
Advancements in Ultrasound Simulations Enabled by
High-bandwidth GPU Interconnects

Filip Vaverka
Brno University of Technology,

Faculty of Information Technology,
Centre of Excellence IT4Innovations

Brno, Czech Republic
ivaverka@fit.vutbr.cz

Bradley E. Treeby
University College London, Medical
Physics and Biomedical Engineering,

Biomedical Ultrasound Group
London., United Kingdom.

b.treeby@ucl.ac.uk

Jiri Jaros
Brno University of Technology,

Faculty of Information Technology,
Centre of Excellence IT4Innovations

Brno, Czech Republic
jarosjir@fit.vutbr.cz

KEYWORDS
Ultrasound simulations, Local Fourier basis decomposition, k-Wave
toolbox, Multi-GPU systems, CUDA, NVlink, MPI.
ACM Reference Format:
Filip Vaverka, Bradley E. Treeby, and Jiri Jaros. 2019. Advancements in
Ultrasound Simulations Enabled by High-bandwidth GPU Interconnects.
In Proceedings of Supercomputing Conference (SC’19). ACM, New York, NY,
USA, 3 pages.

1 INTRODUCTION
Realistic ultrasound simulations are becoming integral part of many
novel medical procedures ranging from preoperative ultrasound
and photoacoustic screening [6, 8] to non-invasive treatment plan-
ning such as brain stimulation [4] or ultrasound ablation [1, 10].
The common denominator of all these applications is the need for
cheap, fast and relatively large-scale ultrasound simulations with
sufficient accuracy. A typical medical application requires a full-
wave simulation which taking into account frequency-dependent
absorption and non-linearity. Appication of the k-space pseudo-
spectral approach (which is regarded to be one of best methods)
leads to a system of partial differential equations solved over do-
mains with more than 10243 grid points for tens of thousands of
time steps. This task would traditionally be solved on a CPU-based
cluster since these codes are typically memory and communica-
tion heavy. However, at SC 2017 we presented a GPU accelerated
simulation code running on a cluster of 512 single-GPU nodes of
the Piz Daint supercomputer. Last year at SC 2018, we investigated
how our code can benefit from the use of CUDA peer-to-peer (P2P)
communications [5] in multi-GPU compute nodes based on PCI-
Express interconnect. P2P communications were found to provide
significant speedup, which is hindered primarily by GPUs being
split between multiple CPU sockets.

In this paper, we investigate the benefits of a high-bandwidth
low-latency NVlink interconnect in an Nvidia DGX-2 super-dense
multi-GPU server in comparison to a more traditional PCI-E 3.0
based multi-GPU server. Nvidia DGX-2 is a dual socket server based
on Intel Xeon Platinum 8168 processors with 2×768 GB of main
memory, and 16 Nvidia Tesla V100 Volta GPUs, each of which
with 5120 CUDA cores and 32 GB of HBM memory. Our second
system is a dual socket PNY server equipped with Intel E5-2620v4
CPUs, 2×256 GB or main memory, and 8 Nvidia Tesla P40 Pascal
GPUs, each of which with 3840 CUDA cores and 24 GB of GDDR5X
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Figure 1: Numerical error introduced by a single interface in
the local Fourier basis approach.

memory. The important distinction between these two systems is
the inter-GPU interconnection. DGX-2 uses an NVlink 2.0 which
offers 300 GB/s bi-directional bandwidth between two GPUs and 2.4
TB/s bisection bandwidth (all-to-all). The PCI-E 3.0 based system
has GPUs grouped into pairs connected through PCI-E hubs, each
of which connected to the root hub in one of the CPUs. The sockets
are connected together via an Intel QPI providing up to 64 GB/s
of bandwidth while each link in the PCI-Express structure has 16
PCI-E 3.0 lanes with up to 32 GB/s.

2 METHOD AND RESULTS
The key component for an efficient multi-GPU acceleration of the
pseudo-spectral simulation codes is the minimization of the commu-
nication between GPUs. In the case of the k-Wave acoustic toolbox,
this can be achieved by a restriction of the global Fourier basis
resulting in a domain decomposition [2] where the 3D simulation
domain is partitioned into blocks, each of which assigned to a single
GPU [3]. Each partition is expanded to overlap with its neighbors
by a specified amount of grid points, and these overlaps are then
periodically exchanged during each time step of the simulation.
The domain is treated as periodic, thus the neighbor communica-
tions form a 1-3 dimensional torus (depending on the rank of the
decomposition). The size of the overlaps is a primary determining
factor to both the accuracy and the performance of the simulation.
For the aforementioned medical applications, a numerical error on
the order of 10−3 is usually acceptable (see Fig. 1).

The computation of each subdomain is assigned to a single GPU
and executed as a mix of CUDA FFT library [9] and custom CUDA
kernel calls. The CPU is dedicated to I/O, management, GPU control
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Figure 2: The speedup of the local gradient operator over the
global on a DGX-2. The speedup is normalized to a single
GPU, and overlaps of 16 points are used.

and communication tasks. The data transfers are realized by means
of CUDA Peer-to-Peer (P2P) routines where possible, with a fallback
to CUDA-Aware MPI [7]. The synchronization is always handled
on the CPU side by MPI. The particular overlaps are packaged by
CUDA kernels and transferred either by the GPU itself (P2P) or the
CPU (MPI) to the target. This approach was successful on clusters
with a single GPU per node such as Piz Daint1 and achieved almost
linear scaling.

The same approach yields very good results when used on a PCI-
E based multi-GPU server. However, it is not clear, whether this
approach is still optimal when a high-bandwidth interconnect is
available since the computation and memory overhead may become
larger than the communication penalty.

The only part of the simulation which involves communication
between GPUs, is the pseudo-spectral gradient operator. Its behav-
ior can easily be approximated by a pair of 3D discrete Fourier
Transforms (forward and back). The rest of the simulation is es-
sentially local without the need for inter-GPU communication. In
Fig. 2, such an estimation is used to show that a DGX-2 manages
to keep the performance of both approaches within a 30% margin.
The estimated speedup of the local to the global approach has to be
normalized so that both approaches are equal in a single GPU sce-
nario. The normalization coefficient is computed for each domain
size independently. Such a convoluted approach is necessary due
to the issues with multi-GPU implementation of Real-to-Complex
3D DFT in the CUDA FFT library (Complex-to-Complex variant is
used instead). This shows that while the global approach can be
used in the future to avoid accuracy issues, it is still beneficial to
continue with the local approach.

A single V100 is about 2.1× faster than a P40 in our workload
(mostly due to an increase in the memory bandwidth). However, as
a system, DGX-2 server achieves 2-4× speedup over the PNY server
while using the same number of GPUs. The additional speedup
comes from the NVlink 2.0 interconnect implemented in DGX-2,
which is almost 10× faster than PCI-E 3.0 ×16 used in the PNY
server. Figure 3 shows weak scaling on both machines. Although
the scaling is rather poor on both machines due to increasing rank
of the decomposition, it can be seen that this behavior is more
severe on the PNY server and that the scaling is very good beyond
1Up to 512 Nvidia P100 GPUs, CSCS, CH
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Figure 3: Weak scaling of the local approach using 16 point
overlaps.
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Figure 4: The impact of the communication through the QPI
in 512×512×1024 grid point simulationwith 16 point overlaps
in various decompositions on both machines.

8 GPUs (where full 3D decomposition is reached). Finally, Fig. 4
illustrates the importance of the decomposition and the necessity to
avoid unnecessary communication through QPI, while the NVlink
2.0 interconnect in DGX-2 is immune to these issues.

3 CONCLUSIONS
The main contribution of this paper is the experimental evaluation
of the advantages offered by high-bandwidth interconnects such
as NVlink in the area of pseudo-spectral simulations. It has been
shown that approaches such as global Fourier transforms may
become feasible, and can displace local Fourier basis decomposition
at a multi-GPU node level. This can enable further scaling (when
limited by accuracy) and alleviate some of the memory overhead
associated with the local domain overlaps.

The results obtained for various domain decompositions and
subdomain mappings to GPUs also show that the direct communi-
cation between GPUs in PCI-E based machines may severely suffer
if the GPUs are distributed over multiple CPU sockets. The tree
structure of the PCI-E may also become somewhat an issue as the
number of GPUs per node grows.

Finally, when using only 8 Tesla V100 GPUs, our simulation code
achieved 3× speedup over 8 Tesla P40 GPUs in the PCI-E based
server, showing the importance of fast communication between
GPUs. The speedup is then doubled as expected when all 16 GPUs
in DGX-2 are used, and a sufficiently large simulation is considered.
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