
Optimizing Convolutional Neural
Networks for Embedded Systems by

Means of Neuroevolution

Filip Badan and Lukas Sekanina(B)

Faculty of Information Technology IT4Innovations Centre of Excellence,
Brno University of Technology, Božetěchova 2, 612 66 Brno, Czech Republic

badan.filip@gmail.com, sekanina@fit.vutbr.cz

Abstract. Automated design methods for convolutional neural net-
works (CNNs) have recently been developed in order to increase the
design productivity. We propose a neuroevolution method capable of
evolving and optimizing CNNs with respect to the classification error and
CNN complexity (expressed as the number of tunable CNN parameters),
in which the inference phase can partly be executed using fixed point
operations to further reduce power consumption. Experimental results
are obtained with TinyDNN framework and presented using two com-
mon image classification benchmark problems – MNIST and CIFAR-10.

Keywords: Evolutionary Algorithm · Convolutional neural network ·
Neuroevolution · Embedded Systems · Energy Efficiency

1 Introduction

Deep neural networks (DNNs) currently show an outstanding performance in
challenging problems of image, speech and natural language processing as well as
in many other applications of machine learning. The design of high-quality DNNs
is a hard task even for experienced designers because the state of the art DNNs
have large and complex structures with millions of tunable parameters [4,11].
Automated DNN design approaches, often referred to as the Neural Architecture
Search (NAS), that have recently been developed, provide networks comparable
with DNNs created by human designers.

This paper deals with automated design and optimization of convolutional
neural networks (CNN), a subclass of DNNs primarily utilized for image clas-
sification. Our objective is to design and optimize not only with respect to the
classification error, but also with respect to hardware resources needed when
the final (trained) CNN is implemented in an embedded system with limited
resources. As energy-efficient machine learning is a highly desired technology,
various approximate implementations of CNNs have been introduced [2,7]. Con-
trasted to the existing neuroevolutionary approaches trying to minimize the clas-
sification error as much as possible and assuming that CNN is executed using

c© Springer Nature Switzerland AG 2019
C. Mart́ın-Vide et al. (Eds.): TPNC 2019, LNCS 11934, pp. 109–121, 2019.
https://doi.org/10.1007/978-3-030-34500-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34500-6_7&domain=pdf
http://orcid.org/0000-0002-2693-9011
https://doi.org/10.1007/978-3-030-34500-6_7


110 F. Badan and L. Sekanina

floating point (FP) operations on a Graphical Processing Unit (GPU) [1,3], our
target is a highly optimized CNN whose major parts are executed with reduced
precision in fixed point (FX) arithmetic operations.

We propose EA4CNN (Evolutionary Algorithms for Convolutional Neural
Networks) – a neuroevolution platform capable of evolving and optimizing CNNs
with respect to the classification error and model complexity (expressed as the
number of tunable CNN parameters), in which the inference phase can partly
be executed using FX operations. One of our goals is to demonstrate that the
proposed method is capable of reducing the number of parameters of an already
trained CNN and, at the same time, providing good tradeoffs between the clas-
sification error and CNN complexity. Experimental results are obtained with
TinyDNN framewrok [6] and presented using two common benchmark problems
– the classification of MNIST and CIFAR-10 data sets.

2 Related Work

Image classification conducted by CNNs is the state of the approach in the image
processing domain. CNNs usually contain from four to tens layers of different
types [11]. Convolutional layers are capable of extracting useful features from
the input data. In these layers, each neuron is connected to a subset of inputs
with the same spatial dimensions as the tunable kernels. The convolution is
computed as y = b +

∑
i

∑
j

∑
k(xi,j,k · wi,j,k), where x is the input subset, w

is the convolution kernel and b is a scalar bias. Pooling layers combine, e.g. by
means of averaging, a set of input values into a small number of output values
to reduce the network complexity. Fully connected (FC) layers are composed
of artificial neurons; each of them sums weighted input signals (coming from
a previous layer) and produces a single output. Convolutional layers and fully
connected layers are typically followed by non-linear activation functions such as
tanh(·) or rectified linear units (ReLU). The structure of the network is defined
by hyperparameters (e.g., the number of layers, filters etc.) and this structure
also determines the number of tunable parameters (weights and neuron biases).
Modern CNNs also utilize normalization layers, residual connections, dropout
layers etc. (see [4,11]).

In the training phase, the objective is to optimize the CNN parameters in
order to minimize a given error metric. The training is a time-consuming iter-
ative procedure which is typically implemented with the standard FP number
representation. A trained CNN is then used, for example, for classification, in
which an input image (a set of pixels) is classified to one of several classes. This
(feed-forward) procedure is called inference and only this procedure is typically
implemented in low power hardware CNN accelerators [11].

In order to automatically design the architecture (hyperparameters) and the
parameters of CNNs, machine learning as well as evolutionary approaches have
been proposed. Evolutionary design of neural networks (the so-called neuroevolu-
tion) that was introduced three decades ago [9], is now being extended for CNN
design [5]. As both CNN training and evolutionary optimization are very com-
putationally expensive methods, the key problem of the current neuroevolution



Optimizing Convolutional Neural Networks 111

research is to reduce computational requirements and provide competitive CNNs
with respect to the human-created CNNs. Most papers are focused on single-
objective automated design methods, where the main goal is to minimize the
classification error of CNN running on a GPU [5,8,10]. Recent works have been
focused on multi-objective approaches in which the error is optimized together
with the computation requirements [1,3], but again, for GPU-based platforms.
Evolved CNNs are now competitive with human-created CNNs for some chal-
lenging data sets; for example, some evolved CNNs achieve a 95% accuracy on
CIFAR-10 data set. Note that a CNN with more than 1 million parameters is
required in order to reach this accuracy and its training can take days on a GPU
cluster [8].

Another research direction is focused on energy efficient (hardware) imple-
mentations of CNNs – with the aim of deploying advanced machine learning
methods to low power systems such as mobile devices and IoT nodes. The
most popular approach is to introduce approximate computing techniques to
CNNs and benefit from the fact that the applications utilizing CNNs are highly
error resilient (i.e., a huge reduction in energy consumption can be obtained for
an acceptable loss in accuracy) [7]. Approximate implementations of CNNs are
based on various techniques such as innovative hardware architectures of CNN
accelerators, simplified data representation, pruning of less significant neurons,
approximate arithmetic operations, approximate memory access, weight com-
pression and “in memory” computing [2,7,11]. For example, employing the FX
operations has many advantages such as reduced (i) power consumption per
arithmetic operation, (ii) memory capacity needed to store the weights and (iii)
processor-memory data transfer time.

To best of our knowledge, there has been no research on fully automated
design of approximate CNNs by means of neuroevolution. As this is a very com-
putationally expensive approach, we will focus this initial study on automated
approximation of middle-size CNNs. Our method is based on simplifying the
CNN architecture and reducing the precision of arithmetic operations.

3 CNN Design and Optimization with Neuroevolution

The proposed EA4CNN framework exploits an evolutionary algorithm (EA) and
TinyDNN library for the design and optimization of CNN-based image classifiers.
TinyDNN was chosen because it can easily be modified with respect to the
requirements of EA. TinyDNN can, however, be replaced by another suitable
CNN library because EA4CNN provides a general interface between EA and
CNN implementations. EA4CNN is able to optimize and approximate an existing
CNN, but it can also evolve a new CNN from scratch. CNN parameters as well
as hyperparameters are optimized together.

3.1 Evolutionary Algorithm

Algorithm 1 presents the EA developed for the design and optimization of CNNs.
The EA is initialized with existing or randomly generated CNNs (line 1 in



112 F. Badan and L. Sekanina

Algorithm 1) and runs for Gmax generations (line 3). It employs a two-member
tournament selection (line 6) to determine the parents that later undergo
crossover (line 7; with probability pc; see Sect. 3.3 for details) and mutation
(line 8; with probability pm, see Sect. 3.3). All offspring are continuously stored
to the Q set (line 9) and undergo a training process implemented in TinyDNN
(line 11).

Every new population is composed of the individuals selected from the sets
of parents (P ) and offspring (Q). The replacement algorithm (line 14) uses a
simple speciation mechanism based on the CNN age (Sect. 3.3). To prevent the
overfitting, the data set is divided into three parts – training set Dtrain, test
set Dtest and validation set Dval. During the evolution, candidate individuals
are trained using Dtrain (line 11), but their fitness score is determined using
Deval (lines 2 and 13). At the end of the evolution process, the best solution is
evaluated on the validation set Dval and this result is reported.

Algorithm 1. Neuroevolution
1: P = Create Initial Population; // randomly or using existing CNN
2: Evaluate(P,Dtest) using TinyDNN; i = 0;
3: while (i < Gmax) do
4: Q = ∅; // a set of offspring
5: while (|P | �= |Q|) do
6: (a, b) = Tournament Selection (P );
7: (a′, b′) = Crossover(a, b, pcross);
8: a′′ = Mutation(a′, pmut); b

′′ = Mutation(b′, pmut);
9: Q = Q ∪ {a′′} ∪ {b′′};

10: end while
11: Run TinyDNN’s Training Algorithm for all NNs in Q with Dtrain;
12: Update the Age counter for all NNs.
13: Evaluate(Q,Dtest) using TinyDNN;
14: P = Replacement With Speciation (P,Q);
15: i = i + 1;
16: end while

3.2 CNN Encoding

A candidate CNN is represented in the chromosome as a variable-length list
of layers with a header containing the chromosome identifier, the age and the
learning rate. Two types of layers can occur in the chromosome: (1) Convolu-
tional layer with hyperparameters: kernel size, number of filters, stride size and
padding. (2) Pooling layer with hyperparameters: stride size, subsampling type
and subsampling size.

Each convolutional layer is (obligatorily) followed by a batch normalization
and ReLU activation. The last (obligatory) layers of each CNN are a convolu-
tional flattening layer and a fully connected layer, followed by a softmax activa-
tion to obtain a classifier. These layers are not represented in the chromosome
as shown in the example of genotype-phenotype mapping in Fig. 1.



Optimizing Convolutional Neural Networks 113

Fig. 1. Example of the genotype-phenotype mapping, where some parts of CNN (such
as the flattening, fully connected and softmax layers) are not directly represented in
the genotype.

3.3 Genetic Operators

The mutation operator is applied with the probability pm per individual. One
of the following mutation options (MO) is chosen with a predefined probability:

1. MO1: Weight reset – all weights of a given layer are randomly generated.
2. MO2: Add a new layer – a randomly generated layer (with randomly gener-

ated hyperparameters) is inserted on a randomly chosen position in CNN.
3. MO3: Remove layer – one layer is removed from a randomly chosen position.
4. MO4: Modify layer – some parameters of a randomly selected layer are ran-

domly modified.
5. MO5: Modify hyperparameters of the fully connected layer – the number of

connections in the last fully connected layer is increased or decreased.
6. MO6: Modify the learning rate (randomly).

We use a simple one-point crossover operator on each pair of parents obtained
with the tournament selection. If a CNN layer is modified by a genetic opera-
tor, EA4CNN automatically ensures its correct connection to the previous/next
layer. For example, superfluous weights are cut off or missing weights are added
and randomly initialized.

3.4 Training and Evaluation of Candidate CNNs

As some candidate CNNs exist for many generations while others exist only for
a short time, these long-lived CNNs have more opportunities for a good training
(line 11 in Algorithm 1). It turns out that candidate CNNs do not have, in
principle, the same chance during the selection and replacement process. Hence,
inspired in [9], we introduced a speciation mechanism based on the network age.
A species is defined by all individuals having the same age. The age is increased
with every new training process a given candidate CNN undergoes. We define



114 F. Badan and L. Sekanina

agemax as the maximum age a candidate network can obtain even if it undergoes
more than agemax training exercises. The reason for introducing this limit is to
increase the selection pressure for networks that were trained many times. A
typical setup of agemax is ∼ |P |/2. On the other hand, the network age is reset
to the initial value if a given CNN is changed and its fitness is decreased as
a consequence of crossover or mutation, e.g., after inserting or removing some
layer(s) or changing parameters of the layer. The replacement is independently
performed for all selected age levels; for example, if there are 5 age levels and
the population size is 15 then 3 best-performing candidate CNNs are selected for
each age level and copied to the new population. This algorithm is implemented
by ‘Replacement With Speciation’ on line 14 in Algorithm 1.

For the new candidate individuals that are created by mutation or crossover,
the principles of weight inheritance are applied [8]. All the weights that can be
reused in the offspring are copied from the parent(s) to the offspring. If needed,
superfluous weights are cut off or missing weights are added and randomly ini-
tialized. Before each training phase is executed, Dtrain is randomly shuffled [4].

3.5 Fitness Function

The fitness function is based on the CNN accuracy (a is the number correctly
classified inputs divided by all inputs from the test set Dtest) and the CNN rela-
tive size (srel is the number of parameters divided by the number of parameters
of the best CNN of the initial population):

f =

{
a ∗ (k ∗ 1

log(srel+1) + 1) if a ≥ amin

0 otherwise,
(1)

where k is a coefficient reflecting the impact of CNN size on the final fitness
score and amin is the minimal acceptable accuracy. It is important to introduce
amin as less complex CNNs providing unacceptable (low) classification accuracy
would dominate the entire population.

3.6 Data Type and CNN Size Optimization

Almost all major CNN design frameworks operate over (32 bit) FP numbers and
their computation is optimized for arithmetic FP operations and accelerated
using GPUs. In order to enable FX operations (in particular, FX multiplica-
tions conducted during the inference phase in convolutional and fully connected
layers), we modified relevant parts of TinyDNN source code. When a multipli-
cation has to be executed in these layers, the FP operands are converted to a
given FX number format, the multiplication is performed in FX and the prod-
uct is converted back to FP. While this process emulates the error introduced
by FX representation in a low cost hardware, all the remaining CNN steps can
be implemented with the (highly optimized) FP operations. Unfortunately, this
implementation slows down the CNN simulations approx. 8 times in our case.



Optimizing Convolutional Neural Networks 115

When a CNN which should (partly) operate in the FX representation is
evolved, we apply the aforementioned procedure in the fitness function (line 13
in Algorithm 1); however, the training is completely conducted in FP.

In our study, a (signed) FX number is implemented using 16 bits, in which
8 bits are fractional. If a 32 bit FP multiplication is replaced with a 16 bit FX
multiplication, energy consumption of this operation is reduced approx. c1 = 2.4
times (for 65 nm technology [2]). Let Emult denote the energy consumed by
all multiplications performed during one inference phase carried out in a CNN
embedded accelerator (Emult is approx. 20 % – 40 % of the total energy required
by the accelerator [11]). If the number of parameters of CNN is reduced from
parorig to parred by EA4CNN and 16 bit FX instead of 32 bit FP multipliers
are employed, Emult is reduced approx. c1 × parorig/parred times because each
parameter is associated with at least one multiplication in CNN.

4 Experimental Setup

EA4CNN is implemented in C++. We utilized the parallel training of CNNs
supported in TinyDNN (by means of OpenMP and SSE instructions). Experi-
ments were executed on a computer node containing two Intel Xeon E5-2680v3
processors @ 2.5 GHz, 128 GB RAM and 24 threads. As the entire neuroevo-
lution process is very time consuming (an average run in which 750 candidate
CNNs are evaluated takes almost 72 h for CIFAR-10), we typically generated
only 50 populations of 15 individuals and performed only five independent runs
for a particular setup. Hence, most EA parameters and CNN (hyper)parameters
were set up on the basis of preliminary results from several test runs.

EA4CNN was evaluated using MNIST (10 digit classes) and CIFAR-10 (10
image classes) classification problems. MNIST consists of 28×28 pixel grayscale
images of handwritten digits and includes 60 000 training images and 10 000 test
images. In CIFAR-10, the numbers of training and test images are 50 000 and
10 000, respectively, and the size of images is 32 × 32 pixels. For our purposes,
these data sets were divided into three parts in such a way that there are 75 %
vectors in Dtrain, 10 % vectors in Dtest and and 15 % in Dval.

The basic setup of EA parameters is as follows: Gmax = 20−50, |P | = 8−15,
pcross = 0.35, pmut = 0.7, agemax = |P |/2, k = 0.5, amin = 0.80 for MNIST
and 0.60 for CIFAR-10. Mutation operators MO1 – MO6 are used with the
probabilities 0.41, 0.07, 0.03, 0.29, 0.10, and 0.10, respectively.

Table 1 summarizes the initial CNN hyperparameters for both data sets.
Randomly generated networks of the initial populations contain from 1 to 8
layers in which all weights are randomly initialized to the close to zero values.
TinyDNN utilizes the stochastic gradient descent learning method.

5 Results

5.1 Basic Evaluation Of EA4CNN

In the first experiment, we compared the randomly-initialized EA with a ran-
dom search of CNNs (RS-CNN). EA used the setup presented in Sect. 4, but



116 F. Badan and L. Sekanina

Table 1. The initial setting of CNN hyperparameters in EA4CNN. The hyperparam-
eters given in the first part of the table can be modified during the evolution.

Parameter/Data set MNIST CIFAR-10

Learning rate 0.1 0.1

Initial number of neurons in FC layers 50 70

Max. filters in a newly added layer 12 20

Max. pooling layer size 4 4

Batch size 32 32

Epochs for training 1 1

Gmax = 20, |P | = 8 for MNIST and |P | = 12 for CIFAR-10. RS-CNN starts
with |P | randomly generated CNNs and performs their training for Gmax epochs
to ensure the same number of training exercises as in EA in which only one epoch
of training is conducted for each candidate CNN in each generation. The average
accuracy out of 5 independent runs of both algorithms is given in Fig. 2. Because
MNIST classification is currently considered as a simple problem for NNs (the
best reported accuracy is 99.79% [11]), even randomly generated CNN architec-
tures provide (after their training) almost perfect classification accuracy. The
average number of parameters of resulting CNNs is 200k for RS-CNN, but only
58k for EA which indicates that EA can optimize not only accuracy but also the
CNN complexity (resulting CNNs have only 1–2 convolutional layers). While EA
is only slightly better than RS-CNN for MNIST, the difference in the average
accuracy on CIFAR-10 is relatively high (5.7% for 5 runs) which indicates that
EA can also effectively increase the CNN size to improve the accuracy.

Fig. 2. The average accuracy obtained from five EA and five RS-CNN runs for MNIST
(left) and CIFAR-10 (right) data sets.

In the second experiment, we investigated the impact of genetic operators
on the progress of evolution of CNNs. Let EA1 denote Algorithm 1 in which
neither crossover nor mutation are used. EA1, in fact, does not introduce any



Optimizing Convolutional Neural Networks 117

new CNN structures, but optimizes how CNNs (randomly generated in the initial
population) are selected for training by means of TinyDNN. Note that Dtrain is
randomly shuffled before each training. Higher-scored CNNs can thus undergo
more training exercises and improve their fitness score. Let EA2 and EA3 denote
EA1 with mutation (pmut = 0.80; no crossover) and EA1 with mutation (pmut =
0.50) and crossover (pcross = 0.35). The other parameters remained as given in
Sect. 4. The average classification accuracy out of 5 independent runs of EA1,
EA2 and EA3 is given in Fig. 3 (left). Because of limited space only results on
CIFAR-10 are reported. One can observe that performance of EA1 is roughly
similar with RS-CNN. Incorporating the mutation operator (EA2) and crossover
(EA3) leads to a higher classification accuracy of resulting CNNs.

Finally, Fig. 3 (right) illustrates the impact of employing the speciation mech-
anism on the accuracy during the CNN evolution. If the speciation “is not used”
vs. “is used”, the classification accuracy of resulting five CNNs is between 59.93%
– 72.96% vs. 62.02% – 73.05%; the average accuracy is 66.93% vs. 68.46%; the
average depth of the network is 3.6 vs. 4.6 layers and the average number of
parameters is 114k vs. 173k. We can conclude that the EA benefits from the
proposed speciation mechanism.

Fig. 3. Left: The average classification accuracy if EA uses selection only (EA1); selec-
tion and mutation (EA2); selection, mutation and crossover (EA3). Right: The average
accuracy for EA3 with and without speciation (on CIFAR-10).

5.2 Evolution of Approximate CNNs

The experiments reported in this section have started with a baseline CNN
shown in Fig. 4 (top) which contains 360,264 parameters, operates in FP and
provides 75.8% accuracy on CIFAR-10 (trained with TinyDNN). We decided to
approximate this middle-size CNN as less complex CNNs are our target and our
computational resources are limited.

Figure 5 shows the fitness score, classification accuracy and complexity of
CNNs obtained from a single run of the proposed EA which was seeded with
the baseline CNN. The EA parameters are set according to Sect. 4, but k = 1 to



118 F. Badan and L. Sekanina

Fig. 4. Hyperparameters and architecture of the baseline CNN (top) and one of the
CNNs optimized with EA4CNN (bottom) for CIFAR-10 data set.

find good tradeoffs between the accuracy and the number of CNN parameters;
Gmax = 50, and |P | = 15. Note that the accuracy shown in the plot is the test
accuracy on Dtest. The resulting CNN is presented in Fig. 4 (bottom).

Fig. 5. An example run of the evolutionary CNN approximation process on CIFAR-10
data set.

Table 2 summarizes the best tradeoffs obtained from multiple EA runs.
CNN*-FP and CNN*-FX denote CNNs performing the multiplication opera-
tions in FP and FX representation, respectively. Because of limited computing
resources, we could only execute 20 generations to evolve CNNs utilizing the
FX representation, which negatively influenced the quality of CNN*-FX net-
works. For example, a similar classification accuracy (∼ 67.5%) was obtained by
CNN2-FP and CNN1-FX, but CNN1-FX needs 2.9× more parameters and hence



Optimizing Convolutional Neural Networks 119

it is less energy efficient despite the usage of FX multiplications. Reduction in
the energy (Emult) needed for multiplication (calculated according to Sect. 3.6,
c1 = 2.4) is clearly traded off for the loss in accuracy. EA4CNN allowed us
to obtain this reduction by simplifying the CNN structure (fewer parameters)
or/and employing FX operations. A more significant contribution of the FX
representation is expected if EA4CNN could prolong the optimization and thus
further reduce the number of parameters in CNN*-FX networks.

Table 2 also presents some CNNs that are available in the NAS literature.
CNNs achieving a 90% and higher classification accuracy on CIFAR-10 contain
more than one million parameters [8] and their design takes days on a GPU,
which is unreachable with our setup. The impact of employing the FX represen-
tation was reported for a human-created CNN (based on AlexNET [4]) which
exhibits 81.22 %, 79.77 % and 77.99 % accuracy in FP, 16 bit FX and 8 bit FX,
respectively. The 16 bit and 8 bit FX implementations reduce the energy require-
ments approx. 2.5 and 6.8 times, respectively. Contrasted to our approach, these
FX designs only implemented the original FP implementation with reduced pre-
cision in FX, i.e. without optimizing the CNN architecture.

Table 2. Examples of CNNs and their parameters obtained from the evolutionary
approximation conducted with EA4CNN and from literature (for CIFAR-10).

CNN Parameters Accuracy Layers Emult reduction

Evolved with EA4CNN

Baseline CNN (FP) 360,264 75.80 % 7 1.0

CNN1-FP 8 480 64.33 % 9 42.9×
CNN2-FP 12 784 67.50 % 7 28.1×
CNN3-FP 15 728 68.92 % 8 22.9×
CNN4-FP 23 120 70.97 % 9 15.6×
CNN5-FP 0.17 M 72.96 % 6 2.1×
CNN1-FX (16 bit) 36 720 67.66 % 11 23.6×
CNN2-FX (16 bit) 30 672 66.52 % 8 28.2×
CNN3-FX (16 bit) 19 632 65.63 % 7 44.0×
From literature

[10] (FP) default scenario 1.68 M 94.02 % – –

[10] (FP) small data set (5k) 0.83 M 76.53 % – –

[8] (FP) 5.40 M 94.60 % – –

ALEX [2] (FP) ∼10 M 81.22 % – 1.0

ALEX [2] (FX, 16 bit) ∼10 M 79.77 % – ∼2.5×
ALEX [2] (FX, 8 bit) ∼10 M 77.99 % – ∼6.8×



120 F. Badan and L. Sekanina

6 Conclusions

The proposed EA4CNN platform can automatically evolve a CNN (with 29k
parameters) showing almost the state-of-the-art accuracy (99.36 %) for the
MNIST task. Evolved CNNs for CIFAR-10 are far from the state-of-the-art, but
it was expected because we used only the basic CNN techniques (no data aug-
mentation, residual connections, dropout layers etc.) and very limited computing
resources. However, we demonstrated that EA4CNN, if seeded with a trained
CNN, can find interesting tradeoffs between the accuracy and implementation
cost.

Our future work will focus on improving the search quality by incorporating
advanced CNN techniques and employing more computing resources. We will
also explore more options for optimizing the CNN cost in order to develop a
fully automated holistic CNN approximation method.

Acknowledgments. This work was supported by the Ministry of Education,
Youth and Sports, under the INTER-COST project LTC 18053, NPU II project
IT4Innovations excellence in science LQ1602 and by Large Infrastructures for Research,
Experimental Development and Innovations project “IT4Innovations National Super-
computing Center – LM2015070”.

References

1. Dong, J.-D., Cheng, A.-C., Juan, D.-C., Wei, W., Sun, M.: DPP-Net: device-aware
progressive search for pareto-optimal neural architectures. In: Ferrari, V., Hebert,
M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 540–555.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6 32

2. Hashemi, S., Anthony, N., Tann, H., Bahar, R.I., Reda, S.: Understanding the
impact of precision quantization on the accuracy and energy of neural networks.
In: DATE, pp. 1478–1483. EDAA (2017)

3. Hsu, C., et al.: MONAS: multi-objective neural architecture search using reinforce-
ment learning. CoRR abs/1806.10332 (2018). http://arxiv.org/abs/1806.10332

4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105.
Curran Associates, Inc. (2012)

5. Miikkulainen, R., et al.: Evolving deep neural networks. CoRR abs/1703.00548
(2017). http://arxiv.org/abs/1703.00548

6. Nomi, T.: TinyDNN. https://github.com/tiny-dnn/tiny-dnn (2016)
7. Panda, P., et al.: Invited - cross-layer approximations for neuromorphic computing:

from devices to circuits and systems. In: 53rd Design Automation Conference, pp.
1–6. IEEE (2016). https://doi.org/10.1145/2897937.2905009

8. Real, E., et al.: Large-scale evolution of image classifiers. arXiv e-prints
arXiv:1703.01041 (2017)

9. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

https://doi.org/10.1007/978-3-030-01252-6_32
http://arxiv.org/abs/1806.10332
http://arxiv.org/abs/1703.00548
https://github.com/tiny-dnn/tiny-dnn
https://doi.org/10.1145/2897937.2905009
http://arxiv.org/abs/1703.01041


Optimizing Convolutional Neural Networks 121

10. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach
to designing convolutional neural network architectures. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 497–504.
ACM (2017)

11. Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural net-
works: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)


	Optimizing Convolutional Neural Networks for Embedded Systems by Means of Neuroevolution
	1 Introduction
	2 Related Work
	3 CNN Design and Optimization with Neuroevolution
	3.1 Evolutionary Algorithm
	3.2 CNN Encoding
	3.3 Genetic Operators
	3.4 Training and Evaluation of Candidate CNNs
	3.5 Fitness Function
	3.6 Data Type and CNN Size Optimization

	4 Experimental Setup
	5 Results
	5.1 Basic Evaluation Of EA4CNN
	5.2 Evolution of Approximate CNNs

	6 Conclusions
	References




