brain, liver or kidney.

Working within the medical environment implies all software must undergo
a strict regulatory and certification process. It is thus not possible for users
to use their own binaries. Instead, only authorized personnel are allowed to
deploy the simulation binaries within a strictly controlled environment, e.g.,
inside Singularity [7] or Docker [13] containers. The clinical users are, of course,
allowed to compose different workflows from predefined modules, change the
number of sonications, their parameters or upload different patient images.

These restrictions, on the other hand, open great opportunity for automated
performance tuning and resource allocation. Since the binaries are fixed, their
execution can be monitored, and the performance data collected and analysed
for future use. k-Dispatch maintains a complex performance database including
information about every successful task containing binary name, cluster name,
queue name, amount of resources, simulation medium size and properties, wall
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clock time and computational cost. Once a new ultrasound workflow is received,
k-Dispatch decodes individual tasks and assigns them suitable binaries, appro-
priate resources, and estimates the wall clock time. Then, the tasks are handed
over to the cluster job scheduler that is responsible for their execution.

The optimizations of execution parameters help minimizing the computa-
tional cost and/or the execution time of individual tasks. However, since every
workflow contains many tasks and there are usually multiple workflows being
simultaneously executed, the isolated optimization of individual tasks may lead
to poor cluster utilization or long queuing times. It is necessary to focus on
bigger picture and take into account the dependencies between tasks of (multi-
ple) DAGs. However, the optimization complexity can become exponential [15].
Therefore, there is a need for heuristics that include fast cluster simulations to
evaluate the overall execution time of all workflows currently in the system. This
information provides the feedback to the planning logic to adjust the amount of
resources for particular tasks.

2.1 Workflows and Infrastructure

There are many workflow templates supported by k-Dispatch [9]. Figure 1 shows
an intracranial neuromodulation workflow used for treatment planning of essen-
tial tremor and Parkinson’s disease procedures. The purpose of this workflow
is to verify the ultrasound hits the desired target but does not rise the tissue
temperature above safety levels.

The workflow starts with the aberration correction pre-processor converting
the treatment parameters and patient data into input files for the following
ultrasound simulations. This task is usually simple and only employs a single
compute node for a couple of minutes per sonication. The total execution time
thus increases with the number of sonications (N) being executed (see the first
line in Table 1). Next, a number of independent aberration correction simulations
is executed. For this particular example, an ultrasound transducer with a driving
frequency of 550 kHz, and a medium of 25 cm x 29 cm x 19 cm is used.

Table 1. Execution time and amount of resources for particular tasks within the
neurostimulation workflow measured on the Anselm Supercomputer. The number of
sonications (denoted by N) influences the total execution time.

Code type Number of nodes | Execution time
Aberration correction pre-processor |1 400 4+ 250 - N [s]
Aberration correction simulation 1-16 < 34.31,4.96 > [h]
Aberration correction post-processor | 1 115+ 95- N [§]
Forward planning pre-processor 1 650 + 310 - N [s]
Forward planning simulation 1-16 < 30.90,4.72 > [h]
Forward planning post-processor 1 105+ 60 - N [s]
Thermal simulation 1 304720 N [s]
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Fig. 1. Typical neurostimulation simulation workflow using the reverse focusing for
aberration corrections. After pre-processing, reverse ultrasound propagation simulation
from particular targets are executed. After aberration correction, forward ultrasound
simulations are executed to calculate energy deposition. Finally, a thermal simulation
is executed to estimate overall heat deposition and temperature rise in the tissue.

A simulation of such a size can be executed by the distributed CPU code running
on 1 to 16 nodes. The number of sonications is usually between 1 and 32. After
all aberration correction simulations have completed, the aberration correction
post-processor joins the results from the previous step and derives corrected
transducer signals. The forward planning pre-processor consequently generates
new ultrasound simulation files. Both these tasks require a single node only. The
forward planning simulations use the same code as the aberration correction
simulations but with different driving signal. The execution times are therefore
very similar. This stage is closed by the forward planning post-processors, which
collects the heat deposition from particular sonications. Again, a single node is
sufficient for this task. Finally, the thermal simulation is executed to calculate
the temperature rise in the brain and evaluate the treatment outcome. This code
uses a single simulation node only.

The target infrastructure used for the evaluation of the planning capabili-
ties is based on a 16 node partition of the Anselm supercomputer run by the
IT4Innovations National Supercomputing Centre'. Each node is equipped with
two 8-core Sandy Bridge processors, 64 GB RAM and 40 GB InfiniBand connec-
tion. The supercomputer is managed by the PBS Pro scheduler with a backfilling
job scheduling.

! https://docs.it4i.cz/anselm /compute-nodes/.
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2.2 Optimization Criteria

In general, k-Dispatch aims to find the best execution parameters for particular
tasks to minimize the overall execution time, computational cost and queuing
times. This is achieved by using the database maintaining information about
previously completed tasks that allows us to approximate execution time and
amount of resources for new workflows, and cluster simulations that evaluate
queuing times for given execution parameters.

The optimization criteria can be minimized independently using a multi-
objective approaches to create a Pareto front, or aggregated into a single criterion
by associated weights. To limit the time complexity of the optimization process,
the following aggregated criteria f is used:

f=wix(t+q) +wexc (1)

where w; and w, are the weights promoting the execution time and computa-
tion cost, respectively, ¢ is the wall clock execution time of all tasks, ¢ is the
aggregated queuing time, and c is the overall computation cost. Five different
combinations of the weights are evaluated in this paper:

— wy = 1 A w, = 0 minimizing execution time but ignoring cost,

— w; = 0 Aw, = 1 minimizing execution cost but ignoring time

— wy = 0.5 AN w, = 0.5 looking for a trade-off between execution time and cost,
— wy = 0.7 N w, = 0.3 preferring execution time to cost,

— wy = 0.3 AN w, = 0.7 preferring execution cost to time.

2.3 Execution Parameters Selection

Before the workflow is submitted to the cluster, the execution parameters for
particular tasks have to be set. For this purpose, k-Dispatch employs four mod-
ules: (1) Optimizer that employs a simple hill climbing algorithm traversing the
search space of promising execution parameters, (2) Interpolator that provides
estimations of execution time and cost for given tasks and their execution param-
eters, (3) Simulator that evaluates the queuing times and calculates the overall
execution time of the complete workflow, see Eq. (1), and (4) Collector that
updates the performance database after the workflow execution.

Let us start with Interpolator which is supposed to estimate the execution
time and cost for a given task and execution parameters provided by Optimizer.
This module searches the performance database for similar tasks. If there is a
direct match, i.e., a task of the same type and size has already been executed, the
records are filtered by the age and sorted according to the execution parameters
used. If there are multiple records for the same execution parameters, the median
value is taken. Consequently, a strong scaling plot is constructed, see Fig. 2. From
this plot, it is straightforward to estimate the execution time and cost for given
execution parameters (number of nodes in this case). If some values are missing,
e.g., Optimizer asks about an odd number of compute nodes, the execution
time and cost are interpolated. If there is not a direct match, which indicates
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Fig. 2. Strong scaling of the (a) execution time and (b) execution cost for aberration
correction and forward planning simulations. The anomalies in the plots are caused by
unbalanced work distribution over compute nodes.

such a task has not been executed before, a dual interpolation is performed.
Interpolator searches all tasks of similar size, constructs multiple scaling plots,
and interpolates between them. If the interpolation fails due to oscillations of the
interpolation polynomial or a low number of records found, a default wall clock
time with the associated cost are returned. This is, however, a very rare situation,
since the more tasks get executed, the more records are in the database, and the
more precise interpolations are.

Once the execution parameters have been set for all tasks, the workflow sched-
ule is handed over to Simulator. Although many job schedulers offer some kind
of queuing time estimation, the number of such requests is very limited, e.g., one
per 5 min. Therefore, the actual state of the cluster is downloaded and fed into
the Alea simulator. After the evaluation, the overall execution time (makespan)
is calculated as the sum of the estimated execution and queuing times over all
tasks. Since the queuing times are not included in the execution cost, the simula-
tor only returns the overall time. Let us note that on a real system, the execution
times of particular tasks may slightly vary due to cluster workload (network and
I/O congestion, varying temperature and clock frequency between nodes, etc.).
These oscillations are, however, neglected since being usually below 5%, and
if there is a significant transient performance drop, the k-Dispatch monitoring
module detects such an anomaly and terminates affected tasks.

Optimizer tries to select appropriate execution parameters to minimize the
aggregated criteria for the whole workflow, see Fig. 3. The parameters of the
tasks may be initialized randomly, using the recently best known values, or by
individual optimization of each task. In order to search the space, the execution
parameters are slightly perturbed in every iteration, the compute time and cost
estimated by Interpolator, and the makespan evaluated by Simulator. After a
predefined number of iterations, the best workflow parameters are used to submit
the workflow to the cluster. In order to broaden the performance database, there
is a small probability that Optimizer selects such execution parameters that have
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not been tried before. This helps adapt the workflow schedules to changes in
the cluster software configuration, hardware upgrades, long-term performance
anomalies, etc. After the workflow has been executed by the cluster, the amount
of resources used is stored in the performance database along with the actual
execution time and cost.

Figure 3 shows two examples of the execution plans designed by k-Dispatch.
In the first example, all aberration correction simulations use the same amount
of resources, which may yield the best value of the optimization criteria for
individual tasks. This may however lead to a suboptimal execution schedule when
the cluster size is limited. A better solution may be to use 2 nodes for first 16
tasks and 4 nodes for the last four. Should the number of nodes assigned per task
happen not to be a divider of the cluster size, there would be wasted computing
slots. The main objective of k-Dispatch is to prevent such inefficiencies.

# Computational Resources (e.g. number of nodes) # Computational Resources (e.g. number of nodes)
p. 4
€
1 11§12 13 {14 {151
10 11 12
o [
£ £
F (_’; 17 18 19 20
2 13 14 15 16 s
(=} =
5 g
2 3
£ 17 18 19 20 &
o
o
° o
= o Other Forward Planning Simulations e
§ 2 3 4 ° °
o o
o Other Forward Planning Simulations e 17 18 19 20
o o

Fig. 3. Example of two different execution plans of the neurostimulation workflow on
a 16-node cluster. On the left, every job was optimized independently neglecting the
queuing times. On the right, the complete workflow was optimized leading to different
resources allocations for particular simulations to minimize the overall execution time.
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3 Simulator

As the basis for our workflow scheduling simulator, we have adopted the Alea
job scheduling simulator [10]. Alea is a platform-independent event-driven dis-
crete time simulator written in Java built on the top of the GridSim simulation
toolkit [16]. GridSim provides the basic functionality to model various entities
in a simulated computing system, as well as methods to handle the simulation
events. The behavior of the simulator is driven by an event-passing protocol. For
each simulated event, such as job arrival or completion, one message defining this
event is created. It contains the identifier of the message recipient, the type of the
event, the time when the event will occur and the message data. Alea extends
this basic GridSim’s functionality and provides a model allowing for detailed
simulation of the whole scheduling process in a typical HPC/HTC system. To
do that, Alea either extends existing GridSim classes or it provides new classes
on its own, especially the core Scheduler class and classes responsible for data
parsing and collection/visualization of simulation results.

Figure 4 shows the overall scheme of the Alea simulator, where boxes denote
major functional parts and arrows express communication and/or data exchange
within the simulator.

3.1 General Description

The main part of the simulator is the centralized job scheduler. The sched-
uler manages the communication with other parts of the simulator. It maintains
important data structures such as job queue(s). Job scheduling decisions are per-
formed by scheduling algorithms that can be easily added using existing simple
interfaces. Furthermore, scheduling process can be further influenced by using
additional system policies, e.g., the fair-sharing policy which dynamically pri-
oritizes job queue(s). Also, system queues including various limits that further
refine how various job classes are handled are supported. Additional parts sim-
ulate the actual computing infrastructure, including the emulation of machine

Workload reader

— ALEA

Static workload Scheduler

Results Collect

periodic data
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and
result

generation

jo_b . »,  event handling
submission AN
Dynamic workload Sl Synamic A

Queue-related
priorities
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constraints
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(fair-share)
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Machine and
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Fig. 4. Main components of the Alea jobs scheduling simulator.
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failures/restarts. Workload readers are used to feed the simulator with input data
about jobs being executed and the simulator also provides means for visualiza-
tion and generation of simulation outputs. Alea is freely available at GitHub [1].

The primary benefit of Alea is that it allows for realistic testing of work-
load execution subject to (different) scheduling policies or setups of computing
systems. It models all important features that have significant impact on the
performance of the system. These features enable us to mimic real-life systems
properly with a reasonably high realism [11].

3.2 Workflow Support

One of the main contributions of this work is the development of workflow (DAG)
execution support in Alea. This has been mostly achieved by modifying two
components in the simulator: the workload reader and the scheduler. Workload
reader has been modified to properly parse new DAG-compatible workload for-
mat (see Sect. 3.3). In the scheduler, new logic has been added to properly handle
inter job dependencies. The most important modification was the addition of a
new hold queue for all jobs with unfinished predecessors. Using this queue, these
jobs are excluded from the normal scheduling loop until all their dependencies
are resolved, i.e., all their predecessors are completed.

The list of all unfinished predecessors is kept up-to-date throughout the exe-
cution of DAGs. Once a job completes its execution, it is removed from the list
of unfinished predecessors and the hold queue is scanned to check if any job
now has all of its precedence constraints satisfied. If so, this job is immediately
moved to the normal scheduling queue where it waits until it is actually started.
Figure 5 demonstrates how the inter-DAG dependencies are handled, using the
hold queue together with the list of all unfinished predecessors.

Otherwise, only minor changes were necessary in Alea, e.g., job definition as
well as simulation outputs have been extended to reflect that each job (task)
may have predecessors.

3.3 DAG Workload Format

For convenience, we use slightly extended Standard Workload Format (SWF)
which is used in the Parallel Workloads Archive [4]. SWF is a simple format
where each workload is stored in a single ASCII file [5]. Each job (or task) is
represented by a single line in the file. Lines contain a predefined number of fields,
which are mostly integers, separated by whitespace. Fields that are irrelevant
for a specific log or model appear with a value of —1. To represent DAGs, we
have extended the standard 18 entries with two new entries that allow us to
distinct which line corresponds to which DAG (DAG_id) and which task within
a given DAG this job represents (task_id). Also, we have modified the existing
Preceding Job Number such that it can point to more than one job (task). If a
given job has more than one predecessor in the DAG, then & character is used
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Job Submission Logic (with DAG support)
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(DAG task) unfinished predecessors :
8
- 'z
Agjhje::lﬁ::e Jis now eligible ; s
for scheduling | 1R
are all J’s direct queue !
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Add J into the Jis waiting in !
Compare J's list of direct hold queue the hold queue |
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remove completed job

Job Completion Logic (with DAG support)

Completed Remove J from the global list
Job J (DAG task) of unfinished predecessors

Move H into the
YES scheduling

For each job H in are all H's direct qucue
the hold queue: predecessors
completed?
keep H in the
NO hold queue

Fig. 5. Added logic handling correct execution order of DAG-like workflows within Alea
simulator. Job dependencies are checked during new job arrival (top) and updated once
a job completes its execution (bottom). At this point, waiting jobs from the hold queue
are moved to the scheduling queue if their dependencies are satisfied.

to concatenate the list of these predecessor IDs. For example, 1&2&3 means that
the given job can only start once jobs 1, 2 and 3 are all completed?.

4 Alea Simulation Capabilities

Alea job scheduling simulator is well known for its capability to simulate and
also optimize various setups of HPC/HTC systems [2,10]. In this section we will
demonstrate the novel DAG-oriented simulation capability. We illustrate how
the newly extended Alea simulator can be used to evaluate various setups of
ultrasound simulations in order to choose the best available setup.

2 This string corresponds to the list of direct predecessors used in Fig. 5.
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As discussed in Sect. 2, k-Dispatch keeps its internal performance database
to predict rather accurately what the execution time needed to complete such
a task will be. The problem is, that task-level optimization does not guarantee
that good results will be achieved. Instead, we need to optimize the execution
parameters of the whole workflow(s) to achieve good performance. An example of
such situation has been shown in Fig. 3. Also, as the available computing infras-
tructure may change over the time, k-Dispatch must be able to adapt existing
scheduling plans once, e.g., the amount of available resources has changed.

In the first example, we use Alea to model and execute (simulate) the problem
depicted previously in Fig. 3. In this case, the same workflow uses two different
sets of task execution parameters which influence the total execution time. The
Gantt chart presented in Fig. 6 shows the execution of all tasks (Y -axis) over the
time (X-axis). Clearly, these results correspond to the illustration used in Fig. 3.
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Fig. 6. Alea simulator used to measure the impact of task-level (left) vs. workflow-level
(right) optimization on the total workflow execution time (makespan).
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We can observe, that task-level execution time optimization (see the Gantt chart
on the left in Fig. 6) is suboptimal compared to the workflow-level optimization
(right). In this particular case, the second (right) scenario decreased the total
execution time from 31 time units to just 23, representing 26% improvement by
means of cost/time.

Of course, there are more scenarios that can be modelled and analysed in
Alea. For example, we may analyse how several workflows will perform when
executed simultaneously. Such an experiment may be very useful when finding
the trade-off between total execution time and cost. In other words, we can use
such experiment to see how many resources are needed to compute N workflows
in a given time 7. We illustrate this situation in Fig. 7. Here we show the impact
of concurrently executed workflows on the queuing time and the total execution
time (makespan). Also, the impact of varying number of available number of
CPU cores (i.e., the cost) is shown.

For this demonstration, we use identical workflows, each consisting of 3 tasks
that are directly dependent upon each other?. We start with a scenario where
we execute 3 such workflows together (see the top chart in Fig. 7). As we can
see, the system (16 nodes) is capable of executing all 3 workflows concurrently.
The situation changes once we add the fourth workflow (see the middle chart
in Fig. 7). In this case, the system is not large enough to execute all four tasks
no. 2 simultaneously, i.e., the task no. 2 from the fourth workflow (denoted as
DAG-4 [2]) has to wait until at least one task no. 2 of the remaining workflows is
completed. As a result, the makespan gets higher. As illustrated in the bottom
chart in Fig. 7, the makespan gets even worse once we shrink the available
resources to a half (8 nodes).

Clearly, the Alea simulator allows us to compare various alternatives and
decide which combination of parameters and/or what cost leads to acceptable
makespan. Simulations like these can be then used by the k-Dispatch’s scheduling
module when deciding which parameter settings to choose for the tasks that must
be scheduled.

Finally, we would like to briefly mention the simulation overhead of Alea
when dealing with DAG-like workflows. Naturally, we need the simulator to be
fast when emulating the execution of realistically complex workflows. Therefore,
we have performed a set of experiments, where we measured the time needed
to perform a simulation. We investigated the influence of both DAG complexity
(number of tasks within a workflow) and the number of DAGs being simulated
simultaneously*. The results are shown in Fig. 8. Simulations use various number
of DAGs (up to 64 DAGs) while each such DAG has different number of tasks
(2, 4, 8, 16, 32 or 64 tasks per DAG). The figure shows that the simulator is
capable to simulate DAG executions in a reasonable amount of time. Even with
the most demanding setup (64 DAGs, each having 64 tasks per DAG) the total
simulation time is below 2.5s.

3 The corresponding DAG looks like this: task 1— task 2— task 3.
4 The experiments were performed on a machine running Windows 10 with Intel Core
i7-7500U CPU running at 2.7 Ghz and having 8 GB of RAM.
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Fig. 7. Makespan and wait time (queuing time) as impacted by the number of concur-
rently executed workflows and the size of the infrastructure.

This means that Alea is capable of evaluating many different workflow param-
eter setups within just few seconds. Such a small overhead is clearly no issue for
the k-Dispatch workflow management system.
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Fig. 8. The time needed to execute one simulation with respect to the number and
complexity of simulated workflows (DAGs).

5 Conclusions

In this paper, we have described the scheduling problem related to proper setup
of complex biomedical ultrasound workflows. Moreover, we have provided an
example of real life-based problem instances (workload describing DAG-like
workflows) and developed an extension for the open source job scheduling sim-
ulator Alea. Using this extension, basic DAG-like workflows can be simulated
and the impact of varying workflow execution parameters (number of tasks and
their requirements) can be quickly analysed. Also, thanks to the main focus of
the Alea simulator, detailed system-oriented setups and resource policies (e.g.,
scheduling algorithms, queue setup or fair-share priorities) can be easily emu-
lated, thus providing more realistic outputs and performance predictions.

In the future, we would like to integrate this functionality with the k-Dispatch
workflow management system. The newly extended Alea simulator with DAG
scheduling support can be freely obtained on GitHub [1]. Also, we invite other
researchers to look into the data provided along with this paper that describe
real-life based workflows used within the international ultrasonic community.
These workloads include the examples used in this paper and will be available
at the website of the workshop®.

This work has a significant impact on the biomedical ultrasound community.
Not only the clinicians do not have to bother with selecting suitable comput-
ing facilities, deploying simulation codes, moving data forth and back, job sub-
mission, execution and monitoring, but their workflows are executed efficiently
minimizing the execution time and cost. This all is done without any user inter-
vention, actually, the users do not even know such a process exists.

Acknowledgments. We kindly acknowledge the support provided by the project
Reg. No. CZ.02.1.01/0.0/0.0/16-013/0001797 co-funded by the Ministry of Education,
Youth and Sports of the Czech Republic. Computational resources were supplied by

5 http://jsspp.org/workload, .



Optimizing Biomedical Ultrasound Workflow Scheduling 83

the project “e-Infrastruktura CZ” (e-INFRA LM2018140) provided within the program
Projects of Large Research, Development and Innovations Infrastructures.

This work was also supported by The Ministry of Education, Youth and Sports
from the National Programme of Sustainability (NPU II) project IT4Innovations excel-
lence in science - LQ1602 and by the I'T4Innovations infrastructure which is supported
from the Large Infrastructures for Research, Experimental Development and Inno-
vations project [T4Innovations National Supercomputing Center - LM2015070. This
project has received funding from the European Union’s Horizon 2020 research and
innovation programme H2020 ICT 2016-2017 under grant agreement No 732411 and
is an initiative of the Photonics Public Private Partnership.

References

1. Alea job scheduling simulator, May 2020. https://github.com/aleasimulator/alea/
tree/FIT

2. Azevedo, F., Klusicek, D., Suter, F.: Improving fairness in a large scale HTC
system through workload analysis and simulation. In: Yahyapour, R. (ed.) Euro-
Par 2019. LNCS, vol. 11725, pp. 129-141. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-29400-7_10

3. Deelman, E., et al.: Pegasus: a workflow management system for science automa-
tion. Future Gener. Comput. Syst. 46, 17-35 (2014)

4. Feitelson, D.G.: Parallel workloads archive, May 2020. http://www.cs.huji.ac.il/
labs/parallel/workload/

5. Feitelson, D.G.: The standard workload format, May 2020. https://www.cse.huji.
ac.il/labs/parallel/workload /swf.html

6. Georgiou, P.S., et al.: Beam distortion due to gold fiducial markers during sal-
vage high-intensity focused ultrasound in the prostate. Med. Phys. 44(2), 679-693
(2017)

7. Godlove, D.: Singularity. In Proceedings of the Practice and Experience. In:
Advanced Research Computing on Rise of the Machines (learning), pp. 1-4, New
York, NY, USA. ACM, July 2019

8. HTCondor. HT'Condor - high throughput computing (2019)

9. Jaros, M., Treeby, B.E., Georgiou, P., Jaros, J.: k-Dispatch: a workflow manage-
ment system for the automated execution of biomedical ultrasound simulations on
remote computing resources. In: Proceedings of the Platform for Advanced Sci-
entific Computing Conference, PASC 2020, New York, NY, USA. Association for
Computing Machinery (2020)

10. Klusacek, D., Soysal, M., Suter, F.: Alea — complex job scheduling simulator. In:
Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds.) PPAM 2019.
LNCS, vol. 12044, pp. 217-229. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-43222-5_19

11. Klusécek, D., Téth, S.: On interactions among scheduling policies: finding efficient
queue setup using high-resolution simulations. In: Silva, F., Dutra, 1., Santos Costa,
V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 138-149. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09873-9_12

12. Konofagou, E.E.: Trespassing the barrier of the brain with ultrasound. Acoust.
Today 13(4), 21-26 (2017)

13. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014(239), 2 (2014)



84

14.

15.

16.

17.

18.

19.

M. Jaros et al.

Robert, Y.: Task graph scheduling. In: Padua, D. (ed.) Encyclopedia of Parallel
Computing, pp. 2013-2025. Springer, Boston (2011). https://doi.org/10.1007/978-
0-387-09766-4_42

Sarkar, V.: Partitioning and scheduling parallel programs for multiprocessors. In:
Research Monographs in Parallel and Distributed Computing, pp. 1-183. MIT
Press, Cambridge (1989)

Sulistio, A., Cibej, U., Venugopal, S., Robic, B., Buyya, R.: A toolkit for modelling
and simulating data Grids: an extension to GridSim. Concurr. Comput. Pract. Exp.
20(13), 1591-1609 (2008)

Szabo, T.L.: Diagnostic Ultrasound Imaging: Inside Out (2014)

Treeby, B.E., Cox, B.T.: k-Wave: MATLAB toolbox for the simulation and recon-
struction of photoacoustic wave fields. J. Biomed. Optics 15(2), 021-314 (2010)
Treeby, B.E., Jaros, J., Martin, E., Cox, B.T.: From biology to bytes: predicting the
path of ultrasound waves through the human body. Acoust. Today 15(2), 36-44
(2019)



