
Deep Packet Inspection in FPGAs via
Approximate Nondeterministic Automata

Milan Češka, Vojtěch Havlena, Lukáš Holı́k, Jan Kořenek,
Ondřej Lengál, Denis Matoušek, Jiřı́ Matoušek, Jakub Semrič, and Tomáš Vojnar

Brno University of Technology, Faculty of Information Technology, IT4I Centre of Excellence, Czech Republic

Abstract—Deep packet inspection via regular expression (RE)
matching is a crucial task of network intrusion detection systems
(IDSes), which secure Internet connection against attacks and
suspicious network traffic. Monitoring high-speed computer net-
works (100 Gbps and faster) in a single-box solution demands that
the RE matching, traditionally based on finite automata (FAs), is
accelerated in hardware. In this paper, we describe a novel FPGA
architecture for RE matching that is able to process network
traffic beyond 100 Gbps. The key idea is to reduce the required
FPGA resources by leveraging approximate nondeterministic FAs
(NFAs). The NFAs are compiled into a multi-stage architecture
starting with the least precise stage with a high throughput and
ending with the most precise stage with a low throughput. To
obtain the reduced NFAs, we propose new approximate reduction
techniques that take into account the profile of the network
traffic. Our experiments showed that using our approach, we
were able to perform matching of large sets of REs from SNORT,
a popular IDS, on unprecedented network speeds.

I. INTRODUCTION

Intrusion Detection Systems (IDSes), such as SNORT [1],

SURICATA [2], or BRO [3], are widely used to secure Internet

connection against attacks and malicious traffic. One of the

prominent approaches for IDSes is deep packet inspection
(DPI), which is based on matching regular expressions (REs)

describing attack patterns against network traffic. Despite the

recent rapid increase of encrypted traffic on the Internet, RE-

based DPI is still in high demand since IDSes are often

deployed at network entry points after decryption.

Due to the increasing number of security vulnerabilities

and network attacks, the number of REs in IDSes is con-

stantly growing. At the same time, the speed of networks is

growing too—telecommunication companies started to deploy

100 Gbps links, the 400 Gbps Ethernet standard has recently

been ratified [4], and large data centers already call for

a 1 Tbps technology. Consequently, despite many proposed

optimisations, existing IDSes are still far from being able to

process the traffic in current high-speed networks at the line

speed. The best software-based solution we are aware of is the

one in [5], which can achieve a 100 Gbps throughput using

BRO on a cluster of servers with a well-designed distribution

of network traffic. Processing network traffic at such speeds

in single-box IDSes is far beyond the capabilities of software-

based solutions—hardware acceleration is needed.

A well-suited technology for accelerating IDSes is that of

field-programmable gate arrays (FPGAs). They provide high

computing power and flexibility for network traffic processing,

and they are increasingly being used in data centers [6], [7]

for this purpose. The flexibility of FPGAs allows them to

match REs at speeds over 100 Gbps [8]. Such high speeds,

however, put excessive demands on the resources of FPGAs.

The sets of the matched REs are complex, large, and still

growing, and matching on the speeds of tens and hundreds of

Gbps requires massive parallelization. For instance, in the HW

architecture that we propose in Section II, processing 100 Gbps

input network traffic requires 64 concurrently functioning RE

matching units (of 8-bit input width operating at 200 MHz) and

processing 400 Gbps requires even 256 units. These demands

easily exceed the size of any available FPGA chip. Reducing

the consumed resources is thus of paramount importance.

The FPGA matching units traditionally implement finite
automata (FAs), either deterministic (DFAs) or nondetermin-
istic (NFAs). In this paper, we focus on NFAs since they are

often much smaller than the corresponding DFAs and can be

efficiently mapped into FPGAs as shown, e.g., by [9]–[13].

The main conceptual difference from other works on ef-

ficient synthesis of NFAs into FPGAs (described in more

detail in the related work section), which allows us to achieve

much higher matching speeds, lies in leveraging reduced NFAs

that over-approximate the language of the original NFA—we

design novel reduction techniques that provide high-quality

tradeoffs between the precision and reduction factors.

Subsequently, in order to utilise the resources of an FPGA in

the best possible way, we propose a multi-stage architecture of

the RE matching engine. Consider an NFA A that recognizes

the language L of a given set of REs. The proposed archi-

tecture is composed of several stages where the first stage

contains many, concurrently running, copies of small NFAs

that crudely over-approximate L, and further stages contain

a smaller number of copies of NFAs that are larger but more

precise. The throughput of the stages decreases: the first stage

needs to be able to process the network traffic at the line speed

while the subsequent stages can handle less. The task of every

stage is to decrease the amount of traffic entering the next stage

by removing some of the packets that are guaranteed not to

be in L. The last stage contains either A, or, in the case of

insufficient FPGA resources, a reduced version of A that over-

approximates L (in which case the final processing step takes

place in software). The NFAs used in the over-approximating

stages need to discard a significant portion of their input from

further processing while keeping all of the suspicious traffic. In

109

2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/19/$31.00 ©2019 IEEE
DOI 10.1109/FCCM.2019.00025

the worst case, i.e., when every input packet is a member of L,

this is, naturally, impossible. Fortunately, in standard traffic on

a backbone network, only a small portion of the packets is

normally in L (the extreme case when a significant proportion

of network traffic is in L usually corresponds to a DoS attack,

which needs to be handled by other means than IDSes).

Our approximate NFA reduction takes an advantage of

particularities of standard network traffic. Namely, given an

NFA constructed from the REs of interest, we label its

states with their significance—the likelihood that they will

be used during processing a packet—, and then simplify the

least significant parts of the automaton. The simplification

is implemented by pruning and merging of the insignificant

states. The significance of a state is determined using training
traffic, a finite sample of “standard” traffic from the network

node where the IDS is to be deployed (it may be necessary to

generate a new design once in a while). The reduction scales

well—the worst-case time complexity of the most expensive

step, computing the state labelling, is O(n2k) where n is the

number of states of the NFA and k is the size of the training

traffic (since the automata are usually sparse, the quadratic

factor is rarely an issue on real-world examples).

We implemented the proposed approach and evaluated it on

REs taken from the IDS SNORT and other resources. We were

able to obtain a substantial reduction of the size of the NFAs

while keeping the number of false positives low. When used

within the multi-stage architecture, we were able to perform

RE matching at 100 and 400 Gbps on sets of REs whose sizes

were far beyond the capabilities of existing solutions.

The contributions of this paper are the following:

1) We propose a new HW architecture for matching REs

in high-speed computer networks using several stages of

NFAs that over-approximate the matched REs.

2) We developed new scalable over-approximation tech-

niques that take into account the profile of network traffic

and thus provide great reductions of the NFAs while

keeping an acceptable error.

3) We present experimental results proving that our ap-

proach can indeed be successfully used to implement

single-box hardware-accelerated IDSes at speeds of

100 Gbps or even 400 Gbps, which is, taking into account

the size and complexity of the considered REs, far beyond

the capabilities of current solutions.

Related Work

Many different architectures for resource-efficient mapping

of NFAs for fast RE matching into FPGAs have been designed,

starting with the work of Prasana and Sidhu [9]. Later, Clark

and Schimmel [10] reduced hardware resources by using

a shared decoder of input symbols, and the architecture of

Sourdis et al. [11] implements an NFA transition table by

a pre-decoded CAM. Lin et al. [12] introduced an architecture

that allows hardware resources to be shared for matching REs

with the same prefixes, infixes, and suffixes. Furthermore, the

work of Yun and Lee [13] improved the encoding of states

using the so-called at-most-two-hot encoding.

To increase the RE matching speed, some architectures

make the NFAs process multiple bytes of the input per clock

cycle. Prasanna et al. [14] introduced spatial stacking for

multi-character matching, but the high fan-out of the automa-

ton significantly decreases its frequency, already for matching

8 bytes per clock cycle. Achieving the 100 Gbps throughput,

which requires more than 64 bytes to be processed at once,

is thus not possible. Becchi and Crowley [15] introduced

a multi-striding technique, which is widely used to increase

the throughput of many NFA-based RE matching architectures.

Multi-striding alone, however, cannot increase the processing

speed to 100 Gbps because with the length of the stride, the

NFA grows rapidly, and the frequency drops dramatically [8].

We build on our previous work [8] introducing parallel

pipelined automata, which can scale the throughput of NFA-

based RE matching to over 100 Gbps. The processing speed

is increased at the cost of a linear growth of hardware

resources because the architecture consists of many automata

connected in one processing pipeline. In a recent work, a novel

FPGA architecture that significantly improved the throughput

of DFA-based RE matching has been proposed by Yang et
al. [31]. The architecture achieves a throughput of 140 Gbps

on a single FPGA chip for IDS modules where the underlying

DFAs have up to 10k states (corresponding to 34 REs of

SNORT). Our new multi-stage architecture, which leverages

approximate NFAs, fundamentally improves the results of [8]

and [31]. We can achieve, on a similar chip, a throughput

beyond 200 Gbps for much more complicated sets of REs (e.g.,

SNORT’s spyware module with 461 REs where the under-

lying NFA has ∼10k states and the corresponding DFA is pro-

hibitively large—our attempt of its determinisation depleted

the available memory (32 GiB) after reaching 616k states).

The works closest to our NFA reduction techniques are [16]

and [17]. In [16], the authors address the issue of software-

based acceleration of matching REs describing network attacks

in SNORT. To reduce the number k of membership tests needed

for matching a packet against k distinct DFAs, [16] builds

a “search tree” with the k DFAs in its leaves and with the

inner nodes occupied by preferably small DFAs that over-

approximate the union of their children (the precise DFA

accepting the union is prohibitively large). Matching a packet

then means to propagate it down the tree as long as it belongs

to languages of the DFA nodes. The over-approximating DFAs

are constructed using a similar notion of significance of states

as in our approach. The differences from our work are the

following: (1) [16] needs several membership tests per packet,

(2) it targets only software and its hardware implementation

would be too complex, (3) it does not consider reduction of

NFAs, and (4) it uses only a pruning-based reduction (we also

employ merging and simulation-based reductions).

Our previous work in [17] also targets approximate reduc-

tions of NFAs used in HW-accelerated IDSes. In contrast to

the approach in this paper, which uses a sample of the network

traffic to determine the states to remove, [17] uses a probabilis-

tic model of the traffic in the form of a probabilistic automaton,

which is used to label states of the NFA by probabilities of

110

activation. The method has the following drawbacks: (1) the

model can be constructed from a sample of traffic only semi-

automatically, with an aid of a network expert, and (2) it scales

to NFAs of up to only around 1,300 states, whereas our NFAs

are sometimes an order of magnitude larger. Moreover, [17]

considers only a single-stage architecture.

Simulation-based reduction is a standard language-

preserving NFA reduction technique, which, apart from its

basic form [18] (used in [19] in the context of FPGA-

accelerated IDSes), comes in a number of advanced variants

(e.g. look-ahead, multi-pebble, or mediated [20]–[22]), many

of them implemented in the tool REDUCE [23]. Although

REDUCE is a part of our workflow, the power of simulation

reduction alone is by far insufficient for our purposes.

Finally, we compare our approach with RE-matching

techniques that use modern general-purpose GPUs. As

in FPGAs, we can distinguish architectures leveraging

both DFAs and NFAs. Prominent GPU architectures

based on DFAs include Gregex [28], hierarchical paral-

lel machines [29], and a recent work employing algo-

rithm/implementation co-optimization based on a GPU per-

formance model [30]. These architectures are able to per-

form RE matching at the theoretical throughput of 100–

150 Gbps. Their practical performance is, however, limited by

the packet transfer throughput (e.g., the throughput of [28]

was 25 Gbps on NVIDIA GTX260), and, indeed, the complex-

ity of RE modules they can handle due to determinization.

An RE matching architecture for GPUs based on NFAs

was proposed in iNFAnt [27] and further improved in [32].

In contrast to the aforementioned DFA-based solutions, this

architecture can handle complex RE modules where the un-

derlying NFAs have over 10 thousand states. The performance

of this work is, however, significantly inferior to our FPGA-

based architecture. For example, for a category of SNORT

modules where the underlying NFAs have 3–18 thousand

states, [32] reports an overall throughput of 1–2 Gbps on

NVIDIA Tesla c2050. Our experiments in Section IV show

that, on SNORT modules with similar sizes, our approach is

able to achieve a throughput of over 100 Gbps.

Further disadvantages of using GPUs are that (i) they are

notorious energy hogs, e.g., the NVIDIA Tesla K20c (used

by [30]) card’s TDP is 225 W, which is significantly higher

than the 75 W consumed by our FPGA-based architecture and

(ii) they impose a high latency on packet processing (in the

order of hundreds of ms compared to ∼10μs of our solution).

II. ARCHITECTURE

In this section, we first describe the basic architecture of

the RE matching engine from [8], which is used as a building

block of our multi-stage architecture described later.

A. Regular Expression Matching Engine

The architecture proposed in [8] uses pipelining to enable

RE matching in high-speed networks on a single FPGA. An

example of an instance of this architecture consisting of k = 3
pipelined FAs and a single packet buffer is shown in Fig. 1a.

(a)

A1

A1

A1

A1

A2

A2

A3

stage 1
stage 2

stage 3

(b)

Fig. 1. (a) The architecture with k = 3 pipelined FAs sharing a single
packet buffer able to store N -bit data words (columns), each of which consists
of k independent n-bit blocks (rows). (b) An example of the multi-stage
architecture with 3 stages.

The packet buffer stores every N -bits-wide input data word

as k independent data blocks of n bits (i.e., N = k · n). Each

of the k FAs can read data blocks on the corresponding row of

the buffer and also receives the configuration of the previous

FA in the pipeline that processed the previous block of the

packet (or the initial configuration if the FA is processing

the first block of a packet). Based on these inputs, the FA

either computes the next configuration or determines an RE

that matches the packet. These pieces of information are sent

to the next FA in the pipeline until the last block of the packet

is processed, in which case a bitmap encoding all matching

REs is output. As only one of the k pipelined FAs can perform

RE matching in a given packet at any moment, the whole

pipeline can theoretically perform RE matching in k packets

in parallel.

The FA that encodes the complete set of REs is replicated

k times. For instance, to achieve the throughput of 100 Gbps,

we used the replication factor k = 16 in [8]. Such a massive

replication costs a lot of FPGA resources, which becomes

the major bottleneck of the approach. On the other hand,

the replication is also a unique opportunity for optimizations

because every reduction of the FA’s size means a 16-times

higher reduction in the whole architecture. From this point of

view, using NFAs is preferable to DFAs because, especially

in the combination with language-preserving simulation-based

reduction, they are much more succinct than DFAs, and can

also be mapped into FPGAs more efficiently than DFAs.

They are, however, still prohibitively large in many practical

cases; this calls for better reduction methods. In Section III,

we present two such methods in the form of approximate

reductions, which do not preserve the language of the FA.

The reduced FAs are used within our multi-stage architecture

(built on top of the pipelined approach of [8]), which allows us

to flexibly adjust the tradeoff between precision and consumed

resources. The multi-stage architecture is described next.

B. Multi-Stage Regular Expression Matching Architecture

We now propose a concept of a multi-stage RE matching

unit that uses aggressive approximate reductions, which do

not preserve the language of the NFA, to utilise FPGA

resources efficiently. The architecture of the RE matching unit

is composed of several stages (see Fig. 1b for an example

of a 3-stage architecture). Every stage in the architecture

contains an instantiation of the RE matching engine described

in Section II-A.

111

The idea is that each of the stages will use different NFAs—

starting with a bigger number of smaller and imprecise NFAs

and proceeding to smaller numbers of larger but more precise

NFAs—to decrease, in a resource-efficient way, the number

of packets entering the subsequent stage. Consider an NFA A
that recognizes the language L defined by the REs in a given

SNORT module. The first stage of the architecture contains

many copies of a small NFA A1, which over-approximates L,

i.e., apart from all packets in L, it also matches some packets

not in L. All matched packets are then sent to Stage 2,

which contains less copies of a larger NFA A2, which over-

approximates L, but more precisely than A1 (which is the

reason it is larger—less precise approximations of L obtained

by our reduction are usually smaller than more precise ones).

The number of copies of A2 can be smaller due to the fact

that the traffic entering it is just a fraction of the input traffic

since Stage 1 has removed a significant number of packets

from further processing. Each subsequent stage contains an

even smaller number of even more precise (and, therefore,

larger) NFAs. The final stage contains either copies of A,

in which case the output of the RE matching unit is exactly

the packets from L, or as precise over-approximation of L as

possible given the available resources, in which case the last

remaining false positives need to be removed in software.

Our approximate reduction methods (described in detail

in Section III) output a Pareto frontier of NFAs A = {A1, . . . ,
Ak} obtained from the input NFA A. Each NFA Ai comes

with two parameters: (1) its size given as the number of look-
up tables (LUTs) obtained from its HW synthesis, denoted

by the function LUT : A → N, and (2) the probability

that it accepts an input packet, denoted by the function

Acc : A→ [0, 1]. Note that lower is better for both parameters.

Given the set A, we aim at obtaining a configuration of the

multi-stage architecture that is as small and precise as possible.

This gives rise to the following two optimisation problems:

• OPTRSC : minimise the amount of resources (denoted by

the variable 〈RSC〉) used by the RE matching unit given

a maximum speed of traffic on its output X and

• OPTout: minimise the speed of the traffic on the output

of the last n-th stage of the RE matching unit (denoted by

the variable 〈outn〉) given a fixed amount of resources Y .

The optimization problems can be formalised (and then

solved by a constraint solver) using the following constraints.

The first constraint formalises that, in an n-stage architec-

ture, the output of each stage (denoted using a real-valued

variable 〈outi〉) is the fraction of the unit’s input traffic 〈out0〉
given by the acceptance probability of the used NFA Aj (the

0/1 variable 〈iusesj〉 denotes that Stage i uses the NFA Aj):

∀1 ≤ i ≤ n : 〈outi〉 = 〈out0〉 ·
∑
Aj∈A

〈iusesj〉 ·Acc(Aj). (1)

The second family of constraints formalises that every stage

uses precisely one version of the NFA from A:

∀1 ≤ i ≤ n : 1 =
∑
Aj∈A

〈iusesj〉. (2)

TABLE I
(A) PARAMETERS OF THE NFAS. (B) POSSIBLE CONFIGURATIONS OF THE

MULTI-STAGE UNIT (OUTPUT OF EACH CONFIGURATION IS 10 GBPS).

LUT Acc
A1 100 0.5
A2 200 0.2
A3 1,000 0.1

(a)

Stg. 1 Stg. 2 Stg. 3 LUTs
1 16×A3 — — 16,000
2 16×A2 4×A3 — 7,200
3 16×A1 8×A3 — 9,600
4 16×A1 8×A2 4×A3 7,200

(b)

Finally, the third constraint formalises the total re-

sources 〈RSC〉 used by the architecture:

〈RSC〉 =
∑

1≤i≤n

⌈ 〈outi−1〉
TP

⌉
·
∑
Aj∈A

〈iusesj〉 · LUT (Aj). (3)

We suppose that TP is the throughput of the NFAs (obtained

as the multiple of the NFA’s input bit-width and the clock

frequency). The total resources are then computed in such

a way that the i-th stage uses �〈outi−1〉/TP	 NFAs Aj (since

it needs to be able to process all of the output traffic from the

previous stage), each taking LUT (Aj) LUTs.

The considered optimisation problems can then be for-

malised as follows:

OPTRSC : Minimise 〈RSC〉 subject to 〈outn〉 ≤ X,

OPTout : Minimise 〈outn〉 subject to 〈RSC〉 ≤ Y.

Here, X is the maximal permissible output traffic, and Y is

the maximal number of LUTs available in the architecture.

Example: Consider the scenario with 100 Gbps input deliv-

ered over a 512-bit interface on 200 MHz. Moreover, assume

that the data width of the NFAs is set to 32 bits, their

throughput is, therefore, 6.4 Gbps, so 16 of them are needed

to process the input 100 Gbps, and, further, assume that

there are 10,000 available LUTs. Suppose that we are given

a precise NFA A for which our reduction procedure—based

on a sample of network traffic—yields a set of approximated

NFAs A = {A1,A2,A3 = A} (i.e., A3 is the precise NFA A)

such that their parameters are as given in Table Ia. Ignoring

the (negligible) overhead of stage interconnection, the possible

configurations of the multi-stage unit are presented in Table Ib.

Note that Configuration 1 (which uses a single stage with no

approximation) cannot fit within the available resources. �

III. APPROXIMATE NFA REDUCTION

A nondeterministic finite automaton (NFA) over a finite

alphabet Σ is a quadruple A = (Q, δ, qI , F) where Q is

a finite set of states, δ ⊆ Q× Σ×Q is a transition relation,

qI ∈ Q is the initial state, and F ⊆ Q is a set of final states.

For q ∈ Q and a ∈ Σ, we write δ(q, a) to denote the set

{q′ ∈ Q | (q, a, q′) ∈ δ}. It is lifted to sets S ⊆ Q as

δ(S, a) =
⋃

q∈S δ(q, a) and to words as δ̂(q, ε) = {q} and

δ̂(q, wa) = δ(δ̂(q, w), a) for w ∈ Σ∗.
Our hardware architecture uses NFAs to accept packets

based on their prefixes, and so we use a slightly non-standard

notion of the language of an NFA. Namely, the language of

a state q is the set of words LA(q) = {w1.w2 ∈ Σ∗ | ∃qf ∈

112

F : qf ∈ δ̂(q, w1)}, i.e., words whose prefix can take A from

q to some accepting state, followed by an arbitrary suffix. The

language of A is then defined as L(A) = LA(qI).

A. Pruning Reduction

Our first NFA reduction is the so-called pruning reduction.

The reduction removes from the automaton a set R of states

considered as insignificant, together with all their adjacent

transitions. At the same time, in order to overapproximate the

original language, all states that are not removed and that have

a transition going to a removed state are made final. Below,

we call such states border states, forming a set B.

More precisely, let A = (Q, δ, qI , F) be an NFA over Σ,

and let R ⊆ Q, qI ∈ R, be a set of states to be removed

(we will later discuss how to find such a set). Let B = {q ∈
Q \R | ∃a ∈ Σ : δ(q, a)∩R = ∅} be the set of border states

corresponding to R. The operation of pruning from A the

states from R produces the NFAAR = (Q′ = Q\R, δ′, qI , F ′)
where δ′ = δ ∩ (Q′ × Σ×Q′) and F ′ = (F ∩Q′) ∪B.

The pruning reduction over-approximates the original lan-

guage, i.e., L(A) ⊆ L(AR). The obtained NFA can, of

course, be potentially further reduced by exact, simulation-

based reductions [23].

The trade-off between reduction and accuracy that the

pruning reduction offers depends on the choice of the set R
of the states to be removed. We therefore try to compose R
from such states of A that have the least influence on the

acceptance/rejection of packets in typical traffic. For that, we

use a representative sample S of the network traffic in the

form of a multiset of packets. We label each state q ∈ Q
of the input NFA A by its significance: the number �(q)
of packets from S over which the state q can be reached

in A (if there are multiple ways of reaching q over the

same packet, we do not distinguish them). Formally, �(q) =∑
w∈{w1.w2∈S|q∈δ̂(qI ,w1)} S(w) where S(w) is the number of

occurrences of the packet w in the multiset S.

The error caused by the pruning reduction based on a set

of states R wrt a sample S can be bounded in terms of

significance of the border states B corresponding to R. Indeed,

only the packets accepted at some border state can get wrongly

accepted. Formally, errorac(S,A,AR) ≤
∑

q∈B �(q) where

errorac(S,A,AR) =
∑

w∈L(AR)\L(A) S(w) is the exact error

caused by the reduction on the sample S.

To specify the desired reduction, we use a target reduction
ratio θ ∈ (0, 1] meaning that the automaton should be reduced

to m = �θ · |Q|	 states. To obtain m states while minimising

the error, we fill R with |Q| −m least significant states1.

The significance of all states is computed efficiently in

time O(kn2) where n = |Q| and k =
∑

w∈S |w| · S(w)
is the overall length of S. For that, we can use the subset

construction known from determinisation of NFAs, just run on

1This strategy can cause a larger error when an originally non-accepting
border state of a high significance is forced to become accepting by some
insignificant accepting successor state. This could be avoided, e.g., by prefer-
ring pruning final states without a significant successor border state. In our
experiments, we, however, sufficed with the simple strategy.

particular packets w ∈ S . Namely, each state’s significance

is initially set to zero. Then, we run A over every w =
a1 . . . al ∈ S , computing consecutive sets of states Qi that

are possibly reached after processing the prefix a1 . . . ai, and,

at the end of the run, we increment by one the significance of

each of the states encountered on the way. Formally, for each

w ∈ S , we start with Q0 = {qI}, and, subsequently, compute

Qi+1 = δ(Qi
1, ai+1) for all 1 < i < l. The significance of all

states in the set
⋃l

i=0 Q
i is then incremented by one.

B. Merging Reduction

Our second reduction, called a merging reduction, is mo-

tivated by an observation that, in typical traffic, packets that

start with a prefix of a certain kind (i.e., they are from some

language L) almost always continue by an infix w that follows

a predetermined pattern (a concrete word or a sequence of

characters from predetermined character classes). We say that,

in a sample S, the pattern of w is predetermined by L. The part

of the automaton that, after reading the prefix from L, tests

whether the infix fits the pattern can be significantly simplified

by collapsing it into a single state with a self-loop over all

the symbols that label the original transitions while causing

a small error only: Indeed, it is unlikely that a packet with

an infix other than the predetermined one will appear after

the given prefix. Note that the pruning reduction discussed

previously is not suitable for simplifying the states that test

the pattern as they may be of an arbitrarily high significance.

The operation of merging a sub-automaton based on a set S
of states means to (1) redirect the targets of transitions enter-

ing S to a new state s, (2) reconnect all transitions leaving S to

start from s instead, (3) make s final iff any of the states in S
is final, and (4) remove the states of S. Note that, like pruning,

merging also over-approximates the language by allowing any

permutation of the infix pattern.

Our detection of the parts of automata to be merged—

typically, sequences of states—is based on a notion of dis-
tance defined for a pair of states q and r as dist(q, r) =

max
(

�(r)
�(q) ,

�(q)
�(r)

)
if they are neighbours (i.e., r ∈ δ(q, a) or

q ∈ δ(r, a) for some a) and as dist(q, r) = ∞ otherwise.

Intuitively, a small dist(q, r) means that �(q) and �(r) are sim-

ilar, which typically happens if most of the packets reaching q
continue to r or vice versa.2 Symbols on transitions from q to

r hence form a predetermined pattern of length 1. Therefore,

merging q and r, and thus over-approximating the pattern,

should cause a small error only. Merging of longer patterns is

then achieved by merging multiple patterns of length 1.

The merging reduction is parameterised by a distance ceil-
ing D—we merge states with distance below D. Formally,

the sets of states to be merged are defined as the equivalence

classes of the smallest equivalence ∼D ⊆ Q×Q that contains

all pairs (q, r) with dist(q, r) ≤ D (in other words, ∼D is the

reflexive transitive closure of {(q, r) | dist(q, r) ≤ D}).
2In theory, it does not have to be the case, as dist(q, r) may be polluted

by packets reaching and leaving q and r from and to other states, but it is
mostly the case in practice.

113

q0

q1

q2 q3 q4

q5 q6

q7

a

b

c d

a

c

b q0

q1

q2

q5 q6

q7

a

b
c, d

a

b

c

Fig. 2. An input NFA (left) and an NFA obtained by merging (right).

TABLE II
SIZES OF THE CONSIDERED NFAS.

NFA States Transitions
backdoor 3,898 100,301
l7-all 7,280 2,647,620
pop3 923 209,467
sprobe 168 5,108
spyware 12,809 279,334

The merging reduction does not provide theoretical guaran-

tees, and it is to a large degree based on empirical experience,

in which its parametrisation with D allows one to control the

ratio between reduction and error well. There are, however,

cases in which merging leads to an undesirable loss of preci-

sion even with a small D. To limit such effects, we restrict

merging by an additional parameter, the frequency ceiling F ∈
(0, 1]. We prohibit merging of states with freq(q) = �(q)

|S| > F ,

that is, those whose frequency in S is larger than the ceiling.

Formally, given D and F , we merge the equivalence classes

of ∼D ∩ {(q, r) | freq(q) ≤ F ∧ freq(r) ≤ F}.
An example of the merging reduction is shown in Fig. 2,

assuming dist(q2, q3) < D, dist(q3, q4) < D, and that all

other distances are greater than D. To make the states q2, q3,

and q4 less critical, we further assume that freq(q2) < F ,

freq(q3) < F , freq(q4) < F . Intuitively, this means that

only some packets continue over b from q0 to q2. Roughly

all of those packets then continue until they reach q4, where

another important split of the acceptance happens. The prefix

b, however, predetermines the subsequent occurrence of cd.

By simplifying the automaton and allowing any string from

{c, d}∗ to appear after b, no significant error arises since most

packets will anyway contain cd after b only.

IV. EVALUATION

In this section, we present an experimental evaluation of the

proposed approach on real RE-matching instances.

A. Considered REs

We experimented with a set of REs describing protocols and

attacks obtained from the L7 classifier for the Linux Netfilter

[24] framework and from the SNORT tool [1]. From the L7

classifier describing L7 protocols, we used all rules, giving us a

set of REs denoted as l7-all below. From the SNORT tool,

we used the following set of REs: backdoor, pop3, and

spyware-put (abbreviated as spyware below), describing

attacks on selected protocols. We also used nine rules, denoted

as sprobe, proposed for lawful interception in cooperation

with our national police. We used the NETBENCH tool [25] for

(i) translating REs to NFAs and (ii) the synthesis of reduced

NFAs to VHDL. The sizes of the NFAs obtained by translating

the considered REs are shown in Table II.

B. Evaluation Data

The sample of network traffic that we used for our exper-

iments was obtained from two measuring points of a nation-

wide Internet provider connected to a 100 Gbps backbone link.

The training data used for labelling the automata contained

∼1M packets sampled from the captured traffic during the

time of 19.5 min containing 509M packets. The testing data

used for the subsequent evaluation consisted of ∼21M packets

sampled from the captured traffic containing ∼210M packets.

The testing data was sampled over the time of 105 hours (over

4 days) such that every hour 1M packets were captured.

C. Evaluation Environment

We implemented the proposed techniques in a Python

prototype [33]. In the experiments, we ran merging with the

frequency ceiling F = 0.1 and the distance ceiling D = 1.005.

FPGA synthesis was done using Xilinx Vivado v.2018.1.

D. Running Time

Our reduction techniques are light-weight, and, in contrast

to existing approaches [17], they are capable of reducing

large NFAs appearing in real-world RE matching problems

for real network scenarios. (Recall that the largest automata

we consider have over 12k states or over 2.5M transitions.)

Using the training data containing 1M packets, we needed

about 15 min to derive the state labelling function � for the

largest considered NFAs. The runtime of the other parts of

the reduction process was then negligible. Also note that, for

a given NFA, the labelling can be performed only once for

various values of the reduction ratio θ.

E. Research Questions

We are interested in the following two key research ques-

tions related to the proposed approach:

R1: Are our reduction techniques able to provide useful trade-

offs between the reduction error and the reduction ratio?

R2: Can the reduced NFAs be compiled into a multi-stage

architecture with throughput of 100 Gbps and beyond?

R1: Reduction Trade-offs

In our experiments with the reduction techniques, we con-

sider both the pruning and merging reductions. The merging

reduction is, however, always combined with a subsequent

pruning reduction as a standalone use of merging turned out

not to be effective. Moreover, as a baseline, we also consider

a so-called bfs-reduction. It does not use any training traffic

and works by simply pruning away states that are far from the

initial state. All of the approximate reductions are followed

by the exact simulation-based reduction [20] whenever the

tool REDUCE [23] implementing this reduction is capable of

handling the approximate NFA (it fails on large NFAs).

We consider two metrics characterizing the reduced au-

tomata. The first metric is the acceptance precision AP =

114

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6

A
cc

ep
ta

nc
e

pr
ec

is
io

n

Reduction ratio

bfs
merge+prune

prune

(a) AP for l7-all.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6

A
cc

ep
ta

nc
e

pr
ob

ab
ili

ty

Reduction ratio

bfs
merge+prune

prune

(b) Prob for l7-all.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
cc

ep
ta

nc
e

pr
ec

is
io

n

Reduction ratio

bfs
merge+prune

prune

(c) AP for backdoor.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
cc

ep
ta

nc
e

pr
ob

ab
ili

ty

Reduction ratio

bfs
merge+prune

prune

(d) Prob for backdoor.

Fig. 3. Results for l7-all and backdoor.

ATP

AFP+ATP
where ATP denotes acceptance true positives (the

packet is accepted and should have been accepted) and AFP

denotes acceptance false positives (the packet is accepted and

should not have been accepted). This metric expresses the ratio

of correctly accepted packets to all accepted packets from the

testing traffic sample and hence characterizes the error caused

by the approximation. Our second metric is the acceptance
probability Prob = ATP+AFP

|S| (where |S| denotes the size of

the input network traffic sample) that captures what fraction

of the input traffic is accepted by the reduced NFA and passed

to the next stage, i.e., how much the NFA reduces the flow of

packets to be further processed. Prob is an important metric

for building efficient multi-stage architectures.

Figs. 3 and 4 show the trade-offs achieved by our different

reduction strategies (namely, bfs, prune, and merge-prune) on

challenging RE matching problems.

Figs. 3a and 3b show results for the NFA describing

l7-all. We observe that the particular reduction techniques

provide a different quality of the trade-offs. In particular, bfs
is not capable of producing any useful approximation. Further,

we can observe that merge-prune dominates for reduction

ratios lower than 0.3, but it is significantly outperformed by

prune for higher ratios.

The figures show that these trends are preserved for both

metrics. Note that the original NFA accepts around 17% of

the traffic, and using the prune technique, we obtain a reduced

NFA having only a half of the states with almost the same

acceptance probability Prob.

The reduction trade-offs that we obtain for the NFA of the

backdoor attack are plotted in Figs. 3c and 3d. The bfs
reduction is again significantly outperformed by both the prune
and merge-prune methods when AP is considered. Note that

these two techniques provide reductions that achieve almost a

100 % AP using only 35 % of the states of the original NFA.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
cc

ep
ta

nc
e

pr
ec

is
io

n

Reduction ratio

bfs
merge+prune

prune

Fig. 4. AP for spyware.

As the NFA accepts only 0.2 % of the traffic, we can obtain the

accepting probability Prob that is close to this value using only

22 % of its states regardless of the reduction used. We observed

similar trends also for the pop3 and sprobe attacks (not

presented here due to lack of space) where almost a 0 % Prob
was achieved using only 20 % and 25 % states, respectively.

Finally, we report the results for spyware REs in Fig. 4.

We can see that, wrt AP , prune lags behind the other two

techniques for reduction ratios between 0.15 and 0.35. For

higher reductions, all techniques provide AP close to 100 %.

Similar trends can be observed also for the Prob metric (not

presented here). Note that the original NFA accepts about

3.5 % of the input traffic only.

The experiments conducted within R1 clearly demonstrate

that the proposed reduction techniques are able to provide

high-quality trade-offs between the precision and the reduction

factors. They also show that our techniques can considerably

outperform the baseline bfs-reduction and can handle very

complex NFAs (having more than 10k states), where existing

methods (such as those in [17] and [23]) fail.

R2: Compiling the Multi-Stage Architecture

We will use the reduced NFAs from R1 to obtain in-

stantiations of the multi-stage architecture that can be used

in FPGA-based IDSes to effectively decrease the amount of

traffic that the software part of the IDS needs to process.

We synthesise our designs for a card with the Xilinx Virtex

UltraScale+ VU9P FPGA chip, which contains 1,182k LUTs

(other resources are in our case always dominated by the

number of LUTs). From our experience, it is possible to use up

to 70 % of the LUTs available on the FPGA and successfully

route designs at the considered frequency (200 MHz), which

leaves us with 827k LUTs that we can use. Moreover, the

components that we use for receiving packets and transfering

them to the CPU consume around 90k LUTs, we are therefore

left with 737k LUTs for RE matching.

In every stage of the RE matching unit, we use the pipelined

NFAs architecture described in Section II-A instantiated with

8-bit data-width of the NFAs, which gave us the best results.

Therefore, the throughput (parameter TP in Section II-B) of

every NFA at 200 MHz is 1.6 Gbps. The optimisation problem

of compiling the multi-stage architecture leads to a mixed

integer quadratically constrained quadratic program, which we

solve using the Gurobi solver [26] (this step took at most 2 s).

115

TABLE III
OPTIMAL MULTISTAGE ARCHITECTURE FOR THE BACKDOOR MODULE.

Precise
speed 1 stg 2 stg 3 stg 4 stg
100 236k 56k 50k 50k
200 473k 113k 99k 96k
400 946k 223k 194k 186k

TABLE IV
OPTIMAL MULTISTAGE ARCHITECTURE FOR THE SPYWARE MODULE.

Precise 4 % of traffic
speed 1 stg 2 stg 3 stg 4 stg 1 stg 2 stg 3 stg 4 stg
100 5M 444k 296k 296k 227k 61k 65k 69k
200 10M 809k 513k 513k 453k 122k 126k 133k
400 20M 1.5M 945k 945k 907k 242k 247k 261k

Our goal is to obtain single-box IDSes using a combination

of hardware preprocessing and a software IDS. This means that

the task of the hardware accelerator is to decrease the amount

of the traffic entering the software part as much as possible

while keeping all suspicious packets. Ideally, the final stage

of the RE matching unit would be the precise NFA, so the

hardware accelerator would output precisely the packets that

match the given set of REs. Due to the size of the precise

NFAs, this is, however, often infeasible, so we also consider

the setting that decreases the traffic as much as possible.

Below, we provide results of our experiments for some of

the considered sets of REs. We tried to compile architectures

for the speeds 100, 200, and 400 Gbps using 1–4 stages.

1) backdoor: In Table III, we present results of optimal

architectures for the SNORT’s backdoor module. We present

only results for the precise setting, as our multi-stage architec-

tures can handle 400 Gbps traffic using the available resources

(737k LUTs). Note that the single stage architecture (i.e.,

the “1 stg” column), can process traffic up to 200 Gbps only

(the precise NFA consumes 3,695 LUTs). In order to process

400 Gbps, it is necessary to use the multi-stage architecture,

in which case four stages give the best results.

2) spyware: Our results for the SNORT’s spyware
module are shown in Table IV. This module is much

more complex than backdoor, since its precise

NFA takes ∼78k LUTs. Therefore, for the throughputs of

100 Gbps and 200 Gbps, the multi-stage architec- ture

is needed. For 400 Gbps, we were not able to obtain

a precise configuration; we were, however, able to obtain

multi-stage configurations (the best one with 2 stages)

that decrease the amount of traffic sent to the CPU below

4 % (i.e., 16 Gbps). Although 16 Gbps is on the edge of

capabilities of current SW-based IDSes, we stress that the

final-stage reduced NFA has AP very close to 100 % (Fig. 4)

and thus only a small fraction of packets are misclassified.

3) l7-all: Our most challenging example is from the

l7-all RE set. Although the size of the precise automaton

is not as large as for spyware (the precise NFA consumes

27,650 LUTs), it is less amenable for approximate reduction

because, in contrast to SNORT modules, it contains REs that

are matched by many packets. The results for the l7-all RE

set are shown in Table V. Our best solution reduces the input

traffic from 100 Gbps to 17 Gbps and uses 597 kLUTs in two

TABLE V
OPTIMAL MULTISTAGE ARCHITECTURE FOR THE L7-ALL MODULE.

Precise 17 % of traffic
speed 1 stg 2 stg 3 stg 4 stg 1 stg 2 stg 3 stg 4 stg
100 1.8M 894k 880k 880k 1.1M 597k 648k 701k

stages. As in the previous case, the final-stage reduced NFA

has almost 100 % precision and thus only a small fraction of

packets are misclassified.

4) sprobe and pop3: The sets of REs for sprobe and

pop3 are, on the other hand, quite less challenging. The

precise NFAs consume only 195 and 1,721 LUTs, respectively,

so we can easily obtain a precise design at 400 Gbps with only

a single stage using ∼50k and ∼440k LUTs, respectively.

The experiments conducted within R2 clearly demonstrate

the practical potential of our approach. The key observation is

that the resource reductions provided by the particular multi-

stage architectures directly depend on the characteristics of

the underlying NFAs (both the precise NFA and the reduced

variants) and the typical traffic. Apart from the size of the

precise NFA, there are two crucial characteristics: (1) whether

the number of packets accepted by the precise NFA is low

and (2) whether the reduction can compress the NFA while

not increasing the number of accepted packets too much.

If both these conditions are met (as for backdoor and

spyware), we observe drastic resource savings allowing us

to achieve throughput of the resulting IDSes going beyond

100 Gbps, which is unprecedented for REs of such size and

complexity. On the other hand, if the original NFA is large,

accepts many packets, and highly precise reductions achieve

only moderate reductions (as for l7-all), the resulting multi-

stage architecture provides only moderate savings and ensuring

100 Gbps remains at the edge of what we can achieve.

V. CONCLUSION

We have leveraged techniques for approximate reduction

of NFAs to allow RE matching of a set of SNORT/Netfilter

modules on speeds significantly beyond the capabilities of

the state-of-the-art single-box solutions, namely 100 and even

400 Gbps. The use of the approximate reduction allowed us

to significantly decrease the size of the NFAs while keeping

the number of false positives low (e.g. for SNORT’s spyware
module, we obtained a reduction to 28 % of the original size

while keeping the error below 2 %). Moreover, the use of

the multi-stage architecture better utilises FPGA resources

(e.g., using 3 stages, we were able to reduce the resources

consumed by spyware down to ∼5 % of the original without

introducing any error). As far as we know, our technique is

the first solution that can be used to obtain single-box IDSes

detecting large sets of complex REs at speeds over 100 Gbps.

Acknowledgement: We thank Vlastimil Košař for his com-

ments on an earlier draft of the paper and Martin Žádnı́k for

providing us with the backbone network traffic. This work was

supported by The Ministry of Education, Youth and Sports

from the National Programme of Sustainability (NPU II)

project IT4Innovations excellence in science — LQ1602.

116

REFERENCES

[1] M. Roesch et al., SNORT http://www.snort.org
[2] Matt Jonkman et al., “SURICATA,” Emerging Threats, 2017. [Online].

Available: {http://suricata-ids.org}
[3] Vern Paxson et al., “The BRO Network Security Monitor,” 2018.

[Online]. Available: {http://www.bro.org}
[4] “IEEE Standard for Ethernet - Amendment 10: Media Access Control

Parameters, Physical Layers, and Management Parameters for 200 Gb/s
and 400 Gb/s Operation,” IEEE Std 802.3bs-2017, pp. 1–372, 2017.

[5] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B. Tierney,
“The NIDS Cluster: Scalable, Stateful Network Intrusion Detection on
Commodity Hardware,” in RAID’07. Springer, 2007, pp. 107–126.

[6] A. Caulfield et al., “A cloud-scale acceleration architecture,” in MI-
CRO’16, 2016.

[7] A. Putnam et al., “A Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services,” in ISCA’14. IEEE Press, 2014, pp. 13–24.

[8] D. Matousek, J. Korenek, and V. Pus, “High-speed Regular Expression
Matching with Pipelined Automata,” in FPT’16. IEEE, 2016.

[9] R. Sidhu and V. K. Prasanna, “Fast Regular Expression Matching Using
FPGAs,” in FCCM’01. IEEE Computer Society, 2001, pp. 227–238.

[10] C. R. Clark and D. E. Schimmel, “Efficient Reconfigurable Logic
Circuits for Matching Complex Network Intrusion Detection Patterns,”
in FPL’03. Springer, 2003, pp. 956–959.

[11] I. Sourdis, J. Bispo, J. M. P. Cardoso, and S. Vassiliadis, “Regular
Expression Matching in Reconfigurable Hardware,” Journal of Signal
Processing Systems, vol. 51, no. 1, pp. 99–121, 2008.

[12] C. Lin, C. Huang, C. Jiang, and S. Chang, “Optimization of Pattern
Matching Circuits for Regular Expression on FPGA,” IEEE Trans. VLSI
Syst., vol. 15, no. 12, pp. 1303–1310, 2007.

[13] S. Yun, K. Lee, “Optimization of Regular Expression Pattern Matching
Circuit Using At-Most Two-Hot Encoding on FPGA,” FPL’10, 2010.

[14] Y. H. Yang and V. Prasanna, “High-Performance and Compact Archi-
tecture for Regular Expression Matching on FPGA,” IEEE Transactions
on Computers, vol. 61, no. 7, pp. 1013–1025, 2012.

[15] M. Becchi and P. Crowley, “Efficient Regular Expression Evaluation:
Theory to Practice,” in ANCS’08. ACM, 2008, pp. 50–59.

[16] D. Luchaup, L. D. Carli, S. Jha, and E. Bach, “Deep Packet Inspection
with DFA-trees and Parametrized Language Overapproximation,” in
INFOCOM’14. IEEE, 2014, pp. 531–539.

[17] M. Češka, V. Havlena, L. Holı́k, O. Lengál, and T. Vojnar, “Approxi-
mate Reduction of Finite Automata for High-Speed Network Intrusion
Detection,” in TACAS’18. Springer, 2018, pp. 155–175.

[18] D. Bustan and O. Grumberg, “Simulation Based Minimization,” in
CADE’17. Springer, 2000, pp. 255–270.

[19] V. Košař, M. Žádnı́k, and J. Kořenek, “NFA Reduction for Regular
Expressions Matching Using FPGA,” in FPT’13, 2013, pp. 338–341.

[20] L. Clemente and R. Mayr, “Advanced Automata Minimization,” in
POPL’13. ACM Trans. Comput. Log., 2013, pp. 63–74.

[21] K. Etessami, “A Hierarchy of Polynomial-Time Computable Simulations
for Automata,” in CONCUR’02. Springer, 2002, pp. 131–144.

[22] P. A. Abdulla, Y. Chen, L. Holı́k, and T. Vojnar, “Mediating for
Reduction (On Minimizing Alternating Büchi Automata),” Theoretical
Computer Science, vol. 552, pp. 26 – 43, 2014.

[23] R. Mayr et al., “REDUCE: A Tool for Minimizing Nondeterministic
Finite-Word and Büchi Automata,” http://languageinclusion.org.

[24] R. Russel et al., “Netfilter,” 2018. [Online]. Available: http://netfilter.org
[25] V. Pus, J. Tobola, V. Kosar, et al., “Netbench: Framework for Evaluation

of Packet Processing Algorithms,” in ANCS’11. ACM/IEEE, 2011.
[26] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”

2018. [Online]. Available: http://www.gurobi.com
[27] N. Cascarano, P. Rolando, F. Risso, and R. Sisto. “iNFAnt: NFA pattern

matching on GPGPU devices,” SIGCOMM Comput. Commun. Rev.
vol. 40, issue 5, pp. 20-26, 2010.

[28] L. Wang, S. Chen, Y. Tang, and J. Su, “Gregex: GPU Based High Speed
Regular Expression Matching Engine,” in IMIS’11, pp. 366-370, IEEE,
2011,

[29] C. Lin, C. Liu and S. Chang, “Accelerating Regular Expression Matching
Using Hierarchical Parallel Machines on GPU,” in GLOBECOM’11, pp.
1-5, IEEE, 2011.

[30] C.L. Hsieh, L. Vespa, and N. Weng, “A high-throughput DPI engine on
GPU via algorithm/implementation co-optimization”, Journal of Parallel
and Distributed Computing, 88, pp. 46-56, 2016.

[31] J. Yang, L. Jiang, X. Bai, H. Peng and Q. Dai, “A High-Performance
Round-Robin Regular Expression Matching Architecture Based on
FPGA”, in ISCC’18, pp. 1-7, IEEE, 2018.

[32] M. Avalle, F. Risso, and R. Sisto, “Scalable Algorithms for NFA Multi-
Striding and NFA-Based Deep Packet Inspection on GPUs”, IEEE/ACM
Transactions on Networking, vol. 24, no. 3, pp. 1704-1717, 2016.

[33] J. Semrič et al., “AHOFA”, https://github.com/jsemric/ahofa, 2018.

117

