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Abstract

Cryptocurrencies set a new trend for a financial interaction between people. In order to suc-
cessfully meet this use-case, cryptocurrencies combine various advanced information tech-
nologies (e.g., blockchain as a replicated database, asymmetrical ciphers and hashes guaran-
teeing integrity properties, peer-to-peer networking providing fault-tolerant service). Mining
process not only introduces new cryptocurrency units, but it has become a business how
to generate revenue in real life. This paper aims at different approaches how to detect
cryptocurrency mining within corporate networks (where it should not be present). Min-
ing activity is often a sign of malware presence or unauthorized exploitation of company
resources. The article provides an in-depth overview of pooled mining process including
deployment and operational details. Two detection methods and their implementations are
available for network administrators, law enforcement agents and the general public inter-
ested in cryptocurrency mining forensics.

Keywords: Bitcoin, cryptocurrency, mining pool, mining server, Stratum protocol,
GetBlockTemplate protocol, GetWork protocol

1. Introduction

The motivation behind cryptocurrency is to introduce an alternative currency that is
not controlled by a government (e.g., the central bank). Trustworthiness of such electronic
cryptocurrency lies in the utilization of cryptographical algorithms to verify transactions and
fair emission of new units into circulation. Dark web marketplaces utilize cryptocurrencies
for their: a) nearly instant and free-of-charge payments; b) easily obtainable and changeable
addresses; c) hard to trace transactions (thanks to their peer-to-peer nature). Several studies
[1], [2], [3] investigate Bitcoin as the key component of any digital black marketplace because
cryptocurrencies generally allow criminals to circumvent law enforcement agencies (LEAs)
and regulators.

Of all cryptocurrencies, Bitcoin [4], [5] had become popular when it gained momentum
at the end of 2013 after its exchange price skyrocketed. The current (at the July 2019)

∗Corresponding author
Email addresses: veselyv@fit.vutbr.cz (Vladimı́r Veselý), izadnik@fit.vutbr.cz (Martin Žádńık)
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Žádńık)

Preprint submitted to The International Journal of Digital Forensics and Incident Response July 31, 2019



total number of Bitcoins (approx. 17.8 million) accounts for more than 202 billion USD [6].
Bitcoin is a peer-to-peer network with the distributed infrastructure of users and miners.
A miner verifies ongoing transactions for a reward (either transaction fee or newly emitted
Bitcoins). The reward is paid to the first miner who proves transaction by spending its
computation power on this process. Other proof-of-work1 cryptocurrencies also adopted
the same mining concept. Anyone can join the solo mining process but the probability of
earning a reward is low and the risk of wasted computational power without any profit too
high. Therefore, miners form so-called mining pools. When the pool earns a reward, it is
distributed by the pool operator among miners according to their contribution.

Apart from alternatives to Bitcoin (e.g., Litecoin, Ethereum, generally referred as alt-
coins), the cryptocurrency universe also contains tokens. Tokens (comparing to coins) rep-
resent digital asset or utility that leverages another’s coin blockchain for being accounted.
New tokens are generally not mined but distributed by their authors/owners. In the frame
of this paper, we will focus only on the mining process behind coins and refer to them as
“cryptocurrencies” interchangeably.

Any organization should be aware of running mining software on its hardware in its
network due to at least two reasons: a) the mining activity is often caused by malware,
therefore, the mining activity is an indicator of a compromise; b) the energy (e.g., electricity,
cooling, CPU and GPU power) spent on mining is paid by the hosting organization, but the
recipient of the reward is a malicious actor. Ali et al. [7] informs about various types of
cryptocurrency malware dedicated to undercover mining on devices, desktops, and servers
but also platforms like webcams, smartphones or network attached storages. Universities [8]
or technological centers [9], [10] are typical examples of energy exploitation because they offer
free computational resources (i.e., servers, network) to academics, researchers and students.
Nevertheless, it is possible to start a mining operation in any organization (e.g., subsidized
accommodation for Czech members of parliament, see [11]).

The malicious actor might exploit these assets resulting in an increased energy bill, de-
pleted resources, endangered work processes, services and other users. For instance, Bitcoin
mining has a severe impact on electricity comparable to the energy consumption of Ireland
[12] in 2014. Another report [13] provides a more in-depth analysis of how to estimate
Bitcoin’s hunger for energy concluding that it may reach 7.67 gigawatts (comparable with
Austria) during 2018.

In this paper, we focus on the detection of devices participating in the mining pools.
Cryptocurrency mining is the only option how users may obtain freshly minted currency
units. Moreover, mining is still the prevailing form of how to earn cryptorcurrencies with
the existing equipment.

We propose two approaches for cryptocurrency miners detection in the network:

• The first approach employs a mix of passive and active traffic monitoring. The passive
monitoring is based on the analysis of IP flow records, while the active monitoring

1In case of proof-of-work mining, the probability of finding a new block is directly proportional to a com-
putational power invested in mining. While for proof-of-stake mining, the probability is directly proportional
to a number of units owned by a miner.
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is based on probing. The detection method as a whole slowly learns a list of mining
servers which subsequently reduces the need for the active monitoring. Since anyone
can set up own mining pool or even mining server, the resulting list of publicly known
mining servers cannot be considered complete. However, it may be employed as a
baseline for miner detection by any network operator.

• The second approach can be described as a catalog of mining pools. We have created
a publicly available web application that stores metadata about existing mining pools.
Any user may query our system to check whether a given FQDN2, IP address or port
number is a part of known pool configuration.

Figure 1 illustrates a stake-holder (i.e., administrator or LEA operative as network an-
alyst) and modus operandi of above-mentioned approaches (i.e., NetFlow probe capable of
cryptocurrency miners detection + the pool catalog validating existing mining servers and
optionally feeding probe).

Mining rig Local/ISP network

Network analyst

Mining server

Mining pool
catalog

NetFlow probe

cryptocurrency 
mining traffic

Internet

Figure 1: Illustration of paper outcomes and actors

The contribution of this article involves: a) an overview of the current cryptocurrency
mining technology; b) two detection methods to detect network traffic related with cryp-
tocurrency mining; c) open-access data samples; and d) publicly available service cataloging
mining servers.

The rest of the paper is organized as follows. Section 2 informs about related work
on cryptocurrency mining. Section 3 brings details about currently used mining architec-
ture and involved protocols. Section 4 describes passive/active traffic monitoring (the first
approach how to detect miners), which also includes its validation and verification. Sec-
tion 5 explains the implementation and operation of the mining server catalog (the second
approach). The article is summarized in Section 6, which also outlines our future work.

2Fully qualified domain name (FQDN) is complete host identification within a Domain Name System
(DNS) tree hierarchy.
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2. Related Work

This section summarizes knowledge from the selected articles relevant to cryptocurrency
mining. We try to motivate miners detection in a frame of known cryptocurrency issues and
research of others.

We consider Courtois et al. [14] work as a great introductory source explaining Bitcoin
mining. Despite focusing on Bitcoin mining process improvement, authors provide theo-
retical background explaining bindings between employed cryptography and cryptocurrency
mining. Moreover, this work and other ones mentioned in this section allow us to skip
ththughroughcryptographic description of the mining process. Instead of it, we will focus
only on protocols and messages exchanged between miner and pool.

Kroll et al. [15] and Lawenberg et. al [16] provide an economical point of view on Bitcoin
mining. They try to model the mining process as the game-theory problem. Eyal and
Sirer [17] discuss Bitcoin security and mining incentive-compatibility. All of these articles
introduce interesting attacks that might disrupt any cryptocurrency mining process. We
will briefly mention mining protocol “flaws” that may be used to identify miner and connect
its identity with a real person.

Several studies [18], [19], [20], [21] mention ways and means how cryptocurrencies are
being employed in monetizing and as a platform for unlawful activities. Examples include
ransomware attacks, botnet command and control operations, private key thefts, spam ad-
vertisements, pay-per-click or pay-per-install scams and others. Our research complements
these studies by targeting the illicit mining of cryptocurrencies.

Huang et al. [22] provide a comprehensive study of cryptocurrency mining malware.
Authors developed methods, which correlate the mining bot with its mining pool. Moreover,
authors were able to estimate the number of infected devices, generated revenue and duration
of botnet infection. We consider this paper as a great encouragement for our work because
it shows how successful discovery of miners can be crucial not only for proper network
operation but also for significant reduction of botnet contagions. There is a connection
between (unintentional) cryptocurrency mining and exploitation of resources.

D’Herdt [23] analyzed captured traffic samples and suggested to look for well-known
ports and IP addresses of mining servers. Besides that, he derived that the communication
of miners with mining server is sparse but often cyclic between 30-100s. Although it is
possible to capture all the network traffic even on a high-speed link [24] so that the raw
network data can be analyzed, it is a resource-expensive way of network monitoring from a
long-term perspective. Therefore, various meta-data collecting approaches are utilized (i.e.,
several generations of NetFlow protocols [25] and IPFIX [26]). The research in flow analysis
has come up with simplistic as well as complex approaches ranging from statistical methods
to machine learning (ML) approaches.

From the perspective of methodology, the closest to our work are methods based on
supervised machine learning such as [27]. The authors of [27] select descriptive features
that should be extracted from the flow data, prepare an annotated data-set and train a
classification model which is used to recognize specific events in the flow data. In comparison
to [27] we introduce an additional mechanism to reduce the large number of false positives
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generated by the classifier. To the best of our knowledge, there has been no work specifically
focusing on detection of cryptocurrency miners utilizing flow data.

3. Mining Background

This section provides a theoretical background (mostly based on Bitcoin use-case). How-
ever, explanation of the whole mining process for all cryptocurrencies is far beyond the scope
of this article. Hence, only parts relevant to the miner detection are described. The first
subsection lays out the basic theory for any cryptocurrency operation. The second subsec-
tion familiarizes the reader with the state-of-the-art of cryptocurrency mining software and
hardware. The third subsection provides a deeper description of existing mining protocols.

3.1. Theory

Transaction encapsulates transfer of cryptocurrency units between parties, where a single
transaction may contain multiple inputs and also outputs. To prevent fake or malicious
transactions (e.g., double spending problem), a given user needs to validate the transaction
history. Hence, transactions are chained together, where outputs of the previous transaction
serve as inputs of the next transaction. Transactions are grouped into blocks, which vouches
for the validity of contained transactions with timestamps and cryptographic hashes. Blocks
are periodically recorded into a public ledger dubbed as blockchain. Blocks are bound
together in the blockchain as a unidirectional list, where each item (i.e., block) has the
pointer to its predecessor. The inception of cryptocurrency is done by starting its history
with the first genesis block. Blocks are formed and their content verified by miners, who
compete between themselves in the process (so-called mining) of appending new blocks to
the blockchain. The winning miner earns reward in the form of newly minted coins (called
coinbase transaction) as an incentive to participate on cryptocurrency peer-to-peer network
operation. The winner is the miner, which would successfully solve the certain cryptographic
task (e.g., compute a hash with certain properties from given inputs and nonces) of variable
difficulty (which acts as a feedback mechanism guaranteeing deterministic time of block
creation). Miners are grouped in pools in order to increase their chance of successful mining
and thus to cash the reward.

3.2. Hardware and Software

A wide range of different mining hardware/software exist that is mostly differentiated by
the hashing algorithm employed and hashrate (i.e., computational performance in a number
of hashes per second, abbreviated as hash/s). Depending on a given cryptocurrency, the
user chooses the appropriate combination of hardware and software that impacts mining
operation. Mining hardware capabilities pose an upper-bound limit for a maximum avail-
able hashrate. Nevertheless, the choice of mining software may optimize and automatize
the mining operation. To generalize it, successful establishment of cryptocurrency mining
consists of several steps.

5



1. Select cryptocurrency - There is no business perspective to mine cryptocurrencies if
overall expenses exceed potential income. Hence, it is necessary to take into account:
a) trend of exchange price; b) cryptocurrency viability; c) possible increase of mining
difficulty; and d) ever-changing total hashrate of the peer-to-peer network.

2. Choose a pool - Participation in the pool (compared to solo mining) offers a more
predictable generation of revenue, which is proportional to work done by a miner. It
is important to choose a stable pool (in terms of Internet connectivity and denial-of-
service protection) with a trustworthy pool operator (who will not embezzle earnings
or submitted shares for his/her own profit).

3. Assemble mining rig - Overall power consumption of the mining rig goes hand to hand
with its hashrate performance. Any mining rig generally dissipates a lot of heat and
its ventilation/cooling produces significant noise. These facts can be used as indicators
how to locate mining rig in corporate environment physically.

4. Configure mining software - Mining is controlled and managed either by official cryp-
tocurrency client or dedicated software. Mining software needs a low-bandwidth, but
constant connection to the Internet since it periodically exchanges work packages with
the server.

Pool 2 

with dedicated mining servers

Pool 1 

hosted on cloud (e.g., AWS, Azure)
Mining rig 1

directly connected

Mining rig 2

behind NAT or proxy

Mining rig 3

behind overlay network Pool 3

behind overlay network

Figure 2: Deployment scenarios for miners and pools

Figure 2 outlines usual deployment scenarios between miners and mining pools. A user
may control multiple mining devices (rigs, sometimes also referred to as workers). Each
mining device may rotate mining operation (i.e., in a round-robin or fall-back fashion)
between multiple pools. Each mining device is connected to a single mining server that
belongs to the pool, thou switching to a secondary mining server is quite common in case
of the outage of the primary one. The connection between miner and server can be: a)
direct without any middle-box (although, it reveals IP address of miner); b) proxied by
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centralizing communication with mining server via middle-box that may relay or even alter
mining protocol data; c) overlayed via VPN3, TOR4, I2P5 or any similar service.

3.3. Protocols

A mining pool and its members are using dedicated protocols to coordinate distribution
of mining process. There are three general mining protocols supported by a majority of
cryptocurrencies:

• GetWork was the first mining protocol ever. Comparing to its descendants, GetWork
is a simple request-response scheme protocol - server assigns work package and miner
blindly conducts mining task. Due to its simplicity, GetWork allows double-spent
transactions in the case of corrupt pool operator. GetWork messages with JSON6

syntax are carried inside HTTP7. GetWork supports a limited number of protocol
extensions using additional HTTP header lines.

• GetBlockTemplate is standardized mining protocol developed by Bitcoin community
but also adopted by other cryptocurrencies. GetBlockTemplate was codified in BIP8 22
[28]. GetBlockTemplate is more decentralized by offloading block creation process onto
miners instead of pools. GetBlockTemplate increases potential work package size and
reduces mining protocol overhead to support performance delivered by ASIC miners.
Moreover, BIP 23 [29] standardizes ways enhancing GetBlockTemplate without any
major protocol redesign or non-conformant HTTP header hacks.

• Stratum protocol [30] was prototyped by M. Palatinus, inventor of pooled mining and
operator of the oldest Slush pool [31]. Stratum development was motivated by a need
to remedy design flaws of previous two protocols: a) by removing HTTP as a carrier,
which reduces unnecessary protocol overhead; b) by removing long polling feature that
posed scalability issue for load balancing of traffic between miner and server; and c) by
adding the extranonce field that allows miner to generate more hashes locally without
bothering a mining server for a new batch of work. Stratum is a JSON-RPC 2.0 [32]
compatible protocol that operates directly above TCP.

All of these protocols leverage TCP9 as the transport layer protocol. Comparing to
official cryptocurrency peer-to-peer clients, mining protocols do not use any ”well-known”
port number. It depends solely on the preference of mining pool administrator on which
ports pool servers accept connections. Hence, port numbers 80, 443, and 25 are often used
as a best practice to bypass firewalls between the mining device and its mining server.

3Virtual Private Network. For more, see https://en.wikipedia.org/wiki/Virtual private network
4The Onion Router. For more, visit https://www.torproject.org/
5Invisible Internet Project. For more, check https://geti2p.net/en/
6JavaScript Object Notation. For more, see https://tools.ietf.org/html/rfc7159
7Hypertext Transfer Protocol. For more, visit https://tools.ietf.org/html/rfc7230
8Bitcoin Improvement Proposal. See https://github.com/bitcoin/bips/blob/master/bip-0002.mediawiki
9Transmission Control Protocol. For more, see https://tools.ietf.org/html/rfc793
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Figure 3: Example of Stratum protocol message exchange

The usual message exchange involves several steps. With the initial message, the miner
connects to the mining server and provides authentication credentials. Authentication is
necessary because based on credentials, mining pool correlates submitted shares with miner’s
account and credit earnings. Two types of authentication are common:

• registration-oriented - Before establishing the mining operation, the user owning min-
ing rig needs to sign up to the pool and create an account. A part of account ad-
ministration involves workers (i.e., separate mining devices) setup. Authentication
credentials inside mining protocol include username and password.

• registration-less - Some pools tender their services without any dedicated account
registration. In that case, the miner usually provides just cryptocurrency address
to inform pool where to send payments. This identifier substitutes username and is
enough for authentication.

Regardless of authentication type, the username may contain optional suffixes such as
worker identifier (in order to distinguish different workers of the same user) or e-mail address
(where the user is notified about any problems occurred during mining).

The next step in mining protocol communication is a recurrent assignment of work
packages provided by the server. Each work package contains data, target, and nonce (other
fields depend on cryptocurrency). A miner tries to find a hash (from combined data and
nonce) that meets difficulty. Different cryptocurrencies are using distinct hashing algorithms
- e.g., SHA-256d for Bitcoin, Scrypt for Litecoin, X11 for Dash. Miner either submits correct
solution or restarts mining with different inputs upon receiving a new work package. Miner
periodically announces its state to the server.

Figure 3 illustrates Stratum exchange from mining device to its server (with the red
color) and vice versa (the blue color). We can observe the typical confluence of messages.
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Metadata Description
IP address,
port number

By inspecting IP addresses, we can geolocate both miner and min-
ing server. Together with port numbers, we can account network
traffic with NetFlow. Once we have NetFlow records available, we
can answer questions such as for how long is mining operation ac-
tive, how many mining devices are involved, etc.

Pool
information

GetWork or GetBlockTemplate protocol extensions may uncover
other useful intel such as alternative mining servers including their
IP addresses, fully-qualified domain names, and port numbers.

Miner’s
username

Based on authentication type, username field may contain either
nickname or account name of pool user or its cryptocurrency ad-
dress. This information may be crucial for successful correlation of
real-world person and its electronic identity.

Miner’s
password

Authentication message of any mining protocol includes a password.
However, it is seldom used for authorization or any purpose by a
pool. The default value of password field for the most of mining
software is ‘x’.

Miner’s email Some pools offer email notifications about the progress of mining
operation. In case of any problem such as the miner outage, too
many rejected shares or disconnection from the pool, the user is
warned by email. The email address may be optionally part of min-
ing protocol message filed, which may help to reveal user’s identity.

Table 1: Metadata available in mining protocols

A connection to the pool is initiated with the first message (marked as #1), where we
can see authentication details. The server confirms it with message denoted as #2. The
server sends a work package (#3) that needs to be computed. Upon proper initialization
of mining software, the miner asks for a new work package (#4), which the mining server
gladly provides (#5). The miner successfully finds the hash and submits (#6) the complete
solution back to the server. The server decides whether the miner’s result is valid or not (in
the case of #7, it is valid) and sends a new work package (#8). The miner starts a new
task and meantime periodically updates server about its local computational speed (message
marked as #9) so that server can dynamically adjust the size of subsequent work packages.
If we focus on the forensic analysis of metadata related to mining protocol, then we can
extract metadata described in Table 1.

4. Traffic Monitoring

Network traffic monitoring provides data for network management, accounting as well as
security. In our work, we assume basic network monitoring based on flows. The flow is a set
of packets sharing the same key (in most cases, source and destination IP address, source
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Figure 4: Two-step detection schema (Catalog of pools is a supplementary component)

and destination port, protocol). The flows are measured at the observation points and the
measured data per each flow are exported to the collector by a flow export protocol (e.g.,
NetFlow v5). For further details on flow monitoring please refer to [33].

We assume that the flow monitoring captures the communication of the active mining
clients as they connect to the pool, ask for a job and deliver the results. We propose a
concept, depicted in Figure 4, that is capable of identifying mining IP addresses based on
the flow data. The incoming flow data are collected and the features are extracted into a
feature vector. Subsequently, a passive detector decides if the feature vector looks like miners
communication or not. At this stage, false positives usually occur due to an aggregation
of information and due to the heuristic nature of the detection algorithm. We address
the problem of the false positives by adding the second detection step. During the second
detection step an active probe verifies whether a server, the suspicious client connects to,
belongs to a mining pool or not. In order to reduce the number of probes, we propose to
employ a list of known and probed servers which is fed by the results of the active probe as
well as from the catalog of mining pools (described in Section 5).

4.1. Design of Cryptocurrency Network Traffic Detector

Passive detection is a key component in the schema. Its effectiveness determines the
number of false positives that must be verified by the active probe component. Therefore we
propose to utilize a supervised machine learning technique to assemble an optimized classifier
capable of reaching a low number of false positives as well as false negatives. The supervised
machine learning assembles a classifier based on positive and negative examples, in our
case, feature vectors belonging to mining and non-mining communication. The machine
learning classifier (ML-classifier) is based on a decision tree induction with a particular
implementation of J48 in Weka [34]. The decision tree induction recursively selects features
and their thresholds to maximize information gain contributed by the selected feature. As
a result, the decision tree contains in its root the feature with the most information value
while towards the leaves the information value decreases. This leads to the construction of
an optimized decision tree.

Data annotation is vital to the supervised machine learning. Our process of data an-
notation is based on an iterative approach. Each iteration annotates new data utilizing
knowledge extracted from the previous iteration. The annotation itself utilizes the two-step
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Feature Condition
Average number of bytes per packet In the range 35 - 80 bytes or 105 - 110 bytes
Average number of packets per flow Out the range of 5 to 40
Average number of packets per minute In the range 2 - 8 or 40 - 5300
Duration of a communication Greater than 300 s
Percentage of flows with ACK & PUSH Higher than 90%
Percentage of flows with RST Less than 1%
Percentage of flows with SYN Less than 5%
Percentage of flows with FIN Less than 5%
Percentage of flows with source port
greater than destination port

Higher than 90%

Table 2: Selected features and conditions of the manual classifier.

detection schema already depicted in Figure 4. During the first iteration, the incoming data
are annotated only by the list of known servers which utilizes information from the catalog
of mining pools as well as information about our own mining clients. We select relevant
features and manually design a classifier based on the analysis of the first data-set. During
the second iteration, all components in the schema are active, i.e., features are extracted, the
manual classifier is utilized by the passive detection component and active probing verifies
its results. We train the ML-classifier on the new data-set annotated during the second
iteration. In the third iteration, the manual classifier is replaced with the ML-classifier and
a new data-set is annotated. This final data-set contains no false positives and only such
false negatives that were not recognized by the ML-classifier nor by the list of servers.

Feature extraction. In order to derive and select the classification features, we analyzed
several packet traces of various known mining clients (e.g., miners deployed by authors such
as cpuminer) and the traffic belonging to the well-known mining servers listed in the catalog.
According to our analysis, we can state that:

• Mutual communication between a miner and a mining server often lasts for several
hours.

• Packets are generally small, often in the range from 40 to 120 bytes.

• Most flows are observed with TCP ACK and PUSH flags set.

• The destination port is either a well-known port of a different service or not well-known
but definitely lower than the source port.

• Flows are generally long-lasting, often exported before its end due to an active timeout.

• Communication is not disrupted, i.e., most flows do not contain the RST flag.
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Figure 5: Example of Stratum request (red) and response (blue)

Based on the analysis we have selected features (listed in Table 2 in the left column)
to be collected per each triplet (source and destination IP addresses and destination port).
The triplet and its features are collected in a hash table in a memory. In order to limit the
size of the hash table, triplets are evicted from the table if there is no update for more than
a defined number of seconds (we set up this inactive timeout to be one hour). However, the
passive detection itself is performed periodically, every 60 s.

The manually-designed classifier is based on a cumulative score which must overcome a
threshold T . The score is gradually increased by an increment of 1/n, where n is the number
of satisfied conditions per each feature. The conditions are listed in Table 2 in the right
column. The threshold T is experimentally set to reach approx. 90% of true positives.

The list of servers keeps track of the probed servers (positives and negatives) as well
as of the servers reported by the Catalog. Not only the list reduces the number of active
probes but it also reduces the number of false negatives (also in case of data annotation). If
the passive detection fails to recognize the triplet as mining there is a chance that the list
corrects the result due to its prior knowledge.

The active probe connects to a mining server pretending to be a regular miner asking
for a job. If the server replies with an expected answer, then it is very likely that: a) the
server is truly mining server and b) clients connecting to this given server on this particular
port are actually miners. The probe itself differs based on the mining protocol, where
each probe consists of several queries targeting different cryptocurrencies (namely Bitcoin,
Monero, Ethereum, Zcash). The probing itself runs in parallel since it takes time for a server
to respond or time out. A snippet of a query for Stratum protocol and a corresponding
response is given in Figure 5.

4.2. Evaluation

4.2.1. Data-sets

The experiments were carried out on data collected in Czech National Research and Ed-
ucational Network connecting more than 30 organizations (e.g., universities, labs, hospitals)
including more than 400 thousand users altogether. However, only 3 subnets conforming to
3 large organizations (over 50 thousand users) were considered for training and evaluation
in order to reduce the amount of training data and to allow for manual inspection of the
results. The observation points are located on the peering links with internet exchange
points or other national networks. Therefore, the communication between entities within
the national network is not part of the data.
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Flows Packets Bytes Interval
Train.-eval. 16M 117M 54G 2018/02/02 14:00 - 14:15
Real 3.6G 27.8G 99.5T 2018/02/09 14:00 - 20:00

Table 3: Volumes of utilized data-sets

We created an offline data-set10 consisting of the feature vectors and their classification
(i.e., mining/non-mining client). The data-set is annotated utilizing the schema described
in Section 4.

4.2.2. Experiments

The selected features were evaluated on the annotated data-set described in the previous
section. Figure 6 depicts cumulative normalized distribution function (CDF) of the selected
features. Each feature is assigned two functions – one for samples annotated as mining
(positive) and one for samples annotated as other (negative).

In Figure 6a we can observe that the distribution of positives and negatives differs. Please
note that the x-axis of this figure was shortened to display the detail (the maximum size is
1460 B). It can be seen that:

• approx. 40% of positives accounts for packets of average size from 36 to 80 bytes,

• more than 50% of positives accounts for packets of size 105 to 110 bytes,

• less than 10% of negatives consists of packets of size between 105 and 110 bytes and

• another 20% accounts for packets larger than 110 bytes.

Distribution of a number of packets per flow (in Figure 6b) and packets per minute
(in Figure 6c) are correlated. Please note that due to a high difference between minimum
(one packet per flow) and maximum (over 200 thousand packets), a logarithmic function is
applied first to highlight differences in lower order of magnitudes. The CDF is constructed
after applying the logarithmic function. Positive triplets belong to either a group with a
low number of packets or another group with a high number of packets per flow as well as
per minute. Moreover, in the case of negative triplets there exists less than 1% of instances
with an extremely high number of packets.

Figure 6d displays the distribution of the rate of flows with push and ack flag set to all
flows. The CDF shows that:

• more than 20% of negatives contains no ack nor push flags,

• CDF of negatives slowly rises to 40% at the rate of 0.8,

10The data-set can be downloaded from the results reproduction page [35]. This data-set was created by
a streamwise automated analysis framework [36].
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Figure 6: Cumulative distribution functions of features
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Class mining other
mining 95.3% 4.7%
other 2.6% 97.4%

(a) ML-classifier.

Class mining other
mining 89.7% 10.3%
other 8.6% 91.4%

(b) Manual classifier

Table 4: Confusion matrices

• on the other hand, there are nearly zero positives with a rate lower than 0.8 while the
majority of positives exhibits rate higher than 0.9.

The opposite holds for the distribution of other flags depicted in Figures 6e, 6f, 6g.
Positives with zero rate account for the majority of their samples while negatives only for
50% in case of SYN, for 80% in case of RST and 65% in case of FIN.

The detection works upon requests from miners to the mining server. To this end,
the feature capturing the rate between the number of flows with source port greater than
the destination port to all the flows aims at distinguishing between a prevalent request or
response communication. By keeping the rate as one of the features and not an a priori
condition we allow the detection algorithm to detect miners even in case of the triplets that
aggregate responses if the other features recognize that triplet as potentially positive. This
makes the algorithm more robust but for the price of more false positives and the higher
number of triplets to work with. The distribution of positives as well as of negatives are
almost identical.

Obviously, none of the features considered is good enough to directly distinguish between
positives and negatives. Therefore, the classification algorithm must combine the results of
several features to improve detection results. We evaluate two classifiers, one designed
manually and one based on machine learning, both described in Section 4.1.

As the training and evaluation data-set contains a significantly lower number of min-
ing communications (273 positive triplets) than of other communications (356,574 negative
triplets), we apply ClassBalancer filter to balance the weight of both sets in order not to
overtrain the detector on non-mining communications. The training process is set up with
the 5-fold cross-validation, and the number of instances in a leaf must be at least 100 (other
parameters are kept default). The higher the number of instances in a leaf, the shallower
tree is generated by the training process. The shallower tree, the faster is its evaluation as
well as the tree is less overfitted to a particular data-set.

The confusion matrix of the resulting ML-classifier is depicted in Table 4a. The table
shows that ML-classifier marks: a) mining communication as mining in most cases; b)
another communication as other; c) except in 2.6% of the cases where communication is
misclassified as mining (i.e., false positive); and d) although the ML-detector misclassifies
4.7% of the mining triplets, it is a significant improvement over the manually constructed
classifier.

The confusion matrix of the manual classifier is depicted in Table 4b. The manual
classifier fails to correctly recognize approximately 10% instances of each class. In case of
the false positives this would lead to three times higher number of the probes in comparison
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to the ML-classifier. Evaluation of the whole two-step detection schema with ML-classifier
yields 100% of true positives and true negatives (as the annotation is performed by the
schema itself). This highlights the contribution of the list of servers to reduction of false
negatives and the active probe to the reduction of the false positives in comparison with the
pure passive detection approach.

5. Catalog of Mining Pools

We were also looking for a more lightweight solution suitable even for small corporate
networks lacking capacities to install dedicated probes performing our active/passive traffic
monitoring employing machine learning. We want to offer conclusive detection results with
a minimum set of input information.

Network administrator and law enforcement agent (i.e., our main actors for mining de-
tection use-case) shall have basic NetFlow records of investigated device/network segment.
These records contain at least source/destination IP addresses, source/destination ports
and a protocol identifier. The reasoning behind our second approach is following. If we
know IP address of mining pool server, then we can reliably distinguish between mining and
non-mining connections. Moreover, if we are aware of the port number employed by a pool
operator, then we can tell what cryptocurrency is being mined through the connection.

5.1. Design

Both mining server’s hostname and port number are publicly available (except mining
malware cases) on pool’s webpage because they are necessary for successful setup of the
mining process. Without this vital information, the miner would not be able to configure
mining software properly.

Based on these premises, we have decided to manually collect all mining software con-
figurations announced by the biggest mining pools for several important cryptocurrencies.
We gathered all these data in a database, which is accessible through a web application
called sMaSheD (Mining Server Detector of cryptocurrency pools). In the rest of this sub-
section, we briefly outline some of the design choices that we have made during the sMaSheD
development.

There are hundreds of coins (and tokens) available in cryptocurrency universe. In or-
der to choose coins supported by sMaSheD, we did due diligence on ”the most popular”
cryptocurrencies taking into account public news [37], dedicated reports [38] and consulta-
tions with our LEA partners. Bitcoin is dominating this ladder due to its importance (e.g.,
around 80 million USD worth of Bitcoins stolen from a hacked cloud mining service provider
in December 2017 [39]). However, Monero becomes more and more used by malwares be-
cause of its anti-forensic features, which help to cover criminal’s tracks (e.g., nearly 5% of
all Moneros in circulation worth of 175 million USD were mined using malware [40]). The
third is Ethereum thanks to smart-contracts and popularity among token developers (e.g.,
30 million USD worth of Ethereum stolen by a wallet breach in July 2017 [41]). Regardless
of the current set of cryptocurrencies, sMaSheD is designed to be a generic catalog of mining
pools which should be easy to maintain and operate.

16



Our tool operates according to the diagram outlined in Figure 7. Pool information are
stored into sMaSheD together with available FQDNs of pool servers. Server names are
resolved onto a list of IPv4/IPv6 addresses, which are then verified as mining servers by
employing mining protocol probes. Each operational step is described in more detail below.

We investigated mining distribution among available pools for each chosen cryptocur-
rency. The majority of pools add their signature into the freshly mined block. This marking
allows to account the success rate of each participating pool. Moreover, pools are announc-
ing their overall hashrate performance publicly. By combining these data, we receive quite
a reliable overview about more and less important pools for every cryptocurrency. Anyone
can obtain these data from dedicated web-pages, e.g. [42] for Bitcoins, [43] for Litecoin, and
[44] for Ethereum.

Mining software configurations are collected by web scraping the content of pool web
pages. This procedure is currently performed manually by sMaSheD administrators. How-
ever, we aim at the automation of this process in the near future. The following set of
information is being collected for every pool (from web-pages similar to Appendix A):

• the name of the pool and its home URL;

• the list of pool servers identified by FQDN including ports associated with a mined
cryptocurrencies;

• every mining server FQDN is resolved onto a list of IPv4/IPv6 addresses.

Nevertheless, some pools are private (e.g., Bitfury pool with roughly 3% hashrate share
[45] run by a company11 with the same name producing ASIC mining solutions). The
operator of such pool does not maintain any publicly available web page, which makes
any web scraping of configuration impossible. Hence, sMaSheD catalog does not contain
a complete list of pools for a given cryptocurrency. Fortunately, private pools constitute a
fraction of overall network hashrate.

Mining server FQDNs may include information about location, mined cryptocurrency
(e.g., eth-us2.dwarfpool.com) or employed algorithm (e.g., sha256.eu.nicehash.com).

11For more, visit https://bitfury.com/

Pool info

web scraping

Resolving FQDNs 

of pool servers
Probing

a new pool

periodic check

a list of IPs

detected mining server

Figure 7: Operation schema of sMaSheD tool
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However, a single visit of a pool’s web page does not take into account the changing nature
of pool infrastructure (i.e., mining service availability on new/old servers).12

Pool operators provide server FQDNs, which are resolved by miners onto various IP
addresses based on miner’s geolocation. Based on deployment (see Figure 2), DNS may
resolve a single FQDN onto many IP addresses (e.g., stratum.slushpool.com) in order to
guarantee high-availability of a mining service. sMaSheD tries to keep the list of these IP
addresses as up-to-date as possible. It is a necessity especially for pools leveraging cloud
deployment because cloud providers often rotate available IP addresses among customers’
virtual machines. An IP address of mining server today can belong to a completely different
machine tomorrow. Because of this changing nature and since a single FQDN may actually
represent a set of load-balancing mining servers, sMaSheD periodically renews the list of IP
addresses associated with each mining server within the system.

In order to provide more reliable results if a given IP address belongs to a mining server
or not, we developed probing similar to one described in Section 4. This probing repeats for
all known pools (and their mining servers). During every periodic check of mining server,
sMaSheD sends crafted mining protocol message and waits for the response. If counterparty
reacts properly (with a message containing work package), then it confirms that this device
is really a pool’s mining server.

Probing is supported for Stratum and GetBlockTemplate mining protocols. sMaSheD is
probing single server for both of these protocols. GetWork is also implemented, but we were
not able to test it since this protocol is deprecated and not employed by any pool within
our system. There are three probing return codes:

• DOWN - Probing failed because connection had not been even established. This occurs
when a port on the server is closed, or some middle-box is blocking the connection.

• LISTEN - The connection was accepted on a specified port, but the alleged server
returns an empty response. This happens when a) server is using different mining
protocol than the tested one; b) port is opened but bound to a different application.

• UP - Probing succeeded because mining server responded with mining protocol mes-
sage containing valid content. Message validity depends on employed mining protocol
and consists of multiple value presence tests (e.g., error, result and other JSON fields).
This validator can be easily extended to support changes or even new mining protocols.

Probing return code is usually accompanied with a verbose result (i.e., destination un-
reachable, unknown method, mining subscribe). sMaSheD records each probing attempt,

12In order to address potential changes in server names, we conducted experiments to obtain them au-
tomatically. We tried to generate hostnames as permutations from a set of keywords, which includes cryp-
tocurrency abbreviations, country codes and pool domains. Unfortunately, this approach: 1) generated way
too many false hostnames; and 2) verification of generated hostnames is a time-consuming process. DNS
allows listing of all DNS records (including hostname A and AAAA records) through zone transfer, but this
is not applicable for our use-case.

For more about DNS records and zones, please read RFC 1035 and related ones.
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Figure 8: Message exchange between cgminer (red) and pool (blue)

which creates a history of service availability for a given mining server. These temporal data
can later prove that IP address was used by a mining server (at least from the perspective
of sMaSheD).

5.2. Evaluation

We need to be sure that our probing tool provides trustworthy results. In order to
validate them, we compared the behavior of sMaSheD with official mining software. We
decided to use cgminer 3.7.2 [46] because it is well-established and supports all available
mining protocols.

We tested both tools over the same set of mining servers and recorded communication
into PCAP file. We compared connection success rate (based on textual console outputs)
and messages exchanged between miner (either sMaSheD or cgminer) and mining server.
We did not find any differences for detected mining servers when comparing sMaSheD and
cgminer connection attempts. Both applications used the same set (1983 entries) of IP
addresses and ports of alleged mining servers.

sMaSheD system does not send any authentication credentials towards a pool upon the
check, the basic response for mining subscription message is enough to mark a device as
mining server positively. This is illustrated in Wireshark message captures depicted in
Figure 8 and Figure 9.

sMaSheD is coded as a web application employing PHP framework Laravel 5.8 with
front-end based on Bootstrap 3. The system is operated in a Docker container on CentOS
7. All source codes are available on [47].

The database of sMaSheD currently (in August 2018) contains:

• 15 cryptocurrencies mined on 96 various port numbers;

• 58 pools operating 212 servers with 987 addresses;

• 3954 probing associations (dubbed as mining properties) and it takes approximately
60 minutes to them (i.e., check all IP-port tuples of all known mining servers for both
Stratum and GetBlockTemplate).

Mining pools catalog sMaSheD (implemented as the second approach solution for miners
detection):
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Figure 9: Message exchange between sMaSheD (red) and pool (blue)

• offers access to all data in JSON format through REST calls;

• periodically probes available pools’ servers whether they provide mining services and
accounts the result;

• allows privileged users to update database according to the current situation (i.e., add
newly established pools).

6. Conclusion

In this paper, we provided an in-depth analysis of cryptocurrency mining operation. We
designed and implemented passive-active flow monitoring and sMaSheD catalog to detect
mining devices within the network. We tested the feasibility of these approaches on real-
life data as well as published data-sets utilized in this article under open access policy.
We conclude that catalog and passive-active approach are complementary - catalog is more
focused on maintaining current information about mining servers anywhere on the Internet,
while passive-active flow monitoring helps to reveal miners within enterprise networks. Data
from sMaSheD can be used for refining detection capabilities of flow monitor.

The results of passive-active detection approach show that although there is a high
number of false positives after the passive detection, it is sufficiently low to enable active
verification of the results. In comparison to the pure catalog approach, passive-active detec-
tion is capable of discovering emerging or deliberately hidden pools. As such it should serve
Security Operation Centers, CSIRT, and network security service providers to populate their
cyber threat intelligence systems.

The goal of our sMaSheD system is to become a tool as valuable for network administra-
tors and LEA operatives as what is ExoneraTor [48] application for TOR overlay network.
The sMaSheD prototype including a large data-set is available at [49] (see Appendix B for
demo screenshots). Moreover, anyone can deploy own installation and feed it with custom
pools. Our sMaSheD system can be deployed either from sources [47] or as a containerized
set of Docker images [50]. Online catalog offers a curated list of the most popular pools and
their servers. Data available in sMaSheD offer a neat solution for following use-cases:

• create an access control list that will block unwanted mining traffic (based on IPs and
ports known to sMaSheD);

• detect the presence of miners via inspection of their DNS queries (based on FQDNs
and IPs contained in DNS requests and answers);
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• data-retention proof about mining service availability for a given IP+port tuple.

In the future, we would like to automatize metadata collection for sMaSheD by a peri-
odic scraping of relevant web pages. Currently, the information provided by our catalog is
updated manually, which makes the system less dynamic than we would appreciate. Regard-
ing additional future work, we also consider other strategies on how to probe and positively
identify pool servers based on different mining protocol messages. Last but not least, we
are constantly adding new cryptocurrencies, pools, and servers as they appear in publicly
disclosed announcements of illicit mining activities.
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Appendix A. Mining software configuration

Figure A.10: Example of mining software setup taken from SlushPool
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Appendix B. sMaSheD Demo

Figure B.11: Probe results of selected subset from all available mining servers

Figure B.12: Log of probe attempts for a given mining server
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