
Gadget Detective: A novel open-source Network Forensics
Analysis Tool
Anonymous Author(s)∗

ABSTRACT
Network forensics is a major sub-discipline of digital forensics
which becomes more and more important in an age where every-
thing is connected. In order to cope with the amounts of data and
other challenges within networks, practitioners require powerful
tools that support them. In this paper, we highlight a novel open-
source network forensic tool named — Gadget Detective — that
outperforms existing tools such as Wireshark or NetworkMiner
in certain areas. For instance, it provides a heuristically based en-
gine for traffic processing that can be easily extended. Using robust
parsers (we are not solely relying on the RFC description but use
heuristics), our application tolerates malformed or missing con-
versation segments. Besides outlining the tool’s architecture and
basic processing concepts, we also explain how it can be extended.
Lastly, a comparison with other similar tools is presented as well
as a real-world scenario is discussed.

CCS CONCEPTS
• Applied computing → Network forensics; • Networks →
Network monitoring; Network protocols; Transport protocols; Ap-
plication layer protocols; • Social and professional topics →
Computer crime.

KEYWORDS
Network Forensics, Protocol analysis,Web forensics, Network foren-
sic analysis tool, Lawful interception

1 INTRODUCTION
Network forensics aims to understand/reconstruct events from
network communication, which often requires expert knowledge
(interpreting the low-level network protocols in order to see the big
picture) [3]. To eliminate some of the complexity, adequate tools are
essential [12, 13]. Specifically, tools should support investigators by
summarizing, clustering and highlighting relevant information [1],
e.g., provide contents of transmitted files, extract user credentials or
perform analysis and visualize the data in an easily understandable
form. While there are many different network forensic analysis
tools [33] out there (details discussed in the upcoming sections),
their functionalities, capabilities, and usability are not keeping up
with traditional forensics toolkits [3] such as EnCase or The Sleuth
Kit (TSK) & Autopsy.

Thematic classification:While network forensics and cloud foren-
sics are related, the latter one is usually more complex, e.g., it may
involve Software Defined Networking (SDN, [23]) which comes
with additional evidence such as Logfiles from the SDN controller,
compute nodes or cloud controller [40]. These networks also use
state-of-the-art networking technology (100–400Gbps) that cannot
be monitored without hardware acceleration (typically FPGA), and
even then, only selected flows can be fully captured [18] and used
for further, detailed examination. Gadget Detective is intended for

network forensic analysis and visualization on a PC and does not
compete with these tools, but uses them to filter and capture data.

Terms and definition: For readers not completely familiar with
the network terminology, we included an overview in Appendix A.

1.1 Analysis of Network Communication
Two of the most popular tools for Network Security Monitoring
(NSM) are Wireshark and TCPDUMP, which are commonly used
by network administrators to identify problems or security inci-
dents [33]. Wireshark provides a large number of protocol parsers,
can extract the content of the communication for several application
protocols and offers a detailed view of the network communication.
Although used by many network forensic practitioners, Wireshark
was not designed for forensic purposes [33]. Its bottom-up analysis
approach means that finding and extracting evidence often requires
intensive labor. Gadget Detective partially addresses this by imple-
menting advanced features such as heuristical TCP reassembling
or L7 conversation tracking or reconstruction of forensic artifacts
extracted from the communication. Furthermore, Wireshark does
not scale well above hundreds of megabytes of source data, and
thus, data preprocessing is necessary for large inputs. TCPDUMP,
on the other hand, has only a command line interface that allows
admins to inspect incoming and outgoing network traffic.

There are also more specialized tools that can extract valuable
forensic information, for instance, ngrep, ssldump, or tcpxtract.
These tools were created to solve specific problems such as search-
ing for a phrase in network communication, decoding encrypted
communication if a private key is known, or extracting transferred
files from network communication, respectively. To take advantage
of all tools, an investigator is required to combine them. For repeat-
ing tasks, one may write scripts to speed up the process and thus,
reduce the amount of manual labor.

Without question, there are many practitioners who prefer fea-
tureful open-source tools [1, 11] although there is a risk that they
are poorly documented, out-of-date, and even abandoned [12].

1.2 Expected Properties for Network Forensic
Tools

According to [8], a network forensic analysis tool (NFAT) should
provide a certain set of general features (listed as items 1-3 below).
We further analyzed the demands and identified some more specific
features yielding the following list of requirements:

(1) Efficient processing of large capture files: Current investiga-
tions deal with a big amount of data that needs to be analyzed.
Tools are required to provide at least partial results quickly.

(2) Extraction of high-level information:Network communication
can be analyzed at different levels but for digital investigation
extracting artifacts from data sources is a priority.

(3) Validation of results: Applying reliable procedures and the
possibility to validate the integrity of results is a crucial
requirement on all forensic tools including NFATs.

(4) Process non-standard or incomplete traffic: Network commu-
nication should be correctly processed regardless of the ac-
ceptable deviations from the specification.

(5) Robust data decapsulation: Even in the presence of IP frag-
mentation and data stream multiplexing, the tool should
be able to identify and compose unique application level
conversations.

(6) Support for overlay networks: Network communication may
be encapsulated using tunneling techniques, e.g., Virtual
Private Networks. If possible, detection and extraction are
then followed by the analysis of the encapsulated messages.

(7) Application protocol identification: Services communicating
on non-standard or dynamic ports require advancedmethods
for application identification. Without the correctly iden-
tified type of communicating application, it is difficult to
extract any high-level information.

(8) Investigation process: The tool should support the investiga-
tive process and guide the user. It is essential that even non-
expert personnel can operate NFAT and extract evidence to
support their cases.

The presented list is not exhaustive and stems from our experi-
ence in network traffic analysis and evaluation of existing NFATs.
Some requirements are conflicting, for instance, processing of large
data sources and in-depth analysis of conversations to extract high-
level artifacts.

1.3 Network Forensic Tools
Besides Network Security Monitoring (NSM) tools that are intended
for packet capturing, fingerprinting, or intrusion detection, there
are some network forensic analysis tools (NFAT) specifically de-
signed to support investigators. These aim to ease analysis by au-
tomating artifacts extraction and providing intuitive user interfaces.
Usually, these tools have a top-down approach which makes the
analysis simpler and saves time. In the following we briefly sum-
marize the five prominent tools (numbers in brackets related to
Sec. 1.2 and show missing properties):

• NetIntercept was one of the first NFATs [9]. It accepts PCAP
files (no live captures), reassembles TCP flows and extracts
artifacts from protocols running even on non-standard ports.
Note: NetIntercept is closed source and to the best of our
knowledge no longer available for download. Thus, we were
unable to perform a more detailed evaluation.

• PyFlag [1, 3, 4, 6, 7, 8] “is a general purpose, open source,
forensic packagewhichmerges disk forensics, memory foren-
sics, and network forensics” [8]. By using specialized scan-
ners, PyFlag can understand several application protocols
and extract the communicated contents. However, according
to Forensics Wiki, the tool is deprecated1.

• XPlico [1, 3, 4, 5] is open source NFAT that is preinstalled on
major digital forensics distribution such as DEFT, Security
Onion and even Kali. It understands about 30 application

1https://www.forensicswiki.org/wiki/PyFlag (last accessed 2019-05-17).

protocols and can extract the content of emails, Session Ini-
tiation Protocol (SIP) or web communication.

• NetworkMiner [1, 3, 4, 8] is a passive network sniffer/packet
capturing tool that can detect operating systems, sessions,
hostnames, open ports, and more. It also allows extracting
files from about a dozen commonly used application pro-
tocols. In the professional version, NetworkMiner also ex-
tracts VoIP calls, supports Geo IP localization, performs port-
independent protocol identification, OS fingerprinting, and
web browser tracing.

• TCPFlow [2, 3, 4, 5, 6, 8] “captures data transmitted as part
of TCP connections (flows), and stores the data in a way
that is convenient for protocol analysis and debugging. Each
TCP flow is stored in its own file. Thus, the typical TCP flow
will be stored in two files, one for each direction. TCPFlow
can also process stored ‘tcpdump’ packet flows” [44]. It is
important to note that TCPflow does not recognize IP frag-
ments; therefore, reassembling of such conversations will be
malformed.

While these tools have different strengths, our tool provides
some unique features which are pointed out in Sec. 5.

1.4 Problem Description
Although many tools have been developed/exist, several tools are
outdated, abandoned, or do not meet all expected properties (see
Sec. 1.2). Additionally, current tools are not intuitive (require train-
ing), not (easily) expandable or can handle network traffic captures
in the order of magnitude of gigabytes which were requirements/s-
tatements from the Lawful Enforcement Agency (LEA) officers.
Last, existing tools do not particularly support the investigative
process; commonly there is no case management, the linkage be-
tween investigations, and verification of results.

1.5 Contribution and Paper Structure
This paper providesGadget Detective2; a novel, easy-to-use, power-
ful network forensic platform for top-down investigations. Our tool
covers examination, analysis, and investigation phases of the foren-
sic model as defined by [33]. In detail, we provide the following
contributions:

• Introduction of investigation profiles that contain all neces-
sary data for sharing the case by just copying the investiga-
tion folder — Sec 3.3.

• The new method of TCP stream reassembling based on
heuristics (method itself was previously published (citation
removed due to double-blind review), but the tool con-
tains an improved version of it) — Sec 3.4 and Appendix E.

• Improved identification of application-level sessions within
TCP streams; the system can identify more application ses-
sions compared to other tools (see Table 1) — Sec 3.4.

• Seamless analysis across boundaries of multiple capture files
that ensures correct processing of long-running conversa-
tions — Sec 3.4; that ensures overlapping conversations to
be correctly processed.

2Gadget Detective is a symbolic name used for a double-blind review process. It will
be renamed in the final version.

2

https://www.forensicswiki.org/wiki/PyFlag

• Support for analysis of traffic encapsulated in GSE protocol;
to the best our knowledge, Gadget Detective is the only
open-source NFAT that supports GSE — Sec 5.3.

• Novel approach for web page reconstruction; in comparison
to other tools, we do not only extract objects from HTTP
communication, but we also reconstruct the page entirely
(rewriting sources of all intercepted objects like CSS, pictures,
video streams, etc.). Pages are stored as a MAFF archive
including snapshots that show how the page changed over
time. The JavaScript is interpreted, and particular API calls
are mocked to be injected with intercepted ones, like REST
API calls — Sec 6.2.

Note, the system has a modular architecture where processing
engine, data-access component, and visualization subsystem can
be used separately. The function related to packet capture file pro-
cessing, namely, file parsing, conversation tracking, application
protocol identification, application data extraction, and analysis
can also be used as a standalone console tool and integrated to auto-
mated investigation procedures and combined with other existing
tools.

The source code is released on GitHub and under the Apache
Licence 2.0: link removed for double-blind review. Additional
information can be found on YouTube: link removed for double-
blind review.

The remainder of this paper is organized as follows: Sec. 2 de-
scribes the system architecture, illustrates the frontend, and ex-
plains possibilities on how to extend Gadget Detective. Sec. 5 high-
lights some of the unique features of our tool as well as contains a
comparison with other prominent network forensics/security tools.
The last section concludes the paper.

2 GADGET DETECTIVE
Gadget Detective is a network forensic tool that was developed to
support digital forensic practitioners to analyze network captures
and to extract evidence from packet traces quickly. It allows to
correctly identify network conversations, parse common Internet
protocols, and extract metadata as well as content from the end-to-
end communication. Additionally, it is possible to extend the tool
with new functionality through a well-documented API.

The tool is a Windows application relying on the .NET Platform
and is available as an installation package that performs necessary
deployment steps. Our implementation exploits many advantages
of this platform like the rich graphical user interface provided
by Windows Presentation Foundation (WPF), short development
times due to a high abstraction language (C#), and availability of
many libraries provided through NuGet packages. Furthermore, the
implementation utilizes the Task Parallel Library (TPL) for parallel
processing.

The software consists of over 140,000 lines of code3 organized in
about 110 projects. While it currently does not support live analysis,
it accepts a variety of different network capture formats such as
libpcap, pcap-ng, and Microsoft Network Monitor (MNM) format.

Fig. 1 describes the architecture, which is composed of two main
components:

3Calculated by Visual Studio (code metrics) on the complete implementation; excludes
white spaces, comments, usings, and third-party libraries.

Backend

Frontend

Packet Capture
Source

Packet Capture
Processor

SQL
Database

ModulesModulesSnoopers

AnalyzersAnalyzersAnalyzers

L7 Tracker

L4 Tracker

L3 Tracker

AppIdent

AnalyzersAnalyzersViews

SipFraud

Figure 1: The overview of Gadget Detective Architecture.

Frontend is primarily a rich visual user interface (GUI, see Fig. 2)
that is built on top of the backend and contains analysis
capabilities [38]. Analyzers are frontend interfaces that allow
adding new functionality. Details are outlined in Sec. 3.2.

Backend is a network traffic processing engine that performs:
capture file processing, protocol parsing, traffic analysis, and
metadata extraction. It is independent of the frontend (GUI)
and comes with its own CLI which allows to integrate it
in automated processing pipelines or to use it as a single-
purpose tool. Snoopers are backend interfaces that allow
adding new functionality. Details are outlined in Sec. 3.4.

Analyzers vs. snoopers: The tool can be extended through the
implementation of snoopers or analyzers. Analyzers have more
advanced functionality and different purpose than snoopers. The
Analyzer API provides access to data storage as well as the user
interface. An analyzer can be bound either to application or inves-
tigation scope. Thus, it is possible to integrate highly specialized
analyzers for specific cases. Analyzers can create investigations, add
capture files, or run any operation supported by Gadget Detective
or access any data.

On the other hand, snoopers can access information from the pro-
cessing pipeline through the database (metadata storage). Snoopers
can extract objects from the source data but may also utilize other
data such as flow records, log files, etc. Snoopers are intended to
parse the application conversation protocols (L7, listed below) and
extract data such as files, videos, or HTTP headers. More details
about analyzers and snoopers are provided in Appendix B and C,
respectively.

Note, Gadget Detective is too complex to explain every detail in
this paper, and thus, we focus on some important design decisions
in the next section. We plan on releasing more information/details
over the years.

3

Figure 2: A screenshot of the UI design of Gadget Detec-
tive with highlighted dockable locations. Each pane can be
moved and docked to any dockable location inside the Gad-
get Detective window, or drag & dropped outside the win-
dow to materialize a new one with the same dockable prop-
erties. This way, an investigator split the application across
multiple screens.

3 DESIGN DECISIONS
While we made many decisions along the way, the following sub-
sections discuss the most important ones: GUI design, investigative
process workflow, and packet processing pipeline.

3.1 No live captures
Gadget Detective does not support live captures but accepts several
input formats, which had several reasons. First, lawful interception
deployment contains one or more capturing probes that store data
on drives locally, or on remote storage [16]. Secondly, the analysis
is often performed on more powerful equipment rather than the
capturing probe. Third, this was not a requirement by LEA.

3.2 GUI Design
The GUI follows the principles of Master/Detail screen layout [24]
supported by the navigator panels as shown in Fig. 2. This organiza-
tion is ideal for creating an efficient user experience [37] when the
user needs to navigate between linked items [1]. The user interface
provides a high degree of customization, utilizing a grid layout
of dockable views. The application has three main areas, namely,
left-hand side, upper right and lower right, that host basic visual
components:

• Investigation Explorer is the main navigation panel of the
application. It organizes Captures, Logs, Detected Events
and Exported objects (see the left blue box in Fig. 2). More
details about the structure are given in Fig. 3, and discussed
in the Investigation Explorer paragraph.

• Conversation View provides a list of all tracked conversations
in source capture files (see left red box).

• Conversation Detail provides information for the selected
conversation. The presented content may contain links for

%USERPROFILE%

Gadget Detective Workspaces

<Workspace_name>

Investigations

<Investigation_name>

Database

Exports

Logs

Settings

Sources

Temp

<Investigation_name>.nfi

<Workspace_name>.nfw

Figure 3: The structure of an investigation folder. All
workspaces are stored under the user’s profile folder. Each
workspace and each investigation has its name — suffixed
with GUID for uniqueness. Each investigation contains a
database, exports (extracted data from traffic), logs, settings,
sources (copies of source data, e.g., PCAPs), and temp (for
temporary data generated by snoopers and analyzers). Meta-
data about the workspace and investigation is stored in
*.nfw, *.nfi files, respectively.

additional data and detailed information on the target object
(see right red box).

• Detail View, e.g., Export Detail, provides additional infor-
mation for specific object types. The content uses links to
navigate via multiple views (see the black box at the bottom).

• Conversation Explorer contains a list of conversations that
were associated with investigated objects, e.g., conversation
or export object (see right blue box).

• Output Window contains a list of events generated during
the processing. These events may be informative, warnings
or errors raised during source data processing (see the green
box, only partially shown).

3.3 Investigative Process Workflow
The application was designed according to already well-established
concepts known from Integrated Development Environments that
programmers use to organize complex software designs [24]. With
respect to digital forensics, we consider an Investigation to be an
equivalent to a project; Investigations are combined into aWorkspace
that is equivalent to a Solution. An investigator can choose on which
Investigation(s) s/he wants to work on and add data in the form of
PCAP files or logs. Data is processed, and all gathered information
is stored in an Investigation’s scope; nothing is shared beyond that.
In case several PCAPs are added (e.g., cause they have been split
previously), across analysis is conducted (they will be treated as one
PCAP internally for tracking and reconstruction of events). While
data is never shared between investigations, we allow opening
multiple investigations (in separate docked panes) which allow
comparing data from multiple sources.

4

GUIGUI FrameworkAPIFrameworkAPI

Add
Capture

Controller
Capture

Processor

Controller
Capture

Processor

L3Conv
Tracker
L3Conv
Tracker

L4Conv
Tracker
L4Conv
Tracker

L7Conv
Tracker
L7Conv
Tracker

DbContextDbContext

Process
Capture Process

Frame

Foreach FrameForeach Frame

Store New L3 Conversation

AppIdentAppIdent

Store Frame

Process Frame
Store New L4 Conversation

Process Frame

Store L7

Recognize L7
 Conversation

Done

Figure 4: Abstract capture file processing scheme with a se-
quential passage. Data dependencies between models are
omitted. The ultimate goal is to identify and collect appli-
cation level conversations. In order to accomplish this, com-
munication at low levels need to be properly identified, mes-
sages parsed, relevant data extracted, and packet composed.
This is achieved by conversation trackers.

3.4 Packet Processing Pipeline
To master the challenges of parsing and to polish all informa-
tion gathered, it consists of several interconnected implementation
blocks which compose a packet processing pipeline. The pipeline
(lower right-hand side of Fig. 1) performs (i) packet file loading and
processing, (ii) conversation tracking, (iii) application recognition
and (iv) extracted (meta)data storing. Thus, the processing pipeline
handles the identification of protocols for each packet, performs
defragmentation, and does stream reassembly for TCP communi-
cation (L7 Tracker). A detailed view is provided in Fig. 4. Note,
the snoopers allow to extend the backend and will be discussed in
Sec. B.

Packet file loading and processing. (i.e., components Packet Cap-
ture Source, Packet Capture Processor, L3-L7 Trackers, and App-
Ident): Source packet capture files are processed by the correspond-
ing packet file loader depending on their file type. The processing
of the frames is sequentially where each loaded frame is dissected
into the low-level protocols to identify its key properties, such as a
physical address, network address, or ports. The dissected packet is
forwarded to the next component (i.e., L3 Tracker) which performs
further processing.

Conversation Tracking. Conversation tracking is a critical com-
ponent of the system as it examines each dissected packet and
associates it with the corresponding conversation4. A conversa-
tion is considered as the basic data object for further analysis. The
system identifies conversations at different network layers:

• Packets sharing the same source and destination addresses
belong to the same network layer conversation (L3). Every
pair of devices shares a single L3 conversation.

• Packets with the same network source and destination ad-
dresses, transport layer source and destination ports and a
specific transport protocol belong to the same transport layer
conversation (L4). At this layer, the conversation mostly cor-
responds to a pair of TCP streams or UDP data exchanges.

• Lastly, application layer conversations (L7) are identified
using various TCP heuristics we have developed previously

4Note, conversations are also called bi-flows in some literature.

(citation removed due to double-blind review) and im-
proved for this article. The heuristics solve the problemwhen
dealing with incomplete data or multiple sessions that are
merged into a single transport layer conversation. L7 conver-
sations reflect a single session between a client and a server
application.

Correct identification of conversations from source packets is a
challenging task as several issues may arise, e.g., out of sequence
packets, missing packets, fragmented packets, or missing termina-
tion packets. To succeed, we use several heuristics to identify and
collect as many conversations as possible, even in corrupted or in-
complete data sources. Additionally, the tool addresses the need for
fast processing by using available processor cores, implementing
concurrent conversations processing.

Metadata Storage (database). Extracted information, e.g., conver-
sations at different layers, application layer data units, and other
relevant information, is stored in a SQL database. The bulk insert
method is used to obtain better performance. Thus integrity is not
guaranteed until all data is inserted. The user interface is aware of
this and handles temporally incomplete data correctly. The database
is accessed through persistence providers that allow to easily add
support for different databases5.

4 TESTING
Given the complexity of our application, testing was (is) an essen-
tial part throughout the development process, where we followed a
Test-Driven Development (TDD) methodology. TDD requires writ-
ing tests first, then production code that passes the tests and lastly
to refactor the code to improve its structure. We utilized unit tests,
which then also ensures integration/regression testing and ensures
the correctness of new versions. Because our focus is very specific
(network data parsing and analysis), mocking the data would be
tedious [31]. Therefore, we omit the unit tests in favor of integra-
tion/system tests that use data loaded from PCAP files processed
(in-time of the test) by our processing pipeline.

To develop and test modules (snoopers/analyzers), we started by
collecting testing data first, where we either downloaded available
PCAPs or created our ground of truth utilizing our private networks.
In the latter case, we then filtered the captured data usingWireshark,
which ensured that we only deal with one application message,
action, or scenario at a time. If Wireshark supported the application
protocol, we compared both results (ours and Wireshark’s).

In the beginning, we also used Microsoft Network Monitor
(MNM), which allowed us to develop parsers written in Network
Parsing Language (NPL). In other words, we created parsers for two
different frameworks and compared results. Given that MNM is
outdated, and this is not the most reliable method for testing, we
abandoned MNM.

After carving basic events from the protocol messages worked
correctly (single packet), we created more complex scenarios (e.g.,
a login scenario which has multiple packets) and manually veri-
fied the results. Lastly, we created a comprehensive dataset and
extracted key data (e.g., the summary of extracted events) which
we then used as benchmark data for new version testing to prevent

5Currently, the tool supports Microsoft SQL and in-memory data storage.

5

regression bugs. Currently, Gadget Detective contains 1000+ tests
that are automatically executed whenever new code is committed
and run approximately 46min. In case that a regression bug is found,
the merge is denied until the bug is fixed.

5 EVALUATION
The rest of this section discusses the efficiency (see Sec. 5.1) followed
by a summary of carving capabilities. In Sec. 5.3 we compareGadget
Detective to other exiting tools before we provide a real-world
example. The last section explains the Reconstruction of Web Pages;
a very unique feature of our application.

5.1 Efficiency Assessment
AlthoughGadget Detective is an offline analysis tool, runtime/mem-
ory footprint are essential aspects. Thus, this section discusses the
runtime efficiency in comparison with Wireshark and Network-
Miner. To measure the efficiency, we used the M57-Patent scenario6
PCAP files which consist of several PCAP files with a total size
of 4.8GB and 5, 707, 845 frames (we combined them into a single
PCAP). Note, given that each tool performs very different tasks,
this is only a rough comparison.

The results are provided in Table 1. As can be seen, Gadget
Framework is slightly faster than Wireshark despite the TCP re-
assembling of all sessions. Note, when opening the case the 2nd
time, all data is extracted from the database which is completed in
a matter of seconds. However, we require more memory footprint
(RAM).Gadget Detective is slightly slower thanGadget Framework
as it visualizes the information. NetworkMiner is about 4-7 times
slower than the other tools. The average CPU usage is not reaching
100 % with Gadget Framework and Gadget Detective because of
the thread synchronization, I/O operations, Garbage Collection,
and back pressure in the processing pipeline that balances overall
performance and resource utilization. Overall, the Mbps per tool
vary between 15 and 100.

Additional efficiency indicators are given in Table 2, where we
focus on rows 12 and 13 (processing speed and parallel process-
ing; remaining rows are discussed in Sec. 5.3). As shown, Gadget
Detective allows parallel processing, which should make it faster
than the deprecated PyFlag. On the other hand, [8] points out that
PyFlag is not intended for high-speed. Concerning XPlico, more
research is needed as it also processes data in parallel, and we did
not find information on processing speed.

5.2 Event Carving Capabilities
The next important aspect for forensics is event carving, i.e., restor-
ing particular events such as an FTP Login, a DNS query or sending
emails from a comprehensive stream. This section primarily focuses
on NetworkMiner (NM) and Gadget Framework and their capabil-
ities; Wireshark does not incorporate advanced forensic features
such as emails or web page reconstruction as it is intended for
Network Security Monitoring [33, 39].

For comparison, we decided to focus on detected sessions, TCP
reassembling, and DNS records where the results are shown in

6https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario (last accessed
2019-05-17).

Table 1. These properties strongly depend on how a tool was im-
plemented. Higher numbers reflect finer granularity (this does not
mean that higher (or lower) numbers are better).
Sessions: the number of TCP and UDP sessions recognized by

each tool. This feature strongly depended on the mechanism
handling missing fragments, see Appendix E. If there is no
packet loss; the tools should report the same number of TCP
sessions; UDP sessions can differ in case the tool uses an
inactivity timeout threshold to split UDP sessions (the UDP
protocol does not carry any signaling information that can
be used to determine the end of a session).

TCP missing: signifies how much information is lost and cannot
be recovered, e.g., capturing problems, packet loss, or storage
issues. All issues are related to actions that occurred before
processing of the capture file, i.e., they are not caused by
Gadget Detective. There are different ways to calculate the
loss as shown in Eq. 1 or Eq. 2:

lost_packets/all_packets[%] (1)

lost_bytes/all_bytes[%] (2)
Gadget Detective uses the Eq. 2 as we believe that if a se-
quence of packets is lost, their count is unknown and can
be approximated using a heuristic based approach on MTU
or previously observed segment sizes. However, we had to
utilize Eq. 1 as Wireshark does not explicitly count lost_bytes.

DNS records: the number of events carved from DNS traffic. Gad-
get Detective extracts much more events compared to NM
that only considers DNS response packets [27] and ignores
query packets [26]. NM also ignores some other record types
such as PTR, SRV or MX that may carry valuable forensic in-
formation, e.g., a mapping of IP address to the domain name
(PTR), a definition of the service location (the hostname and
port number (SRV)), or domain names of mailing servers
(MX). This additional information may be useful in case of
DNS spoofing attacks/investigations [15]. Lastly, NM only
shows the first record from an answer section. In contrast,
Gadget Framework processes all, i.e., all records from Ques-
tion, Answer, Authority, Additional from both packet types
(not only response).

Emails and errors: reflects the number of extracted emails. NM
identifies more emails as Gadget Framework currently only
considers emails sent through the SMTP protocol; NM also
processes emails sent through webmail7.

FTP: the number of events identified in the FTP session. While
NM extracts only transferred files, Gadget Detective and
Wireshark show other related (meta-)information about the
FTP sessions such as the login or list-command.

Web pages: the number of reconstructed web pages using our
module. In total, 182 HTTP objects were found which cre-
ated six MAFF Archives containing full offline web page
snapshots including CSS and other downloaded objects. For
additional details we refer to Sec. 6.2.

In summary: each of the tools has its strengths and weaknesses,
and one has to choose the best tool for the job. For instance, Gadget

7This was a scenario we have not considered. We will update our module in the near
future.

6

https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario

Table 1: Performance of selected operations using the M57 case PCAP files. Machine configuration: CPU i7-4790, 4.00GHz,
64GB DDR4, Crucial MX100 SSD, Windows 10. Experiments were repeated 10-times, measured by time and Perfmon utilities.

Operation Backend Frontend+Backend Wireshark† NetworkMiner† tcpflow†,△

1 Total time 6m 14s, σ ≈ 15.23 s 9m 36s, σ ≈ 30.12 s 8m 48s, σ ≈ 17.34 s 41m 23s, σ ≈ 124.43 s 13m 39s, σ ≈ 64.21 s
2 Max RAM usage 8.3GB 8.5GB 7.1GB 20GB 243MB
3 Avg CPU usage 76%, σ ≈ 8 % 66%, σ ≈ 18 % 12%, σ ≈ 3 % 15%, σ ≈ 2 % 3%, σ ≈ 1 %
4 Sessions (TCP+UDP) 118,709 118,709 98,084 49,865 93,619
5 TCP - missing 3.9%∗ 3.9%∗ 0.6%∗ N/A N/A
6 DNS - records 238,531 238,531 150,426 183,527 N/A
7 Emails 28 28 N/A 39 N/A
8 FTP 16 16 N/A 1 N/A
9 Complete Web pages 6 6 N/A N/A N/A
10 Speed 101.8Mbps 66.1Mbps 72.1Mbps 15.3Mbps 46.5Mbps
(*) Gadget Detective computes TCP loss based on lost segment size (see Eq. 2). For Wireshark, we computed it by applying the tcp.analysis.lost_segment filter and then
utilized Eq. 1. This does not mean that the tool lost the data but they were not present in the capture, i.e., the capturing probe lost them.
(†) The tool was downloaded as a binary release.
(△) The tcpflow 1.4.4 was ran with parameters -r file.pcap -a -Fm to do ALL post-processing and split output in 1M directories.

Detective has focused on carving capabilities from conversations
containing missing data.

5.3 Comparison to Existing Tools
This section compares Gadget Detective against other applications
concerning capabilities, functionality, and features. A summary of
the results is provided in Table 2 and will be briefly discussed in
the upcoming paragraphs.

In its current version, Gadget Detective does not allow live data
capture or PCAP-over-IP and thus is not as flexible as NetworkMiner
or XPlico. However, it supports various capture file types. Note,
this was a design decision: we work under the premise that data is
gathered on capturing probes and uploaded for analysis after the
capture ends (or parts of the ongoing capture are provided).

In terms of support for encapsulation protocols, NetworkMinor
has a wide variety of supported protocols. However, to the best of
our knowledge, Gadget Detective, and Wireshark are currently the
only applications that support Generic Stream Encapsulation (GSE).
In comparison to other protocols, GSE frequently uses multiple en-
capsulations, whereas other protocols usually do not. That requires
a significant change in the tool’s architecture.

Rows 6-8 deal with application and their protocols. While Gad-
get Detective uses a variety of different algorithms to identify the
protocol, NetworkMiner and XPlico rely on SPID and PIPI. Fur-
thermore, Gadget Detective tries to identify applications as well
as application protocols, e.g., HTTPS-Firefox, HTTPS-Chrome. Ci-
tation removed due to double-blind review. However, further
testing is required to make a qualified decision which tool works the
most reliable. Concerning supported application protocols, our tool
supports a wide variety of different ones, including some unique
protocols like Facebook Messenger, Hangouts, Twitter, or Warcraft.
Note, since those are implemented using snoopers, there will be
more in the future.

OS fingerprint (row 9) is supported by NetworkMiner and Gad-
get Detective. While we rely on the AppIdent analyzer, NM uses
statistical based SPID algorithm [14].

In case that user credentials are observed in a communication,
Gadget Detective, and NetworkMiner allow to extract them where
the two tools focus on different protocols. Another major feature
is the handling of malformed, incomplete network traffic. This is

based on our previous work, (citation removed due to double-
blind review) where we showed that the risks of undesired asso-
ciation of the unrelated conversation fragments yielding twisted
evidence. We could not find information for NetworkMiner; how-
ever, as shown in Table 1, NetworkMiner identifies significantly
fewer sessions (maybe due to combining unrelated conversations).
Advanced analytical views address visualization capabilities where
Gadget Detective is very flexible due to the Analyzer API (see
Sec. C), which ensures that the tool can be extended with pluggable
modules. In terms of XPlico, we were unable to find detailed infor-
mation; besides a reference to a PHP Framework named cake-php8.

Row 16 addresses the querying/filtering capabilities of the cor-
responding tools. NetworkMiner, Wireshark and PyFlag include
basic query functionality (e.g., keyword searches), XPlico and Gad-
get Detective require third-party tools (e.g., one may query the
database using analytical third-party applications or write a new
snooper). If support for hitherto application protocol is required,
the advanced investigator can create a new snooper module that
will be dynamically be loaded without a need of recompilation of
the Gadget Detective. In comparison to Wireshark, creation of a
new snooper is straightforward imperative programming based on
an enriched API of a data stream that handles several types of ap-
plication protocol behaviors, like request-response, asynchronous
message exchange, etc., that helps to handle missing/not-captured
data.

To sum it up: While there are aspects where other applications
like NetworkMiner are superior, Gadget Detective has a lot of
unique functionality/features and is under active development —
new features can be expected. Especially the number of supported
application protocols, the incomplete or malformed communication
handling make and the expandability, make it a great forensics tool.
Additionally, we believe that one of the major difference is usability
and the amount of expertise needed (especially compared with
Wireshark).

6 EXAMPLE FEATURES
The Gadget Detective contains many advanced features. We picked
two that we are the proudest. These features have been tested in
real deployments and helped LEA investigators to solve cases.
8http://wiki.xplico.org/doku.php?id=interface (last accessed 2019-05-17).

7

http://wiki.xplico.org/doku.php?id=interface

Table 2:Gadget Detective in comparison tomajor open-source network forensic tools. The provided informationwas gathered
from official sources provided by the tool authors. N/A indicates that we could not find any details regarding the particular
feature. We deliberately do not add any information that is not stated by authors, such as processing speed.

Feature
Tool Gadget Detective NetworkMiner XPlico PyFlag

1 Live data capture NO YES YES NO
2 PCAP-over-IP NO YES YES NO
3 Supported file types libPcap, Pcap-NG, MNM libPcap, Pcap-NG libPcap libPcap
4 IPv6 YES YES YES NO
5 Encapsulation protocols GRE, 802.1Q, GSE GRE, 802.1Q, PPPoE, LLMNR,

VXLAN, OpenFlow, SOCKS, MPLS
and EoMPLS

L2TP, VLAN, PPP NO

6 Application Protocol Identification SPID, NBAR, ESPI, Bayessian, Random Forests SPID, PIPI PIPI NO

7 Supported application protocols HTTP, SSL/TLS, MAFF. XMPP, YMSG, OS-
CAR, Facebook Messenger, Hangouts, Twit-
ter, XChat, IMAP, POP3, SMTP, Gmail, Yahoo,
RTP, SIP, Minecraft, Warcraft, Facebook, Stra-
tum, DNS, FTP, SPDY, MQTT

FTP, TFTP, HTTP, SMB, SMB2,
SMTP, POP3, IMAP, YouTube

HTTP, POP3, SMTP, IMAP,
SIP, RTP, SDP, FTP, DNS,
IRC, IPP, PJL, MMS, SLL

DNS,
HTTP,
MSN,
Gmail

8 Applications Identification YES NO NO NO
9 OS Fingerprinting YES (using typical applications) YES NO NO
10 Credentials Extraction Facebook, IMAP, SMTP, POP3 SMTP, HTTPDigest Authentication NO NO

11 Incomplete ormalformed communi-
cation

TCP data loss, IPv4 fragmentation N/A NO NO

12 Processing speed 100Mbps 11.92–18.49 Mbps N/A N/A
13 Parallel processing YES NO YES NO
14 Advanced analytical views YES NO YES NO
15 Persistent storage MSSQL, in-memory CSV / Excel / XML / CASE / JSON-

LD
SQLite, MySQL or Post-
greSQL

VFS

16 Querying/filtering 3-rd party tools on SQL DB keyword search 3-rd party tools on SQL DB YES

6.1 An Example: SIP Fraud Analysis
This section reviews Gadget Detective in use based on a simulated
SIP (Session Initiation Protocol) Fraud case. The SIP Fraud attack
exploits a misconfiguration of the SIP server where the attacker
tries to guess a secret prefix that is used to initiate a call from a
VoIP network to PSTN (public switched telephone network). If the
attacker finds the correct prefix, the Gateway (Callee) replies with
a 200 OK SIP message. The attacker then uses the discovered prefix
to initiate a call on a premium number. The costs of the call are
charged to the owner and will profit the attacker.

To tackle the challenge, we developed the SIP Fraud Analyzer
that can perform a postmortem analysis of possible SIP fraud attacks
in given PCAPs. The exact procedure is best explained by Fig. 5. The
upper part is an interactive animation that reflects the actual state of
the system (commodity server with hardware-accelerated network
card), the IPFIX collector and NEMEA system [5] (note, this is not
part of Gadget Detective but external equipment/software). In a
nutshell, the hardware (left-hand side) captures information and
forwards it to NEMEA. Once an attack (or false-positive thereof) is
identified [17], NEMEA notifies the appliance, which then captures
all evidence (generates a PCAP) and stores it on the hard drive. This
file then serves as input for Gadget Detective.

Knowing the workflow, we now focus on the analyzer and its
responsibilities. First, NEMEA can notify Gadget Detective about
its current state which allows us to update the view (e.g., the red
arrow pointing from NEMEA to FPGA). Thus, an investigator can
see (live) the current processing. Second, NEMEA can notifyGadget
Detective when capturing is completed and trigger the analyzer to
download and visualize the PCAP (the bottom pane in the figure).

Fig. 5 shows the SIP Fraud Analyzer main view that visualizes
the attack pattern. The evidence has the form of prefix guessing

activity represented by several SIP INVITE messages that differ by
the prefix of the callee number (here it is the number 031...@65518....
and a lot of seemingly random prefixes which reflect the attacker
guessing them). In other words, if the analyzer shows a graph like
this, one knows an attack occurred; if we find 200 OK message, we
know that the attack was successful.

The system was tested/developed with a confidential dataset
from the National Research and Education Network (NREN). Dur-
ing the experimental deployment of this system, we were able
to successfully extract evidence, and based on that we informed
victims about their misconfiguration in SIP’s PBX9.

6.2 Reconstruction of Web Pages
Another feature of theGadget Detective is web page reconstruction.
First, the SnooperHTTP extracts all HTTP objects and stores the
contents on disk. Second, SnooperMAFF iterates through the HTTP
objects to identify all HTML documents. Subsequent analysis of
these documents yields all linked objects, e.g., CSS files, JavaScript
scripts, media streams, and so on. Lastly, all references to web
resources are rewritten (e.g., <a href="http://.../photo.png"
will be replaced by <a href="./photo.png"), and then the HTML
documents including all resources are packed into Mozilla Archive
Format (MAFF) archive.

The self-contained MAFF archive10 contains all data that is re-
lated to each web page that was viewed. Experimentally, in case
of the dynamic web that loads data continuously, we try to create

9PBX – Private branch exchange used to relay VoIP communication to the PSTN –
public switched telephone network.
10Note, Mozilla discontinued MAFF support in newer Firefox versions. We advise
using SeaMonkeywithMAFF plugin https://addons.thunderbird.net/en-us/seamonkey/
addon/mozilla-archive-format/.

8

https://addons.thunderbird.net/en-us/seamonkey/addon/mozilla-archive-format/
https://addons.thunderbird.net/en-us/seamonkey/addon/mozilla-archive-format/

Figure 5: This figure describes SIP Fraud Analyzer. The view is an interactive animation that reflects the actual state of the
deployed 100GE hardware-accelerated network card with the IPFIX collector and the NEMEA system that detects network
incidents based on IPFIX records. SIP Fraud is visualized on the upper right side with a count currently analyzed messages,
i.e., 6200. At the bottom, a tree-like structure visualizes a prefix tree that is an interpretation of the attack. The root node in an
interconnection between the same roots of telephone number attacked from different IP addresses. The path from a leaf node
to the root aggregate node represents a prefix combined with a PSTN number that was tried to be called. Sensitive information,
as a part of called number and IP addresses, was omitted.

multiple so-called snapshots that approximate how the web page
may have looked. The snapshot is created with each significant
change to the web page. The investigator is warned that this is
experimental approximation and not an accurate replica. We do
this approximation by interpreting JavaScript scripts and supplying
it with resources previously extracted. Hence, we can reconstruct
some dynamic pages like webmails, chats, or video streaming ser-
vices. These approximations are stored inside the MAFF archive as
additional tabs.

Note, web page reconstruction is only possible if the session is
established using plain HTTP. Otherwise, it requires the investi-
gator to get into the middle of the communication using a MitM
proxy like SSLSplit that can capture unencrypted traffic or store
SSL / TLS session keys [36].

7 CONCLUSIONS
The amount of data sent over networks increases daily, and so does
the number of devices connected to it. Additionally, analyzing the
data becomes more complex due to encryption, the large number

of different protocols or tunneling. As a consequence, forensic in-
vestigators are overwhelmed with data (possible evidence), and
traditional workflows are outdated (i.e., manually combing several
specialized tools like SSLSplit, TShark, or Wireshark). To cope with
these challenges, it requires automated, extendable tools that sup-
port practitioners by summarizing data and providing visualization,
which allows easy comprehension of the information [1].

In this article, we presentedGadget Detectivewhich is a compre-
hensive open-source network forensic analysis tool (NFAT) avail-
able under the Apache 2.0 License. By design, our application can
be expanded by implementing new modules; backend modules are
called snoopers and frontend modules (which allow more com-
plexity) are named analyzers. To enable researchers to create new
modules, we have a well-documented API including several exam-
ples. The GUI follows the principles of a Master/Detail screen layout
and uses dockable views, which makes it intuitive and easy-to-use.
We achieve better performance than comparable tools because of

9

the parallel pipeline processing. As a side note: it was used by
CESNET11 for SIP Fraud Detection as mentioned in Sec. 6.1.

The evaluation and comparison with existing tools show that
Gadget Detective has a good efficiency as it makes use of all cores.
Additionally, it has some unique features, that cannot be found
in any other NFAT, e.g., a large number of supported application
protocols as listed in Table 2, support for GSE tunneling, or heuristic
extraction from malformed data.

For the future, we plan on expanding Gadget Detective by creat-
ing new modules (features), e.g., finding similarities using approxi-
mate matching [2]. We also plan on changing the mechanisms for
data processing to allow computation on clusters. In terms of inter-
operability, we intend to add exporting capabilities into standard
formats, e.g., Advanced Forensic Format [7] or CybOX [4]. Lastly,
we want to create training sessions and material which will allow
practitioners to become familiar with our tool.

REFERENCES
[1] Nicole Beebe. 2009. Digital forensic research: The good, the bad and the unad-

dressed. In IFIP International Conference on Digital Forensics. Springer, 17–36.
[2] Frank Breitinger, Barbara Guttman, Michael McCarrin, Vassil Roussev, and Dou-

glas White. 2014. Approximate Matching: Definition and Terminology. Spe-
cial Publication 800-168. National Institute of Standards and Technologies.
http://dx.doi.org/10.6028/NIST.SP.800-168

[3] Eoghan Casey. 2004. Network traffic as a source of evidence: tool strengths,
weaknesses, and future needs. Digital Investigation 1, 1 (2004), 28 – 43. https:
//doi.org/10.1016/j.diin.2003.12.002

[4] Eoghan Casey, Greg Back, and Sean Barnum. 2015. Leveraging CybOX™ to
standardize representation and exchange of digital forensic information. Digital
Investigation 12 (2015), S102–S110.

[5] Tomas Cejka, Vaclav Bartos, Marek Svepes, Zdenek Rosa, and Hana Kubatova.
2016. NEMEA: a framework for network traffic analysis. In Network and Service
Management (CNSM), 2016 12th International Conference on. IEEE, 195–201.

[6] Mihai Christodorescu, Xin Hu, Douglas L Schales, Reiner Sailer, Marc Ph Stoeck-
lin, Ting Wang, and Andrew MWhite. 2015. Identification and classification of
web traffic inside encrypted network tunnels. US Patent 9,106,536.

[7] Michael Cohen, Simson Garfinkel, and Bradley Schatz. 2009. Extending the
advanced forensic format to accommodate multiple data sources, logical evidence,
arbitrary information and forensic workflow. Digital Investigation 6 (2009), S57–
S68.

[8] M. I. Cohen. 2008. PyFlag - An Advanced Network Forensic Framework. Digital
Investigation 5 (Sept. 2008), 112–120. https://doi.org/10.1016/j.diin.2008.05.016

[9] Vicka Corey, Charles Peterman, Sybil Shearin, Michael S. Greenberg, and James
Van Bokkelen. 2002. Network Forensics Analysis. IEEE Internet Computing 6, 6
(Nov. 2002), 60–66. https://doi.org/10.1109/MIC.2002.1067738

[10] EnCase. cited January 2019. URL: https://www.guidancesoftware.com/
encase-forensic.

[11] Dan Farmer and Wietse Venema. 2009. Forensic Discovery (1st ed.). Addison-
Wesley Professional.

[12] Simson L Garfinkel. 2010. Digital forensics research: The next 10 years. Digital
Investigation 7 (2010), S64–S73.

[13] Vikram S Harichandran, Frank Breitinger, Ibrahim Baggili, and Andrew Mar-
rington. 2016. A cyber forensics needs analysis survey: Revisiting the domain’s
needs a decade later. Computers & Security 57 (2016), 1–13.

[14] Erik Hjelmvik and Wolfgang John. 2009. Statistical protocol identification with
spid: Preliminary results. In Swedish National Computer Networking Workshop.
399–410.

[15] Markus Huber, Martin Mulazzani, and Edgar Weippl. 2010. Who on Earth Is
“Mr. Cypher”: Automated Friend Injection Attacks on Social Networking Sites.
In Security and Privacy – Silver Linings in the Cloud, Kai Rannenberg, Vijay
Varadharajan, and Christian Weber (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 80–89.

[16] Invea. cited January 2019. URL: https://www.invealawfulinterception.com.
[17] Tomáš Jansky, Tomáš Čejka, and Václav Bartoš. 2017. Hunting SIP Authentication

Attacks Efficiently. In Security of Networks and Services in an All-Connected
World, Daphne Tuncer, Robert Koch, Rémi Badonnel, and Burkhard Stiller (Eds.).
Springer International Publishing, Cham, 125–130.

11CESNET is a developer and operator of national e-infrastructure for science, research,
development, and education in Czech Republic.

[18] Lukáš Kekely, Jan Kučera, Viktor Puš, Jan Kořenek, and Athanasios V Vasilakos.
2016. Software defined monitoring of application protocols. IEEE Trans. Comput.
65, 2 (2016), 615–626.

[19] James F Kurose and Keith W Ross. 2016. Computer networking: a top-down
approach. Vol. 7. Addison Wesley Boston.

[20] libPcap. cited January 2019. URL: https://www.tcpdump.org/.
[21] M57. cited January 2019. URL: https://digitalcorpora.org/corpora/scenarios/

m57-patents-scenario.
[22] MAFF. cited January 2019. URL: http://maf.mozdev.org/maff-specification.html.
[23] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-

terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM Computer Communi-
cation Review 38, 2 (2008), 69–74.

[24] Microsoft Corporation. 2017. Master/details - Windows UWP applications.
https://docs.microsoft.com/en-us/windows/uwp/design/controls-and-patterns/
master-details URL: https://docs.microsoft.com/en-us/windows/uwp/design/
controls-and-patterns/master-details.

[25] Microsoft Network Monitor. cited January 2019. URL: https://blogs.technet.
microsoft.com/netmon/.

[26] P Mockapetris. 1987. RFC 1034 Domain Names - Concepts and Facilities. http:
//tools.ietf.org/html/rfc1035http://tools.ietf.org/html/rfc1034

[27] P. Mockapetris. 1987. RFC 1035 Domain Names - Implementation and Specifica-
tion. http://tools.ietf.org/html/rfc1035

[28] Andrew Moore, Denis Zuev, and Michael Crogan. 2013. Discriminators for use in
flow-based classification. Technical Report. Qween Mary University of London.

[29] NetworkMiner. cited January 2019. URL: https://www.netresec.com/?page=
NetworkMiner.

[30] ngrep. cited January 2019. URL: https://github.com/jpr5/ngrep.
[31] Roy Osherove. 2015. The art of unit testing. MITP-Verlags GmbH & Co. KG.
[32] Pcap-NG. cited January 2019. URL: https://github.com/pcapng/pcapng/.
[33] Emmanuel S. Pilli, R. C. Joshi, and Rajdeep Niyogi. 2010. Network Forensic

Frameworks: Survey and Research Challenges. Digital Investigation 7, 1-2 (Oct.
2010), 14–27. https://doi.org/10.1016/j.diin.2010.02.003

[34] Jan Pluskal, Ondrej Lichtner, and Ondrej Rysavy. 2018. Traffic Classification and
Application Identification in Network Forensics. In Advances in Digital Forensics
XIV, Gilbert Peterson and Sujeet Shenoi (Eds.). Springer International Publishing,
Cham, 161–181.

[35] PyFlag. cited January 2019. URL: https://github.com/py4n6/pyflag.
[36] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.

RFC 8446. https://doi.org/10.17487/RFC8446
[37] Bill Scott and Theresa Neil. 2009. Designing web interfaces: Principles and patterns

for rich interactions. O’Reilly Media, Inc.
[38] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. 2019. An Eval-

uation Framework For Network Security Visualizations. Computers & Security
(2019).

[39] Rommel Sira. 2003. Network forensics analysis tools: an overview of an emerging
technology. GSEC, version 1 (2003), 1–10.

[40] Daniel Spiekermann, Jörg Keller, and Tobias Eggendorfer. 2017. Network forensic
investigation in OpenFlow networks with ForCon. Digital Investigation 20 (2017),
S66 – S74. https://doi.org/10.1016/j.diin.2017.01.007 DFRWS 2017 Europe.

[41] ssldump. cited January 2019. URL: http://ssldump.sourceforge.net.
[42] SSLSplit. cited January 2019. URL: https://www.roe.ch/SSLsplit.
[43] TCPDUMP. cited January 2019. URL: https://www.tcpdump.org/.
[44] TCPFlow. cited January 2019. URL: https://github.com/simsong/tcpflow.
[45] tcpxtract. cited January 2019. URL: http://tcpxtract.sourceforge.net/.
[46] The Sleuth Kit (TSK) & Autopsy. cited January 2019. URL: https://www.sleuthkit.

org/.
[47] TShark. cited January 2019. URL: https://www.wireshark.org/docs/man-pages/

tshark.html.
[48] Wireshark. cited January 2019. URL: https://www.wireshark.org/.
[49] XPlico. cited January 2019. URL: https://www.xplico.org/.

10

http://dx.doi.org/10.6028/NIST.SP.800-168
https://doi.org/10.1016/j.diin.2003.12.002
https://doi.org/10.1016/j.diin.2003.12.002
https://doi.org/10.1016/j.diin.2008.05.016
https://doi.org/10.1109/MIC.2002.1067738
https://www.guidancesoftware.com/encase-forensic
https://www.guidancesoftware.com/encase-forensic
https://www.invealawfulinterception.com
https://www.tcpdump.org/
https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
http://maf.mozdev.org/maff-specification.html
https://docs.microsoft.com/en-us/windows/uwp/design/controls-and-patterns/master-details
https://docs.microsoft.com/en-us/windows/uwp/design/controls-and-patterns/master-details
https://docs.microsoft.com/en-us/windows/uwp/design/controls-and-patterns/master-details
https://docs.microsoft.com/en-us/windows/uwp/design/controls-and-patterns/master-details
https://blogs.technet.microsoft.com/netmon/
https://blogs.technet.microsoft.com/netmon/
http://tools.ietf.org/html/rfc1035 http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc1035 http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc1035
https://www.netresec.com/?page=NetworkMiner
https://www.netresec.com/?page=NetworkMiner
https://github.com/jpr5/ngrep
https://github.com/pcapng/pcapng/
https://doi.org/10.1016/j.diin.2010.02.003
https://github.com/py4n6/pyflag
https://doi.org/10.17487/RFC8446
https://doi.org/10.1016/j.diin.2017.01.007
http://ssldump.sourceforge.net
https://www.roe.ch/SSLsplit
https://www.tcpdump.org/
https://github.com/simsong/tcpflow
http://tcpxtract.sourceforge.net/
https://www.sleuthkit.org/
https://www.sleuthkit.org/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/
https://www.xplico.org/

A TERMINOLOGY AND DEFINITION

There are several definitions in the community regarding flow, conver-
sation, etc. For this work, we used the Microsoft Network Monitor (MNM)
terminology12 which is very close to the well established terminology used
by [19].
Frame is a data link layer (L2) protocol data unit.
Packet is an internet layer (L3) protocol data unit.
Datagram is a transport layer (L4) protocol data unit.
Protocol / application message is a application layer (L7) protocol data

unit (PDU). A message is a collection of one or more L7 PDUs.
L3 flow is a sequence of packets having the same source and destination IP

addresses. It represents an uni-directional transmission of packets
between two network nodes.

L3 conversation is a pair of L3 flows with mutually transposed source and
destination IP addresses. It represents bi-directional transmission
between two network nodes.

L4 flow is a sequence of packets with the same source and destination
IP addresses and ports, and an L4 protocol number. It represents
uni-directional communication between processes, e.g., data sent
by an HTTP client to an HTTP server, possibly in several L4 half
sessions. An L4 flow consists of one or more L7 flows.

L4 conversation is a pair of L4 flows with mutually transposed L3 and L4
identifiers (src / dst IP addresses and src / dst ports). It represents
bi-directional communication between processes, e.g., requests and
responses between an HTTP client and server. The L4 conversation
may contain several L4 sessions (L7 conversations) between the
same network nodes using the identical src / dst ports and the L4
protocol.

L7 flow is a part of the L4 flow that represents a transport session, e.g.,
one UDP or TCP session. For TCP, an L7 flow is bounded by its
initial SYN packet and its closing FIN or RST packet. For UDP, an
L7 flow corresponds to an L4 flow. One L4 flow may include several

L7 flows that are logically independent, e.g., several TCP sessions
(HTTP requests) with the same src / dst ports and IP addresses may
compose one L4 flow. A TCP L7 flow also includes starting SYN and
ACK packets without any L7 payload, if present.

L7 PDU represents an approximation of an applicationmessage, e.g., HTTP
request. L7 PDU is a logical object that contains an L7 payload of
one or more packets belonging to the same L7 flow. It is created
using TCP reassembling. L7 PDU objects are processed by appli-
cation parsers called L7 Snoopers. In a case of UDP, an L7 PDU is
created for every L4 payload, i.e., there is an 1:1 relation between
UDP payload and application message.

L7 conversation is a pair of L7 flows. It represents logical application
data that are subjected to the forensic analysis. L7 flows are inter-
connected to the conversation according to SYN and SYN+ACK
sequence numbers in TCP. An L7 conversation includes meta data
such as timestamps of the first and last PDU — selected from both
directions whichever is prior and posterior, number of frames of
L7 conversation, collection of virtual frames representing missing
(expected) frames, type of encryption, cipher keys (for TLS decryp-
tion), collection of probable application tags (types of L7 protocol,
e.g., HTTP, SMTP, etc.).

L7 Snooper is an application data analyzer (application parser, dissector).
Snooper reads L7 PDUs from L7 conversations and performs L7
processing, analysis, and visualization. L7 snoopers can co-operate
with each other, e.g., SIP snooper co-operates with RTP snooper,
WebMail snoopers with HTTP snooper, etc.

L7 Analyzer is a less strict abstraction, module that encapsulates prede-
fined behavior that applies to processed data or directly controls
data processing. L7 Analyzers have full access to Gadget Detec-
tive platform and can change, extend any functionality used for
processing or analysis.

Figure 6: Figure describes relations between encapsulations on various levels of networking stack reflected by object hierarchy
serving as containers. Data is segregated into a particular container based on common identifiers described in Section A. One
L3 Conversation can contain frames from multiple capture files and have a relation one to many with L4 Conversations. The
rest of graph is read similarly.

12The terminology was determined by study of MNM manual, and blog — https://blogs.technet.microsoft.com/netmon/ (last accessed 2019-05-17).

11

https://blogs.technet.microsoft.com/netmon/

B SNOOPERS (BACKEND MODULES)
The backend supports modules, called snoopers, that can access
information from the processing pipeline through the database
(metadata storage). Snoopers extract objects from the source data
but may also utilize other data such as regular log files. Therefore,
snoopers parse the application conversation protocols (L7, listed
below) and extract data such as files, videos, or HTTP headers.
These extracted objects are then either stored in the database or
pushed to the Investigation Explorer (grouped by a protocol) or can
be accessed from the special Export Overview pane where they are
grouped by event type, e.g., emails, images, chat messages. The
following protocols for metadata and/or content extraction are
supported:

• Common internet protocols: DNS, SPDY, and SSL / TLS.

• Selected application protocols: HTTP(S), IMAP, POP3, SMTP,
and FTP.

• Email services: Gmail, Yahoo, and other webmails.

• Instant messaging: XMPP, YMSG, OSCAR, Facebook Messen-
ger, Hangouts, and XChat.

• Social networks and gaming: Twitter, Facebook, Minecraft,
andWarcraft.

• Bitcoin communication: Stratum.

• Voice over IP systems: RTP and SIP.

• Internet of Things communication: MQTT.

If the communication is not encrypted (or the server’s private key
is provided, and the server’s configuration allows it), the snoopers
can extract the communication content, e.g., transmitted files. For
secured communication, only traffic metadata is available.

In order to create new snoopers, there are three abstract classes
that need to be inherited:

SnooperBase can be seen as the extractor that will handle the
identification of objects. The registration of a new snooper
and its integration is automated as long as the snooper’s DLL
resides in the root directory of the application. Details about
the snooperBase are provided at the end of this subsection.

SnooperExportObjectBase stores the actual objects. For instance,
an application protocol parser will dissect the communica-
tion and create instances of domain objects. Those objects
might also implement various interfaces like IChatMessage,
ICall, IEMail, IPhotoMessage, etc. to automatically inte-
grate exported objects in generic views.

SnooperExportBase encapsulates (meta-)information about the
export process. For instance, the source of an L7 conversation.
Additionally, it contains all extracted objects SnooperExport-
ObjectBase.

SnooperBase. To create a new snooper, a new class that inherits
from the abstract class SnooperBase including the class members,
such as Name, Description, KnownApplicationPorts, CreateSno-
operExport, and ProcessConversation, needs to be implemented.
Additionally, the class defines multiple abstract methods that repre-
sent callback functions executed during conversation processing.

An example is given in D. The functionality has to be implemented
in the following methods:

• OnConversationProcessingBegin – any relevant activity
for creating a new object to be populated by the module.

• OnConversationProcessingEnd – any required processing
before the new object is stored in the database.

• OnBeforeProtocolParsing and OnAfterProtocolParsing
– takes care of the internal state of an object and handles
exceptional cases that are assigned to ‘parsing state’.

• OnBeforeDataExporting and OnAfterDataExporting – takes
care of the internal state of an object and handles exceptional
cases that are assigned to information ‘extraction state’.

Each snooper is executed on-demand, on the selected PCAP or
a collection of them, according to the tool configuration. While
modules can use the information provided by other modules, their
basic use case is to implement extraction capabilities for application
protocols. For more complex analysis, we use analyzers.

For readers interested in demonstration How to develop a new
snooper in abstract code, we include Appendix D.

12

C ANALYZERS (FRONTEND MODULES)
Analyzers extend Gadget Detective with more advanced function-
ality that cannot be implemented as snoopers. The Analyzer API
provides access to data storage as well as the user interface. An
analyzer can be bound either to application or investigation scope.
Thus, it is possible to integrate highly specialized analyzers for
specific cases. In order to grasp the concept of analyzers, we discuss
their capabilities based on the AppIdent — an application identifi-
cation analyzer. AppIdent assigns an application protocol (or even
network application) to every flow in the source data. The goal of
the analyzer is to recognize applications (e.g., Google Drive, iTunes,
or OneDrive) in network traffic instead of just the application layer
protocol used (e.g., HTTPS).

The analyzer is implemented using machine-learning [6] and
statistical methods, in particular, Bayesian belief network, Random
Forests, and Enhanced Statistical Probability Identification, to make
the decision. Because supervised learning methods are used, there
are two running modes:

The learning mode is used to build the models which required
annotated data. To generate the data, we produced local
network traffic and captured the communication using Mi-
crosoft Network Monitor, which automatically enriches the
capture with information about the running processes13.
Note, the training data was annotated with the application
process instead of the application protocol. On the other
hand, our backend engine was extended to extract the pro-
cess information for learning purposes. The feature vector
characterizing the application protocol was specified accord-
ing to the work by [28], and customized for L7 conversation-
based approach instead of packet-based.

The classification mode of the analyzer is used for annotating
conversationwith recognized protocols and applications. It is
not an easy task, and the precision varies for the classification
methods and the target set of applications. For more details
see [34] who demonstrated that it is possible to distinguish
between communications traces of OneDrive, Skype, iTunes,
Spotify, Steam and µTorrent clients, although all of them use
HTTPS.

Usually, traffic classification is a black box (e.g., in security soft-
ware/hardware like IDS/IPS) and depends on the model. However,
for practitioners, it may be helpful to get more insight and there-
fore AppIdent can provide additional computed results in a visual
manner. In other words, we implemented views allowing the com-
parison of the classification results of different methods, classifier
performance analysis, and hyper-parameter tuning.

13In detail, MNM creates a Process Info table that stores information on the socket
and the process that created it.

13

D ABSTRACT CODE FOR AN EXAMPLE PROTOCOL SNOOPER
CREATION

1 public class SnooperExample : SnooperBase {
2 public override string Name => "Example Protocol";
3 protected override SnooperExportBase CreateSnooperExport()
4 { throw new NotImplementedException(); }
5 public override string Description => "Description of Example Protocol";
6 public override int[] KnownApplicationPorts => new[] { 42 };
7
8 protected override void ProcessConversation()
9 {
10 // we need a stream to read from
11 var stream = new PDUStreamBasedProvider(this.CurrentConversation,
12 EfcPDUProviderType.Breaked);
13 // now we can create a reader for the stream
14 var reader = new PDUStreamReader(stream, Encoding.GetEncoding(437), true);
15
16 // reader will spawn messages, cycle through them
17 do
18 {
19 this.OnBeforeProtocolParsing();
20
21 // parse the protocol
22 var message = new ExampleProtocolParseMsg(reader);
23 if (!message.Valid){
24 //TODO report error
25 continue;
26 }
27
28 this.OnAfterProtocolParsing();
29 // TODO some additional integrity checks perhaps
30 this.OnBeforeDataExporting();
31
32 var exportedObject = new SnooperExportedDataObjectExampleProtocol
33 (this.SnooperExport){...};
34 this.SnooperExport.AddExportObject(exportedObject);
35
36 this.OnAfterDataExporting();
37 } while (reader.NewMessage());
38 }
39 }

14

E SIMPLIFIED REASSEMBLING ALGORITHM IMPLEMENTED IN GADGET DETECTIVE.

(1) Select L4 flows and sort packets using their sequence numbers.
(2) Process each L4 flow accordingly:
(a) Start following iteration with a SYN packet, i.e., Pi .
(b) Increment Seqi , i.e., Seqi+ = 1.
(c) Create a new L7 Flow to be a collection of L7 PDUs for following algorithm. Set Pinit = Pi .
(d) Create a new L7 PDU if does not exist or if a previous L7 PDU was closed.
(e) If Seqi , Seqi−1 + |Pi−1 | (the expected packet is missing, check timestamps TS and sequence numbers Seq as follows:

(i) IfTSi −TSi−1 ≤ MaxTime and Seqi − Seqi−1 ≤ MaxLost then a virtual packet will be created to replace the missing packet.
(ii) IfTSi −TSi−1 ≥ MaxTime and Seqi − Seqi−1 ≤ MaxLost then there is an overlapping of TCP sessions because i packet, i.e.,

this packet, belongs to a different L7 flow. Skip this packet and proceed with the next one.
(iii) If Seqi − Seqi−1 ≥ MaxLost then there are too many missing data. The flow cannot be fully restored. Close it and proceed

with next SYN packet.
(f) If Seqi == Seqi−1 + |Pi−1 | the Pi packet is expected, i.e., Pi contains following data segment, add it into the L7 PDU created in

2d.
(g) If FIN/RST/PSH flag is found or |P | == MaxPayload , close the L7 PDU.
(h) If Pinit == Pi , break iteration.
(i) Increment i , i.e., i+ = 1 and GOTO 2d.

(3) If there remains any SYN packet in the current L4 flow, GOTO 2a
(4) If the L4 flow contains any unprocessed packet, i.e., captured communication is incomplete and heuristic methods (2e) have to be

applied.
(5) Select packet Pi that has maximal Seqi − Seqi−1 and GOTO 2c
(6) Combine opposite L7 flows into an L7 conversation using corresponding SYN and ACK numbers.

Pi — represents the packet on the i-th index
|Pi | — represents a payload size obtained from the packet header
Seqi — represents sequence number of packet on i-th index
Pinit — stores the reference to the packet that the reassembling algorithm started with
TSi — represents time stamp of the packet on the i-th index
MaxTime — variable, empirically set to 600 s
MaxLost — variable, empirically set to 3800B
MaxPayload — variable, empirically set to maximal expected MTU

15

	Abstract
	1 Introduction
	1.1 Analysis of Network Communication
	1.2 Expected Properties for Network Forensic Tools
	1.3 Network Forensic Tools
	1.4 Problem Description
	1.5 Contribution and Paper Structure

	2 Gadget Detective
	3 Design decisions
	3.1 No live captures
	3.2 GUI Design
	3.3 Investigative Process Workflow
	3.4 Packet Processing Pipeline

	4 Testing
	5 Evaluation
	5.1 Efficiency Assessment
	5.2 Event Carving Capabilities
	5.3 Comparison to Existing Tools

	6 Example features
	6.1 An Example: SIP Fraud Analysis
	6.2 Reconstruction of Web Pages

	7 Conclusions
	References
	A Terminology and definition
	B Snoopers (Backend Modules)
	C Analyzers (Frontend Modules)
	D Abstract code for an Example Protocol snooper creation
	E Simplified reassembling algorithm implemented in Gadget Detective.

