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Margus Veanes2(B), and Tomáš Vojnar1
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Abstract. We propose an efficient algorithm for determinising counting
automata (CAs), i.e., finite automata extended with bounded counters.
The algorithm avoids unfolding counters into control states, unlike the
näıve approach, and thus produces much smaller deterministic automata.
We also develop a simplified and faster version of the general algorithm
for the sub-class of so-called monadic CAs (MCAs), i.e., CAs with count-
ing loops on character classes, which are common in practice. Our main
motivation is (besides applications in verification and decision procedures
of logics) the application of deterministic (M)CAs in pattern matching
regular expressions with counting, which are very common in e.g. net-
work traffic processing and log analysis. We have evaluated our algorithm
against practical benchmarks from these application domains and con-
cluded that compared to the näıve approach, our algorithm is much less
prone to explode, produces automata that can be several orders of mag-
nitude smaller, and is overall faster.

1 Introduction

The counting operator—also known as the operator of limited repetition—is an
operator commonly used in extended regular expressions (also called regexes).
Limited repetitions do not extend expressiveness beyond regularity, but allow one
to succinctly express patterns such as representing all words where
ab appears 1–100 times. Such expressions are very common (cf. [3]), e.g., in the
RegExLib library [20], which collects expressions for recognising URIs, markup
code, pieces of Java code, or SQL queries; in the Snort rules [17] used for finding
attacks in network traffic; or in real-life XML schemas, with the counter bounds
being as large as 10 million [3]. This observation is confirmed by our own exper-
iments with patterns provided by Microsoft for verifying absence of information
leakage from network traffic logs. Counting constraints may also naturally arise
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in other contexts, such as in automata-based verification approaches (e.g. [11])
for describing sets of runs through a loop with some number of repetitions.

Several finite automata counterparts of regular counting constraints have
appeared in the literature (e.g. [13,15,24,25]), all essentially boiling down to
variations on counter automata with counters limited to a bounded range of
values. Such counters do not extend the expressive power beyond regularity, but
bring succinctness, exactly as the counters in extended regular expressions. In
this paper, we call these automata counting automata (CAs).

The main contribution of this paper is a novel succinct determinisation of
CAs. Our main motivation is in pattern matching, where deterministic automata
allow for algorithms running reliably in time linear to the length of the text. How-
ever, the näıve determinisation of CAs (and counting constraints in general)—
which encodes counter values as parts of control states, leading to classical non-
deterministic finite automata (NFAs), which are then determinised using the
standard subset construction—can easily lead to state explosion, causing the
approach to fail. See, e.g., the CA in Fig. 1, for which the minimal deterministic
finite automaton (DFA) has 2k+1 states with k being the upper bound of the
counter. Backtracking-based algorithms, which can be used instead, are slower
and unpredictable, may easily require a prohibitively large time, and are even
prone to DoS attacks, cf. [19]. A viable alternative is on-the-fly determinisation,
which determinises only the part of the given NFA through which the input
word passes, as proposed already in [27]. However, the overhead during match-
ing might be significant, and the construction can still explode on some words,
much like the full determinisation, especially when large bounds on counters are
used (which, in our experience, makes some regex matchers to give up already
the translation to NFAs).

Our algorithm, which allows one to succinctly determinise CAs, is there-
fore a major step towards alleviating the above problems by making the
determinisation-based algorithms applicable more widely. We note that this has
been an open problem (whose importance was stressed, e.g., in [25]) that a num-
ber of other works, such as [13,15], have attempted to solve, but they could
only cope with very restricted fragments or alleviate the problem only partially,
yielding solutions of limited practical applicability only.

Our algorithm is general and often produces small results. Moreover, we also
propose a version specialised to counting restricted to repetition of single char-
acters from some character class, called monadic counting here (e.g.,
is monadic while is not). This class is of particular practical relevance
since we discovered that most of the regular expressions with counters used in
practice are of this form. Our specialised algorithm can produce deterministic
CAs exponentially more succinct than the corresponding DFAs and its worst-case
complexity is only polynomial in the maximum values of counters (in contrast
to the exponential näıve construction).

We have implemented the monadic CA determinisation and evaluated it on
real-life datasets of regular expressions with monadic counting. We found that
our resulting CAs can be much smaller than minimal DFAs, are less prone to
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explode, and that our algorithm, though not optimised, is overall faster than the
näıve determinisation that unfolds counters. We also confirmed that monadic
regexes present an important subproblem, with over 95% of regexes in the
explored datasets being of this type.

Fig. 1. ACA for the regex .*a.{k} with
k ∈ N, I : s = q, F : s = r ∧ c =
k, and Δ : q−{�,�}→q ∨ q−{l=a,c′=0}→r ∨
r−{c<k,c′=c+1}→r.

Running Example. To illustrate our
algorithms, consider the regex .*a.{k}
where k ∈ N. It says that the (k + 1)-th
letter from the end of the word must be a.
The minimal DFA accepting the language
has 2k+1 states since it must remember in
its control states the positions of all let-
ters a that were seen during the last k +1
steps. For this, it needs a finite memory
of k +1 bits, which has 2k+1 reachable configurations. The regex corresponds to
the nondeterministic CA of Fig. 1. In the transition labels, the predicates over
the variable l constrain the input symbol, the predicates over c constrain the
current value of the counter c, and the primed variant of c, i.e., c′, stands for
the value of c after taking the transition. The initial value of c is unrestricted,
and the automaton accepts in the state r if the value of c equals k. Our monadic
determinisation algorithm, presented in Sect. 4.2, then outputs the deterministic
CA (DCA) of Fig. 2 (for k = 1). Intuitively, it uses k + 1 counters to remember
how far back the last k + 1 occurrences of a appeared. Depending on k, the
resulting DCA has k+2 states, 4(k+1)+1 transitions, and k+1 counters. That
is, its size is linear to k in contrast to the factor 2k in the size of the minimal
DFA. ��

Fig. 2. The DCA generated from the CA of Fig. 1 for k = 1 by our algorithm for
determinisation of monadic CA (Sect. 4.2).

2 Counting Automata

Preliminaries. We use N to denote the set of natural numbers {0, 1, 2, . . .}. Given
a function f : A → B, we refer to the elements of f using a �→ b (when f(a) = b).
For the rest of the paper, we consider a fixed finite alphabet Σ of symbols. A word
over Σ is a finite sequence of symbols w = a1 · · · an ∈ Σ∗. We use ε to denote
the empty word.
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Given a set of variables V and a set of constants Q (disjoint with N), we
define a Q-formula over V to be a quantifier-free formula ϕ of Presburger arith-
metic extended with constants from Q and Σ, i.e., a Boolean combination of
(in-)equalities t1 = t2 or t1 ≤ t2 where t1 and t2 are constructed using +, N,
and V , and predicates of the form x = a or x = q for x ∈ V , a ∈ Σ, and q ∈ Q.
An assignment M to free variables of ϕ is a model of ϕ, denoted as M |= ϕ, if
it makes ϕ true. We use sat(ϕ) to denote that ϕ has a model.

Given a formula ϕ and a (partial) map θ : terms(ϕ) → S, where terms(ϕ)
denotes the set of terms in ϕ and S is some set of terms, ϕ[θ] denotes a term
substitution, i.e., the formula ϕ with all occurrences of every term t ∈ dom(θ)
replaced by θ(t). As usual, replacing a larger term takes priority over replacing
its subterms (we treat primed variables and parameters as atomic terms, hence
(p′ = 1)[{p �→ q}] is still p′ = 1). The substitution formula ϕθ of θ is defined
as the conjunction of equalities ϕθ

def=
∧

t∈dom(θ)(θ(t) = t). Finally, the set of
minterms of a finite set Φ of predicates is defined as the set of all satisfiable
predicates of {∧φ∈Φ′ φ ∧ ∧

φ∈Φ\Φ′ ¬φ | Φ′ ⊆ Φ}.

Labelled Transition Systems. We will introduce our counting automata, such as
that of Fig. 1, as a specialisation of the more general model of labelled transition
systems. This perspective and related notation allows for a more abstract and
concise formulation of our algorithms than the more standard approach, in which
one would define counting automata in a more straightforward manner as an
extension of the classical finite automata.

A labelled transition system (LTS) over Σ is a tuple T = (Q,V, I, F,Δ) where
Q is a finite set of control states, V is a finite set of configuration variables, I is the
initial Q-formula over V , F is the final Q-formula over V , and Δ is the transition
Q-formula over V ∪ V ′ ∪ {l} with V ′ = {x′ | x ∈ V }, V ∩ V ′ = ∅, and l ∈ V .
We call l the letter/symbol variable and allow it as the only term that can occur
within a predicate l = a for a ∈ Σ, called an atomic symbol guard.1 Moreover,
l is also not allowed to occur in any other predicates in Δ. A configuration
is an assignment α : V → N ∪ Q that maps every configuration variable to
a number from N or a state from Q. Let C be the set of all configurations. The
transition formula Δ encodes the transition relation �Δ� ⊆ C × Σ × C such that
(α, a, α′) ∈ �Δ� iff α∪{x′ �→ k | α′(x) = k}∪{l �→ a} |= Δ. We use |Δ| to denote
the size of �Δ�. For a word w ∈ Σ∗, we define inductively that a configuration α′

is a w-successor of α, written α
w−→ α′, such that α

ε−→ α for all α ∈ C, and
α

av−→ α′ iff α
a−→ ᾱ

v−→ α′ for some ᾱ ∈ C, a ∈ Σ, and v ∈ Σ∗. A configuration α
is initial or final if α |= I or α |= F , respectively. The outcome of T on a word w
is the set outT (w) of all w-successors of the initial configurations, and w is
accepted by T if outT (w) contains a final configuration. The language L(T ) of
T is the set of all words that T accepts.

1 To handle large or infinite sets of symbols symbolically, the predicates l = a may be
generalised to predicates from an arbitrary effective Boolean algebra, as in [6].
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Counting Automata. A counting variable (counter) is a configuration variable
c whose value ranges over N and which can appear (within Δ, I, and F ) only
in atomic counter guards of the form c ≤ k, c ≥ k, (using <,=, > as syntactic
sugar) or term equality tests t1 = t2, and in atomic counter assignments c′ = t
with t, t1, t2 being arithmetic terms of the form d+k or k with k ∈ N and d being
a counter. A control state variable is a variable s whose value ranges over states
Q and appears only in atomic state guards s = q and atomic state assignments
s′ = q for q ∈ Q. A Boolean combination of atomic guards (counter, state, or
symbol) is a guard formula and a Boolean combination of atomic assignments is
an assignment formula.

A (nondeterministic) counting automaton (CA) is a tuple A = (Q,C, I, F,Δ)
such that (Q,V, I, F,Δ) is an LTS with the following properties: (1) The set of
configuration variables V = C ∪ {s} consists of a set of counters C and a single
control state variable s s.t. s ∈ C. (2) The transition formula Δ is a disjunction
of transitions, which are conjunctions of the form s = q∧g∧f ∧s′ = r, denoted by
q−{g,f }→r, where q, r ∈ Q, g is the transition’s guard formula over V ∪{l}, and f is
the transition’s counter assignment formula, a conjunction of atomic assignments
to counters, in which every counter is assigned at most once. (3) There is a
constant maxA ∈ N such that no counter can ever grow above that value, i.e.,
∀c ∈ C ∀w ∈ Σ∗ ∀α ∈ outT (w) : α |= c ≤ maxA.

The last condition in the definition of CAs is semantic and can be achieved
in different ways in practice. For instance, regular expressions can be compiled
to CAs where assignment terms are of the form c + 1, 0, or c only, and every
appearance of c+1 is paired with a guard containing a constraint c ≤ k for some
k ∈ N. In this case, maxA = K + 1 where K is the maximum constant used in
the guards of the form c ≤ k.

We will often consider the initial and final formulae of CAs given as a disjunc-
tion

∨
q∈Q(s = q ∧ ϕq) where ϕq is a formula over counter guards, in which case

we write I(q) or F (q) to denote the disjunct ϕq of the initial or final formula,
respectively. An example of a CA is given in Fig. 1.

A deterministic counting automaton (DCA) is a CA A where I has at most
one model and, for every symbol a ∈ Σ, every reachable configuration α has
at most one a-successor (equivalently, the outcome of every word in A is either
a singleton or the empty set). Finally, in the special case when C = ∅, the CA is
a (classical) nondeterministic finite automaton (NFA), or a deterministic finite
automaton (DFA) if it is deterministic.

3 Determinisation of Counting Automata

In this section, we discuss an algorithm for determinising CAs. A näıve determin-
isation converts a given CA A into an NFA by hard-wiring counter configurations
as a part of control states, followed by the classical subset construction to deter-
minise the obtained NFA (the NFA is finite due to the bounds on the maximum
values of counters). The state space of the obtained DFA then consists of all
reachable outcomes of A. By determinising A in this way, the succinctness of
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using counters is lost, and the size of the DFA can explode exponentially not
only in the number of control states of A but also in the number of reachable
counter valuations, which makes the construction impractical. Instead, our con-
struction will retain counters (though their number may grow) and represent
possible word outcomes as configurations of the resulting DCA.

Spheres. In particular, the outcome of a word w ∈ Σ∗ in a CA A = (Q,C, I, F,Δ)
can be represented as a formula ϕ over equalities of the form c = k and s = q
where q ∈ Q, c ∈ C, k ∈ N. Intuitively, disjunctions can be used to obtain a
single formula for the possibly many configurations reachable in A over w. For
example, the outcome of the word aab in Fig. 1 is ϕ : s = q ∨ (s = r ∧ (c =
1 ∨ c = 2)). Generally, the outcome of aabi, for 0 ≤ i < k, assuming k > 2, is
ϕi : s = q ∨ (s = r ∧ (c = i ∨ c = i + 1)).

A crucial notion for our construction is then the notion of sphere. A sphere
ψ arises from an outcome ϕ by replacing the constants from N by parameters
drawn from a countable set P (disjoint from N, V , Q, and {l, s}). In the example
above, the sphere obtained from the ϕ is ψ : s = q ∨ (s = r ∧ (c = p0 ∨ c = p1)),
and the same sphere arises from all outcomes ϕi with 0 ≤ i < k.

Spheres will play the role of the control states of the resulting DCA. The
idea of the construction is that the outcome of every word w in a DCA Ad will
contain a single configuration (Ad is deterministic) consisting of a sphere ψ as
the control state and a valuation of its parameters η : P → N. The construction
will ensure that ψ[η] models the outcome outA(w) of w in A. In our example,
the outcome of aab in Ad would contain the single configuration {s �→ ψ, p0 �→
1, p1 �→ 2}, and the outcome of each ϕi, for 0 ≤ i < k, would contain the single
configuration {s �→ ψ, p0 �→ i, p1 �→ i + 1}. The example shows the advantage
of our construction. Every outcome ϕi would be a control state of the näıvely
determinised automaton, with a b-transition from each ϕj to ϕj+1, for 0 ≤ j <
k−1. In contrast to that, all these states and transitions will be in Ad replaced by
a single control state ψ with a single b-labelled self-loop that increments both p0

and p1. This structure can be seen in Fig. 2 (states are spheres, labelled by their
multiset representation introduced in Sect. 4.2).

3.1 Determinisation by Sphere Construction

We now provide a basic version of our sphere-based determinisation, which can
also be viewed as an algorithm that constructs parametric versions of the subsets
used in subset-based determinisation. For this basic algorithm, termination is
not guaranteed, but it serves as a basis on which we will subsequently build
a terminating algorithm. Let us first introduce some needed additional notation.

Given a formula ϕ, we denote by at(ϕ) and by num(ϕ) the sets of assignment
terms and numerical constants, respectively, appearing in ϕ. We will use the set
P ′ = {p′ | p ∈ P} and the substitution θunprime = {p′ �→ p | p ∈ P}. We
say that a formula over variables V ∪ V ′ ∪ {l} ∪ P is factorised wrt guards
if it is a disjunction

∨n
i=1(gi) ∧ (ui) of factors, each consisting of a guard gi

over V ∪ {l} ∪ P and an update formula ui over atomic assignments such that
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the guards of any two different factors are mutually exclusive, i.e., gi ∧ gj is
unsatisfiable for any 1 ≤ i = j ≤ n.2 For a set of variables U , we denote
by ∃∃∃ U : ϕ a formula obtained by eliminating all variables in U from ϕ (i.e.,
a quantifier-free formula equivalent to ∃U : ϕ).3

Algorithm 1: Sphere-based CA determinisation (non-terminating)
Input: A CA A = (Q,C, I, F,Δ).
Output: A DCA Ad = (Qd, P, Id, F d,Δd) s.t. L(A) = L(Ad).

1 Qd ← Worklist ← ∅; Δd ← ⊥;
2 ψI ← I[θconst ] for some total injection θconst : num(I) → P;
3 Id ← s = ψI ∧ ϕθconst

;
4 add ψI to Qd and to Worklist ;
5 while Worklist = ∅ do
6 ψ ← pop(Worklist);
7 Let

∨n
i=1(gi) ∧ (ui) be the formula ∃∃∃ C, s : ψ ∧ Δ factorised wrt guards;

8 foreach 1 ≤ i ≤ n do
9 ψi ← ui[θat ][θunprime ] for a total injection θat : at(ui) → P ′;

10 add ψ−{gi,ϕθat}→ψi to Δd;
11 if ψi ∈ Qd then add ψi to Qd and to Worklist
12 P ← all parameters found in Qd;
13 F d ← ∨

ψ∈Qd s = ψ ∧ ∃∃∃ C, s : ψ ∧ F ;
14 Id ← ground(Id);Δd ← ground(Δd);
15 return Ad = (Qd, P, Id, F d,Δd);

The Algorithm. The core of our determinisation algorithm is the sphere con-
struction described in Algorithm 1. It builds a DCA Ad = (Qd, P, Id, F d,Δd)
whose control states Qd are spheres. Its counters are parameters from the set P
that is built during the run of the algorithm. The initial formula Id defined on
line 3 assigns to s the initial control state ψI (obtained on line 2), which is a para-
metric version of I with integer constants replaced by parameters according to
the renaming θconst . Moreover, Id also equates the parameters in ψI with the
constants they are replacing in I. Hence, the formula ψI [θ−1

const ] models exactly
the initial configurations of A.

2 A Boolean combination of atomic guards and updates can be factorised through
(1) a transformation to DNF, yielding a set of clauses X; (2) writing each clause
ϕ ∈ X as a conjunction of a guard formula gϕ and an assignment formula fϕ; (3)
computing minterms of the set {gϕ | ϕ ∈ X}; (4) creating one factor (g) ∧ (f) from
every minterm g where f is the disjunction of all the assignment formulae fϕ with
ϕ ∈ X compatible with g (i.e., such that g ∧ fϕ is satisfiable).

3 We note that we only need to use a specialised, simple, and cheap quantifier elim-
ination. In particular, we only need to eliminate counter variables c from formulae
such that, in clauses of their DNF, c always appears together with a predicate c = p
where p is a parameter. Eliminating c from such a DNF clause is then done by simply
substituting occurrences of c by p. We do not need complex algorithms such as the
general quantifier elimination for Presburger arithmetic.
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Example 1. In the running example (Fig. 1), whenever referring to some variable
that is assigned multiple times during the run of the algorithm, we use super-
scripts to distinguish the different assignments during the run. On lines 1–4, the
initial sphere ψI is assigned the formula s = q, and the initial formula Id is set
to s = ψI , which specifies that ψI is indeed the initial control state only (I does
not constrain counters, hence Id does not talk about parameters). ��

The remaining states of Qd and transitions of Δd are computed by a worklist
algorithm on line 5 with the worklist initialised with ψI . Every iteration com-
putes the outgoing transitions of a control state ψ ∈ Worklist as follows: On
line 7, after eliminating C ∪ {s} from the formula ψ ∧ Δ, which describes how
the next state and counter values depend on the input symbol and the current
values of parameters, it is transformed into a guard-factorised form.

Example 2. When ψI is taken from Worklist as ψ1 on line 6, its processing
starts by factorising ∃∃∃ {c, s} : ψ1 ∧ Δ on line 7. Here, ψ1 ∧ Δ is the formula s =
q ∧ (q−{�,�}→q ∨ q−{l=a,c′=0}→r ∨ r−{c<k,c′=c+1}→r), which can be also written as

s = q ∧ (s′ = q ∨ (l = a ∧ c′ = 0 ∧ s′ = r)) .

The elimination of {c, s} gives the formula s′ = q ∨ (l = a ∧ c′ = 0 ∧ s′ = r).
This formula is factorised into the following two factors:

(F1) (l = a) ∧ (s′ = q ∨ (c′ = 0 ∧ s′ = r)),
(F2) (l = a) ∧ (s′ = q). ��
In the for-loop on line 8, every factor (gi)∧(ui) is turned into a transition with

the guard gi; the mutual incompatibility of the guards guarantees determinism.
The formula ui describes the target sphere in terms of the parameters of the
source sphere ψ, updated according to the transition relation. That is, it is
a Boolean combination of assignments of the form c′ = p + k or c′ = k for
c ∈ C, p ∈ P, and k ∈ N. Line 9 creates a sphere by substituting each of
the assignment terms (of the form p + k or k) with a parameter and replacing
primed variables by their unprimed versions.4 The corresponding assignment
term substitution θat records how the values of the new parameters are obtained
from the original values of the parameters occurring in ψ. It is used to define the
assignment formula of the new transition that is added to Δd on line 10. The
argument justifying that the construction preserves the language is the following:
if reading w ∈ Σ∗ takes Ad to ψ with a parameter valuation η such that ψ[η] is
equivalent to outA(w), then reading a next symbol a using a transition newly
created on line 10 takes Ad to ψ′ with the parameter valuation η′ such that ψ′[η′]
models outA(wa).

4 The choice of the parameters in the image of θat : at(ui) → P ′ on line 9 is arbitrary,
although, in practice, it would be sensible to define some systematic parameter
naming policy and reuse existing parameters whenever possible.
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Example 3. Factor F1 of Example 2 above is processed as follows. A possible
choice for θ1

at on line 9 is the assignment {0 �→ p0}. Its application followed by
θunprime creates

ψ1
1 : s = q ∨ (c = p0 ∧ s = r).

From θ1
at , we get the substitution formula ϕθ1

at
: (p′

0 = 0) on line 10, and so
the transition added to Δd is (s = q)−{l=a,p′

0=0}→ (s = q ∨ (c = p0 ∧ s = r)) . The
target ψ1

1 of the transition is added to Qd and to Worklist on line 11. Next, Factor
F2 generates the self-loop (s = q)−{l�=a,�}→ (s = q), which ends the first iteration
of the while-loop.

Let us also walk through a part of the second iteration of the while-loop, in
which ψ1

1 is taken from Worklist as ψ2 on line 6. The formula ψ2∧Δ from line 7 is
((s = r ∧ c = p0) ∨ s = q) ∧ (q−{�,�}→q ∨ q−{l=a,c′=0}→r ∨ r−{c<k,c′=c+1}→r), which
is equivalent to (s = q ∧ (s′ = q ∨ (l = a ∧ c′ = 0 ∧ s′ = r))) ∨ (

s = r ∧ c = p0 ∧
c < k ∧ c′ = c + 1 ∧ s′ = r

)
. The elimination of {c, s} on line 7 then gives the

formula
(
s′ = q ∨ (l = a ∧ c′ = 0 ∧ s′ = r)

) ∨ (p0 < k ∧ c′ = p0 + 1 ∧ s′ = r),
which is factorised into the following four factors:

(F3) (l = a ∧ p0 < k) ∧ (s′ = q ∨ (c′ = 0 ∧ s′ = r) ∨ (c′ = p0 + 1 ∧ s′ = r)),
(F4) (l = a ∧ p0 < k) ∧ (s′ = q ∨ (c′ = p0 + 1 ∧ s′ = r)),
(F5) (l = a ∧ p0 ≥ k) ∧ (s′ = q ∨ (c′ = 0 ∧ s′ = r)), and
(F6) (l = a ∧ p0 ≥ k) ∧ (s′ = q).

In the for-loop on line 8, Factor F3 is processed as follows. Let the chosen sub-
stitution θ2

at on line 9 be {p0 + 1 �→ p1, 0 �→ p0}. Its application followed by
θunprime generates

ψ2
1 : s = q ∨ (c = p0 ∧ s = r) ∨ (c = p1 ∧ s = r).

The substitution formula ϕθ2
at

on line 10 is p′
1 = p0 + 1 ∧ p′

0 = 0, and so Δd

gets the new transition ψ1
1−{l=a∧p0<k,p′

1=p0+1∧p′
0=0}→ψ2

1 . The evaluation of the
while-loop would continue analogously. ��

In the final stage of the algorithm, when (and if) the while-loop terminates,
line 12 collects the set P of all parameters used in the constructed parametric
spheres of Qd as new counters of Ad. Further, line 13 derives the new final formula
by considering all computed spheres, restricting them to valuations where the
original final formula is satisfied, and quantifying out the original counters. This
way, final constraints on the original counters get translated to constraints over
parameters in P .

Example 4. In our running example, for the spheres discussed above, we would
have F (ψ1) : ⊥, F (ψ1

1) : p0 = 1, and F (ψ2
1) : p0 = 1 ∨ p1 = 1. ��

Finally, line 14 applies the function ground on the initial formula and the
transition formula of the constructed automaton before returning it. This step is
needed in order to avoid nondeterminism on unused and unconstrained counters.
The function ground conjuncts constraints of the form p = 0 with the initial
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formula and with the guard of every transition for every parameter p ∈ P that
is so far unconstrained in the concerned formula. Moreover, it will introduce
a reset p′ = 0 to the assignment formula of every transition for every counter
p ∈ P that is so far not assigned on the concerned transition. The while-loop of
Algorithm 1 needs, however, not terminate, as witnessed also by our example.5

Example 5. Continuing in Example 4, the DCA in Fig. 2 would be a part of
the DCA constructed by Algorithm 1, its states being the spheres ψ1, ψ1

1 , ψ2
1

from the left, but the while-loop would not terminate, with ψ2
1 . Instead, it would

eventually generate a successor of ψ2
1 , the sphere

ψ3
1 : s = q ∨ (c = p0 ∧ s = r) ∨ (c = p1 ∧ s = r) ∨ (c = p2 ∧ s = r),

i.e., a sphere similar to ψ2
1 but extended by a new disjunct with a new param-

eter p2. Repeating this, the algorithm would keep generating larger and larger
spheres with more and more parameters. ��

3.2 Ensuring Termination of the Sphere Construction

In this section, we will discus reasons for possible non-termination of Algorithm 1
and a way to tackle them. The main reason is that the algorithm may gen-
erate unboundedly many parameters that correspond to different histories of
a counter c when processing the input word (including also impossible ones in
which the counter exceeds the maximum value). The algorithm indeed “splits”
a parameter appearing in a sphere into two parameters in the successor sphere
when the transitions of A update the counter in two different ways.

In our terminating version of Algorithm 1, we build on the following: (1) dis-
tinguishing between histories that converge in the same counter value is not nec-
essary, they can be “merged”, and (2) the number of different reachable counter
values is bounded (by the definition of CAs). We thus enforce the invariant of
every reachable configuration of Ad that all parameters in the configuration have
distinct values. The invariant is enforced by testing equalities of parameters and
merging parameters with equal values on transitions of Ad. All transitions of Ad

entering spheres with more than maxA + 1 parameters can then be discarded
because the invariant implies that they cannot be taken at any configuration
of Ad. Furthermore, we will also ensure that the algorithm does not diverge
because of generating semantically equivalent but syntactically different spheres
(because of different names of parameters or different formulae structure).

A terminating determinisation of CAs is obtained from Algorithm 1 by
replacing lines 9–11 by the code in Algorithm 2. In order to ensure that param-
eters have pairwise distinct values, the transitions of Ad test equalities of the
5 For this step to preserve the language of the automaton, we need to assume that the

input CA does not assign nondeterministic values to live counters. We are refering
to the standard notion: a counter is live at a state if the value it holds at that state
may influence satisfaction of some guard in the future. Any CA can be transformed
into this form, and CAs we compile from regular expressions satisfy this condition
by construction.
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values assigned to parameters and ensure that two parameters are never used to
represent the same value. Different histories of counters are thus merged if they
converge into the same value. To achieve this, Algorithm 2 enumerates all feasi-
ble equivalences of the assignment terms of ui on line 16 and generates successor
transitions for each of them separately. When deciding whether an equivalence
∼ on the assignment terms is feasible, the algorithm performs two tests: (1) The
formula ϕ∼

def=
∧

t1∼t2,t1,t2∈at(ui)
(t1 = t2) ∧ ∧

t1 �∼t2,t1,t2∈at(ui)
(t1 = t2) is tested

for satisfiability, meaning that the equivalence is not trying to merge terms that
can never be equal (such as, e.g., p and p + 1). (2) The number of equivalence
classes should be at most maxA + 1 since this is the maximum number of dif-
ferent values that the counters can reach due to the requirement that the values
must be between 0 and maxA.

Algorithm 2: Ensuring termination of sphere-based CA determinisation
16 foreach equivalence ∼ on at(ui) s.t. sat(ϕ∼) and |at(ui)/∼| ≤ maxA + 1

do
17 let θat : at(ui) → P ′ be an injection;
18 ψi ← ui[θat ][θunprime ];
19 if ∃θrename : P ↔ P ∃σ ∈ Qd : ψi[θrename ] ⇔ σ then
20 add ψ−{gi∧ϕ∼[θat ],ϕθat [θ

′
rename ]}→σ to Δd;

21 else
22 add ψ−{gi∧ϕ∼[θat ],ϕθat}→ψi to Δd;
23 add ψi to Qd and to Worklist ;

Line 17 builds a term assignment replacement θat that maps all ∼-equivalent
terms to the same (future) parameter, and line 18 computes the target sphere,
reflecting the given merge. The test on line 19 checks whether the target sphere is
equal to some already generated sphere up to a parameter renaming (represented
by a bijection θrename : P ↔ P). If so, the created sphere is discarded, and a new
transition going to the old sphere is generated on line 20; we need to rename the
primed parameters used in the transition’s assignment appropriately according
to θ′

rename = {p′
0 �→ p′

1 | p0 �→ p1 ∈ θrename}. Otherwise, a transition into the
new sphere is added on line 22, and the new sphere is added to Qd and Worklist .
In both cases, the guard of the generated transition is extended by the formula
ϕ∼[θat ], which encodes the equivalence ∼, and hence explicitly enforces that ∼
holds when the transition is taken.

Note that the test on the maximum number of equivalence classes can be
optimised if finer information about the maximum reachable values of the indi-
vidual counters is available. Such information can be obtained, e.g., by looking at
the constants used in the guards of the transitions where the different counters
are increased. For any counter, one should then not generate more parameters
representing its possible values than what the upper bound on that counter is
(plus one).

Theorem 1. Algorithm 1 with the modification presented in Algorithm 2 ter-
minates and produces a DCA with L(A) = L(Ad) and |Qd| ≤ 2|Q|·(maxA+1)|C|

.
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Proof (idea). The fact that the algorithm indeed constructs a DCA is because
line 7 of Algorithm 1 generates pairwise incompatible guards on transitions only.
It is also easy to show by induction on the length of the words that the language
is preserved. The termination then follows from the facts that (1) the algorithm
has a bound on the maximum number of parameters in spheres (ensured by
the condition over ∼ on line 16 of Algorithm 2) and (2) no spheres equal up to
renaming are generated (ensured by the check on line 19). The bound on the
size follows from the structure of spheres. ��

The number of equivalences generated on line 16 of Algorithm 2 (and there-
fore also the number of transitions leaving ψ) may be large. Many of them
are, however, infeasible (cannot be taken in any reachable configuration of Ad),
and could be removed. In most cases, the majority of such infeasible transi-
tions may be identified locally, taking advantage of the invariant of all reachable
configurations of Ad enforced by Algorithm 2: namely, values of distinct param-
eters are always pairwise distinct. Therefore, before building a transition for an
equivalence ∼, we ask whether the ∼-equivalent assignment terms may indeed
be made equivalent assuming that the constructed transition guard gi and—
importantly—also the distinctness invariant hold right before the transition is
taken. Technically, we create new transitions only from those equivalences ∼
such that sat(

∧
p1,p2∈Pψ,dist(p1,p2)

(p1 = p2) ∧ gi ∧ ϕ∼) where Pψ is the set of
parameters of ψ and dist(p1, p2) holds iff p1 and p2 are distinct parameters.

3.3 Reachability-Restricted CA Determinisation

Above, we have described a terminating algorithm for CA determinisation. While
it is witnessed by our experiments that the algorithm often generates much
smaller automata than what could be obtained by transforming the automata
into NFAs and determinising them, a natural question is whether the gener-
ated DCA is always smaller or equal in size to the DFA built by getting rid
of the counters and using classical determinisation. Unfortunately, the answer
to this question is no. The reason is that the transformation to a DCA needs
not recognise that some generated transitions can never be executed and that
some spheres are not reachable. To see this, it is enough to imagine a transition
setting some counter c to zero and the only successor transition testing whether
c is positive. The latter transition would not be executed when generating the
DFA due to working with concrete values of counters, but it would be considered
when constructing the DCA (since the construction does not know the values of
the counters).

In our experiments with CAs obtained from real-life regexes, the above was
not a problem, but we note that, for the price of an increased cost of the con-
struction, one could further improve the algorithm by taking into account some
reachability information. In an extreme case, one could first generate the DFA
corresponding to the given CA and then use it when generating the DCA (as
a hopefully more compact representation of the DFA). In particular, whenever
adding some new sphere into the DCA being built, the algorithm can check
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whether there is a subset of states in the original CA represented as a state
of the DFA that is an instance of the sphere. If not, the sphere is not added.
The resulting DCA can then never be bigger than the DFA since each control
state of the DFA (i.e., a subset of states of the original CA) is represented by a
single sphere only, likewise each transition of the DFA is represented by a single
transition of the DCA, and there are not any unreachable spheres or transitions
that cannot be executed.

Notice that the reachability pruning is an alternative to Algorithm 2. Algo-
rithm 1 equipped with the reachability analysis is guaranteed to terminate. For
example, when run on the CA in Fig. 1, it would generate a DCA isomorphic to
that from Fig. 2.

4 Monadic Counting

We now provide a simplified and more efficient version of the determinisation
algorithm. The simplified version targets CAs that naturally arise from monadic
regexes, i.e., regular expressions extended with counting limited to character
classes. Their abstract syntax is

R ::= ∅ | ε | σ | R1R2 | R1 + R2 | R∗ | σ{n,m}

where σ is a predicate denoting a set of alphabet symbols, i.e., a character class
(σ will be used to denote character classes from now on), and n,m ≥ 0 are
integers. The semantics is defined as usual, with σ{n,m} denoting a string w
with n ≤ |w| ≤ m symbols satisfying σ.

The specialised determinisation algorithm is of a high practical relevance
since the monadic class is very common, as witnessed by our experiments, where
it covers over 95% of the regexes with counting that we found (cf. Sect. 5).

4.1 Monadic Counting Automata

Monadic regexes can be easily compiled to nondeterministic monadic CAs sat-
isfying certain structural properties summarised below.6 In particular, a (non-
deterministic) monadic counting automaton (MCA) is a CA A = (Q,C, I, F,Δ)
where the following holds:

1. The set Q of control states is partitioned into a set of simple states Qs and a
set of counting states Qc, i.e., Q = Qs � Qc.

2. The set of counters C = {cq | q ∈ Qc} consists of a unique counter cq for
every counting state q ∈ Qc.

6 We note that we restrict ourselves to range sub-expressions of the form σ{n, n}
or σ{0, n} only. This is without loss of generality since a general range expression
σ{m, n} can be rewritten as σ{m, m}.σ{0, n − m}.
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3. All transitions containing counter guards or updates must be incident with
a counting state in the following manner. Every counting state q ∈ Qc has
a single increment transition, a self-loop q−{σ∧cq<maxq,c′

q=cq+1}→q with the
value of cq limited by the bound max q of q, and possibly several entry tran-
sitions of the form r−{σ̄∧c′

q=0}→q, which set cq to 0. As for exit transitions,
every counting state is either exact or range, where exact counting states
have exit transitions of the form q−{σ∧cq=maxq}→s, and range counting states
have exit transitions of the form q−{σ,�}→s with s ∈ Q s.t. s = q. That is, an
exact counting state may be left only after exactly max q repetitions of the
incrementing transition (it corresponds to a regular expression σ{k}), while
a range counting state may be left sooner (it corresponds to a regular expres-
sion σ{0,k}). We denote the set of range counting states Qr and the set of
exact counting states Qe, with Qc = Qr � Qe.

4. The initial condition I is of the form I :
∨

q∈QI
s
s = q ∨∨

q∈QI
c
(s = q ∧ cq = 0)

for some sets of initial simple and counting states QI
s ⊆ Qs and QI

c ⊆ Qc,
respectively, with the counters of initial counting states initialised to 0.

5. The final condition F is of the form F :
∨

q∈QF
s ∪QF

r
s = q∨∨

q∈QF
e
(s = q∧cq =

max q) where QF
s ⊆ Qs is a set of simple final states, QF

r ⊆ Qr is a set of final
range counting states, and QF

e ⊆ Qe is a set of final exact counting states.
That is, final conditions on final states are the same as counter conditions on
exit transitions.7

4.2 Determinisation of MCAs

Algorithm 2 can be simplified when specialised to monadic CAs. The simplifi-
cation is based on the following observations. Observation 1. Counters are dead
outside their states. To simplify the representation of spheres, we use the fact
that every counter cq of an MCA is “active” in the state q only, while cq is
“dead” in other states (i.e., its current value has no influence on runs of the
MCA that are not in q). To represent different variants of cq, we use parameters
of the form cq[i] obtained by indexing cq by an index i, for 0 ≤ i ≤ max q,
while enforcing the invariant that, for distinct indices i and j, cq[i] and cq[j]
always have different values. Since the value of cq ranges from 0 to max q, at
most max q + 1 variants of cq are needed.8 Since spheres only need parameters
to remember values of live counters, every sphere can be equivalently written in
the normal form

ψ
def=

∨

q∈Q′
s

s = q ∨
∨

q∈Q′
c

(
s = q ∧

∨

0≤i≤max ′
q

cq = cq[i]
)

7 Notice that the guards cq < max q on the incrementing self-loops of exact counting
states could be removed without affecting the language since when cq exceeds max q,
then the run can never leave q and has thus no chance of accepting. We include these
guards only to conform to the condition on boundedness of counter values in the
definition of CAs.

8 Notice that maintaining a fixed association of a parameter to a counter is a difference
from Algorithms 1 and 2, where one parameter may represent different counters.
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for some Q′
s ⊆ Qs, Q′

c ⊆ Qc, and max ′
q ≤ max q. That is, a sphere ψ records

which states may be reached in the original MCA when ψ is reached in the
determinised MCA and also which variants of the counter cq may record the
value of cq when q is reached.

Observation 2. Variants of exact counting states can be sorted. For dealing
with any exact counting state q ∈ Qe, we may use the following facts: (1) If
executed, the increment transition of q increments all variants of cq whose values
are smaller than max q. (2) New variants of cq are initialised to 0 by the entry
transitions. (3) Variants whose value is max q can take an exit transition, after
which they become dead and their values do not need to be propagated to
the next configuration. It is therefore easy to enforce that the values of the
variants cq[i] stay sorted, so that i < j implies α(cq[i]) < α(cq[j]) in every
configuration α of Ad. The sortedness invariant implies that the variant of cq with
the highest index, called highest variant, has the highest value. This, together
with the invariant of boundedness by max q and mutual distinctness of values
of variants of cq, means that the highest variant is the only one that may satisfy
the tests cq = max q on exit transitions or fail the test cq < max q on the
incrementing transition. Hence, the deterministic MCA does not need to test all
variants of cq but the highest one only.

Observation 3. Only the smallest variants of range counting states are
important. For range counting states, we adapt the simulation pruning tech-
nique from [10]. The technique optimizes the standard subset-construction-based
determinisation of NFAs by exploiting a simulation relation [7] such that any
macrostate (which has the form of a set of states of the original NFA) obtained
during the determinisation can be pruned by removing those NFA states that
are simulated by other NFA states included in the same macrostate. The prun-
ing does not change the language: the resulting DFA is bisimilar to the one
constructed without pruning. For our DCA construction, we use the simula-
tion that implicitly exists between configurations α and α′ of A with the same
range counting state q = α(s) = α′(s), where α(cq) ≥ α′(cq) implies that α′

simulates α.9 Hence, the spheres only need to remember the smallest possible
counter value for every range counting state q, which may be always stored in
cq[0], and discard all other variants.

Determinisation of MCAs. Observations 1–3 above allow for representing
spheres using a simple data structure, namely, a multiset of states. By a slight
abuse of notation, we use ψ for the sphere itself as well as for its multiset rep-
resentation ψ : Q → N. The fact that ψ(q) > 0 means that q is present in the
sphere (i.e., s = q is a predicate in the normal form of ψ), and for a counting
state q, the counters cq[0], . . . , cq[ψ(q) − 1] are the ψ(q) variants of cq tracked in
the sphere (i.e., ψ(q) − 1 = max q′ in the normal form of ψ).

9 The fact that this relation is indeed a simulation can be seen from that both the
higher and lower value of cq can use any exit transition of q at any moment regardless
of the value of cq, but the lower value of cq can stay in the counting loop longer.
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The MCA determinisation is then an analogy of Algorithm 1 that uses the
multiset data structure and preserves the sortedness and uniqueness of variants
of exact counters. The initial sphere ψI assigns 1 to all initial states of I, and the
initial configuration Id assigns 0 to cq[0] for each counting state q in I. Further,
we modify the part of Algorithm 1 after popping a sphere ψ from Worklist in
the main loop (lines 7–11).

Let Δψ denote the set of transitions of A originating from states q with
ψ(q) > 0. Processing of ψ starts by removing guard predicates of the form
cq < max q from increment transitions of exact counting states in Δψ (since
they have no semantic effect as mentioned already above). Subsequently, we
compute minterms of the set of guard formulae of the transitions in Δψ. Each
minterm μ then gives rise to a transition ψ−{g,f }→ψ′ of Ad. The guard formula g,
assignment formula f , and the target sphere ψ′ are constructed as follows.

First, the guard g is obtained from the minterm μ by replacing, for all q ∈ Qc,
every occurrence of cq by cq[ψ(q)], i.e., the highest variant of cq. Intuitively,
the counter guards of transitions of Δψ present in μ will on the constructed
transition of Ad be testing the highest variants of the counters. This is justified
since (a) only the highest variant of cq needs to be tested for exact counting
states, as concluded in Observation 2 above, and (b) we keep only a single variant
of cq for range counting states (which is also the highest one), as concluded in
Observation 3.

We then initialise the target multiset ψ′ as the empty multiset {q �→ 0 | q ∈
Q} and collect the set Δμ of all transitions from Δψ that are compatible with the
minterm μ (recall that increment self-loops of exact states in Δψ have counter
guards removed, hence counter guards do not influence their inclusion in Δμ).
The transitions of Δμ will be processed in the following three steps.

Step 1 (simple states). Simple states with an incoming transition in Δμ get
ψ′(q) = 1.

Step 2 (increment self-loops). For exact states with the increment self-loop
in Δμ, ψ′(q) is set to ψ(q) − 1 if an exit transition of q is in Δμ, and to ψ(q)
otherwise. Indeed, if (and only if) an exit transition of q is included in Δμ, and
Δμ is enabled in some sphere, then the highest variant of cq has reached max q

in that sphere, and the self-loop cannot be taken by the highest variant of cq.
The lower variants of cq always have values smaller than max q, and hence can
take the self-loop. The assignment f then gets the conjunct cq[i]′ = cq[i] + 1 for
each 0 ≤ i < ψ′(q) since the variants that take the self-loop are incremented.
For range states with the increment self-loop in Δμ, we set ψ′(q) to 1, and
cq[0]′ = cq[0] + 1 is added to f (only one variant is remembered).

Step 3 (entry transitions). For each counting state q with an entry transition
in Δμ, ψ′(q) is incremented by 1 and the assignment cq[0]′ = 0 of the fresh
variant of cq is added to f . If the new value of ψ′(q) exceeds max q + 1, then
the whole transition generated from μ is discarded, since cq cannot have more
than max q + 1 distinct values. Otherwise, if q is an exact counting state, then
f is updated to preserve the invariant of sorted and unique values of cq: the
increments of older variants of cq are right-shifted to make space for the fresh
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variant, meaning that each conjunct cq[i]′ = cq[i]+1 in f is replaced by cq[i+1]′ =
cq[i] + 1. If q ∈ Qr, then if the assignment cq[0]′ = cq[0] + 1 is present in f , it is
removed (as the fresh variant has the smallest value 0).

Example 6. Determinising the CA from Fig. 1 using the algorithm described in
this section would result in the DCA shown in Fig. 2. ��

The monadic determinisation has a much lower worst-case complexity than
the general algorithm. Importantly, the number of states depends on maxA

only polynomially, which is a major difference from the exponential bounds of
the näıve determinisation and our general construction.

Theorem 2. The specialised monadic CA determinisation constructs a DCA
with |Qd| ≤ (maxA + 1)|Q| and |Δd| ≤ |Σ| · (4 · (maxA + 1))|Q|.

Proof (idea). The bound on the number of states is given by the number of
functions Q → {0, . . . ,maxA}. The bound on the number of transitions is given
by the fact, that if a sphere multiset maps a state q to n, then the successors of the
sphere can map q to 0 (when q is not a successor), n − 1, n, or n + 1. Therefore,
for every symbol from Σ and every macrostate from at most (maxA + 1)|Q|

many of them, there are at most 4|Q| successors, and |Σ| · (maxA +1)|Q| · 4|Q| =
(4 · (maxA + 1))|Q|. ��

5 Experimental Evaluation

The main purpose of our experimentation was to compare the proposed app-
roach with the näıve determinisation and confirm that our method produces
significantly smaller automata and mitigates the risk of the state space explo-
sion causing a complete failure of determinisation (and the implied impossi-
bility to use the desired deterministic automaton for the intended application,
such as pattern matching). To this end, we extended the Microsoft’s Automata
library [18] with a prototype support for CAs, implemented the algorithm from
Sect. 4 (denoted Counting in the following), and compared it to the standard
determinisation already present in the library (denoted as DFA). For the evalua-
tion, we collected 2,361 regexes from a wide range of applications—namely, those
used in network intrusion detection systems (Snort [17]: 741 regexes, Yang [29]:
228 regexes, Bro [21]: 417 regexes, HomeBrewed [28]: 55 regexes), the Microsoft’s
security leak scanning system (Industrial: 17 regexes), the Sagan log analysis
engine (Sagan [26]: 14 regexes), and the pattern matching rules from RegExLib
(RegExLib [20]: 889 regexes). We only selected regexes that contain an occur-
rence of the counting operator, and from these, we selected only monadic ones
(there were over 95% of them, confirming the fragment’s importance). All bench-
marks were run on a Xeon E5-2620v2@2.4 GHz CPU with 32 GB RAM with
a timeout of 1 min (we take the mean time of 10 runs). In the following, we
use μ, m, and σ to denote the statistical indicators mean, median, and standard
deviation, respectively. All times are reported in milliseconds.
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Fig. 3. Comparison of running
times given in ms (the axes are
logarithmic).

The number of timeouts was 110 for
Counting, and 238 for DFA. The two meth-
ods were to some degree complementary, there
were only 62 cases in which both timed out.
This confirms that our algorithm indeed miti-
gates the risk of failure due to state space explo-
sion in determinisation. The remaining com-
parisons are done only with respect to bench-
marks for which neither of the methods timed
out.

In Fig. 3, we compare the running times of
the conversion of an NFA for a given regex to
a DFA (the DFA axis) and the determinisa-
tion of the CA for the same regex (the Count-
ing axis). If we exclude the easy cases where
both approaches finished within 1 ms, we can
see that Counting is almost always better than DFA. Note that the axes are
logarithmic, so the advantage of Counting over DFA grows exponentially wrt
the distance of the data point from the diagonal. The statistical indicators for
the running times are μ = 110, m = 0.17, σ = 1, 177 for DFA and μ = 0.23,
m = 0.13, σ = 0.09 for Counting.

Fig. 4. Comparison of numbers
of states (the axes are logarith-
mic).

In Fig. 4, we compare the number of states
of the results of the determinisation algorithms
(DCA for Counting and DFA for DFA). Also
here, Counting significantly dominates DFA.
The statistical indicators for the numbers of
states are μ = 4, 543, m = 41, σ = 57, 543
for DFA and μ = 241, m = 13, σ = 800 for
Counting. To better evaluate the conciseness
of using DCAs, we further selected 184 bench-
marks that suffered from state explosion during
determinisation (our criterion for the selection
was that the number of states increased at least
ten-fold in DFA) and explored how the CA
model can be used to mitigate the explosion.
Figure 5 shows histograms of how DCAs were
more compact than DFAs and also how much
the number of counters rose during the determinisation. From the histograms,
we can see that there are indeed many cases where the use of DCAs allows one
to use a significantly more compact representation, in some cases by the fac-
tor of hundreds, thousands, or even tens of thousands. Furthermore, the other
histogram shows that, in many cases, no blow-up in the number of counters
happened; though there are also cases where the number of counters increased
by the factor of hundreds.

In terms of numbers of transitions, the methods compare similarly as for num-
bers of states, as shown in Fig. 6. We obtained μ = 14, 282, m = 77, σ = 213, 406
for DFA and μ = 2, 398, m = 23, σ = 8, 475 for Counting. (We emphasize
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Fig. 5. Histograms of (a) the ratio of the number of states of a DFA and of the corre-
sponding DCA (i.e., a bar at value x of a height h denotes that the size of the DCA
was h times around x times smaller than the size of the corresponding DFA) and (b)
the ratio of the number of counters used by a CA after and before determinisation.
Note that the x-axes are logarithmic in both cases.

the number of states over the number of transitions in our comparisons since the
performance and complexity of automata algorithms is usually more sensitive to
the number of states, and large numbers of transitions are amenable for efficient
symbolic representations [6,12,16].)

Fig. 6. Comparison of numbers
of transitions (the axes are log-
arithmic).

Benefits of the Counting method were the
most substantial on the Industrial dataset. For
the regex ”.*A[^AB]{0,800}C[D-G]{43,53}
DFG[^D-H]” (which was obtained from the real
one, which is confidential, by substituting the
used character classes by characters A–H), the
obtained DFA contains 200,132 states, while
the DCA contains only 12 states (and 2 coun-
ters), which is 16,667 times less. When min-
imised, the DFA still has 65,193 states. There
were other regexes where Counting achieved
a great reduction, in total two regexes had
a reduction of over 10,000, three more regexes
had a reduction of over 1,000, and 45 more had
a reduction of over 100.

Additionally, we also compared our approach against the näıve determinisa-
tion followed by the standard minimisation. Due to the space restrictions and
since minimisation is not relevant to our primary target (preventing failure due
to state space explosion during determinisation), we present the results only
briefly. Minimisation increased the running times of DFA by about one half
(μ = 150, m = 0.35, σ = 1, 582 for the running times of DFA followed by min-
imisation). The minimal DFAs were on average about ten times smaller than the
original DFAs, and about ten times larger than our DCAs (μ = 385, m = 29,
σ = 4, 195 for the numbers of states of the minimal DFAs).
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6 Related Work

Our notion of CAs is close to the definition of FACs in [13], but our CAs are more
general, by allowing input predicates and more complex counter updates. Also R-
automata [1] are related but somewhat orthogonal to CAs because counters in R-
automata do not need to have upper bounds and cannot be tested or compared.
Counter systems are also related to CAs but allow more general operations over
counters through Presburger formulas [2]. CAs can also be seen as a special case
of extended finite state machines or EFSMs [5,22,24,25], but these already go
beyond regular languages.

Extended FAs (XFAs) augment classical automata with so-called scratch
memory of bits and bit-instructions [23,24], which can represent counters and
also reduce nondeterminism. Regexes are compiled into deterministic XFAs by
first using an extended version of Thompson’s algorithm [27], then determinised
through an extended version of the classical powerset construction, and finally
minimised. Although a small XFA may exist, the determinisation algorithm
incurs an intermediate exponential blowup of search space for inputs such as
.*a.{k} (cf. [23, Section 6.2]), i.e., the regex from our running example, and
handling of such cases remained an open problem.

Regular expressions with counters are also discussed in [8,13,15]. The
automata with counters used in [13], called FACs, correspond closely, apart
from our symbolic character predicates and transition representation, to the
class of CAs considered in our work. A central result in [13] is that for counter-
1-unambiguous regexes, the translation algorithm yields deterministic FACs and
that checking determinism of FACs can be done in polynomial time. There are
also works on regular expressions with counting that translate deterministic
regexes to CAs and work with different notions of determinism [4,9]. The related
work in [14] studies membership in regexes with counting. None of these papers
addresses the problem of determinising nondeterministic CAs.

7 Future Directions

Among future directions, we will consider optimisations of the current algorithm
by means of avoiding construction of unreachable parts of DCAs or by finding
efficient data structures, generalising the techniques used for monadic CAs to a
larger class of CAs, and building a competitive pattern matching engine around
the current algorithm. Since we believe that CAs have a lot of potential as a
general succinct automata representation, we will work towards filling in efficient
CA counterparts of standard automata algorithms, such as Boolean operations,
minimisation, or emptiness test, that could also be used in other applications
than pattern matching, such as verification and decision procedures of logics.
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vol. 5734, pp. 369–381. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03816-7 32

10. van Glabbeek, R., Ploeger, B.: Five Determinisation algorithms. In: Ibarra, O.H.,
Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 161–170. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-70844-5 17

11. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 2

12. Henriksen, J.G., et al.: Mona: monadic second-order logic in practice. In: Brinksma,
E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995.
LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-60630-0 5

13. Hovland, D.: Regular expressions with numerical constraints and automata with
counters. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp.
231–245. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03466-
4 15

14. Hovland, D.: The membership problem for regular expressions with unordered
concatenation and numerical constraints. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.)
LATA 2012. LNCS, vol. 7183, pp. 313–324. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28332-1 27
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