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Abstract. High Intensity Focused Ultrasound (HIFU) is an emerging
technique for non-invasive cancer treatment where malignant tissue is
destroyed by thermal ablation. Such a treatment consists of a series of
short sonications destroying small volumes of tissue. High-quality treat-
ment plans allow to precisely target malignant tissue and protect sur-
rounding healthy tissue. Recently, we developed an evolutionary strat-
egy to design such HIFU treatment plans using patient-specific material
properties and a realistic thermal model. Unfortunately, the execution
time was prohibitive for routine use. Here, we present an optimized evo-
lutionary strategy based on island model parallelization and a revised
fitness function implementation. The proposed improvements allow to
develop a good treatment plan 4 times faster and with 5% higher success
rate.

Keywords: Evolutionary strategy · Island model · HIFU · Treatment
planning · k-Wave toolbox

1 Introduction

In last years, High-Intensity Focused Ultrasound (HIFU) has been used to treat
a variety of solid malignant tumors in a well-defined volume, including the pan-
creas, liver, prostate, breast, uterine fibroids, and soft-tissue sarcomas. The main
benefits of HIFU over the conventional tumor/cancer treatment modalities, such
as open surgery, radio- and chemo-therapy, is its non-invasiveness. Furthermore,
it is non-ionizing and has fewer complications after treatment. To this day, over
100,000 cases have been treated throughout the world with great success [24].

The basic principle of thermal HIFU treatment is to raise the temperature
by several tens of degrees so that the tissue is destroyed via coagulative necro-
sis with delivering adequate ultrasound energy to the targeted area. The HIFU
beam focusing results in cytotoxic levels of temperature only at a specific loca-
tion within a small volume (e.g., about 1 mm in diameter and about 10 mm in
length), which minimizes the potential for thermal damage to tissue outside the
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focal region. Large tumors can be destroyed by producing a contiguous lesion
lattice encompassing the tumor and appropriate margins of surrounding tissue.
However, complications may develop if vital blood vessels adjacent to the tumors
are severely damaged. Blood perfusion may also carry away a significant amount
of energy and deteriorate the treatment outcome [12].

Despite the advantages of HIFU, this method still suffers from delivery preci-
sion in contrast to other established therapies such as radiotherapy. With recent
advances in numerical methods and high performance computing, detailed simu-
lations accurately capturing the relevant physical behavior of focused ultrasound
waves and temperature distribution in heterogeneous tissue are now possible
[21]. However, model-based treatment planning (determining the best transducer
position and sonication parameters to deliver the ultrasound energy to the plan-
ning target volume) is still currently performed in a relatively rudimental way
based on heuristics rather than physical models of the therapy. This leads to
rather poor quality of the treatment plans.

Recently, first steps towards the automated design of precise HIFU treatment
plans have been made via the use of Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES) [8] in combination with a physically relevant fitness function
[4]. The planning algorithm achieved promising results by producing treatment
plans with negligible mistreated and undertreated areas. Unfortunately, the evo-
lution process often took more than one day, even on very powerful computing
servers integrating two processors with 24 cores in total.

This paper presents our effort in reducing the evolution run time. It was
decided to adopt the island model of EA [1,2,20] where the population is
split into several sub-populations assigned to particular computational resources.
These sub-populations mostly evolve independently, which ensures higher diver-
sity of the evolutionary process, yet share some collective knowledge about
promising areas in the search space, which improves the convergence towards
global optima. Furthermore, since the fitness function evaluation is extremely
time-consuming, considerable time has been spent in the code optimization.

The rest of the paper is organized as follows. The next section recapitulates
the structure of the evolutionary algorithm, its encoding and fitness function.
Section 3 details the optimization of the fitness function. Section 4 describes the
island model implementation. The parameters of the island model and the qual-
ity of proposed optimizations are elaborated in Sect. 5. The last section concludes
the paper and draws future work directions.

2 Proposed Algorithm

This section first describes the optimization algorithm based on the Matlab
implementation of the Covariance Matrix Adaptation (CMA) Evolutionary
Strategy (ES) developed by Hansen [7]. Then, the treatment plan encoding is
outlined. Finally, the fitness function based on the tissue-realistic heat diffusion
developed as part of the k-Wave toolbox is introduced [21,22].
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2.1 Evolutionary Strategy

The CMA-ES [7,8] is a very popular stochastic method for real-parameter (con-
tinuous domain) optimization of nonlinear, non-convex objective functions. The
CMA [9] describes the pairwise dependencies between variables/genes on the top
of the classic ES.

In CMA-ES, a population of λ new search points (individuals, offspring) is
generated by sampling a multivariate normal distribution N (m,C) determined
by its mean m ∈ R

N and its symmetric and positive defined covariance matrix
C ∈ R

N×N , which determines the shape of the distribution ellipsoid. The length
of the step is controlled by the so-called step-size parameter σ ∈ R

N :

xi ∼ m + σNi(0,C) for i = 1, ..., λ. (1)

The newly generated individuals are first ranked according to their fitness
and then the best μ individuals are selected. The elitism is not used. Next, the
mean value, step size and the covariance matrix are updated. The mean value
m is updated by weighted intermediate recombination where the weight of every
selected individual is proportional to its rank. The CMA-ES utilizes an evolution
path to control the step size σ. Conceptually, the evolution path is the search
path the strategy takes over a number of generation steps. The adaptation of
the covariance matrix follows a natural gradient approximation of the expected
fitness. The adaptation procedure first learns all pairwise dependencies between
all variables. Then, it conducts a principal components (eigenvectors) analysis
(PCA) of steps sequentially in time and space. Finally, a new rotated problem
representation is determined using the Mahalanobis metric [3].

The main benefit of the CMA-ES is a very small population and fast con-
vergence for real-valued problems compared to Genetic Algorithms (GA) [2] or
Estimation of Distribution Algorithms (EDA) [14]. The step-size control facili-
tates fast (log-linear) convergence and possibly linear scaling with the dimension.
The covariance matrix adaptation increases the likelihood of previously success-
ful steps and can improve performance by orders of magnitude [8].

2.2 Treatment Plan Encoding

The ablation of large target areas using HIFU requires multiple sonications to
effectively cover this area. The candidate solution I describes the trajectory the
HIFU transducer follows in the tissue during the treatment. The treatment is
not continuous but proceeds at precisely defined points in the tissue where the
HIFU focus is placed. The number of sonications is limited to N , usually low
tens. The amount of energy delivered during a single sonication is given by the
length of the sonication ton and the length of the subsequent cooling interval
toff . One sonication can thus be defined as a 4-tuple Si composed of two spatial
coordinates of the beam focus (only 2D problems are considered), and sonication
and cooling intervals ton and toff , respectively:

I = (S1, S2, ..., SN ), where Si = (xi, yi, ton, i, toff, i) (2)
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2.3 Fitness Function

Generally, the treatment planning problem is defined as the search for suitable
positions and sonication times for the specified number sonications to cover the
target area and minimize the volume of mistreated areas. The assessment of
the treatment plan quality is composed of several stages, detailed in [4]. First,
the heat deposition for every sonication is determined using the predicted shape
and position of the ultrasound focus and the sonication length. Physically, they
can be determined by complex numerical models [11,15,22]. However, since their
execution times are often prohibitive for applications in evolutionary algorithms,
several simplifications had to be made: (1) the centre of the focus can be placed
at coordinates given by the sonication Si = [xi, yi], and (2) the distribution of
the energy in the focus follows the Gaussian distribution [5,23].

Second, the numerical thermal model is executed on the whole sequence of
sonications to calculate the temperature distribution in the domain during the
treatment. The heat diffusion is modelled by the Pennes’ bioheat equation [18]
which has a corresponding ultrasound energy absorption term as a source term,
incorporates various tissue properties and effects of blood perfusion.

Figure 1 shows the spatial temperature distribution along the main focus axis
at the end of the first sonication, and then every 20 s during the cooling period.
Without the proximity of a large blood vessel, the spatial temperature distri-
bution follows the Gaussian distribution. The temperature magnitude declines
from a peak of 72 ◦C at the end of the sonication down to about 46 ◦C at the end
of the cooling interval. On the other hand, the area with temperature exceeding
37 ◦C is slowly growing.

Fig. 1. Heat distribution along the main focus axis during a sonication with ton = 20 s
and toff = 100 s at time t = 20 s, 40 s, 60 s, 80 s, 100 s. (Color figure online)
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Thermal damage is computed using the Sapareto-Dewey iso-effect thermal
dose relationship [19] which is expressed in seconds and represents the equivalent
time which would produce the same biological effects at a temperature of 43 ◦C.
This metric is called cumulative equivalent minutes at 43 ◦C (CEM43). CEM43

is calculated for every point in the tissue and summed up over all sonications.
Thermal doses of 240 min at 43 ◦C irreversibly damage and coagulate critical
cellular protein, tissue structural components and the vasculature leading to
immediate tissue destruction [24]. The area with the dose exceeding 240 CEM43

is depicted in Fig. 1 by a yellow bar.
The output of the thermal model is a spatial map of CEM43 accumulated

over the whole treatment. This map is thresholded by a value of 240 to pro-
duce a binary mask of destroyed tissue. The evaluation of the quality of the
HIFU treatment is based on the assumption that all tissue in the target area is
destroyed while all tissue in the prohibited area (organs at risk) is left unharmed.
In order to give the optimization algorithm some freedom, do not care areas can
be specified as well.

The fitness function for a 2D case can be written as

f =
∫ Y

0

∫ X

0

((D ∗ C) + (P ∗ C))dxdy

C =

{
0 for CEM43 ≤ 240
1 for CEM43 > 240

D ∈ R
+, P ∈ R

+,

(3)

where X, Y are domain sizes along the x and y axes, respectively, C is a binary
mask representing the actually treated area, C is a complementary mask repre-
senting the non-treated area, D is a target map specifying the area to be treated
and P represents prohibited area. Since D and P are defined as functions over
2D space, users can specify the level of urgency a given point in the space shall
be treated or protected with. The goal is then to minimize the fitness function.

3 Acceleration of Fitness Function

The probability of finding the optimal solution by CMA-ES is known to increase
with the population size [10]. However, a larger population usually implies a
much higher number of evaluations. As can be seen in Table 1, the fitness function
is very complex due to the realistic simulation of heat diffusion which consumes
over 99% of the computational time. That only allows populations with at most
40 individuals to be used due to a time constraint of 48 h. Therefore, the first
step towards a more robust EA is to analyze and optimize the fitness function.

3.1 Analysis of the Matlab Implementation

The fitness function consists of the calculation of the heat diffusion followed by
the assessment of the treated area. We only focused on the heat diffusion since
the treated area assessment is computationally trivial.
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Table 1. Time profile of the whole evolution process executed by Matlab.

Code Calls Total time % Time

Fitness evaluation 2,990 47,998 s 99.9%

Population initialization 1 13.87 s 0.1%

Final solution evaluation 1 12.53 s 0.0%

Writes to log file 140 1.21 s 0.0%

Other 3.34 s 0.0%

Total 48,029 s 100%

The heat diffusion code was originally implemented in Matlab using the k-
Wave toolbox [22]. Its pseudocode can be seen in Listing 1.1. This code supports
precise tissue parameter settings derived from patient-specific models of the tis-
sue anatomy discretized into a grid with spatial and temporal resolutions set
according to the convergence testing, see Sect. 5.

The computation is based on a k-space pseudospectral scheme in which
spatial gradients are calculated using the Fourier collocation spectral method
and temporal gradients are calculated using a k-space corrected finite difference
scheme. The precomputations of the k-space term and the heat source term are
based on simple matrix operations and two Fourier transforms. Since being exe-
cuted only once, this part of computation is negligible. On the other hand, the
functions inside the loop are called between 50 and 200 times for typical son-
ication lengths. The computation of the divergence term uses 3 forward and 4
inverse 2D Fourier transforms. Hence, 350–1400 FFTs are executed. This causes
the computation of divergence term to take almost 85% of the computation time
of the whole simulation. The update of the damage integral takes about 10% and
the rest of the operations amount to last 5%.

Listing 1.1. Pseudocode of the heat deposition calculation for one sonication.
Precompute k-space derivative term;
Precompute heat source term;

Loop through the sonication time span
begin

Compute perfusion term;
Compute divergence term;
Update tissue temperature;
Update damage integral;

end

3.2 Optimized Implementation

In order to maximize computational efficiency, the fitness function was rewritten
from Matlab to C++ with several low-level optimizations. First, the Matlab FFT
[6] taking about 75% of the execution time was replaced with the Intel MKL [13]
version which offers 89% faster execution on the domain sizes of interest. Second,
the element-wise matrix-matrix operations were parallelized and vectorized using
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the C++ OpenMP 4.5 library [17] to exploit multiple processor cores and vector
instructions such as Intel AVX. Multiple mathematical operations were applied
to each grid point where possible to maximize temporal data locality. Finally,
the C++ code was compiled with the highest optimization level tuned for the
CPUs being used in our experiments.

Since the medical data processing and the CMA-ES itself was implemented
in Matlab, the optimized fitness function was wrapped by a MEX function to
be directly invoked from within Matlab without any additional overhead.

3.3 Performance Evaluation

The optimization of the fitness function itself brought more than twofold reduc-
tion of the execution time. In order to use an appropriate level of parallelism a
scaling test was performed, see Fig. 2. The question to be answered was whether
it is better to evaluate multiple individuals at the same time, or use multiple
processor cores to evaluate a single one. Since CMA-ES uses a very small pop-
ulation and every individual may take a considerably different time, an even
usage of all cores may become an issue. In the scaling test, the number of cores
collaborating to evaluate a single individual was progressively increased from 1
to 24. The execution time of a single individual decreases almost linearly up to
12 cores (a single processor). When both processors are used, the performance
deteriorates significantly. This can be attributed to the scaling of the Intel FFTs
and the inter-CPU interconnect.

This measurement opens three almost equal possibilities how the population
evaluation can be parallelized while keeping a reasonable level of load balance:

1. 6 individuals at the same time, each using 4 cores,
2. 3 individuals at the same time, each using 8 cores,
3. 2 individuals at the same time, each using 12 cores.

Fig. 2. Execution time of the fitness function on a dual-socket server with 24 cores.
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4 Island Model

Faster evolution can be achieved by concurrent evaluation of multiple individ-
uals. One possibility is to keep the evolutionary algorithm unchanged and only
parallelize the evaluation. We, however, decided to split the population into mul-
tiple ones and run a parallel island-based CMA-ES with a subset of cores assigned
to each island. These cores can be used either to evaluate multiple individuals
concurrently, or to accelerate the evaluation of a single individual. The updated
execution profile revealed only a 1.5% overhead introduced by the island model.

The pseudocode displayed in Listing 1.2 shows the island CMA-ES workflow.
First, the algorithm is initialized. Then the evolution runs in a loop until the stop
condition is met. The loop starts with generation and evaluation of lambda new
individuals from the local island CMA-ES model. The islands migrate individuals
every M -th generation. During the migration, the population on each island is
sorted according to the fitness values and N best individuals are broadcast to
other islands. The other islands accept these individuals only if the acceptance
condition is satisfied. Next, some of the immigrants are selected by a roulette
wheel to replace N worst individuals in the local population. At the end of
the loop, the local CMA-ES models are updated based on the newly formed
population and the loop repeats.

Listing 1.2. Pseudocode of the island-based CMA-ES.
1 init_params(params);
2 while(stopflag)
3 % Generate and evaluate local population
4 for k = 1: lambda
5 ind = create_new_individual(params);
6 fitness(k) = eval_thermal_model(ind);
7 end
8
9 % Perform migration

10 if(mod(gen , M) == 0)
11 sort(fitness );
12 for i = 1:N % Islands perform migration in turn
13 if(i == current_island) % Who broadcasts individuals
14 broadcast(i, fitness (1: n_best ));
15 else if (accept_cond) % Shall I accept migrants
16 rcv(i) = broadcast(i);
17 end
18 if(glob_select) % Global or per island selection
19 sel(:) = roulette(rcv (:));
20 else if(isl_select)
21 for i = 1:size(rcv)
22 sel(i) = roulette(rcv(i));
23 end
24 end
25 end
26 % Replace worst part of population
27 fitness(lambda - n_sel:lambda) = sel (:);
28 end
29
30 % Update local model
31 select_parents;
32 update_params(params , fitness );
33 gen = gen + 1;
34 end
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5 Experimental Results

The experimental work presented in this paper investigates the benefits of several
different versions of the island based CMA-ES and compares them with a pan-
population (PP) version. To allow statistical evaluation, 15 independent runs for
each version were executed with the maximum execution time per run limited to
48 h. To compare the original CMA-ES treatment planning with the island-based
CMA-ES, two main metrics were examined: (1) success rate, (2) total number
of fitness evaluations to converge. Success rate represents the percentage of runs
which found the optimal solution with the fitness value of zero. In such a case, the
treated area covers the whole desired area and the prohibited area is unharmed.
The total number of fitness evaluations to converge is straightforward for the
pan-population model. In the case of the island model, the total number of
evaluation is the sum over all islands.

During the evaluation of the proposed algorithm we strove to work under as
realistic conditions as possible. The same benchmark as in the paper by Cudova
[4] was used. The HIFU treatment plans were designed for a representative map
of the biological materials acquired from the open-source AustinWoman voxel
model [16]. As a case study, one abdominal target within the right lobe of the
liver was used. Two levels of D were chosen, a higher one (Dx,y = 2) in the
middle of the target area, and a lower one (Dx,y = 1) close to the boundaries.
The prohibited area P was marked by three different levels of importance. The
highest one (Px,y = 5) covered the rib and the tendon. The middle one (Px,y = 2)
covered the fat layers and the areas further from the treated areas. The lowest
level (Px,y = 1) was used for areas neighboring the treated areas. To make the
interface between treated and prohibited areas smooth, a thin don’t care area
was used (Dx,y = 0 and Px,y = 0). The size of the heat source was based on a
single element transducer using the nominal properties of the HAIFU JC-200.
The spatial peak of the volume rate of heat deposition was set to 100 W/cm2,
which approximately matches the values used for clinical treatments.

The parameters of the numerical heat diffusion model were set according to
convergence testing as follows:

– Discretized simulation domain size 495 × 495 grid points, periodic boundary
condition.

– Spatial resolution 0.2 mm.
– Temporal resolution 0.1 s.
– The total length of the simulation

∑N
i=0(ton,i + toff,i).

– Allowed positions of the ultrasound focus center limited to the bounding box
at grid positions [270, 230] × [345, 295].

– Maximum sonication and cooling periods ton = [0, 20 s], toff = [0, 20 s].
– Number of sonications considered N = 6.

The success rate and evolution time is highly dependent on the number of
sonications used in the treatment. Generally, the more the sonications is used,
the easier the job to design an optimal treatment plan is. Naturally, it is easier
to cover a given area with a higher number of smaller dots. On the other hand,
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the applicaiton of the treatment takes much longer as well as the fitness function
evaluation. This is given by a rising number of thermal model invocation in the
simulation, and heating od distant points in the real treatment. In our previous
paper [4], treatment plans with 4, 5, 6, 8 and 10 sonications have been deeply
investigated. Six and eight sonications were concluded to be the best. Since
shorter treatments poses a harder problem, we decided to use 6 sonications in
the rest of the paper.

5.1 Examined Parameters of Island Model

Apart from CMA-ES related parameters, the proposed island model introduces
several parameters influencing the behavior of the evolution. The following list
elaborates the parameters of interest along with their examined values.

1. Number of islands - Having 24 computers cores and considering the scalability
of the fitness function, we investigate the island CMA-ES with 3 and 6 islands
and compared them with the original pan-population version.

2. Total number of individuals - The number of individuals per island is λisland =
13, which is a default population size for CMA-ES with 6 sonications. The
total population size for 3 and 6 islands reaches 39 and 78, respectively.

3. Migration interval - The number of generations between two migrations M
remains constant during the evolution and is set to 1, 2 or 3 generations.

4. Migration selection strategy - Depending on the strategy, one or three best
individuals are migrated.

5. Island topology - The island topology is a fully connected graph.
6. Acceptance policy - Each island has a predefined probability determining

whether the immigrants are accepted or refused. This probability is progres-
sively decreased along with the increasing quality of local individuals.

7. Replace strategy - Each island replaces R worst individuals in its population
with R migrants. The migrants are selected using a roulette wheel.

5.2 Pan-Population Model

The results of the original PP model with the Matlab fitness function evaluation
for with the population size λ = 13, 20, 40 were taken from the previous paper
[4]. Since the optimized fitness function enables to shorten the computation time
by a factor of two, another case with a population of λ = 78 individuals is added
into the comparison.

5.3 CMA-ES with 6 Islands

In this section, four examined variants of the 6-island model with the total
population of 78 individuals are explained.

1. Send 1 Best - Accept All (6ISB) - Every island broadcasts its best individual
to the others. The others accept all migrants and replace the worse part of
local populations.



Accelerated Design of HIFU Treatment Plans 473

2. Send 3 Best - Select Roulette (6IS3) - Three best individuals are broadcast
but only a single immigrant from each island selected by a roulette wheel is
accepted.

3. Send 1 or 3 Best - Select Roulette - Acceptance Policy (6IS1AP or 6IS3AP)
- The strategy tries to maximize the diversity among islands by introducing
the acceptance probability that decreases with the quality of local solutions,
see Table 2. This allows the islands to converge to different optimal solutions
which then can be displayed to the clinicians for deeper evaluation.

Table 2. The probability to accept immigrant individuals.

Fitness value >200 >100 >50 >30 <30

Probability 0.75 0.4 0.1 0.05 0

5.4 CMA-ES with 3 Islands

The 3-island model is equivalent to the pan-population model with the popula-
tion size of 39 individuals. The strategies used in this variant are the same as
for the 6-island model, however, since most of them produces significantly worse
results, they are excluded from the plots for the sake of clarity.

5.5 Success Rate Comparison

Figure 3 shows the success rate of examined versions of CMA-ES. Here, the
influence of the population size, as well as the island model strategies, are shown.
In green, pan-population CMA-ES is shown. There can be seen a strong influence
of the population size on the success rate. By optimizing the fitness function in
C++, which enabled an increase of the population size up to 78 individuals, the
success rate increased from 53% to 87.5%.

Splitting the global population into 6 islands, shown in blue, brings another
significant improvement to the success rate. When 3 best individuals are broad-
cast from each island (6IS3), the success rate reaches 93.3%. To reach a 100%
success rate, the acceptance policy has to be turned on. The migration of 3 indi-
viduals appears to bring to much genetic material that prevents the CMA-ES to
explore local neighborhoods. There are also two cases which are worse than the
PP model. In the case of 6ISB, the exchange of genetic material is not sufficient
to explore the search space efficiently. This strategy thus reaches about 1% worse
success rate. When the acceptance policy is tightened, the success rate of this
6-island CMA-ES drops to 77.4%

Interesting results were achieved with a 3-island version of CMA-ES, shown
in yellow. When broadcasting only a single individual and even having a half of
the total population, the success rate remains the same as for the 6 islands with
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migration of 3 individuals per island. The 3-island model thus seems to be more
efficient in terms of computational requirements, which was further confirmed
in Fig. 4.

5.6 Number of Evaluations Comparison

Figure 4 presents the difference in the total number of evaluations before the
algorithms converge. The simplest 6-island strategies (6IBS and 6IS3) are con-
siderably worse than an equivalent PP version with 78 individuals. Both strate-
gies using the acceptance policy require about the same number of evaluations
to converge, however, the superiority of 6IS3AP is emphasized by the best suc-
cess rate. This version also reaches the most stable performance with only a low
variance in the measured number of evaluations.

The PP model with smaller populations needs a significantly lower number
of evaluations to converge, but that is redeemed by a poor success rate. The
fastest variant uses only 3 islands. Even if the PP model with 40 individuals
may sometimes be faster, the 3-island version on average produces the treatment
plans in a shorter time, and with much higher quality. The detailed comparison
of the best variants can be seen in Fig. 5.

5.7 Acceptance Policy

The acceptance policy defines the probability the immigrants are incorporated
into the local population. In this investigation, we calculated the success rate
over all islands to see what percentage of the islands could converge to the global
optimum and if we can get multiple different optimal solutions. This strategy
has shown to be very beneficial for 6-island modes. The highest benefit was

Fig. 3. Success rate of different evolution strategies. (Color figure online)
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Fig. 4. Number of evaluations before CMA-ES converges.

Fig. 5. Comparison of the performance of the best variants of CMA-ES.

brought to S3AP where 2.5 islands out of 6 usually converged to the optimum
while the number of evaluations also increased. On the other side, this technique
deteriorates the success rate for three-island modes. Most of the trials for 3
islands did not converge to the global optimum, even after a great number of
generations, see Table 3.

5.8 Migration Interval

The influence of different migration interval was also tested. The impact of the
prolonged migration interval appears to be rather negative. The increase in the
migration interval yields an increase in the number of evaluations, and even
degradation of the success rate. The modification of migration interval behaves
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Table 3. The number of evaluations needed to find one optimal plan and average
success rate for different acceptance policies.

Evaluations/success rate

Strategy SB S1AP S3AP

6-island 12,900/86.7% 8,430/230% 8,320/252%

3-island 6,220/93.3% 12,500/82.1% 13,600/84.5%

differently for 3-island and 6-island model. The results are shown in Table 4.
The reason is much slower convergence which can be clearly seen from Fig. 6.
The leftmost plots show a rapid decrease of the best individual fitness values
followed by the average and worst individual. Contrary the rightmost plots with
prolonged migration interval show much slower convergence.

Table 4. The influence of the migration interval on the average number of evaluations/
success rate.

Number of evaluations/success rate

Interval 1 2 3

6-island 11,076/86.7% 17,472/73.3% 13,416/86.7%

3-island 5,811/93.3% 8,541/93.3% 7,800/53.3%

Fig. 6. Convergence of 6ISB on the top and 3ISB strategy on the bottom, for migration
interval 1, 2 and 3 from left to right, respectively.
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6 Conclusion

This study has presented an acceleration of the CMA-ES algorithm for the design
the HIFU treatment plans by the island model. Since the fitness function evalu-
ation took prohibitively long, low-level optimization, parallelization and vector-
ization in C++ were conducted. This optimization enabled to use twice as big
population while fitting into the same maximal time period of 48 h. Next, the
effort was put into the parallelization using the island model. Several different
parameters on three and six islands were investigated including the number of
migrating individuals, the acceptance policy and the length of the migration
interval.

The highest success rate was achieved by a 6-island model migrating three
best individuals every generation with decreasing acceptance ratio towards the
end of the evolution. Comparing the original algorithm with the fastest variant,
a 3-island model migrating a single best individual every generation but without
the acceptance policy, the evolution was accelerated more than 4 times on the
same computer. This allows us to deliver an optimal patient specific treatment
plan within 6 h. Practically, the patient can be scanned during the day, and the
treatment plan will be computed overnight.

The proposed island model also allows the parallelization of the evolutionary
strategy on more interconnected computers, which will be used in the future
work to further accelerate the evolution and incorporate a realistic ultrasound
model.

Acknowledgment. This work was supported by The Ministry of Education, Youth
and Sports from the National Programme of Sustainability (NPU II) project
IT4Innovations excellence in science - LQ1602” and by the IT4Innovations infrastruc-
ture which is supported from the Large Infrastructures for Research, Experimental
Development and Innovations project IT4Innovations National Supercomputing Cen-
ter - LM2015070.

References

1. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans.
Evol. Comput. 6(5), 443–462 (2002)
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