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Abstract

Let O and F be an operation and a language family, respec-
tively. So far, in terms of closure properties, the classical lan-
guage theory has only investigated whether O(F) ⊆ F, where
O(F) is the family resulting from O applied to all members of F.
If O(F) ⊆ F, F is closed under O; otherwise, it is not.

This paper proposes a finer and wider approach to this inves-
tigation. Indeed, it studies almost all possible set-based relations
between F and O(F), including O(F) = ∅; F 6⊂ O(F), O(F) 6⊂ F,
F∩O(F) 6= ∅; F∩O(F) = ∅, O(F) 6= ∅; O(F) = F; andF ⊂ O(F).
Many operations are studied in this way. A sketch of application
perspectives and open problems closes the paper.
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1 Introduction

Over its entire history, formal language theory has primarily studied
operations over language families in terms of closure properties by anal-
ogy with the investigation of these properties in discrete mathematics
as a whole. To give an insight into this study, consider a languare family
F, a language operation O, and O(F) as the language family resulting
from the application of O to all languages in F. In essence, so far, the
language theory has restricted its attention only to the study whether
or not O(F) ⊆ F. If so, F is closed with respect to O; otherwise, it is
not.
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The authors believe that formal language theory can approach the
investigation of operations over language families in a much finer way
than it has been done so far. In fact, there already exist many re-
sults that can be combined together to express some properties related
to closure or non-closure results more precisely; unfortunately, formal
language theory lacks a proper universal terminology or framework,
which would allow it to express results of this kind in a uniform and
general way. To illustrate this finer approach by a simple example,
recall that the family of context-sensitive languages is not closed under
homomorphism (see the Corollary on p. 279 in [8]). Apart from this
non-closure result, it is well known that every recursively enumerable
language L coincides with h(K), where h is a homomorphism and K is
a context-sensitive language. Of course, if a language is not recursively
enumerable, it cannot be expressed in this way. Putting these results
together, we can naturally say that homomorphism expands the family
of context-sensitive languages onto that of recursively enumerable lan-
guages. Therefore, the present paper proposes a new terminology for
results like this and illustrates it by many examples, observations and
results.

More specifically, the present paper introduces these notions— (1) if
F − O(F) 6= ∅, O reduces F; (2) if O(F) = ∅, O eliminates F; (3) if
O(F) ⊂ F, O properly reduces F; (4) if F 6⊂ O(F), O(F) 6⊂ F, and
F ∩ O(F) 6= ∅, then O incomparably reduces F; (5) if F − O(F) = F

and O(F) 6= ∅ , O expels F; (6) if O(F) = F, O unchanges F; and
(7) if F ⊂ O(F), O expands F. In terms of these notions, the paper
discusses a broad variety of operations, ranging from classical opera-
tions, such as complement, up to newly introduced operations. It starts
from utterly straightforward observations about simple operations and
gradually proceeds towards more complicated operations and results
concerning them. Sometimes, it applies these operations to well-known
language families, such as the family of linear languages. Most often,
however, as the main direction of this newly proposed investigation
trend, the paper establishes general results concerning language fami-
lies satisfying some prescribed properties. In its conclusion, in a greater
detail, the paper suggests several special branches of study within this
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newly suggested trend as well as application perspectives.

2 Preliminaries

This paper assumes that the reader is familiar with discrete mathe-
matics (see [4]). Most importantly, it assumes an in-depth knowledge
of the language theory (see [2], [3], [5]). Let X and Y be two sets. X
and Y are comparable if X ⊆ Y or Y ⊆ X; otherwise, X and Y are
incomparable. In other words, X and Y are incomparable if and only if
X 6⊆ Y and Y 6⊆ X (notice that if X and Y are disjoint, then they are
necessarily incomparable). For a set Q, power (Q) denotes the power
set of Q, and card(Q) denotes its cardinality. For a total function f
over Q, f i denotes its ith power, for i ≥ 0. N denotes the set of natural
numbers.

For an alphabet V , V ∗ represents the free monoid generated by V
under the operation of concatenation. The unit of V ∗ is denoted by
ε. Set V + = V ∗ − {ε}; algebraically, V + is thus the free semigroup
generated by V under the operation of concatenation. Any member
w ∈ V ∗ is called a word. For any w ∈ V ∗, |w| and reversal(w) denote
the length of w and the reversal of w, respectively. For any N ⊆
V, occur (w,N) denotes the number of symbols from N occurring in
w. For every i ∈ {0, 1, . . . , |w|}, suffix (w, i) denotes the suffix of w
of length i; analogously, prefix (w, i) denotes the prefix of w of which
length is i. A language L is any subset of V ∗, L ⊆ V ∗. Let ALL denote
the set of all languages; in other words, ALL represents the universal
set of languages throughout this paper. A language family F is any
subset of ALL, F ⊆ ALL; notice that F ⊆ ALL is synonymous with
F ∈ power (ALL). Observe that both ∅ and {∅} are language families,
but ∅ 6= {∅}; indeed, card(∅) = 0 while card({∅}) = 1. Set alph(L) =
{a | a occurs in a word in L}, and alph(F) = {a | a ∈ alph(L), L ∈ F}.

A grammar is a quadruple, G = (N,T, P, S), where N and T are
nonterminal and terminal alphabets, respectively; N ∩ T = ∅. N con-
tains S—the start symbol of G. P is a finite non-empty set of produc-
tions of the form x → y, where x, y ∈ (N ∪ T )∗ so N ∩ alph(x) 6= ∅.
For every p ∈ P of the form x → y, x is the left-hand side of p, lhs(p),
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and y is the right-hand side of p, rhs(p). To express that card(N) = n,
where n ∈ N, we write nG. If x → y ∈ P , v = uxz, w = uyz with
u, z ∈ (N ∪T )∗, then v directly derives w in G, symbolically written as
v ⇒ w in G. In the standard manner, extend ⇒ to ⇒n, where n ≥ 0;
then, based on ⇒n, define ⇒+ and ⇒∗. The language of G, L(G), is
defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}, and any derivation of the form
S ⇒∗ w in G with w ∈ T ∗ is called a successful derivation.

Let G = (N,T, P, S) be a grammar. G is referred to as context-
sensitive if every production in P is of the form uAv → uyv with
A ∈ N , u, v ∈ (N ∪ T )∗, y ∈ (N ∪ T )+. G is referred to as context-free
if every x → y ∈ P satisfies x ∈ N, y ∈ (N ∪ T )∗. A context-free
grammar is in the Chomsky normal form if every x → y ∈ P satisfies
y ∈ NN ∪ T . Let j ∈ N; a context-free grammar G is referred to as
j-linear if for any x → y ∈ P , S 6∈ alph(y) and either x = S and
occur (y,N) ≤ j or x 6= S and occur (y,N) ≤ 1. Instead of a 1-linear
grammar, we often simply say a linear grammar. For j ∈ N; jLIN

denotes the language family generated by j-linear grammars; recall
that for every k ∈ N; kLIN ⊂ k+1LIN (see Theorem 8.3 in [5]).

REG, LIN, CF, CS, DEC, and RE denote the families of reg-
ular, linear, context-free, context-sensitive, decidable, and recursively
enumerable languages, respectively. Recall (see [2])

REG ⊂ LIN ⊂ CF ⊂ CS ⊂ DEC ⊂ RE ⊂ ALL

3 Definitions

Let n ∈ N. An n-ary language operation on ALL is a total function O
from the n-ary Cartesian productALLn intoALL. An n-ary language-
family operation over power (ALL) is a total function O from the n-ary
Cartesian product (power (ALL))n into power (ALL).

Throughout this paper, we discuss only unary and binary language
operations, and we only consider unary language-family operations.
For any F ⊆ ALL, O(F) denotes the image of F over O, so O(F) =
{O(L) | L ∈ F}. In what follows, we automatically assume that F 6= ∅
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(of course, O(F) = ∅ is not ruled out). Notice that in the next main
definition of this paper, 2 through 5 are, in effect, special cases of 1.

Definition 3.1. Let F ⊆ ALL.

1. If F−O(F) 6= ∅, O reduces F.

2. If O(F) = ∅, O eliminates F.

3. If O(F) ⊂ F, O properly reduces F.

4. If F 6⊂ O(F), O(F) 6⊂ F, and F∩O(F) 6= ∅, then O incomparably
reduces F.

5. If F−O(F) = F and O(F) 6= ∅ , O expels F.

6. If O(F) = F, O unchanges F.

7. If F ⊂ O(F), O expands F.

Suppose that O expands F and O(F) = W, where W is a well-
known language family, such as any of the families listed in the conclu-
sion of Section 2. Under these circumstances, we sometimes explicitly
point out that O expands F onto W (see, for instance, Observation
4.13 and Theorem 4.28). We often make analogical statements in terms
of the other parts of Definition 3.1 unless a confusion arises (see, for
instance, Observation 4.6).

4 Results

Simply put, the present section illustrates Definition 3.1 by a large va-
riety of language-family operations. Starting from part 1, it proceeds,
in essence, towards part 7 of the definition. Consequently, it begins
with a variety of reducing operations and ends with expanding opera-
tions. As far as the mathematical level is concerned, the section opens
its discussion with utterly trivial operations and closes it with more
complicated operations and results about them.
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4.1 Reducing Operations

For all F ∈ power (ALL), define operations
EmptySetConcatenation (F) = {L∅ | L ∈ F}, and
EmptyStringConcatenation (F) = {L{ε} | L ∈ F}. The next observa-
tion is obvious.

Observation 4.1. For all F ∈ power (ALL),
EmptySetConcatenation (F) = ∅ and EmptyStringConcatenation(F) =
F. In words, the former eliminates F while the latter unchanges F.

Let Complement denote the well-known unary language operation
of complement. For all F ∈ power (ALL), define Complement(F) =
{Complement (L) | L ∈ F}.

Observation 4.2. Complement (RE) = DEC ∪ Complement (RE −
DEC), where
Complement (RE − DEC) ⊂ ALL − RE. Therefore, Complement
incomparably reduces RE.

Proof. Let L ∈ RE. If L ∈ DEC, then Complement(L) ∈ DEC

(see Theorem 18.3 in [6]). If L ∈ RE −DEC,Complement (L) 6∈ RE

because L ∈ DEC if and only if L ∈ RE and Complement (L) ∈
RE (see Theorem 4.22 in [7]). Thus, Complement(RE) = DEC ∪
Complement (RE−DEC) with Complement (RE−DEC) out of RE,
so Complement (RE−DEC) ⊂ ALL−RE. The rest of this observation
follows from part 4 of Definition 3.1.

Let a ∈ alph(ALL). For all L ∈ ALL, define operation
a-End(L) = L{a}, and for all F ⊆ ALL, a-End(F) = {a-End(L) |
L ∈ F}. As usual, a-End i denotes the ith power of a-End , i ≥ 1.
Consider these two disjoint language families

ODDa = {L | L ⊆ {a}∗, |x| is odd for all x ∈ L}, and

EVENa = {L | L ⊆ {a}∗, |x| is even for all x ∈ L}.

Observation 4.3. Let i ≥ 1. Then:
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a-End i(ODDa) = EVENa if i is odd, and

a-End i(EVENa) = ODDa if i is even.

Proof. Clear.

Corollary 4.4. a-End(ODDa) = EVENa and a-End(EVENa) =
ODDa. In words, a-End expels ODDa onto EVENa, and it expels
EVENa onto ODDa.

Proof. Consider Observation 4.3 for i = 1 to see that this corollary
holds true.

Define the homomorphism a-Coding as a-Coding(b) = a for all
b ∈ alph(ALL). For all F ∈ power (ALL), let a-Coding(F) =
{a-Coding (L) | L ∈ F}, where a-Coding(L) = {a-Coding(x) | x ∈ L}.

In the following lemma and observation, we narrow our attention
to CF and REG.

Lemma 4.5. Let L ∈ CF; then, a-Coding(L) ∈ REG ∩ power ({a}∗).

Proof (sketch). Let L ∈ CF. Let G be a context-free grammar in
the Chomsky normal form such that L(G) = L. In G, change every
production A → b to A → a-Coding(b), where b is a terminal; other-
wise, keep G unchanged. Let H be the context-free grammar resulting
from this simple change. Clearly, a-Coding(L) = a-Coding(L(G)) and
a-Coding(L(G)) ∈ power ({a}∗). Hence, a-Coding(L(G)) ∈ REG be-
cause every context-free language over {a} is regular (see Theorem 6.3.1
on page 194 in [8]). Thus, a-Coding(L) ∈ REG∩ power ({a}∗), so this
lemma, whose fully rigorous proof is left to the reader, holds true.

Observation 4.6. a-Coding(CF) = REG∩power ({a})∗, so a-Coding
properly reduces CF onto REG ∩ power ({a}∗).

Proof. Take any L ∈ REG ∩ power ({a}∗). Clearly,
L ∈ a-Coding(REG), so L ∈ a-Coding(CF). Hence, REG ∩
power ({a}∗) ⊆ a-Coding(CF). From Lemma 4.5, a-Coding(CF) ⊆
REG ∩ power ({a}∗). Thus, Observation 4.6 holds.
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Let n ∈ N. Recall that nG means that G has n nonterminals (see
Section 2). For all L ∈ ALL, define nGrammaticalDefinition(L) = L
if there exists a grammar nG such that L(nG) = L, and

n GrammaticalDefinition(L) = ∅ otherwise.
For all F ∈ power (ALL), define operation

nGrammaticalDefinition(F) = {n GrammaticalDefinition(L) | L ∈ F}.

Observation 4.7. 2 GrammaticalDefinition(ALL) = RE, so

2 GrammaticalDefinition properly reduces ALL onto RE, for i =
2, 3, . . . .

Proof. To prove RE ⊆ 2 GrammaticalDefinition(ALL), take any L ∈
RE. If L = ∅, then 2GrammaticalDefinition(L) = ∅, and there obvi-
ously exists a grammar 2G so L(2G) = ∅. Let L ∈ RE and L 6= ∅. By
Church’s thesis, there is a grammar nG, L(nG) = L, for some n ≥ 2.
Let nG = (N,T, P, S), {0, 1} ⊆ N, and a ∈ T . Introduce a homomor-
phism h from N ∪ T into {1}{a}+{1}. Next, we construct a grammar

2H so L(nG) = L(2H). Set 2H = ({0, 1}, T,R, 0) with

R ={0 → 111h(S)1111, 1111111 → ε}

∪ {h(x) → h(y) | x → y ∈ P}

∪ {111h(b) → b111 | b ∈ T}.

A rigorous proof that L(nG) = L(2H) is simple and left to the reader.
Thus, RE ⊆ 2GrammaticalDefinition(ALL). By Church’s thesis,

a language is generated by a grammar if and only if it belongs to RE,
so we definitely have 2 GrammaticalDefinition(ALL) ∈ RE. Thus, the
observation holds true.

Can Obseration 4.7 be established for i = 1? The answer is no as
proved next.

Observation 4.8. 1 GrammaticalDefinition(ALL) ⊂ RE, so

1 GrammaticalDefinition properly reduces ALL into RE.
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Proof (by Contradiction). Set Lprime = {aj | j is a prime}. Of course,
Lprime ∈ RE. For the sake of contradiction, assume that a grammar

1G = ({S}, {a}, P, S) satisfies Lprime = L(1G). Having a single non-
terminal, 1G would have derivations in the form

S ⇒∗ uSw ⇒∗ uvSw ⇒∗ uvvSw ⇒∗ · · · ⇒∗ uviSw ⇒∗ uviw,

where u,w ∈ T ∗, |uw| ≥ 2, v ∈ T+, so uviw ∈ Lprime for all i ≥ 0.
Of course, uviw ∈ Lprime. Set |uw| = m. Take uvmw. Observe that
|uvmw| = |uw|+m|v| = m+m|v| = m(1 + |v|), so uvmw 6∈ Lprime—a
contradiction. Thus, this observation holds.

For all F ∈ power (ALL), define operations

Union(F) = {L ∪K | K,L ∈ F}, and

DifferentUnion(F) = {L ∪K | K,L ∈ F,K 6∈ L}.

As it is shown next, while the latter represents a reducing operation
(see Observation 4.10), the former does not (see Observation 4.11).

Lemma 4.9. Let F ∈ power (ALL), and let L ∈ F satisfy card(L) ≤
card(K), for all K ∈ F. Then, L 6∈ DifferentUnion(F).

Proof. Let L ∈ F with card(L) ≤ card(K), for all K ∈ F. If
L = ∅, ∅ ∪ ∅ 6∈ DifferentUnion(F), so ∅ 6∈ DifferentUnion(F). Let
L 6= ∅, card(L) ≤ card(K). By the definition of DifferentUnion,
L − ∅ 6∈ DifferentUnion(F) and L ∪ L 6∈ DifferentUnion(F). There-
fore, every J ∈ DifferentUnion(F) satisfies card(L) < card(J). Thus,
L 6∈ DifferentUnion(F).

Observation 4.10. For all F ⊆ ALL, DifferentUnion reduces F.

Proof. Recall that we always assume F 6= ∅ (see Section 3) to see that
Lemma 4.9 implies this observation.
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4.2 Expanding Operation

Throughout the rest of this section, we discuss mostly operations that
unchange or, more often, expand language families (see parts 6 and 7
in Definition 3.1).

Observation 4.11. Let F ∈ power (ALL). If there are K,L ∈ F such
that L ∪K 6∈ F, then Union expands F; otherwise, Union unchanges
F.

Proof. Let F ∈ power (ALL). Notice that F = {J∪J | J ∈ F}. If there
are K,L ∈ F such that L ∪ K 6∈ F, then F ⊂ Union(F); otherwise,
F = Union(F).

For all F ∈ power (ALL), define Intersection(F) = {L∩K | K,L ∈
F}.

Observation 4.12. Let F ∈ power (ALL). If there are K,L ∈ F such
that L ∩K 6∈ F, then Intersection expands F; otherwise, Intersection
unchanges F.

Proof. By analogy with the proof of Observation 4.11.

Let Homomorphism denote the common language operation of ho-
momorphism (a-Coding , discussed in Lemma 4.5 and Observation 4.6,
represents its special case). For all F ∈ power (ALL), define:

Homomorphism (F) = {Homomorphism (L) | L ∈ F}.

Observation 4.13. Homomorphism expands CS onto RE.

Proof. By Theorem 9.10 in [5], RE ⊆ Homomorphism (CS). By
Church’s thesis, Homomorphism (CS) ⊆ RE. Thus, Observation 4.13
holds true.

Throughout the rest of this section, we narrow our attention to
operations applied only to CF or its subfamilies.

Observation 4.14. Homomorphism unchanges CF.
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Proof. Homomorphism (CF) ⊆ CF (see Theorem 8.12 in [2]). To prove
that CF ⊆ Homomorphism(CF), take any L ∈ CF . Consider the
homomorphism h over alph(L)∗ as the identity h(a) = a, for all a ∈
alph(L). Clearly, h(L) = L, so CF ⊆ Homomorphism(CF). Thus,
Observation 4.14 holds true.

Next, we state some specific results concerning Union applied to
CF and its proper subfamily of inherently ambiguous context-free lan-
guages, denoted by ambCF. Set unambCF = CF− ambCF.

Observation 4.15. Union unchanges CF.

Proof. For any K,L ∈ CF, L ∪ K ∈ CF, so this observation follows
from Obsevation 4.11.

Observation 4.16. Union expands unambCF into CF.

Proof. Of course, unambCF ⊆ Union(unambCF ) ⊆ CF. Take L =
{anbncm : n,m ≥ 1} and K = {ambncn | n,m ≥ 1}, both of which are
in unambCF. Recall that L ∪ K = {aibjck | i, j, k ≥ 1, i = j or j =
k} belongs to ambCF (see Example 2.47 on page 205 in [9]). Thus,

unambCF ⊂ Union(unambCF) ⊆ CF, so this observation holds true.

For every context-free grammar G, set

CFGAmb(L(G)) = {x ∈ L(G) | x is the frontier of two or more

distinct derivation trees for G}.

Lemma 4.17. Let L ∈ RE. Then, L = CFGAmb(L(G)), where G is
a context-free grammar.

Proof. Let L ∈ RE. Express L as L = h(L(I) ∩ L(J)), where L(I)
and L(J) are deterministic context-free languages, and I, J are un-
ambiguous context-free grammars (see Theorem 10.3.1 on page 310
in [8] and Theorem 6.21 on page 250 in [10]). Let I = (NI , T, PI , SI)
and J = (NJ , T, PJ , SJ), NI ∩ NJ = ∅. Define the homomorphism
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g over (NI ∪ NJ ∪ T )∗ as g(A) = A for every A ∈ NI ∪ NJ and
g(a) = h(a) for every a ∈ T . Construct the context-free grammar
G = (NI ∪NJ ∪ {X}, T, PG, SG), where X is a new nonterminal and

PG = {A → g(x) | A → x ∈ PI∪PJ}∪{SG → XSI , SG → SJX,X → ε}.

Observe that L(G) = h(L(I) ∪ L(J)). Recall that I and J are
unambiguous. Thus, (h(L(J)) − h(L(I))) ∩ CFGAmb(L(G)) = ∅
and (h(L(I)) − h(L(J))) ∩ CFGAmb(L(G)) = ∅, so CFGAmb (L(G))
⊆ h(L(I)∩L(J)). Notice that {SG → XSI , SG → SJX,X → ε} ⊆ PG.
Thus, h(L(I) ∩ L(J)) is necessarily contained in CFGAmb(L(G)), so
h(L(I)∩L(J)) ⊆ CFGAmb(L(G)). Hence, CFGAmb(L(G)) = h(L(I)∩
L(J)) = L. Therefore, Lemma 4.17 holds.

Define language-family operation CFAmb as follows. For every F ⊆
CF:

CFAmb(F) = {CFGAmb(L(G)) | G is a context-free grammar},

and for every F ⊆ ALL−CF,CFAmb(F) = ∅.

Observation 4.18. RE = CFAmb(CF), so CFAmb expands CF onto
RE.

Proof. By Lemma 4.17, RE ⊆ CFAmb(CF). From Church’s thesis,

CFAmb(CF) ⊆ RE. Thus, Observation 4.18 holds.

Next, we introduce i -Power as a language-family operation and
demonstrate that its application to LIN gives rise to an infinite hier-
archy of language families.

Let i ∈ N. For all F ⊆ ALL, recursively define operation
i -Power (F) as follows: (i) 1 -Power (F) = F, (ii) for all i ≥ 1,
(i + 1 )-Power (F) = {LK | L ∈ i -Power (F),K ∈ F}.

Theorem 4.19. For all i ≥ 1, i -Power (LIN) ⊂ i + 1 -Power (LIN);
in words, i + 1 -Power properly expands i -Power (LIN).
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Proof. Let j ∈ N. Observe that j -Power(LIN) = jLIN (see Section 2
for jLIN); a proof of this observation is simple and left to the reader.
Recall that for all i ≥ 1, iLIN ⊂ i+1LIN (see Theorem 8.3 in [5]).
Thus, Theorem 4.19 holds true.

In what follows, without any loss of generality, we assume that #
represents a special delimited marker exclusively used as described in
the following definitions of operations Middle and SymmetricMiddle .

For all L ∈ ALL, define

Middle(L) = {w | x#w#y ∈ L, x,w, y ∈ (alph(L)−#)∗}, and

SymmetricMiddle(L) =

= {w | x#w#y ∈ L, x,w, y ∈ (alph(L)−#)∗, x = reversal(y)}.

For all F ⊆ ALL, define

Middle(F) = {Middle(L) | L ∈ F}, and

SymmetricMiddle(F) = {SymmetricMiddle(L) | L ∈ F}.

At a glance, Middle and SymmetricMiddle resemble each other
very much. However, while Middle unchanges jLIN for any j ≥ 1,
SymmetricMiddle expands LIN onto RE.

Theorem 4.20. Let j ∈ N. Middle(jLIN) = jLIN, so Middle un-
changes jLIN.

Proof. Let j ∈ N. To prove Middle(jLIN) ⊆ jLIN, take any L ∈
Middle(jLIN). That is, L = Middle(L(G)), where G = (N,T, P, S) is
a j-linear grammar. Assume that in every rule of the form S → x ∈
P, x ∈ N j, and every nonterminal is terminating—that is, there is a
derivation of a terminal word starting from it. A simple proof that any
j-linear grammar can be turned to a j-linear grammar satisfying this
assumption is simple and left to the reader.

Next, we construct a j-linear grammarH soMiddle(L(G)) = L(H).
Set H = (M,T,R, 〈S〉), whose components are constructed as follows.
Set
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M = {〈aAb〉 | A ∈ N, a, b ∈ {[, ], $, ε}, ab ∈ {ε, $$, $], [$, []}},

where [, ], and $ are new symbols not contained in N ∪ T . Construct
R by performing 1 through 8, given next. In this construction, we
automatically assume that u, v, w, x, y, z ∈ T ∗, and A,B ∈ N − {S}.
Initially, set R = ∅. Perform

1. for all S → A1 . . . Ah . . . Aj ∈ P , where h ∈ {1, . . . , j}, add 〈S〉 →
〈[Ah]〉 to R;

2. for all S → A1 . . . AhAh+1 . . . Ai−1Ai . . . Aj ∈ P , where h ∈
{1, . . . , j − 1}, i ∈ {h+ 1, . . . , j}, add 〈S〉 →
〈[Ah$〉〈$Ah+1$〉 . . . . . . 〈$Ai−1$〉〈$Ai]〉 to R;

3. for all A → uBv ∈ P , add 〈A〉 → 〈B〉 and 〈$A$〉 → u〈$B$〉v to
R;

4. for all A → uBv#y ∈ P , add 〈$A]〉 → u〈$B$v〉 to R;

5. for all A → u#vBy ∈ P , add 〈[A$〉 → v〈$B$〉y to R;

6. for all A → u#vBx#y ∈ P , add 〈[A]〉 → v〈$B$〉x to R;

7. for all rules of the form A → vBu#x#y,A → u#x#vBy, and
A → #x#P , add 〈[A]〉 → x to R;

8. for all rules of the form A → w ∈ P , add 〈$A$〉 → w to R.

Gist. In essence, H uses [ and ] as boundary markers that delimit the
corresponding subword w occurring in between the two #s generated in
G. In this way, H determines every w ∈ Middle(L(G)) and generates
it, so L(H) = Middle(L(G)). For instance, suppose that G makes
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S ⇒A1 . . . Ah . . . Aj

⇒∗u1Ahu2

⇒u1u2#u3A2u4u2

⇒∗u1u2#u3u4A3u5u4u2

⇒u1u2#u3u4u6A4u7#u8u5u4u2

⇒∗u1u2#u3u4u6u9A5u10u7#u8u5u4u2

⇒u1u2#u3u4u6u9u11u10u7#u8u5u4u2.

As a result, u3u4u6u9u11u10u7 ∈ Middle(LIN). Then, H simulates
the generation of the string u3u4u6u9u11u10u7 in this way

〈S〉 ⇒∗〈[Ah]〉

⇒u3〈$A2]〉

⇒∗u3u4〈$A3]〉

⇒u3u4u6〈$A4$〉u7

⇒∗u3u4u6u9〈$A4$〉u10u7

⇒u3u4u6u9u11u10u7.

Consider all other possible forms of generating x#w#y ∈ L(G)
such that w ∈ Middle(L(G)). H simulates them by analogy with the
simulation sketched above, so Middle(L(G)) ⊆ L(H). Similarly, we
can establish L(H) ⊆ Middle(L(G)), so Middle(L(G)) = L(H). A
fully rigorous proof of this identity is simple, but lengthy and tedious,
so we omit it; the reader can easily fill in all the details.

Thus, this theorem holds true.

Considering Theorem 4.20, we find it surprising that SymmetricMiddle
properly expands LIN onto RE (see Theorem 4.28). Since proving this
result is more complicated than the previous proof, we provide it in a
greater detail. To start with, we need the notion of a queue grammar.
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A queue grammar (see [1]) is a six tuple, Q = (V, T,W,F, s, P ),
where V and W are alphabets satisfying V ∩W = ∅, T ⊆ V, F ⊆ W, s ∈
(V −T )(W −F ), and P ⊆ (V ×(W −F ))×(V ∗×W ) is a finite relation
such that for every a ∈ V , there exists an element (a, b, x, c) ∈ P . If
u, v ∈ V ∗W such that u = arb; v = rzc; a ∈ V ; r, z ∈ V ∗; b, c ∈ W ;
and (a, b, z, c) ∈ P , then u ⇒ v[(a, b, z, c)] in G or, simply, u ⇒ v.
In the usual manner, extend ⇒ to ⇒n, where n ≥ 0; then, based
on ⇒n, define ⇒+ and ⇒∗. The language of Q, L(Q), is defined as
L(Q) = {w ∈ T ∗ : s ⇒∗ wf, where f ∈ F}. Now, we slightly modify
the notion of a queue grammar. A left-extended queue grammar is a
sixtuple , Q = (V, T,W,F, s, P ), where V, T,W,F , and s have the same
meaning as in a queue grammar. P ⊆ (V × (W − F )) × (V × W )
is a finite relation (as opposed to an ordinary queue grammar, this
definition does not require that for every a ∈ V , there exists an element
(a, b, x, c) ∈ P ). Furthermore, assume that # /∈ V ∪ W . If u, v ∈
V ∗{#}V ∗W so that u = w#arb; v = wa#rzc; a ∈ V ; r, z, w ∈ V ∗;
b, c ∈ W ; and (a, b, x, c) ∈ P , then u → v[(a, b, z, c)] in G or, simply,
u ⇒ v. In the usual manner, extend ⇒ to ⇒n, where n ≥ 0; then,
based on ⇒n, define ⇒+ and ⇒∗. The language of Q,L(Q), is defined
as L(Q) = {v ∈ T ∗ : #s ⇒∗ w#vf for some w ∈ V ∗ and f ∈ F}.
Less formally, during every step of a derivation, a left-extended queue
grammar shifts the rewritten symbol over #; in this way, it records the
derivation history, which plays a crucial role in the proof of Lemma
4.22.

Lemma 4.21. For every recursively enumerable language, L, there
exists a left-extended queue grammar, Q, satisfying L(Q) = L.

Proof. Recall that every recursively enumerable language is generated
by a queue grammar (see [1], [3]). Clearly, for every queue grammar,
there exists an equivalent left-extended queue grammar. Thus, this
lemma holds.

Lemma 4.22. Let H be a left-extended queue grammar. Then, there
exists a left-extended queue grammar, Q = (V, T,W,F, s,R), such that
L(H) = L(Q) and every (a, b, x, c) ∈ R satisfies a ∈ V −T, b ∈ W −F ,
and x ∈ ((V − T )∗ ∪ T ∗).
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Proof. Let H = (ς, T,Ω, φ, σ,Π) be any left-extended queue grammar.
Set Ω′ = {q′ : q′ ∈ Ω}, Ω′′ = {q′′ : q′′ ∈ Ω}, and ς ′ = {a′ : a ∈ ς}.
Define the bijection α from Ω to Ω′ as α(q) = q′ for every q ∈ Ω.
Analogously, define the bijection β from Ω to Ω′′ as β(q) = q′′ for every
q ∈ Ω. Finally, define the bijection δ from ς to ς ′ as δ(a) = a′ for every
a ∈ ς. In the standard manner, extend δ so it is defined from ς∗ to
(ς ′)∗. Set

U = {〈y, p〉 : y ∈ T ∗, p ∈ Ω, and (a, q, xy, p) ∈ Π

for some a ∈ ς, q ∈ Ω, x ∈ ς∗}.

Without any loss of generality, assume that (δ(ς)∪T ∪α(Ω)∪β(Ω)∪
U)∩{1, f} = ∅. Set V = δ(ς)∪{1}∪T,W = α(Ω)∪β(Ω)∪{f}∪U,F =
{f}, and s = δ(a)α(q). Define the left-extended queue grammar

Q = (V, T,W,F, s,R)

with R constructed in the following way:

I if (a, q, xy, p) ∈ Π, where a ∈ ς; q ∈ Ω − Φ;x, y ∈ ς∗; and p ∈
Ω, then add (δ(a), α(q), δ(x)δ(y), α(p)) and (δ(a), α(q), δ(x)1δ(y),
α(p)) to R;

II if (a, q, xy, p) ∈ Π, where a ∈ ς, q ∈ Ω − Φ, x ∈ ς∗, y ∈
T ∗, p ∈ Ω(〈y, p〉 ∈ U), then add (δ(a), α(q), δ(x), 〈y, p〉) and
(1, 〈y, p〉, y, β(p)) to R;

III if (a, q, x, p) ∈ Π, where a ∈ ς, q ∈ Ω− Φ, x ∈ T ∗, and p ∈ Ω, then
add (δ(a), β(q), δ(x), β(p)) to R;

IV if (a, q, x, p) ∈ Π, where a ∈ ς, q ∈ Ω−Φ, x ∈ T ∗, and p ∈ Φ, then
add (δ(a), β(q), x, f) to R (recall that F = {f}).

Clearly, for every (a, b, x, c) ∈ R, a ∈ V − T, b ∈ W − F , and
x ∈ ((V − T )∗ ∪ T ∗). Leaving a rigorous proof that L(H) = L(Q) to
the reader, we next give its sketch.

To see that L(H) ⊆ L(Q), consider any v ∈ L(H). As v ∈ L(H),
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#σ ⇒∗ w#vt

in H,w ∈ ς∗, v ∈ T ∗, and t ∈ Φ. Express #σ ⇒∗ w#vt in H as

#σ ⇒∗ u#zq ⇒ ua#xyp ⇒∗ w#vt,

where a ∈ ς, u, x ∈ ς∗, y = prefix (v, |y|), z = ax,w = uax, and
during ua#xyp ⇒∗ w#vt, only terminals are generated so that the
resulting terminal string equals v. Q simulates #σ ⇒∗ u#zq ⇒
ua#xyp → ∗w#vt as follows. First, Q uses productions introduced
in I to simulate #σ ⇒∗ u#zq. During this initial simulation, it
once uses a production that generates 1 so that it can then simulate
u#zq ⇒ ua#xyp by making two derivation steps according to produc-
tions (∆(a), α(q),∆(x), 〈y, p〉) and (1, 〈y, p〉, y, β(p)) (see II). Notice
that by using (1, 〈y, p〉, y, β(p)), Q produces y, which is a prefix of v. Af-
ter the application of (1, 〈y, p〉, y, β(p)), Q simulates ua#xyp → ∗w#vt
by using productions introduced in III followed by one application of
a production constructed in IV, during which Q enters f and, thereby,
completes the generation of v. Thus, L(H) ⊆ L(Q).

To establish L(Q) ⊆ L(H), consider any v ∈ L(Q). Since v ∈ L(Q),

#s ⇒∗ w#vf

in Q, where w ∈ V ∗ and v ∈ T ∗. Examine I through IV. Observe that
Q passes through states of α(W ), U, β(W ), and {f} in this order so that
it occurs several times in states of α(W ), once in a state of U , several
times in β(W ), and once in f . As a result, Q uses productions intro-
duced in I, and during this initial part of derivation it precisely once
uses a production that generates 1 so that it can subsequently make
two consecutive derivation steps according to (δ(a), α(q), δ(x), 〈y, p〉)
and (1, 〈y, p〉, y, β(p)) (see II). By using the latter, Q produces y, which
is a prefix of v. After the application of (1, 〈y, p〉, y, β(p)), Q applies
productions introduced in III, which always use states of β(Ω). Finally,
it once applies a production constructed in IV to enter f and, thereby,
complete the generation of v. To summarize these observations, we can
express #s ⇒∗ w#vf in Q as
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#s ⇒∗ u#zq ⇒ ua#xyp ⇒∗ w#vf,

where a ∈ V, x ∈ V ∗, y ∈ T ∗, w = uax so that during #s ⇒∗ u#zq,
Q uses productions introduced in I, then it applies (1, 〈y, p〉, y, β(p))
from II to make u#zq ⇒ ua#xyp, and finally, it performs ua#xyp ⇒∗

w#vf by several applications of productions introduced in III and one
application of a production constructed in IV. At this point, based on
an examination of I through IV, we see that H makes

#iσ ⇒∗ u#zq ⇒ ua#xyp ⇒∗ w#vt

with t ∈ Φ, so v ∈ L(H). Therefore, L(H) ⊆ L(Q).

As L(H) ⊆ L(Q) and L(Q) ⊆ L(H), L(H) = L(Q).

Lemma 4.23. Let Q be a left-extended queue grammar. Then,
there exists a linear grammar, G = (N,T, P, S), such that L(Q) =
SymmetricMiddle(L(G)).

Proof. Let Q = (V, T,W,F, s,R) be a left-extended queue grammar.
Without any loss of generality, assume that Q satisfies the properties
described in Lemma 4.22 and that {0, 1, }∩(V ∪W ) = ∅. For some pos-
itive integer n, define an injection ι from VW to ({0, 1}n−1n) so that ι
is an injective homomorphism when its domain is extended to (VW )∗;
after this extension, ι thus represents an injective homomorphism from
(V W )∗ to ({0, 1}n−1n)∗ (a proof that such an injection necessarily ex-
ists is simple and left to the reader). Based on ι, define the substitution
ν from V to ({0, 1}n − 1n) as ν(a) = {ι(aq) : q ∈ W} for every a ∈ V .
Extend the domain of ν to V ∗. Furthermore, define the substitution
µ from W to ({0, 1}n − 1n) as µ(q) = {reversal(ι(aq)) : a ∈ V } for
every q ∈ W . Extend the domain of µ to W ∗. Set U = {〈p, i〉 : p ∈
W − F and i ∈ {1, 2}} ∪ {S}.

Construction. Introduce the linear grammar G = (U, T ∪{0, 1,#}, P,
S) with P constructed in the following way. Initially, set P = ∅. To
construct P , perform the following steps 1 through 5.
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1 if a0q0 = s, where a ∈ V − T and q ∈ W −F , then add S → u〈q, 1〉v
to P , for all u ∈ ν(a0) and v ∈ µ(q0);

2 if (a, q, y, p) ∈ R, where a ∈ V − T, p, q ∈ W − F , and y ∈ (V − T )∗,
then add 〈q, 1〉 → u〈p, 1〉v to P, for all u ∈ ν(y) and v ∈ µ(p);

3 for every q ∈ W − F , add 〈q, 1〉 → #〈q, 2〉 to P ;

4 if (a, q, y, p) ∈ R, where a ∈ V − T, p, q ∈ W − F, y ∈ T ∗, then add
〈q, 2〉 → y〈p, 2〉v to P , for all v ∈ µ(p);

5 if (a, q, y, p) ∈ R, where a ∈ V − T, q ∈ W − F, y ∈ T ∗, and p ∈ F ,
then add 〈q, 2〉 → y#.

Basic Idea. G can generate every y ∈ L(G) as S ⇒∗ u0#y#v0, where
u0 ∈ ν(a0am) with a0, . . . , am ∈ T, ui ∈ suffix (n(a0 . . . am), |ν(a0 . . . am)|
−i) for i = 1, . . . ,m − 1, v0 ∈ ν(qmq0) with q0, . . . , qm ∈ Q, vj ∈
prefix (µ(qm . . . q0), |µ(qm . . . q0))| − j) for j = 1, . . . ,m − 1, u0 =
reversal(v0). Examine the construction of P to see that S ⇒∗

u0#y#v0 in G if and only if Q makes a0q0 ⇒
∗ a0 . . . amyf according to

(a0, q0, z0, q1) through (am, qm, zm, qm+1), where qm+1 ∈ F . From this
equivalence, L(Q) = SymmetricMiddle(L(G)).

Formal Proof. For brevity, the following rigorous proof omits some
obvious details, which the reader can easily fill in. Claim 4.24, proved
next, establishes a derivation form by which G can generate each mem-
ber of L(G). This claim fulfills a crucial role in the demonstration that
SymmetricMiddle(L(G)) ⊆ L(Q), given later in this proof (see Claim
4.26).
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Claim 4.24. G can generate every h ∈ L(G) in this way

S

⇒X〈q0, 1〉t0 ⇒ g0〈q1, 1〉t1 ⇒ · · · ⇒ gk−1〈qk, 1〉tk

⇒gk〈qk+1, 1〉tk+1 ⇒ gk#〈qk+1, 2〉tk+1

⇒gk#y1〈qk+2, 2〉tk+2 ⇒ gk#y1y2〈qk+3, 2〉tk+3 ⇒ . . .

⇒∗gk#y1y2 . . . ym−1〈qk+m, 2〉tk+m

⇒gk#y1y2 . . . ym−1ym#tk+m

in G, where k,m ≥ 1; q0, q1, . . . , qk+mW − F ; y1, . . . , ym ∈ T ∗;X ∈
ν(a0), where a0 ∈ (V − T ) and s = a0q0; ti ∈ µ(qi . . . q1q0) for i =
0, 1, . . . , k+m; gj ∈ ν(d0d1 . . . dj) with d0 = a0 and d1, . . . , dj ∈ (V −T )∗

for j = 0, 1, . . . , k ; d0d1 . . . dk = a0a1 . . . ak+m with a1, . . . , ak+m ∈
V − T (that is, gk ∈ ν(a0a1 . . . ak+m) ); gk = reversal(tk+m); h =
y1y2 . . . ym−1ym.

Proof of Claim 4.24. Examine the construction of P . Observe that
every derivation begins with an application of a production having S
on its left-hand side. Set 1-U = {〈p, 1〉 : p ∈ W}, 2-U = {〈p, 2〉 :
p ∈ W}, 1-P = {p : p ∈ P and lhs(p) ∈ 1-U}, and 2-P = {p :
p ∈ P and lhs(p) ∈ 2-U}. Observe that in every successful derivation,
all applications of productions from 1-P precede the applications of
productions from 2-P . Furthermore, notice that

F (G) − {S} ⊆{#, ε}{0, 1}∗(1-U ){0, 1}∗{#, ε}

∪{#, ε}{0, 1}∗T ∗(2-U ){0, 1}∗{#, ε}.

Thus, we can always express the derivation so that the generation of
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h ∈ L(G) can be expressed as

S

⇒X〈q0, 1〉t0 ⇒ g0〈q1, 1〉t1 ⇒ · · · ⇒ gk−1〈qk, 1〉tk

⇒gk〈qk+1, 1〉tk+1 ⇒ gk#〈qk+1, 2〉tk+1

⇒gk#y1〈qk+2, 2〉tk+2 ⇒ gk#y1y2〈qk+3, 2〉tk+3

⇒· · · ⇒ gk#y1y2 . . . ym−1〈qk+m, 2〉tk+m

⇒gk#y1y2ym−1ym#tk+m,

where all the involved symbols have the meaning described in Claim
4.24. During the first |gk| steps, every sentential form has the form
γ#y1y2ym−1ym$m#τ with γ, τ ∈ {0, 1}∗, 0 ≤ |γ| = |τ | ≥ |gk|, and
γ = reversal(τ). Thus, gk = reversal(tk+m); h = y1y2ym−1ym. As a
result, Claim 4.24 holds.

Claim 4.25. Q generates every h ∈ L(Q) in this way

#a0q0

⇒a0#x0q1 [(a0, q0, z0, q1)]

⇒a0a1#x1q2 [(a1, q1, z1, q2)]

. . .

⇒a0a1 . . . ak#xkqk+1 [(ak, qk, zk, qk+1)]

⇒a0a1 . . . akak+1#xk+1y1qk+2 [(ak+1, qk+1, y1, qk+2)]

. . .

⇒a0a1 . . . akak+1 . . . ak+m−1#xk+m−1y1 . . . ym−1qk+m [(ak+m−1, qk+m−1, ym−1, qk+m)]

⇒a0a1 . . . akak+1 . . . ak+m#y1 . . . ymqk+m+1 [(ak+m, qk+m, ym, qk+m+1)],

where k,m ≥ 1; ai ∈ V − T for i = 0, . . . , k +m;xj ∈ (V − T )∗ for j =
1, . . . , k +m; s = a0q0; ajxj = xj−1zj for j = 1, . . . , k; a1 . . . akxk+1 =
z0 . . . zk; ak+1 . . . ak+m = xk; q0, q1, . . . , qk+m ∈ W − F ; qk+m+1 ∈
F, z1, . . . , zk ∈ (V − T )∗; y1, . . . , ym ∈ T ∗; h = y1y2 . . . ym−1ym.

Proof of claim 4.25. Recall that Q satisfies the properties given in
Lemma 4.22. These properties imply that Claim 4.25 holds.
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Claim 4.26. Let G generate h ∈ L(G) in the way described in Claim
4.24; then, h ∈ L(Q).

Proof of Claim 4.26. Let h ∈ L(G). Take the generation of h as de-
scribed in Claim 4.24. Taking this into consideration, examine the con-
struction of P to see that, R contains (a0, q0, z0, q1), . . . , (ak, qk, zk, qk+1),
(ak+1, qk+1, y1, qk+2),. . . , (ak+m−1, qk+m−1, ym−1, qk+m),
(ak+m, qk+m, ym, qk+m+1), where z1, . . . , zk ∈ (V − T )∗, and y1, . . . ,
ym ∈ T ∗. Then, Q makes the generation of h in the way described in
Claim 4.25. Thus, h ∈ L(Q).

Claim 4.27. Let Q generates h ∈ L(Q) in the way described in Claim
4.25; then, h ∈ L(G).

Proof of Claim 4.27. This is left to the reader.

Claims 4.24 through 4.27 imply that L(Q) = L(G), so this lemma
holds.

Theorem 4.28. RE = SymmetricMiddle(LIN), so SymmetricMiddle
properly expands LIN onto RE.

Proof. From Lemmas 4.21,4.22, and 4.23,
RE ⊆ SymmetricMiddle(LIN). From Church’s thesis,
SymmetricMiddle(LIN) ⊆ RE. Thus, Theorem 4.28 holds.

Let L ∈ ALL with card(alph(L)) ≥ 2. For all L ∈ ALL and F ⊆
ALL, define BinarySymmetricMiddle(L) = {w | x#w#y ∈ L,# 6∈
alph(w), x, w, y ∈ (alph(L)−{#})∗, x = reversal(y), card(alph({x, y}))
= 2}. For all F ⊆ ALL, define BinarySymmetricMiddle(F) =
{BinarySymmetricMiddle(L) | L ∈ F}.

Corollary 4.29. RE = BinarySymmetricMiddle(LIN), so
BinarySymmetricMiddle expands LIN onto RE.

Proof. This corollary follows from the demonstration of Theorem 4.28.
The details are left to the reader.
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5 Concluding Remarks

This section closes the study by suggesting and illustrating five new
investigation trends concerning the subject of this paper.

1 We can simplify some proofs above if we restrict our attention
only to special cases of the results that are demonstrated. To illustrate,
reconsider Theorem 4.20 and its proof. Next, we rephrase the result
just for LIN and prove it in a simpler way than the proof of Theorem
4.20. Indeed, observe that in the following proof, the construction of
H is shorter. The resulting H is also more succinct and economical
with respect to the number of nonterminals.

Theorem 5.1. Middle(LIN) = LIN, so Middle unchanges LIN.

Proof. Let j ∈ N. To prove Middle(LIN) ⊆ LIN, take any L ∈
Middle(LIN). That is, L = Middle(L(G)), where G = (N,T, P, S)
is a linear grammar. Next, we construct a linear grammar H so
Middle(L(G)) = L(H). Set H = (M,T,R, 〈S〉), whose components
are constructed as follows. Set

M = {〈aAb〉 : A ∈ N, a, b ∈ {#, ε}}

Initially, set R = ∅. Construct R by performing (1) through (5),
given next, where u, v, w, x, y, z ∈ T ∗, and A,B ∈ N .

1. for all A → uBv ∈ P , add 〈A〉 → 〈B〉, 〈#A#〉 → u〈#B#〉v,
〈A#〉 → 〈B#〉v, 〈#A〉 → u〈#B〉, 〈##A〉 → 〈##B〉, and
〈A##〉 → 〈B##〉 to R;

2. for all A → uBv#y ∈ P , add 〈A〉 → 〈B#〉v, 〈#A〉 → u〈#B#〉v,
and 〈A#〉 → 〈B##〉y to R;

3. for all A → u#vBy ∈ P , add 〈A〉 → v〈#B〉, 〈A#〉 → v〈#B#〉y,
and 〈#A〉 → 〈##B〉u to R;

4. for all A → u#vBx#y ∈ P , add 〈A〉 → v〈#B#〉x to R;

5. for all A → uBv#x#y ∈ P , add 〈A〉 → 〈B##〉x to R;
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6. for all A → u#v#xBy ∈ P , add 〈A〉 → v〈##B〉x to R;

7. for all A → w ∈ P , add 〈#A#〉 → w, 〈##A〉 → ǫ, and 〈##A〉 →
ǫ to R.

Basic Idea. Suppose that G makes

S ⇒∗u1A1u2

⇒u1u2#u3A2u4u2

⇒∗u1u2#u3u4A3u5u4u2

⇒u1u2#u3u4u6A4u7#u8u5u4u2

⇒∗u1u2#u3u4u6u9A5u10u7#u8u5u4u2

⇒u1u2#u3u4u6u9u11u10u7#u8u5u4u2,

where As and us are nonterminals and terminal strings, respectively.
As a result, u3u4u6u9u11u10u7 ∈ Middle(LIN). Then, H simulates
the generation of u3u4u6u9u11u10u7 in this way

〈S〉 ⇒∗〈A1〉

⇒u3〈#A2〉

⇒∗u3u4〈#A3〉

⇒u3u4u6〈#A4#〉u7

⇒∗u3u4u6u9〈#A4#〉u10u7

⇒u3u4u6u9u11u10u7.

Consider all the other possible generations of x#w#y ∈ L(G) such
that w ∈ Middle(L(G)). H simulates these generations by analogy with
the simulation sketched above, so Middle(L(G)) ⊆ L(H). Similarly, we
can establish L(H) ⊆ Middle(L(G)). Thus, Middle(L(G)) = L(H). A
fully rigorous proof of this identity is simple, but lengthy and tedious,
so we omit it because the reader can easily fill in all the details.

Thus, Middle(LIN) = LIN.
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2Most classical books about formal languages contain many results
concerning closure properties. Reconsider and reformulate them in
terms of the notions introduced in the present paper. For instance, for
all F ∈ power (ALL), define operation

Iteration(F) = {L∗ | L ∈ F}.

Take Iteration(REG). Clearly, {ε}∗ = ∅∗ = {ε}. For any L ∈
REG − {∅, {ε}}, L∗ ∈ infREG, where infREG denotes the family of
infinite regular languages. As obvious, infREG−Iteration(REG) 6= ∅;
in words, there exist (infinitely many) regular languages K satisfying
K 6= L∗, for all L ∈ REG. For instance, K = {a} ∪ {b}∗ is a regular
language that does not represent the iteration of any regular language.
Thus, in terms of Definition 3.1, Iteration properly reduces REG into

infREG ∪ {ε}.
3 In this paper, we restricted our attention to unary and binary

language operations, and we only considered unary language-family
operations. Drop this restriction. Study n-ary language operation as
well as n-ary language-family operation in general, for any n ≥ 1. To
illustrate, define binary language-family operation Intersection from
(power (ALL))2 into power (ALL) so for all E,F ∈ power(ALL),

Intersection(E,F) = {K ∩ L | K ∈ E, L ∈ F}.

Set UNARY = {L | L ∈ ALL, card(alph(L))} = 1}. Recall
that UNARY ∩CF ⊆ REG (see Theorem 6.3.1 on page 194 in [8]).
Thus, Intersection(UNARY, CF) = Intersection(UNARY,REG),
so Intersection(UNARY,CF) ⊆ REG and Intersection(UNARY,
CF − REG) = ∅. Of course, further investigation in this direction
would necessitate a proper generalization of Definition 3.1, restricted
to unary language-family operations in this paper.

4 Apart from operations over language families, we can study op-
erations over other mathematical notions, including notions used in
formal language theory. To illustrate a study of this kind by an exam-
ple closely related to the subject of the present paper, consider families
of grammars. Let GRAMMARS denote the family of all grammars,
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and let nGRAMMARS denote the family of all n-nonterminal gram-
mars, where n ∈ N (see Section 2). Is there a total function f from
GRAMMARS into nGRAMMARS so L(f(G)) = L(G) for every
G ∈ GRAMMARS? If so, what is the smallest n ∈ N for which such
a function exists? Reconsider the proofs of Theorems 4.7 and 4.8 to
see that we can always find such a function f from GRAMMARS

into nGRAMMARS, where n = 2 is the smallest number. That is,
for n = 1, no function like this exists.

5 Apart from a theoretical viewpoint, results concerning operations
over language families are important from a practical standpoint, too.
For instance, take multilingual translators that contain parsers, whose
techniques are restricted to a language family F. If prior to pars-
ing, the translators modify some languages in F so they are expelled
from this family, these techniques cannot parse them; consequently,
any possible expulsion like this has to be ruled out. On the other
hand, assume F ⊂ E. If the translators can reduce E into F so this
reduction makes the parsing techniques applicable, then the reduction
is obviously highly desirable in practice. To illustrate this practical
standpoint even more specifically in terms of multi-natural-language
translation, take F as the languages offically used in the EU states,
and consider E as the same family extended by other languages used
in these states together with their major dialects. For instance, apart
from French as the official language, many French people speak other
languages, such as a broad variety of Gallo-Romance languages, includ-
ing several Oı̈l and Occitan languages. As obvious, from this viewpoint,
the reduction sketched above together with its application-related ad-
vantages have its practical importance.

Acknowledgements

This work was supported by The Ministry of Education, Youth and
Sports of the Czech Republic from the National Programme of Sus-
tainability (NPU II); project IT4Innovations excellence in science -
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