
Suitable Embedding to Find Similarity Between
Left and Right Retinas of a Person

Sangeeta Biswas
Dept. of Intelligent Systems

Brno University of Technology
Brno, Czech Republic

biswas@fit.vutbr.cz

Johan Rohdin
Dept. of Computer Graphics and Multimedia

Brno University of Technology
Brno, Czech Republic

rohdin@fit.vutbr.cz

Martin Drahansky
Dept. of Intelligent Systems

Brno University of Technology
Brno, Czech Republic

drahan@fit.vutbr.cz

Abstract—
It is often argued among biometric researchers that the left and

right retinas of the same person are as different as the retinas of
two different persons. However, in our previous work we showed
that by looking at retinal images human volunteers can find some
similarity and tell whether a pair of the left and right retinal
images belongs to a single person or to two different persons. We
also showed that using cosine similarity between the embedded
vectors of two retinal images it is possible to find the correct
right retinal image for a left retinal image more than what could
be expected by chance. In this paper we investigate which type
of embedding can give us better cosine similarity measurement
between the left and right retinal images of a person.

I. INTRODUCTION

The retina is a neurosensory tissue lining at the back of our
each eye. Depending on the amount of light entered through
the pupil, skin color, quantity of pigments, pathology such
as cataracts, retinopathy, etc., retinas of different individuals
appear in different colors when they are captured by Fundus
cameras. In an RGB colored retinal image, the optic disc,
macula and retinal blood vessels (RBV) are spotted. Like the
color of retina, variability can also be noticed in optic disc,
macula and RBV. However, optic disc, macula and retina iteslf
do not provide universal uniqueness as the tree structure of
RBV does. After the interesting discovery of Dr. Carleton
Simon and Dr. Isodore Golstein in 1935, we are aware that
the tree structure of retinal blood vessels (RBV) of our eyes is
unique [1]. This uniqueness is true even for two monozygotic
twins [2]. Unless being affected by severe retinal diseases such
as proliferate retinopathy, retinopathy of prematurity, etc., the
tree structure of RBV remains unchanged during the lifetime
of a person. The external environment cannot effect it, since
its location is inside of our eye [3]. Therefore, it is considered
a reliable biometric when we want to ensure high security in
an environment.

Contrary to the common belief among biometric re-
searchers, we have shown in [4] that there is a recognizable
similarity between the left and right retinas of an individual.
We performed experiments where human volunteers were
asked to judge whether a pair of the left and right retinal
images displayed side-by-side belongs to the same person
or to two different persons. For RGB retinal imag ets, by
considering intensity of colors, optic disc, shape of RBV (i.e.,

thickness of RBV), how RBV are entangled, how RBV are
branching, the part of RBV located inside the optic disc,
boundary of optic disc, texture of retinal background, three
human volunteers could correctly classify a pair of RGB
retinal images as being from a single person or from two
different persons in on average 82% of the cases. For RBV
images, by focusing on features such as the curvature of
RBV, how RBV are coming out from the root, the number
of branches (especially the number of small branches), etc.,
two volunteers were on correct in on average 67% of the cases.

We also used two similarity measurements, structural simi-
larity (SSIM) [5] and cosine similarity, to do the investigation
process automatically. We noticed that the cosine distance
based approach was much better than the SSIM based one
and that the RGB input was much easier to identify than the
RBV input. For the cosine distance based experiments, at first
we generated RGB embeddings and RBV embeddings from
the encoders of U-shaped CNNs [6] trained for generating
RGB retinal images and RBV images. Then we compared two
embeddings of the left and right retinal images using the cosine
similarity. We found that using the cosine similarity we can
identify the correct right retinal image in up to 57% of the
cases depending on the evaluation data and pre-processing.

This paper is an extension of our previous work described
in [4]. Here we investigate which type of embedding can give
us better cosine similarity measurement between the left and
right retinal images of a person.

II. EMBEDDING

How to find similarity between the left and right retinas
of a person? To answer this question we assume that if the
left and right retinas of a person is similar, then the pair
of the left and right retinal images will have lower cosine
distance or higher cosine similarity compared to the pairs
made by taking the left and right retinal images from two
different persons. If we reshape two 2D RBV images or 3D
RGB retinal images to vectors, then we can easily measure
their cosine similarity. However, these vectors will be so
long that the cosine similarity will suffer from the curse
of high dimensionality. Therefore, it is better to apply an
embedding technique before measuring the cosine similarity.
Embedding is a mapping of a high dimensional variable into
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a low dimensional variable. Figuring out which embedding is
appropriate for our data sets is the purpose of this paper. There
are many linear and non-linear embedding techniques. We
have chosen only three non neural network based embedding
techniques and two neural network based techniques.

Among the non neural network based embedding, we have
chosen the most popular linear embedding named principal
component analysis (PCA) [7]–[9] and two non-linear em-
bedding: locally linear embedding (LLE) [10] and isometric
mapping (Isomap) [11]. PCA considers the directions with the
largest variances to be the most important. Therefore, it finds
a low-dimensional embedding that best preserves the variance
of the data points as measured in the high-dimensional input
space. In PCA at first data points are centered and scaled to
unit variance. Then the eigenvectors and eigenvalues of the
covariance matrix are calculated. After that data points are pro-
jected on to the eigenvectors which have higher eigenvalues.
LLE begins by detecting neighborhood for each data point,
Xi. The neighborhood of Xi can be a set of points that lay
within some radius ε or the K-nearest neighbors of Xi. After
detecting neighborhood, a set of weights, Wij , is computed
for Xi so that Xi can be described as a linear combination
of its neighbors. At last, an eigenvector-based optimization
technique is used to find the low-dimensional embedding, Yi
of Xi, such that Yi is still described with the same linear
combination of its neighbors (i.e., Yi can be reconstructed by
its neighbors using Wij). The first step of Isomap is similar to
LLE. At first, neighborhood of Xi is detected. After that a star
graph is constructed for Xi by keeping Xi as the center vertex
and assigning dX(ij) (i.e., the distance between Xi and its
neighbor, Xj , measured either in the standard Euclidean metric
or in some domain-specific metric) to the weight of edge,
eij . All star graphs in together form a neighborhood graph
G. After forming G, the geodesic distances, dG(ij), between
all the connected vertices in G are estimated by computing the
shortest path between any two vertices of G using the Floyd-
Warshall algorithm. Finally, an eigenvector-based optimization
technique is applied on the matrix consisted of dG(ij) to
find the low-dimensional embedding. LLE preserves the local
geometry of the data whereas Isomap preserves the global
structure of the data.

Along with the above linear and non-linear embedding
techniques, we have also chosen the encoder of an autoencoder
(AE) or a U-Net [6] as a neural network based non-linear
embedding technique. Typically, AEs are symmetrical neural
networks with a middle layer that is substantially narrower
than the input and output layers. The narrow middle layer is
known as the bottleneck layer. AEs can be seen as having two
parts: an encoder (from the input layer to the bottleneck layer)
and a decoder (from the bottleneck layer to the output layer).
Encoder maps the input into the embedding, and decoder maps
the embedding to a reconstruction of the original input. U-Net
is, a U shaped convolutional neural network (CNN), one of
the most popular CNNs in medical image processing. Like
AE, it is also a symmetrical neural network with two parts: an
encoder and a decoder. However, in this CNN, the output from

layers of the encoder are added to the output of layers of the
decoder. These are called skip connections which are absent
in general AEs. U-Net performs very well for image-to-image
translations specially when the data set is small.

III. EXPERIMENTAL SETUP

For non neural network based embedding techniques we
used scikit-learn [12]. We did all implementations of neural
networks using TensorFlow’s Keras API 2.1.6-tf and Python.
We used a standard PC with Intel(R) Core(TM) i9-9900K
having 8 Cores and 31 GB memory, and with two NVIDIA
GeForce GTX 1080 GPUs having 8 GB Memory per GPU.

A. Data Sets

In order to train CNNs, we used four publicly available
data sets named DRIVE [13], HRF [14], MESSIDOR [15]
and STARE [16]. Since no information about the identity of
the patients is provided, we considered images of these four
data sets as unpaired images. There is a lot of varieties in
the position of optic disc in these four data sets. All data sets
except Messidor have manually segmented blood vessels.

As a validation set we used another publicly available data
set named CHASE DB1 [17]. For figuring out similarity, we
used two private data sets named FNUSA and EBD RET1
along with CHASE DB1. All of these three data sets have
pairs of the left and right retinal images. Except CHASE DB1,
other two data sets do not have manually segmented blood
vessels. Optic discs are almost in the center in CHASE DB1,
whereas they are close to the boundary in the FNUSA
and in different places in the EBD RET1. Images of the
CHASE DB1 have deeper pigmentation than the other three
data sets. The EBD RET1 is a subset of the EBD RET data
set belonging to the STRaDe group of Faculty of Information
Technology (FIT), Brno University of Technology (BUT),
Czech Republic. Images of the EBD RET data set were
taken from 110 students and faculty members of BUT in
the STRaDe, FIT, BUT laboratory environment. In this data
set, there is not any specific alignment of the optic disc and
macula, i.e., retinal images of the same retina vary to some
extent due to the movement of the optic disc and macula.
For building the EBD RET1, we selected 24 pairs of left
and right retinal images, from the EBD RET data set, which
are not underexposed or overexposed or do not contain any
artifacts and optic discs have similar alignment. Images of
the FNUSA data set were taken from the patients visited St.
Anne’s University Hospital Brno, Czech Republic. Table I and
Table II show some details of the data sets we used in our
experiments.

Because of different sizes of different data sets, at first we
re-sized all images to 256×256 by bicubic interpolation. Then
we re-scaled pixel values of re-sized images to the range of the
sigmoid activation function [0, 1], since the sigmoid function
was used as the activation function of the output layer of the
U-Net shaped CNNs. We then flipped only the right-side retina
images to align them with the left-side retinas. Except that no
other pre-processing was applied to the images.



TABLE I
DATA SETS USED FOR TRAINING CNNS. (*) INFORMATION ABOUT THE

AGE OF PERSONS IS NOT AVAILABLE.

Database Pixels Fundus Age # Images
Camera

DRIVE 565× 584 Canon CR5 25-90 40
3CCD

HRF 3504× 2336 Canon * 45
CF-60UVi

MESSIDOR 1440× 960 Topcon TRC * 1187
2240× 1488 NW6 3CCD
2304× 1536

STARE 700× 605 TopCon TRV-50 * 20

TABLE II
DATA SETS USED FOR CHECKING SIMILARITY BETWEEN THE LEFT AND

RIGHT RETINAS.

Database Pixels Fundus Age # Pairs
Camera

CHASE DB1 999× 960 Hand-held 10-11 14
Nidek NM-200-D

FNUSA 3608× 3608 Carl Zeiss 20-95 68
VISUCAM 524

EBD RET1 1008× 982 Canon CR-1 25-32 24
Mark II NM

B. Network Architecture

We trained a U shaped CNN, UNet1, for segmenting
RBV from RGB retinal images. Figure 1 shows the model
architecture of UNet1 for 256 × 256 sized images. We set
input ch = 3 and output ch = 1; mean-squared-error
(mse) as the loss function; RMSProp [18] with a learning
rate of 0.001 as the optimizer, and mini batch size = 8.
We used exponential linear unit (ELU) [19] as the activation
function for all convolutional layers except the last layer
of the decoder. In the last layer of the decoder sigmoid
function was used. We set strides = 1, kernel size = 3,
and padding = same for all convolutional layers. For all
convolutional and transposed convolutional layers, we set
kernel initializer = he normal. For all other settings, we
used the default values of TensorFlow’s Keras API 2.1.6-tf.
We used RGB retinal images and manually segmented RBV of
DRIVE, HRF and STARE to train UNet1. Since CHASE DB1
has manually segmented RBV along with RGB retinal images,
we used it to tune the number of iterations of UNet1.

During training of UNet1 our targets was to minimize
the reconstruction error of the RBV images by the
decoders of UNet1. By combining three data sets, we
trained five UNet1: UNet1 DRIVE, UNet1 DRIVE+HRF,
UNet1 DRIVE+STARE, UNet1 HRF+STARE and
UNet1 DRIVE+HRF+STARE. The mse of segmenting RBV
from 28 RGB retinal images of CHASE DB1 were 0.55, 0.51,
0.47, 0.47, 0.43 by UNet1 DRIVE, UNet1 DRIVE+HRF,
UNet1 DRIVE+STARE, UNet1 HRF+STARE and
UNet1 DRIVE+HRF+STARE, respectively. Since
UNet1 DRIVE+HRF+STARE gave the minimum mse
and slightly brighter segmented RBV for the images of
CHASE DB1 than the other UNet1s (as shown in Fig. 2),
therefore, we kept it for segmenting RBV of RGB retinal

images of the EBD RET1 and FNUSA data sets.
In order to get embedding, we trained one kind of U-shaped

CNN, UNet2, and two kinds of autoencoders (AEs), AE1 and
AE2. The architecture of UNet2 was exactly the same as the
architecture of UNet1. As shown in the Fig. 3, the architecture
of AE1 is the same as UNet1 except it does not have the skip
connections like UNet1. As shown in Fig. 4, the architecture
of AE2 is almost the same as AE1 except it has few layers
than the AE1. Parameter settings of UNet2, AE1 and AE2
were the same as UNet1.

Both AEs and UNet2 were trained for both the RGB retinal
images and for RBV images using the images of MESSIDOR.
CHASE DB1 was used to decide the number of iterations.
Instead of targeting to achieve the minimum reconstruction
error, we used accuracy to decide the number of iterations.
For the RGB retinal images, we set input ch = 3 and
output ch = 3 and for the RBV images and input ch = 1
and output ch = 1 for UNet2, AE1 and AE2. RBV im-
ages were segmented from RGB retinal images of MESSI-
DOR by using UNet1 DRIVE+HRF+STARE. Even though
CHASE DB1 has manually segmented RBV, we generated
segmented RBV for it by UNet1 DRIVE+HRF+STARE to
keep consistency. Both AEs and UNet2 had two parts: encoder
and decoder. However, after training we kept only the encoder
part to get the RGB and RBV embedding from the images of
EBD RET1 and FNUSA data sets.

IV. RESULTS AND ANALYSIS

The results are shown in Table III. Note that the probability
to retrieve the correct right retina by chance is 1/14 = 0.07
for CHASE DB1, 1/68 = 0.01 for FNUSA and 1/24 = 0.04
for EBD RET1. The overall trend is that the probability to
retrieve the correct right retina for a left retina is much more
than by chance. It indicates that the left and right retinas of a
person have more similarity than the left and right retinas from
two different persons. Neural network based embeddings out-
performs non-neural network based embeddings. AE2 based
embedding performs slightly better than the UNet2 and AE1
based embeddings. Figuring out an appropriate architecture
for the autoencoder can be our future work since it may
improve the performance of autoencoder based embedding.
Non-neural network based non-linear embeddings, i.e., LLE
and Isomap, do not perform better than the linear embedding,
PCA. Moreover, they take longer time than PCA.

To some extent the presence of color and the visibility of
optic disc help the RGB retinal images have better results than
the RBV images. The color of the retinal images depends on
biological factors such as skin color, quantity of pigments and
age. Generally, lighter skinned people’s retinas are more of a
reddish-orange color, whereas darker skinned people’s retinas
are more of a darker-orange color [20]. Different pathology
such as cataracts, retinopathy, etc., also have effect on retina’s
color and texture. Moreover, retina’s color to some extent also
depends on session factors such as illumination conditions etc.
In all the explored databases, the right and left retina image
of an individual were collected in one session (i.e., right after



Fig. 1. Architecture of U-Nets (i.e., UNet1 and Unet2). Vertical text shows the output shape of the corresponding layer.

Fig. 2. RBV, of an RGB retinal image of CHASE DB1, segmented by UNet1 trained by different data sets.

Fig. 3. Architecture of AE1. Vertical text shows the output shape of the corresponding layer.

each other) whereas not all individuals had their session on the
same day. Thus it cannot be excluded that the good results for
the RGB images partly should be attributed to session factors.
To properly evaluate this, a more carefully designed database
needs to be collected. Nevertheless, the result for the RBV
images (for which session factors should be negligible) with
the cosine distance is clearly better than by chance.

As shown in Fig. 5, when the left and right retinal images
of a person have the same color or their optic discs positioned
almost in the same place in the retina, the identification task
of all identifiers becomes easier for RGB retinal images. The

violation of any of these two conditions may confuse any
approaches. For RBV images, the position of the root of RBV
plays an important role in the identification task (see Fig. 6).

V. CONCLUSIONS

Contrary to the common belief among biometric re-
searchers, we have shown that there is a recognizable similarity
between the left and right retinal images of an individual.
Therefore, it is possible to find the correct right retinal image
for a left retinal image by measuring the cosine similarity
between the two retinal images with higher probability than by



Fig. 4. Architecture of AE2 with less number of layers than the AE1 in Figure 3. Vertical text shows the output shape of the corresponding layer.

TABLE III
THE PROBABILITY OF RETRIEVING THE CORRECT RIGHT RETINA FOR A LEFT RETINA BY DIFFERENT EMBEDDINGS.

RGB RBV
CHASE DB1 EBD RET1 FNUSA CHASE DB1 EBD RET1 FNUSA
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

LongVector 0.36 0.50 0.79 0.42 0.54 0.62 0.47 0.54 0.60 0.21 0.21 0.36 0.21 0.33 0.42 0.13 0.25 0.26
PCA 0.43 0.64 0.86 0.62 0.67 0.71 0.53 0.60 0.66 0.29 0.29 0.50 0.21 0.33 0.46 0.08 0.16 0.21
LLE 0.43 0.57 0.79 0.37 0.46 0.54 0.35 0.43 0.53 0.07 0.21 0.21 0.00 0.08 0.12 0.03 0.07 0.09
Isomap 0.14 0.21 0.36 0.17 0.42 0.42 0.29 0.37 0.44 0.14 0.14 0.14 0.08 0.08 0.08 0.07 0.11 0.16
UNet2 0.64 0.71 0.86 0.25 0.54 0.67 0.47 0.54 0.59 0.29 0.36 0.57 0.21 0.33 0.50 0.18 0.25 0.31
AE1 0.50 0.57 0.64 0.33 0.46 0.46 0.22 0.32 0.37 0.35 0.43 0.50 0.25 0.42 0.54 0.18 0.22 0.28
AE2 0.64 0.64 0.64 0.41 0.62 0.67 0.38 0.51 0.54 0.36 0.43 0.50 0.50 0.54 0.58 0.13 0.25 0.34
UNet2 + PCA 0.71 0.79 0.86 0.25 0.42 0.54 0.44 0.54 0.60 0.29 0.42 0.50 0.17 0.33 0.33 0.13 0.28 0.31
AE1 + PCA 0.42 0.71 0.79 0.29 0.50 0.54 0.21 0.31 0.37 0.29 0.36 0.50 0.29 0.42 0.62 0.10 0.19 0.26
AE2 + PCA 0.50 0.64 0.71 0.37 0.50 0.62 0.29 0.46 0.51 0.29 0.36 0.43 0.41 0.58 0.62 0.18 0.25 0.34

Fig. 5. Pairs of left and right RGB retinal images agreed by all or nine out of ten approaches. 1st row: pairs having strong cosine similarity claimed by all
or nine out of ten approaches. 2nd row: failed to be figured out by all of our approaches.. 1st & 2nd cols: a pair from CHASE DB1, 3rd & 4th cols: a pair
from EBD RET1 and 5th & 6th cols: a pair from FNUSA.

Fig. 6. Pairs of left and right RBV images agreed by all or six out of ten approaches. 1st row: pairs having strong cosine similarity claimed by six out of ten
approaches. 2nd row: failed to be figured out by all of our approaches.. 1st & 2nd cols: a pair from CHASE DB1, 3rd & 4th cols: a pair from EBD RET1
and 5th & 6th cols: a pair from FNUSA.



chance. Non-linear embeddings by the neural networks such
as autoencoder and U shaped CNN (i.e., U-Net) can give us
better cosine similarity measurement between the left and right
retinal images of a person.
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