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The L (PSCG) = L (CS) problem asks whether propagating scattered context gram-

mars and context sensitive grammars are equivalent. The presented paper reformulates
and answers this problem in terms of CD grammar systems. More specifically, it charac-

terizes the family of context sensitive languages by two-component CD grammar systems

with propagating scattered context rules.

1. Introduction

Are propagating scattered context grammars as powerful as context sensitive gram-

mars? This question customarily referred to as the L (PSCG) = L (CS) (see [5])

problem, represents a long standing open problem in formal language theory.

To address this hard open problem as close as possible, there were attempts to

introduce subtle modifications of propagating scattered context grammars together

with a demonstration of their generative power in the comparison with context

sensitive grammars (see [8]). For instance, Gonczarowski and Warmuth (see [4])

introduced extended propagating scattered context grammars and propagating un-

ordered scattered context grammars such that the former generates context sensitive
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languages and the latter is even less powerful than propagating scattered context

grammars.

The present paper reformulates this problem and answers it in terms of CD

grammar systems. More precisely, the paper introduces CD grammar systems whose

components are propagating scattered context grammars. Then, it demonstrates

that two-component grammar systems of this kind generate the family of context-

sensitive languages, thus the answer to this problem is in affirmation if the problem

is reformulated in the above way. In the end of the paper, we study the descriptional

complexity of components of such CD grammar systems in order to show that the

maximum context sensitivity of all components can be reduced to one or zero.

2. Preliminaries

We assume that the reader is familiar with formal language theory (see [7, 3, 9, 10]

for details). For an alphabet (finite nonempty set) V , V ∗ represents the free monoid

generated by V under the operation of concatenation. The unit of V ∗ is denoted by

ε. Let n ≥ 0 and x1, x2, . . . , xn ∈ V . The length of string x1 · · ·xn ∈ V ∗ is denoted

as |x1 · · ·xn| and is equal to n. Similarly by |x1 · · ·xn|N , the length of string when

counting only symbols of N is denoted. The function alph(x1 · · ·xn) is defined as

alph(α) = {x : α = βxγ, x ∈ V }.
A scattered context grammar (SCG) is a quadruple G = (N,T, P, S), where

N and T are alphabets of nonterminal and terminal symbols respectively, where

N ∩ T = ∅, further let V = N ∪ T . S ∈ N is the starting symbol. P is a nonempty

finite set of rules of the form (A1, . . . , An) → (α1, . . . αn), where Ai ∈ N , αi ∈
V ∗, 1 ≤ i ≤ n, for some n ≥ 1. Let u, v ∈ V ∗, where u = u1A1u2A2u3 . . . unAnun+1

and v = u1α1u2α2u3 . . . unαnun+1, (A1, A2, A3, . . . , An) → (α1, α2, α3, . . . , αn) ∈
P , where ui ∈ V ∗ for all 1 ≤ i ≤ n+1; then u⇒ v in G. For each rule r ∈ P , len(r)

denotes the number of components of r. The maximum context sensitivity, denoted

by mcs(G), is defined as mcs(G) = max({len(r)− 1 : r ∈ P}).
The language generated by SCG G is defined as L(G) = {x : S ⇒∗ x, x ∈ T ∗},

where ⇒∗ and ⇒+ denote the transitive-reflexive closure and the transitive closure

of⇒, respectively. A SCG is said to be propagating (PSCG) iff each (A1, . . . , An)→
(α1, . . . αn) ∈ P satisfies αi 6= ε, 1 ≤ i ≤ n. L (SCG) and L (PSCG) denote the

families of languages generated by SCGs and PSCGs, respectively.

A context-sensitive grammar (CSG) is a quadruple G = (N,T, P, S), where N ,

T , V , and S has the same meaning as in SCGs. P is a nonempty finite set of rules

of the form α → β, where |α|N ≥ 1, α, β ∈ V ∗ and each rule α → β ∈ P satisfies

|α| ≤ |β|. Let u, v ∈ V ∗, u = u1αu2, v = u1βu2, α→ β ∈ P where u1, u2, α, β ∈ V ∗,
|α|N ≥ 1, then u⇒ v in G.

The language generated by CSG G is defined as L(G) = {x : S ⇒∗ x, x ∈
T ∗}, where ⇒∗ and ⇒+ denote the transitive-reflexive closure and the transitive

closure of ⇒, respectively. The family of languages generated by CSGs is denoted

by L (CS).



January 16, 2018 2:44 WSPC/INSTRUCTION FILE cdgs˙2pscc

Propagating Scattered Context Grammar Systems 3

A grammar G = (N,T, P, S) is in Kuroda normal form if every rule in P has

one of the following forms:

(1) AB → CD

(2) A→ CD

(3) A→ C

(4) A→ a

where A,B,C,D ∈ N and a ∈ T . Recall that every CSG can be transformed into

an equivalent grammar in Kuroda normal form (see [7, 6]). Notice that we do not

require more restrictive variant of Kuroda normal form without the rules of the

form A→ C.

Without any loss of generality, for any CSG we assume their equivalent in the

Kuroda normal form in what follows.

To emphasize that rule p was used during the derivation step, we sometimes

write α⇒ β[p].

A cooperating distributed grammar system (CDGS) (see [1, 9, 2]) of degree n

is n+3 tuple G = (N,T, S, P1, P2, . . . , Pn), where N , T , V , and S has the same

meaning as in SCGs. Pi, 1 ≤ i ≤ n are nonempty finite sets (called components) of

rewriting rules over V . For a CDGS G = (N,T, S, P1, P2, . . . , Pn), the terminating

(t) derivation by the i-th component, denoted as⇒t
Pi

is defined as u⇒t
Pi
v iff u⇒∗Pi

v

and there is no z ∈ V ∗ such that v ⇒Pi z. The language generated by CDGS

G = (N,T, S, P1, P2, . . . , Pn) working in t mode is defined as L(G) = {x : S⇒t
Pi1
x1

⇒t
Pi2
x2 . . . ⇒t

Pim
x, m ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ m, x ∈ T ∗}.

In this paper, CDGS with propagating scattered context rules (SCGS) and

CDGS with context-sensitive rules are considered.

3. Main Results

In this section, the identity of L (SCGS) and L (CS) is demonstrated.

Lemma 1. L (SCGS) ⊆ L (CS)

Proof. Recall that [3] shows that any scattered context grammar can be simulated

by context-sensitive grammar. Similarly, [2] shows that any CDGS with context-

sensitive components working in t mode can be transformed to an equivalent CSG.

Based on those two facts, it is easy to show that any SCGS can be simulated by a

CSG.

Lemma 2. L (CS) ⊆ L (SCGS)

Take any CSG G = (N,T, P, S) satisfying Kuroda normal form. An equivalent

SCGS Γ = (NGS , T,
4S, P1, P2) can be constructed using the following construc-

tions. Set NGS = N ∪ {!} ∪NT ∪Nfirst ∪NCF ∪NCS ∪Ncur (! /∈ N ∪ T ). Where:
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NT = {a
′

: ∀a ∈ T}

N4 = {4X : ∀X ∈ N ∪NT }

NO = {OX : ∀X ∈ N ∪NT }
N� = {�X : ∀X ∈ N ∪NT }

Nfirst =N4 ∪NO ∪N�

NCF4 = {X| : ∀X ∈ N4}

NCFO = {X| : ∀X ∈ NO}

NCF� = {X| : ∀X ∈ N�}

NCF = {|X| : ∀X ∈ N} ∪NCF4 ∪NCFO ∪NCF�

NCS = {|X< : ∀X ∈ N} ∪ {X< : ∀X ∈ Nfirst} ∪ {>X| : ∀X ∈ N}

Ncur = {X∧< : ∀X ∈ N ∪Nfirst} ∪ {X∧| : ∀X ∈ N ∪Nfirst}.

Analogically to sets NCF4, NCFO and NCF�, we call subsets of NCS and Ncur

constructed using the set N4 as NCS4, and Ncur4, respectively. We use similar

naming convention for subsets constructed using the NO and N�.

Set P1 to the union of the following sets:

P 1
T = {(4X )→ (�X ) : ∀X ∈ N ∪NT }

∪ {(�X, a
′
)→ (�X, a) :

∀X ∈ N ∪NT ,∀ a
′
∈ NT }

∪ {(�a
′
)→ (a) : ∀ a

′
∈ NT }

P 1
AtoBC = {(4X,A)→ (OX |, |B| |C |) :

∀X ∈ NT ∪N, ∀p ∈ P, p = A→ BC}

∪ {(4A)→ (OB| |C |) : ∀p ∈ P, p = A→ BC}

P 1
AtoB = {(4X,A)→ (OX |, |B|) :

∀X ∈ NT ∪N, ∀p ∈ P, p = A→ B}

∪ {(4A)→ (OB|) : ∀p ∈ P, p = A→ B}
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P 1
Atoa = {(4X,A)→ (OX |, |a

′

|) :

∀X ∈ NT ∪N, ∀p ∈ P, p = A→ a}

∪ {(4A)→ (Oa
′

|) : ∀p ∈ P, p = A→ a}

P 1
ABtoCD = {(4X,A,B)→ (OX |, |C<,>D|) :

∀X ∈ NT ∪N, ∀p ∈ P, p = AB → CD}

∪ {(4A,B)→ (OC<,>D|) :

∀p ∈ P, p = AB → CD}
P 1
phase2 = {(X,B)→ (X, |B|) :

∀B ∈ N ∪NT , X ∈ NCSO ∪NCFO}

Set P2 to the union of these subsets:

P 2
init = {(OX |)→ (4X∧| ) : ∀X ∈ NT ∪N}

∪ {(OX<)→ (4X∧<) : ∀X ∈ NT ∪N}
P 2
check = {(A∧| , |B|)→ (A, B∧| ) : ∀X,A,B ∈ NT ∪N}

∪ {(A∧<,>B|)→ (A, B∧| ) : ∀X,A,B ∈ NT ∪N}

P 2
checkf = {(4A∧| , |B|)→ (4A, B∧| ) : ∀A,B ∈ NT ∪N}

∪ {(4A∧<,>B|)→ (4A, B∧| ) : ∀A,B ∈ NT ∪N}

P 2
end = {(4A∧)→ (4A) : ∀A ∈ NT ∪N}

∪ {(4A, B∧| )→ (4A,B) : ∀A,B ∈ NT ∪N}

∪ {(4A∧| )→ (4A) : ∀A ∈ NT ∪N}

P 2
block = {(|X |)→ (!) : ∀X ∈ NT ∪N}

Basic Idea 1. Now, we briefly describe how the resulting SCGS Γ simulates the

input CSG G. The system consists of two components, both working in t mode.

The computation of Γ consists of two phases. During the first one, all terminals

are represented by a nonterminal variant of themselves. The simulation itself takes

place during the first phase.

The simulation in Γ of each application of one rule of G consists of two parts.

Firstly, the first component applies the selected rule using the modified nonterminals

contained in NCS and NCF . Symbols of the type |X< denote that the rewriting is

done in a context-sensitive way and that the remaining symbol on the right-hand side

of the rule should appear immediately right of the symbol. Similarly >X | denotes

that the rest of the right-hand side of the rule should appear immediately left of

the symbol. Symbols of the form |X | then represent context-free rewriting. After

the application of the rule, the first component rewrites all remaining symbols to
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their context-free variant and then deactivates. This is done using the rules of the

set P 1
phase2. The fact that only one of the rules was applied is checked using the

first symbol of the sentential form. This symbol is of the form 4X or OX (plus

the context-sensitive and context-free versions), where the marks 4 and O indicate,

whether next rule should be simulated, or remaining symbols should be rewritten to

their context-free variant.

The second component then checks, whether the first component applied the rule

correctly. This is done using the special ∧ mark. This symbol indicates, which symbol

is currently checked, we call this symbol current symbol. Symbols are checked in

pairs, where the first symbol of the pair is the current symbol and the second symbol

is some symbol right of the first one. During this check, the special marks (|, <,>)

on the adjacent sides of those symbols are checked and removed and the ∧ mark is

moved to the other symbol of the pair. Since the first symbol of the pair is always

the current symbol, the ∧ moves from the left side of the sentential form to the

right, with no way of returning back left. When all of the symbols are checked, the

second component is deactivated and the first one simulates new rule. Since the

components have scattered context rules, it is not guaranteed that adjacent symbols

are always checked by the second component. Because of this, set of rules P 2
block is

created. When some of the symbols is skipped during the checking phase, these rules

will block the generation of sentence by Γ.

The second phase, which rewrites all nonterminals to terminals, is started by

rewriting of the first symbol 4X to �X . Then for each symbol a
′
, there is a rule

of the form (�X, a
′
)→ (�X, a), where a is corresponding terminal symbol. Finally,

the leftmost symbol itself is rewritten to its terminal form. Since all the rules of all

components always check the first symbol, after this step no further rewriting can be

done and all nonterminals that remain in the sentential form cannot be removed.

This phase is represented by set P 1
T .

Next, we sketch a formal proof that L(G) = L(Γ). Its fully rigorous version is

left to the reader.

Claim 1. In any sentential form, there is always at most one symbol marked with

any of 4,O, �.

Proof. Observe that no rule contains more than one symbol marked with any of

�,O,4 on the right-hand side. Furthermore observe that if any marked symbol does

appear on the right-hand side of a rule, there is also a marked symbol on the left-

hand side of the same rule. Thus no new marked symbols can be introduced into

the sentential form.

Claim 2. Any derivation that generates a sentence ends with a sequence of rules

of the form p1p21 . . . p2np3, where p1, p2i , p3 ∈ P 1
T , 1 ≤ i ≤ n, n ≥ 0, where p1, p2i

and p3 are from the first, second and third subset of P 1
T , respectively. No rule from

P 1
T is applied before this sequence.
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Proof. Recall that only rules which have terminals on the right-hand side are in

set P 1
T which is defined as follows (in this proof, we named each of its subsets for

the sake of simplicity):

P 1
T = 1P

1
T ∪ 2P

1
T ∪ 3P

1
T

1P
1
T = {(4X )→ (�X ) : ∀X ∈ N ∪NT }

2P
1
T = {(�X, a

′
)→ (�X, a) : ∀X ∈ N ∪NT ,∀ a

′
∈ NT }

3P
1
T = {(�a

′
)→ (a) : ∀ a

′
∈ NT }

Suppose any sentential form χ such that χ = 4x
′

0 x
′
1 . . . x

′
n, where x

′
i ∈ NT

0 ≤ i ≤ n and 4x
′

0 ∈ N�. Observe that all rules that do rewriting to terminals

check the existence of a symbol �X in the sentential form. This symbol is created

in a following way:

4x
′

0 x
′

1 . . . x
′

n ⇒ �x
′

0 x
′

1 . . . x
′

n[p], p ∈ 1P
1
T

Careful examination of sets P1 and P2 shows that only rules with �x
′

0 on its

left-hand side are in sets 2P
1
T and 3P

1
T . Suppose the following derivation

�x
′

0 x
′

1 . . . x
′

n ⇒ x0 x
′

1 . . . x
′

n[p], p ∈ 3P
1
T , x0 ∈ T

Based on Claim 1, alph(x
′
1 . . . x

′
n) ∩ (N4 ∪ NO ∪ N�) = ∅. Each rule p ∈ P1

contains some symbol from N4 ∪ NO ∪ N� on its left-hand side. There is thus no

χ
′ 6= χ, χ = x0 x

′
1 . . . x

′
n such that χ⇒ χ

′
[p], p ∈ P1. Further no rule from P2 can

be used (see claim 5). For any successful derivation p ∈ 3P
1
T must thus be used as

a last rule of this derivation.

Suppose 4x
′

0 x
′
1 . . . x

′
n ⇒ �x

′

0 x
′
1 . . . x

′
n[p], p ∈ 1P

1
T , and further let χ1 =

�x
′

0 x
′
1 . . . x

′
n where |χ1| > 1. Based on the previous paragraph, in any successful

derivation, the following sequence of rules has to be applied

χ1 ⇒ χ2[p1]⇒ · · · ⇒ χn[pn]

where χn = �x
′

0x1 . . . xn, pi ∈ 2P
1
T , 1 ≤ i ≤ n. For each χi and χi+1 with 1 ≤ i ≤

n− 1, |χi|T = |χi+1|T − 1.

We have just shown that the rules from P 1
T are only applied right before the end

of the successful simulation. Consequently, we do not mention this subset in any of

the following proofs.

Claim 3. The first component of Γ rewrites sentential forms of the form 4Xα to

a string of one of the following forms

(1) OY |β

(2) OY <γ

where X,Y ∈ N ∪ NT , α ∈ (N ∪ NT )∗, β, γ ∈ (NCS ∪ NCF )∗ (such that Claim 1

holds) where either (a) or (b) given next is true:
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(a) β ∈ (NCF )∗

(b) β = Y0 . . . |U< . . .>V | . . . Yn, where Yi ∈ NCF , 0 ≤ i ≤ n and |U<,>V | ∈
NCS

and γ = Y0 . . .>V | . . . Yn, where Yi ∈ NCF , 0 ≤ i ≤ n and >V | ∈ NCS.

Proof. Consider sentential form 4Xα defined as above, where α = X0 . . . Xn. Since

there is no symbol from the alphabet Ncur ∪NO only rules of the first component

can be used.

From 4Xα, Γ makes a derivation step in one of the following eight ways (each

derivation corresponds to one subset of the rules of the first component of Γ):

(1) 4XX0 . . . Xi−1AXi+1 . . . Xn

⇒ OX |X0 . . . Xi−1 |B| |C |Xi+1 . . . Xn

(2) 4AX0 . . . Xn

⇒ OB| |C |X0 . . . Xn

(3) 4XX0 . . . Xi−1AXi+1 . . . Xn

⇒ OX |X0 . . . Xi−1 |B|Xi+1 . . . Xn

(4) 4AX0 . . . Xn

⇒ OB|X0 . . . Xn

(5) 4XX0 . . . Xi−1AXi+1 . . . Xn

⇒ OX |X0 . . . Xi−1 |a
′

|Xi+1 . . . Xn

(6) 4AX0 . . . Xn

⇒ Oa
′

|X0 . . . Xn

(7) 4XX0 . . . Xi−1AδBXi+1 . . . Xn

⇒ OX |X0 . . . Xi−1 |C<δ >D|Xi+1 . . . Xn

(8) 4AδBX0 . . . Xn

⇒ OC<δ >D|X0 . . . Xn

where δ ∈ (N ∪ NT )∗. Observe that each of the generated strings is in one of the

following forms:

• OX |δ1Bδ2Cδ3 (1-7)

• OX<δ1 >D|δ2 (8)

where δ1, δ2, δ3 ∈ (N ∪NT )∗, D ∈ NCS (the second subset) and either B,C ∈ NCF

or B ∈ NCS (the first subset) and C ∈ NCS (the second subset).

After this first rule is applied, the sentential form contains symbol marked with

O. Since the components of Γ work in t mode, rules of the first component have to

be applied as long as there are some symbols that can be rewritten. This means that

the rules from the set P 1
phase2 have to be used now. Because δ1, δ2, δ3 ∈ (N ∪NT )∗

and the left-hand sides of the rules from P 1
phase2 are defined for all symbols in

N ∪ NT . Substring δ1 = Z0 . . . Zn, Zi ∈ N ∪ NT is rewritten to δ
′

1 = |Z0| . . . |Zn|,
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Zi ∈ N ∪NT , 0 ≤ i ≤ n. The same applies to δ2, δ3. By using P 1
phase2 we obtain one

of the following sentential forms:

OX |δ1Bδ2Cδ3 ⇒
∗ OY |β

OX<δ1 >D|δ2 ⇒
∗ OY <γ

Claim 4. During its activation, the first component applies no more than one rule

of the simulated CSG. This follows from Claim 3 and its proof.

Claim 5. The second component of Γ rewrites any sentential form of the form
OX | |X0| . . . |Xn| to a string of the form 4XX1 . . . Xn, where Xi ∈ N ∪ NT , 0 ≤
i ≤ n .

Proof. Suppose sentential forma χ = OX | |X0| . . . |Xn| where Xi ∈ N ∪ NT , 0 ≤
i ≤ n. Observe that |χ|Ncur = 0. Only rulesb that can be used are thus from the

first subset of P 2
init. This leads to

χ = OX | |X0| . . . |Xn| ⇒ χ0 = 4X∧| |X0| . . . |Xn|

The only rule applicable to χ0 must be from the set P 2
checkf . This leads to:

χ0 = 4X∧| |X0| . . . |Xn| ⇒ χ1 = 4Xα1 X
∧
i1|α2

where α1, α2 ∈ N∗CF . Again, careful observation of rules of the set P2 shows that

only rules from the set P 2
check and P 2

end may be used. The first option leads to

following derivations:

4Xα1
1 X
∧
i1|α

2
1 ⇒

4Xα1
1Xi1α

1
2 X
∧
i2|α

2
2 ⇒ · · · ⇒

4Xα1
1Xi1α

1
2Xi2 . . . α

1
n X

∧
in|α

2
n

where αj
k ∈ N∗CF , 1 ≤ k ≤ n, j ∈ {1, 2}. Further, there is no rule p such that:

4Xα1
1Xi1α

1
2Xi2 . . . α

1
n X

∧
in|α

2
n ⇒

4Xα1
1Xi1α

1
2Xi2 . . . Y

∧
| . . . α

1
nXinα

2
n[p]

Suppose 4Xα1
1Xi1α

1
2Xi2 . . . α

1
n X

∧
in|α

2
n and rule p ∈ P 2

end:

4Xα1
1Xi1α

1
2Xi2 . . . α

1
n X

∧
in|α

2
n ⇒

4Xα1
1Xi1α

1
2Xi2 . . . α

1
nXinα

2
n[p]

Suppose that adjacent symbols were always rewritten during the application of

rules from the sets P 2
checkf and P 2

check. This would mean that αj
k = ε, 1 ≤ k ≤

n, j ∈ {1, 2} and we would thus obtain the desire sentential form 4XX1 . . . Xn,

where Xi ∈ N ∪NT , 0 ≤ i ≤ n.

If, on the other hand, there was some αm
l 6= ε, 1 ≤ l ≤ n,m ∈ 1, 2 this would

mean that

4X∧| |X0| . . . |Xn| ⇒
∗ 4Xα

aThe case where |χ|=1 is trivial and is left to the reader.
bWe ignore the set of blocking rules P 2

block for now.
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where |α|Ncur
= 0 and |α|NCF

> 0. Since both GS components work in the t-mode,

and there is some symbol from NCF , the blocking symbols have to be introduced

by the rules of the P 2
block set. Because |α|Ncur

= 0, no other rules can be used on

this form.

Claim 6. The second component of Γ rewrites any string of the form OX< |X0|

. . . |Xj−1| >Xj| . . . |Xn| to a string of the form 4XX1 . . . Xn, where Xi ∈ N ∪NT ,

for all i : 0 ≤ i ≤ n if and only if |X0| . . . |Xj−1| = ε; otherwise, blocking symbols

are introduced.

Proof. Proof of Claim 6 is similar to the proof of Claim 5 and it is left to the

reader.

Claim 7. The second component of Γ rewrites any string of the form OX | |X0|

. . . |Xj< |Xj+1| . . . |Xk−1| >Xk| . . . |Xn| to a string of the form 4XX1 . . . Xn,

where Xi ∈ N ∪ NT , for all i : 0 ≤ i ≤ n if and only if |Xj+1| . . . |Xk−1| = ε;

otherwise blocking symbols are introduced.

Proof. It is similar to the proof of Claim 5 and it is left to the reader.

Based on the previous claims, it is easy to show that each simulation of a rule of

G consists of a single activation of the first component followed by a single activation

of the second component of Γ. If the simulated context-sensitive rule is applied in

a scattered way, blocking symbols are introduced to the sentential form; otherwise

the sentential form is prepared for the simulation of another rule. In the end, all

nonblocking symbols are rewritten to terminals thus producing a sentence of the

simulated language. Therefore, L(G) = L(Γ).

Example 3. Suppose CSG G = ({A,B,C,D,E}, {b, c, d, e}, P,A) with rules P =

{A → BC,C → CD,BD → DB,CD → ED,B → b, C → c,D → d,E → e}.
Observe that there is no sentential form that could be generated by grammar G

where the rule BD → DB could be applied.

Based on the described constructions, equivalent SCGS Γ can be created as Γ =

(NGS , T,
4A,P1, P2). Now, we try to show, how would Γ simulate G. Because the

amount of rules and symbols created by the transformation algorithm is quite large,

we will not list elements of these sets.
The only rule of G that has the starting symbol on its left-hand side is A→ BC.

Similarly, only rule applicable on BC (we will ignore rules with terminals) is rule
C → CD. Derivation A ⇒∗ BCD would be simulated using following sequence of
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derivation steps:
4A ⇒ OB| |C| [(4A) → (OB| |C|) ∈ P 1

AtoBC ]

⇒ 4B∧
| |C| [(OB|) → (4B∧

| ) ∈ P 2
init]

⇒ 4B C∧
| [(4B∧

| , |C|) → (4B, C∧
| ) ∈ P 2

checkf ]

⇒ 4BC [(4B, C∧
| ) → (4B,C) ∈ P 2

end]

This way, the first rule is simulated. It is important to note that since Γ works in

t mode, rules from set P2 are all applied together. The derivation would continue

using the following rules:

4BC ⇒ OB| |C| |D| [(4B,C) → (OB|, |C| |D|) ∈ P 1
AtoBC ]

⇒ 4B∧
| |C| |D| [(OB|) → (4B∧

| ) ∈ P 2
init]

⇒ 4B C∧
| |D| [(4B∧

| , |C|) → (4B, C∧
| ) ∈ P 2

checkf ]

⇒ 4BC D∧
| [(C∧

| , |D|) → (C, D∧
| ) ∈ P 2

check]

⇒ 4BCD [(4B, D∧
| ) → (4B,D) ∈ P 2

end]

As was mentioned before, rule BD → DB can in fact never be applied by the

grammar G. Suppose sentential form 4BCD of the Γ. Simulation of this rule would

lead to the following derivation:

4BCD ⇒ OD<C >B| [(4B,D) → (OD<,>B|) ∈ P 1
ABtoCD]

⇒ OD< |C| >B| [(OD<, C) → (OD<, |C|) ∈ P 1
phase2]

⇒ 4D∧
< |C| >B| [(OD<) → (4D∧

<) ∈ P 2
init]

⇒ 4D |C| B
∧
| [(4D∧

<,>B|) → (4D, B∧
| ) ∈ P 2

checkf ]

⇒ 4B |C|D [(4B, D∧
| ) → (4B,D) ∈ P 2

end]

⇒ 4B !D [(B) → (!) ∈ P 2
block]

Again, each component of Γ works in t mode. This ensures that any symbols skipped

during the checking phase, will be replaced by blocking symbols (!) before the second

component of Γ deactivates.

On the other hand, rule CD → ED can be applied. The simulation of this rule

works as follows:

4BCD ⇒ OB| |E< >D| [(4B,C,D) → (OB|, |E<,>D|) ∈ P 1
ABtoCD]

⇒ 4B∧
| |E< >D| [(OB|) → (4B∧

| ) ∈ P 2
init]

⇒ 4B E∧
< >D| [(4B∧

| , |E<) → (4B, E∧
<) ∈ P 2

checkf ]

⇒ 4BE D∧
| [(E∧

<,>D|) → (E, D∧
| ) ∈ P 2

check]

⇒ 4BED [(4B, D∧
| ) → (4B,D) ∈ P 2

end]
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Theorem 4. L (SCGS) = L (CS)

Proof. This is implied by Lemmas 1 and 2.

Theorem 5. Any context-sensitive language can be generated by a SCGS Γ such

that mcs(Pi) ≤ 1 for all components Pi of Γ.

Proof (Basic Idea) 1. Obviously, only the first subset of P 1
ABtoCD (see the proof

of Lemma 2) has more than two components in its rules. Rules of this subset can

be simulated by introduction of some auxiliary rules and symbols. Suppose rule

p : (4X,A,B) → (OX |, |C<,>D|) and sentential form 4XAB. This rule can be

simulated by using those auxiliary rules in a following way:

4XAB ⇒ p
|X | |C<B ⇒

OX | |C< >D|

where always pairs of symbols are rewritten during each derivation step. Where p
|X |

encodes which rule is being simulated.

Formally, the set P 1
ABtoCDmod

would be defined as (appropriate modifications of the

alphabet of nonterminals are left to the reader)

P 1
ABtoCDmod

= {(4X,A)→ (p|X |, |C<) :

∀X ∈ NT ∪N, ∀p ∈ P, p = AB → CD}
∪ {(p|X |, B)→ (OX |,>D|) :

∀X ∈ NT ∪N, ∀p ∈ P, p = AB → CD}

∪ {(4A,B)→ (OC<,>D|) :

∀p ∈ P, p = AB → CD}

Claim 8. This change to P 1
ABtoCDmod

only affects the first phase of the first com-

ponent.

Proof. From the definition of Γ, only the first component is able to use the rules

from the set P 1
ABtoCDmod

. Since the rules from the first and third subset of the

P 1
ABtoCDmod

require the presence of some symbol 4X , these rules can be used only

during the first phase of the first component’s activation (recall that the second

phase requires a presence of some symbol OX | or OX<).

The rules of the second subset on the other hand need some symbol p
|X |, however

such a symbol can only be introduced by some rule of the first subset and only rules

of the second subset are able to rewrite such symbol.

Claim 9. The first component of Γ rewrites sentential forms of the form 4Xα to

a string of one of the following forms

(1) OY |β
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(2) OY <γ

where X,Y ∈ N ∪ NT , α ∈ (N ∪ NT )∗, β, γ ∈ (NCS ∪ NCF )∗ (such that Claim 1

holds) where exactly one of (a), (b) or (c) given next is true:

(a) β ∈ (NCF )∗

(b) β = Y0 . . . |U< . . .>V | . . . Yn, where Yi ∈ NCF , 0 ≤ i ≤ n and |U<,>V | ∈
NCS

(c) β = Y0 . . .>U | . . . |V < . . . Yn, where Yi ∈ NCF , 0 ≤ i ≤ n and |U<,>V | ∈
NCS

and γ = Y0 . . .>V | . . . Yn, where Yi ∈ NCF , 0 ≤ i ≤ n and >V | ∈ NCS.

Proof. Since the case (a) above does not deal with context free rewriting, its proof

is identical to the proof of Claim 3. What slightly differs from the proof of Claim 3

are the cases (b) and (c).

In addition to the eight possible sentential forms derivable from the 4Xα de-

scribed in the proof of Claim 3, the ninth one is introduced:

(1) 4XX0 . . . Xi−1AXi+1 . . . Xn

⇒ OX |X0 . . . Xi−1 |B| |C |Xi+1 . . . Xn

(2) 4AX0 . . . Xn

⇒ OB| |C |X0 . . . Xn

(3) 4XX0 . . . Xi−1AXi+1 . . . Xn

⇒ OX |X0 . . . Xi−1 |B|Xi+1 . . . Xn

(4) 4AX0 . . . Xn

⇒ OB|X0 . . . Xn

(5) 4XX0 . . . Xi−1AXi+1 . . . Xn

⇒ OX |X0 . . . Xi−1 |a
′

|Xi+1 . . . Xn

(6) 4AX0 . . . Xn

⇒ Oa
′

|X0 . . . Xn

(7) 4XX0 . . . Xi−1AδBXi+1 . . . Xn

⇒2 OX |X0 . . . Xi−1 |C<δ >D|Xi+1 . . . Xn

(8) 4AδBX0 . . . Xn

⇒ OC<δ >D|X0 . . . Xn

(9) 4XX0 . . . Xi−1BδAXi+1 . . . Xn

⇒2 OX |X0 . . . Xi−1 >D|δ |C<Xi+1 . . . Xn

where δ ∈ (N ∪NT )∗.

Of those sentential forms, only the options 7 and 9 need to be further analyzed,

the remaining ones work in a same manner as they did in Claim 3.

Suppose sentential form 4Xα, where α = X0 . . . Xn and the set of rules

P 1
ABtoCDmod

defined as above (to be more specific, only its first two subsets). Using
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some rule of the first subset, the derivation of the following form may occur:

4XX0 . . . Xi−1α1Aα2Xi+1 . . . Xn

⇒ p
|X |X0 . . . Xi−1α1 |C<α2Xi+1 . . . Xn

where either α1 = δB and α2 = ε or α1 = ε and α2 = Bδ. Since the first symbol

of this sentential form is marked as p
|X | and no other marks are present in the

sentential form, only some rule from the second subset may be used and more

specifically, only the rule which was created from the rule p. Since the first and

second second symbol of the context sensitive rule is rewritten separately, one of

the following two possibilities may occur:

OX |X0 . . . Xi−1 |C<δ >D|Xi+1 . . . Xn (1)

OX |X0 . . . Xi−1 >D|δ |C<Xi+1 . . . Xn (2)

Observe that these two options correspond to the sentential forms 7 and 9, respec-

tively.

The rest of the proof is the same as in the case of the proof of Claim 3, so it is

left to the reader.

Claim 10. The sentential form newly introduced in the previous claim (the case

(c)) will not lead to generation of a sentence.

Proof. The careful examination of the set P2 shows that the symbols C∧< and

>D| appear only in that order on the left-hand side of the checking rules. If the

symbols appear in the opposite order (i.e. symbol expecting left context sensitivity

appearing first), there are no rules that would be able to rewrite them. These

symbols would thus be skipped during the checking phase, and blocking symbols

would be introduced instead.

Proof. Based on the proof of Theorem 4 with the modification introduced by

Claims 8, 9 and 10, Theorem 5 holds.

4. Conclusion

The modified version of L (PSCG) = L (CS) problem was discussed in this paper.

This modification deals with combination of CD grammar systems with propagating

scattered context components and compares their generative power with context-

sensitive grammars. The algorithm that constructs grammar system that simulates

given context-sensitive grammar has been described. Based on this algorithm, it is

shown that those two models have the same generative power. Furthermore it is

shown that this property holds even for the most simple variant of these grammar

systems—that is, those using only two components, where each scattered context

rule is of degree of at most two.



January 16, 2018 2:44 WSPC/INSTRUCTION FILE cdgs˙2pscc

Propagating Scattered Context Grammar Systems 15

Acknowledgment

This work was supported by The Ministry of Education, Youth and Sports of the

Czech Republic from the National Programme of Sustainability (NPU II); project

IT4Innovations excellence in science - LQ1602; the TAČR grant TE01020415; and
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