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Abstract. The ever-increasing need for information security requires a
constant refinement of contemporary ciphers. One of these are stream
ciphers which secure data by utilizing a pseudo-randomly generated
binary sequence. Generating a cryptographically secure sequence is not
an easy task and requires a Boolean function possessing multiple cryp-
tographic properties. One of the most successful ways of designing these
functions is genetic programming. In this paper, we present a compara-
tive study of three genetic programming methods, tree-based, Cartesian
and linear, on the task of generating Boolean functions with an even
number of inputs possessing good values of nonlinearity, balancedness,
correlation immunity, and algebraic degree. Our results provide a com-
prehensive overview of how genetic programming methods compare when
designing functions of different sizes, and we show that linear genetic pro-
gramming, which has not been used for design of some of these functions
before, is the best at dealing with increasing number of inputs, and cre-
ates desired functions with better reliability than the commonly used
methods.
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1 Introduction

In 1882 Frank Miller, and later Gilbert Vernam, came up with the concept of
a one-time pad and created a cipher which could under the right conditions be
entirely unbreakable [1]. However for the cipher to work, it required the creation
of pads of numbers which would be unique, truly random and could never be
reused. These strict conditions made the cipher unfeasible for use in everyday
life. However, its concept had survived and given birth to a family of stream
ciphers.

These ciphers replace the one-time pads, with a single generator able to
create a near infinite sequence so long that none of its parts would ever need
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to be reused. However, a deterministically generated sequence cannot be truly
random. Instead, stream ciphers focus on making the sequence so complex that it
can not be crypto-analyzed in feasible time. This requires a use of well designed
specialized Boolean functions with cryptographic properties.

There are three main ways how to these functions can be created, random
search, algebraic constructions, and heuristic methods (and their combinations)
[2]. One of the most efficient heuristic methods are Evolutionary Algorithms.
Inspired by the natural evolutionary process, these maintain a population of
individuals each representing a potential solution. The individuals are then com-
bined and mutated in a cycle guided by a fitness function, which determines the
quality of each solution and steers the evolutionary process towards its goal.

In this paper, we focus on a specific subset of evolutionary algorithms called
genetic programming (GP), which has been shown to provide great results in
evolving Boolean functions of varying sizes and properties. The two most com-
monly used GP methods, tree-based, and Cartesian GP have already been the
subject of multiple studies, while linear GP is usually overlooked. Another con-
tribution of our paper is that we use two different population schemes for each
GP method. To the best of our knowledge, this is a type of comparison none
of the related works have performed before. Our aim is to provide a fair and
comprehensive comparison of the individual GP methods and gain insight into
what approach is most suited for each of the many various tasks.

The rest of this paper is organized as follows. Section 2 describes preliminaries
of what Boolean functions are, how are they used in stream ciphers, and what are
their cryptographic properties. In Sect. 3 we describe the various GP methods
and go over related works that used GP to create Boolean functions in the
past. In Sect. 4 we define our objectives, what fitness functions we use, how our
experiments are set up, and how have the parameters used by each GP method
been optimized. Section 5 shows the results of our experiments and highlights
the most interesting findings. The work concludes with Sect. 6 which provides a
summary and outlines the possible future works.

2 Preliminaries

Boolean function is a function Bn → B where B ∈ {0, 1} and n ∈ N. In other
words, it is a function which takes multiple binary inputs and provides a single
binary output. The simplest way of representing a Boolean function is with a
truth table, which assigns a specific output to every possible combination of
inputs via a binary vector of length n2, with n being the number of inputs [3].

Another way a binary function can be represented is the Walsh spectrum. It
is defined as:

Wf (a) =
∑

x∈F
n
2

(−1)f(x)⊕(x .a) (1)

And shows the correlation (Hamming distance) between the examined func-
tion f(x ) and all linear functions (a .x ) [4]. This representation is useful for
determining the function’s nonlinearity (defined below). It can be calculated
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from the truth table representation using Fast Walsh–Hadamard transform in
O(n2n), with n being the number of inputs [5].

The third way of representing Boolean functions is with the algebraic normal
form, which uses a multivariate polynomial P defined as [3]:

P (x) = ⊕w∈F
n
2
h(w).xw (2)

with h(w) defined by the Möbius inversion principle [6]:

h(w) = ⊕x�wf(x), for any w ∈ F
n
2 (3)

In other words, algebraic normal form represents functions as a logical XOR
of terms, which are themselves comprised of logical AND of the function’s inputs.
This representation allows to determine the function’s algebraic degree (defined
below), and for n inputs it can be calculated from the truth table representation
in O(n2n).

2.1 Use of Boolean Functions

Boolean functions are used in stream ciphers when generating the pseudo-
random sequence. The most commonly used type of generators use a Linear
Feedback Shift Register (LFSR). It is comprised of a binary register of length
m, initialized by a secret key and an initialization vector to some non-zero value.
When generating a sequence, values in the register are shifted by one bit to the
right. The right-most bit leaving the register is used as its output, and a new
left-most bit is calculated by a (linear) generating polynomial from its current
state. For a register of any common length, there is a well-known list of primitive
polynomials, which will ensure that the generator will pass through every pos-
sible configuration except the state of all zeros before repeating itself, and thus
generate a sequence with a period of 2m − 1. This means that for sufficiently
long registers the sequence is effectively non-repeating [7].

LFSR generators are fast and easy to implement in both software and hard-
ware and provide an output with good statistical properties [8,9]. However, its
linear nature makes it susceptible to many cryptographic attacks. Given 2m bits
of output, the initial setting of the register (and thus the secret key) can be
reconstructed in O(m2) using the Berlekamp-Massey algorithm [10,11].

To ensure security the relationship between LFSR’s internal state and its
output needs to be obscured with a cryptographically sound Boolean function.
Figure 1 shows the two main ways in which it can be applied, which determines
what properties the function needs to possess.

The combiner model utilizes outputs of several short LFSRs of co-prime
length and requires a Boolean function with a high degree of correlation immu-
nity (defined below), equal to the number of LFSRs used [8]. The filter model
utilizes several bits of a single long LFSR. This means that the Boolean function
only requires a correlation immunity of 1, allowing for higher values of other
cryptographic properties. However, the placement of input bits (tap positions)
may open the generator to other types of cryptographic attacks, which are yet
to be fully explored [12,13].
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Fig. 1. Use of Boolean functions in combiner and filter model of LFSR generators.

2.2 Property Definitions

In this paper, we focus on Boolean functions suitable for LFSR generators and
possessing four cryptographic properties. Balancedness, nonlinearity, correlation
immunity, and algebraic degree. Each property determines how difficult it will
be to break the cipher using a specific type of attack. The individual properties
are mutually conflicting, and when designing Boolean functions one always looks
for a compromise. For a function to be directly applicable in a cipher it should
also possess a high degree of Algebraic and Fast-Algebraic immunity, and have
at least 13 inputs [14], though the ideal number of inputs is considered to be
at least 20 [8]. But functions with fewer inputs and possessing only some of the
cryptographic properties are still important, as they are used as building blocks
for larger more secure functions constructed by analytical approaches [15].

A Boolean function is balanced if its truth table contains an equal number of
ones and zeros, making its output statistically indistinguishable from a random
sequence. An unbalanced function would cause a statistical relationship between
plaintext and ciphertext of the secured messages, and make them vulnerable to
attack by frequency analysis [8,16].

Linear Boolean function is a function that can be created by logical XOR of
its inputs (including a constant 0 function). An affine function is either a linear
function or its complement. Nonlinearity Nf of a function f is the minimal
Hamming distance between the function’s truth table and the truth table of
any of the affine functions. For functions with an even number of inputs the
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maximum nonlinearity is given by equation:

Nf = 2n−1 − 2
n
2 −1 (4)

Functions that reach this value are called bent functions. Nonlinearity of
functions with an odd number of inputs has a known upper bound, but to the
best of our knowledge, this limit has only been reached for functions with seven
or fewer inputs [17]. Nonlinearity obscures the linear relationship between the
state of LSFR and its output and protects the cipher against the Fast Correlation
attack [16,18,19].

Function f has a correlation immunity CIf of degree t if its output is statis-
tically independent of any t inputs. In other words, if the function’s truth table
was split in half based on whether one of its inputs is 0 or 1, and both of the
sub-tables would contain the same number of 1s, regardless of which input was
used to create this split, then the function has a correlation immunity of the first
degree. If the function’s truth table could be quartered using a combination of
any two inputs, it would have correlation immunity of the second degree, and so
on. Correlation immunity protects against the Siegenthaler’s correlation attack
[20] and is in direct conflict with the function’s algebraic degree Degf (defined
below). If t ∈<2, n − 1> then Degf ≤ n − CIf − 1, otherwise Degf ≤ n − CIf ,
where n is the number of function inputs. This limitation is known as Siegen-
thaler’s Inequality [19]. If a function is both immune to correlation and balanced
it is called resilient.

Algebraic degree Degf of function f is defined as the maximum number
of elements in a single term when it’s represented in the algebraic normal
form (defined above). High algebraic degree protects the functions against the
Berlekamp-Massey algorithm [10,11], Rønjom-Helleseth attack [21], and other
algebraic attacks [22].

3 Genetic Programming Methods

Genetic programming is a subset of evolutionary algorithms focused on the evo-
lution of executable structures. For Boolean functions, this usually means a logic
equation used to calculate its truth table. This allows functions with many inputs
to be stored in a compact form, and to be evolved with greater efficiency.

The most common form of GP is the Tree-based genetic programming (TGP).
It represents its genotype using a syntactic tree consisting of two types of nodes.
Internal (function) nodes that represent logical operators, and take their inputs
from other function nodes or leaves. Leaf (terminal) nodes represent either the
function’s input variables or constants. TGP uses genotypes of variable length,
but the maximum allowed depth of its tree may be restricted to prevent it from
bloating to an unmanageable size [23].

Cartesian Genetic programming (CGP), represents the chromosome using a
two-dimensional array of acyclically interconnected nodes. Each node contains a
logical operator and several inputs that can be connected either to the function’s
input variables or a node in one of the previous columns. Because every node
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can be utilized in multiple data paths, performing genetic crossover is difficult,
and offsprings are usually created utilizing only the mutation operator. In soft-
ware implementations, the grid is often implemented as a single row, with no
restrictions on how many levels-back can a node’s input reach. The output is
usually taken from a node specified by the last gene(s) of the genotype [24].

Linear Genetic programming (LGP) represents the chromosome as a linearly-
executed sequence of instruction operating over a finite set of registers. Each
instruction specifies a logical operator, several operands chosen from the set of
registers and function inputs, and an output selected from the set of registers.
The numbers of instructions and registers are mutually independent, and the
values left in the registers after all instructions have been executed serve as the
function output [25].

3.1 Related Works

The earliest application of evolutionary algorithms for the design of crypto-
graphic Boolean functions focused on finding functions with high nonlinearity
with a genetic algorithm [26]. TGP has first been used to design cryptographi-
cally sound Boolean functions with 8 inputs [27], while CGP was used to search
for bent Boolean functions with up 16 and later 18 inputs [28,29]. LGP was used
to design bent functions with up to 24 inputs and has been shown to cope with
increasing number of variables better than CGP [30].

There have been multiple studies comparing genetic algorithms, TGP, and
CGP on the design of cryptographic Boolean functions applicable in stream
ciphers, and functions with correlation immunity and minimal hamming weight
useful in preventing side-channel attacks. All of these studies have shown that GP
methods provide better results than the other evolutionary approaches [14,31–34].

In other works, TGP has been used to design algebraic constructions for
combining existing bent Boolean functions into larger bent functions with up to
20 inputs [35], and a comparative study experimenting with designs of bent and
resilient functions using CGP has shown that the latter may benefit from the
use of various crossover operators [36].

4 Objectives

Our goal is to provide a comprehensive comparison of the three GP methods. For
this reason, we choose several tasks of varying difficulty. To see how each method
copes with growing search space we use Boolean functions of 6, 8, 10, and 12
inputs. To see how they handle increasingly restrictive criteria, we design four
types of functions. Bent Boolean functions maximizing the nonlinearity property.
Balanced functions with high nonlinearity. Resilient functions with correlation
immunity of the first degree. And finally, resilient functions with high algebraic
degree approaching the Siegenthaler’s inequality (Siegenthaler functions).
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For each type of a Boolean function, we define a fitness function that we try
to maximize. Because the performance of evolutionary algorithms depends on
how well is the fitness function able to guide its search, we use not only the raw
values of cryptographic properties but define coefficients that show how close a
solution is to meeting the specified criteria.

For balancedness we define coefficient:

BAL = 1 − |ONES − ZEROS|
2n

(5)

Where ONES and ZEROS are the number of 1s and 0s in the function’s
truth table, and n is the number of function inputs. For Correlation immunity
we define coefficient:

CRI =
SPLIT

n
(6)

Where SPLIT is the number of inputs that can split the Boolean function’s
truth table and create two halves with an equivalent number of 1s. For algebraic
degree we define coefficient:

DEG = max(1,
Degf
n − 2

) (7)

The value n−2 is one degree less than the limit determined by Siegenthaler’s
inequality to allow the evolved Boolean functions to also be balanced and highly
nonlinear. Lastly, we define an acceptability coefficient:

ACC =

{
1 if the function meets all criteria

1
2n−1 otherwise

(8)

This coefficient is used to reduce the fitness of Boolean functions that do not
represent acceptable solutions to be within the range <0, 1>, which is worse
than the fitness of any acceptable solution.

Using the coefficients and the raw value of nonlinearity, we define the fitness
function for each of the four types of functions being evolved:

FBent = Nf ∗ ACC (9)
FBalanced = Nf ∗ ACC ∗ BAL (10)
FResilient = Nf ∗ ACC ∗ BAL ∗ CRI (11)

FSiegenthaler = Nf ∗ ACC ∗ BAL ∗ CRI ∗ DEG (12)

Another possible way of combining the multiple criteria would be to utilize a
multi-objective algorithm. However, related works suggest that this approach is
not competitive when designing Boolean functions with cryptographic properties
[33,34], and so we leave this option out of the scope of this paper.
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4.1 Experimental Setup

The various GP methods usually manage their population in different ways.
To make our comparison fair, we perform all experiments using two different
population schemes.

First scheme is the Steady-state Tournament (SST). Its initial population is
generated randomly, and new individuals are created by randomly selecting thee
individuals, and replacing the worst of them with a child of the better two. The
child is created by a crossover followed by mutation. TGP uses standard subtree
crossover that replaces a randomly selected function node (and its subtree) from
one parent with a randomly selected function node (and its subtree) from the
other parent. CGP and LGP use standard one-point crossover set to only split
the chromosomes between whole nodes, respectively instructions.

Second scheme is the (1+λ) Evolution strategy (EST). Its initial population
is randomly generated and new individuals are created in generations, by select-
ing the currently best individual and creating λ offsprings via mutation. If the
parent and any of its offspring have the same fitness, the offsprings are preferred
when choosing a new parent of the next generation, to promote fitness-neutral
mutations. TGP mutates individuals by replacing randomly selected function
node with a new, randomly generated subtree. CGP and LGP perform muta-
tion by changing any of its individual genes to a randomized value with a small
probability.

To increase the overall informative value of our comparison, we include a
fourth evolutionary method. A genetic algorithm (GAL), whose chromosome
represents the Boolean function’s truth table directly, and not as an equation.
It uses a one-point crossover and mutates individuals by flipping any num-
ber of individual bits in its chromosome to their opposite value, with a small
probability.

Table 1. Fitness values desired for each type of function and number of inputs.

Inputs Bent Balanced Resilient Siegenthaler

6 28 24 24 24

8 120 112 112 112

10 496 480 480 480

12 2016 1984 1984 1984

For each evolved type of function, we choose a desired nonlinearity (and
a corresponding fitness). For bent functions, we use the optimal value given
by Eq. 4. For the rest of the functions we determine the desired nonlinearity
experimentally by running each algorithm for 1 000 000 evaluations, and selecting
the best value reached to be our goal, as shown in Table 1. The selected values
are lower than some of the known lower bounds on maximum nonlinearity [37].
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However, while we believe that these values can be reached using GP as well,
the number of evaluations required would make our type comparison unfeasible.

All GP methods use {AND, OR, XOR, XNOR} as their set of operators,
and had two logical constant {TRUE, FALSE} added to their Boolean function’s
inputs. The project is implemented in C++ using the Evolutionary Computation
Framework1, parallelized with Message Passing Interface2. During parallel exe-
cution, the main core maintains the population and performs the quick and easy
tasks of selection, crossover, and mutation, while the computationally expensive
task of obtaining each individual’s truth table, cryptographic properties, and the
resulting fitness, is passed to a number of worker cores.

4.2 Parameter Optimization

To determine each method’s best performing setup, we use a one-at-a-time opti-
mization method. GP methods were optimized on the task of evolving bent
functions with 12 inputs. Because the size of a function’s truth table is deter-
mined by the number of its inputs the chromosome length of GAL could not
be optimized, and is included only for comparison. Because the ideal mutation
rate is highly dependent on the chromosome length, it was optimized for each
number of inputs separately. The examined ranges and the best values found are
shown in Table 2.

For SST scheme, a medium sized population of around 15–25 individuals per-
formed the best, with the exception of TGP method which performed even better

Table 2. Parameters optimized for each genetic programming method, the genetic
algorithm with different number of inputs, and for both population schemes.

Optimized
property

Examined
range

TGP CGP LGP GAL6 GAL8 GAL10 GAL12

(1 + λ) Evolution Strategy

Population 1 + 1–1000 1 + 5 1 + 5 1 + 5 1 + 5 1 + 5 1 + 5 1 + 5

Mutation rate 0.00025–1.0 1.0 0.035 0.025 0.04 0.008 0.0025 0.001

Chrom. length 31–4095 – 511 511 (64) (256) (1024) (4096)

Tree depth 5–12 9 – – – – – –

Free registers 5–100 – – 15 – – – –

Steady-State Tournament

Population 3–1000 40 20 20 20 20 20 20

Mutation rate 0.00025–1.0 1.0 0.02 0.0125 0.04 0.008 0.0025 0.001

Chrom. length 31–4095 – 511 511 (64) (256) (1024) (4096)

Tree depth 5–12 9 – – – – – –

Free registers 5–100 – – 15 – – – –

1 http://ecf.zemris.fer.hr/.
2 https://www.open-mpi.org/.

http://ecf.zemris.fer.hr/
https://www.open-mpi.org/
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with a larger population of around 35–50 individuals, possibly due to utilizing
a different crossover operator than the other methods. This result is somewhat
surprising, as TGP commonly performs the best with a population containing
hundreds or thousands of individuals [38]. For EST scheme, the smallest pop-
ulations always performed the best, but we have chosen a population with 5
offsprings to allow for a reasonable degree of parallelization.

For TGP method the genotype size was set as the maximum depth of its
tree. For CGP and LGP we have worked with the number of nodes (respectively
instructions) and restricted our search to genotype lengths equivalent to a fully
grown TGP tree (2n − 1). For CGP we have used a single-row implementation
with no limit on each node’s reach. For all GP methods, the optimal result
was equivalent to a maximum of 511 logical operators, implying that this value
depends on the task itself, rather than the method being used.

For CGP and LGP, the ideal mutation rate depended on the population
scheme and was higher for EST, which uses mutation as its only genetic operator.
For TGP and GAL, the mutation rate was the same for both population schemes.
For LGP we have also optimized the number of available registers and found the
optimal value to be around 15, including the final register whose value is used
as the function output.

5 Results

The experiments include a multitude of tasks. We use four Evolutionary algo-
rithms, GAL, TGP, CGP, and LGP, two population schemes SST and EST,
evolve four types of Boolean functions, bent, balanced, resilient, and Siegen-
thaler, and consider use 6, 8, 10, and 12 inputs for each. Combination of all these
setups results in 128 individual tasks. For each of these, we have performed 100
independent runs. Each run is limited to a maximum of 1 000 000 evaluation, and
if it does not find a solution before this limit, the run is considered unsuccessful.

Our basis of comparison for the results is the number of fitness function
evaluations required to find a Boolean function with the desired fitness. The
complete set of results is shown in Tables 3, 4, 5, and 6 (one for each type of
Boolean function).

All four tables order the experiments based on the number of inputs, the GP
method, and population scheme. We consider the median outcome to be the most
telling indicator of success and the first and third quartile as secondary indica-
tors. These values are shown in columns “Q1”, “Median”, and “Q3”, rounded
to the nearest integer value. The last column labeled “Suc.” shows how many of
the 100 runs have been successful.

Our results show that the GAL, which was included to provide a comparison
between GP and non-GP evolutionary algorithms, performs poorly and was only
able to create bent functions of 6, and balanced functions of 6 and 8 inputs. It fails
completely when required to create functions possessing correlation immunity,
and for all other setups fails to provide even a single viable result.
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Table 3. Experiment results of designing bent Boolean functions.

Method Q1 Median Q3 Suc. Method Q1 Median Q3 Suc.

6 inputs

GAL-EST 14372 31131 67776 100 GAL-SST 9915 30385 70250 100

TGP-EST 399 894 2157 100 TGP-SST 365 485 605 100

CGP-EST 161 331 642 100 CGP-SST 245 425 685 100

LGP-EST 298 634 1333 100 LGP-SST 305 535 1325 100

8 inputs

GAL-EST 1000000 1000000 1000000 0 GAL-SST 1000000 1000000 1000000 0

TGP-EST 922 2179 3853 100 TGP-SST 565 765 1045 100

CGP-EST 290 531 1159 100 CGP-SST 440 615 1010 100

LGP-EST 624 1359 2496 100 LGP-SST 860 1755 4030 100

10 inputs

GAL-EST 1000000 1000000 1000000 0 GAL-SST 1000000 1000000 1000000 0

TGP-EST 2016 4311 8710 100 TGP-SST 805 1085 1415 100

CGP-EST 488 934 1718 100 CGP-SST 675 1165 1945 100

LGP-EST 1000 1716 2970 100 LGP-SST 1525 2725 4975 100

12 inputs

GAL-EST 1000000 1000000 1000000 0 GAL-SST 1000000 1000000 1000000 100

TGP-EST 3220 6879 12757 98 TGP-SST 1125 1385 1815 100

CGP-EST 1237 1994 3211 100 CGP-SST 960 1495 2345 100

LGP-EST 2165 3701 5899 100 LGP-SST 2185 3715 7045 100

Table 4. Experiment results of designing balanced Boolean functions.

Method Q1 Median Q3 Suc. Method Q1 Median Q3 Suc.

6 inputs

GAL-EST 26 41 76 100 GAL-SST 25 65 105 100

TGP-EST 91 204 457 100 TGP-SST 125 185 245 100

CGP-EST 35 61 131 100 CGP-SST 185 265 405 100

LGP-EST 80 124 329 100 LGP-SST 105 155 225 100

8 inputs

GAL-EST 1451 3444 7216 100 GAL-SST 1805 3045 4735 100

TGP-EST 370 701 1143 100 TGP-SST 325 445 565 100

CGP-EST 115 209 404 100 CGP-SST 305 425 715 100

LGP-EST 195 364 720 100 LGP-SST 265 465 855 100

10 inputs

GAL-EST 1000000 1000000 1000000 0 GAL-SST 1000000 1000000 1000000 0

TGP-EST 731 1301 2066 99 TGP-SST 525 645 805 100

CGP-EST 210 334 522 100 CGP-SST 305 425 715 100

LGP-EST 321 674 1028 100 LGP-SST 565 985 1815 100

12 inputs

GAL-EST 1000000 1000000 1000000 0 GAL-SST 1000000 1000000 1000000 0

TGP-EST 1522 2289 4082 100 TGP-SST 765 965 1175 100

CGP-EST 416 619 1095 100 CGP-SST 505 715 965 100

LGP-EST 700 1191 1814 100 LGP-SST 975 1635 2515 100
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Table 5. Experiment results of designing resilient Boolean functions.

Method Q1 Median Q3 Suc. Method Q1 Median Q3 Suc.

6 inputs

GAL-EST 1000000 1000000 1000000 0 GAL-SST 1000000 1000000 1000000 0

TGP-EST 195 359 677 100 TGP-SST 205 325 455 100

CGP-EST 116 217 341 100 CGP-SST 145 255 410 100

LGP-EST 217 474 928 100 LGP-SST 245 535 1335 100

8 inputs

GAL-EST 1000000 1000000 1000000 0 GAL-SST 1000000 1000000 1000000 0

TGP-EST 625 966 1537 100 TGP-SST 525 625 805 100

CGP-EST 246 441 877 100 CGP-SST 325 565 935 100

LGP-EST 688 1139 1929 100 LGP-SST 480 1095 2590 100

10 inputs

GAL-EST 1000000 1000000 1000000 0 GAL-SST 1000000 1000000 1000000 0

TGP-EST 1231 1706 2387 100 TGP-SST 805 1045 1245 100

CGP-EST 451 861 1377 100 CGP-SST 605 1005 1905 100

LGP-EST 822 1546 2647 100 LGP-SST 1185 2015 3870 100

12 inputs

GAL-EST 1000000 1000000 1000000 0 GAL-SST 1000000 1000000 1000000 0

TGP-EST 2091 3106 4901 100 TGP-SST 1085 1365 1735 100

CGP-EST 886 1509 2472 100 CGP-SST 1045 1795 3070 100

LGP-EST 1311 2184 4352 100 LGP-SST 1460 2755 5415 100

Table 6. Experiment results of designing Siegenthaler Boolean functions.

Method Q1 Median Q3 Suc. Method Q1 Median Q3 Suc.

6 inputs

GAL-EST 1000000 1000000 1000000 0 GAL-SST 1000000 1000000 1000000 0

TGP-EST 785 1944 3550 100 TGP-SST 1145 1745 3335 100

CGP-EST 507 1104 1874 100 CGP-SST 745 1315 2670 100

LGP-EST 826 1686 3822 100 LGP-SST 1080 2025 6400 100

8 inputs

GAL-EST 1000000 1000000 1000000 0 GAL-SST 1000000 1000000 1000000 0

TGP-EST 4336 8189 17444 100 TGP-SST 8615 18085 35935 100

CGP-EST 4897 9219 18703 100 CGP-SST 7995 15465 41335 100

LGP-EST 7359 14892 25307 100 LGP-SST 8000 19975 52290 100

10 inputs

GAL-EST 1000000 1000000 1000000 0 GAL-SST 1000000 1000000 1000000 0

TGP-EST 19424 56054 196702 85 TGP-SST 50765 116905 327265 93

CGP-EST 26188 63944 125741 100 CGP-SST 36360 76195 236620 95

LGP-EST 33291 67382 130232 100 LGP-SST 37445 77385 253780 96

12 inputs

GAL-EST 1000000 1000000 1000000 0 GAL-SST 1000000 1000000 1000000 0

TGP-EST 81635 214414 1000000 72 TGP-SST 205905 529585 1000000 73

CGP-EST 112127 233049 529320 92 CGP-SST 165990 537935 1000000 72

LGP-EST 100285 198551 359006 97 LGP-SST 92080 262425 631395 87
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Fig. 2. Comparison of the three genetic programming methods on the task of designing
Siegenthaler Boolean functions with 12 inputs, for two different population schemes.

Tables 3, 4, 5 show the importance of crossover for TGP. Making a comparison
between the two population schemes, we see that only using mutation increases
the median number of evaluations by 2–5 times, as well as severely impacting
TGP’s reliability, making it the only GP method with less than 100% success
rate when designing bent and balanced Boolean functions. Conversely, the results
shown in Table 6 illustrate that the use of SST scheme can also have a negative
effect and that different population schemes may be ideal for different tasks,
even when utilizing the same GP method.

The results provided by CGP show that it indeed performs better with a
population scheme that uses mutation as its only genetic operator. The design
of 12-input bent functions being the only task where CGP performed better
using SST than the EST setup.

The most interesting results, however, are shown in Table 6. LGP which
throughout most of the experiments performed in a manner similar to CGP
but worse. It manages to be greatly successful with the design of Siegenthaler
functions. Though still performing poorly when evolving Siegenthaler functions
with a small a number of inputs, LGP managed to cope with additional inputs
significantly better than other approaches and over-performed them both when
designing Siegenthaller functions with 12 inputs, as is highlighted in Fig. 2. In
addition, LGP had the greatest number of successful runs for both population
schemes and functions of 10 and 12 inputs.

6 Conclusion and Future Work

In this paper, we have discussed the use of Boolean functions in stream ciphers
and examined how suitable various GP methods are for designing them. We
evolved functions possessing cryptographically significant properties of nonlin-
earity, balancedness, correlation immunity, and algebraic degree, with an even
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number of 6 to 12 inputs. For each GP method, we have implemented two dif-
ferent population schemes, Steady-State Tournament and (1 + λ) Evolutionary
Strategy, and to provide a fair comparison, we have performed a one-at-a-time
parameter optimization to find the most suitable setup for each method and
scheme.

Our results have confirmed that genetic algorithms which evolve functions
on the truth table level cope poorly with an increased number of function inputs
and can not compete with GP approaches. All three examined GP methods have
been shown as competitive, with TGP being best suited for bent and resilient
functions, CGP for balanced functions, and LGP for resilient functions with
algebraic degree approaching the Siegenthaler’s inequality.

For CGP and LGP, use of the SST scheme failed to provide better perfor-
mance than EST, implying that a simple one-point crossover is not sufficiently
complex to improve their performance. Our results also do not confirm that LGP
is better than CGP at dealing with an increasing number of function inputs when
designing bent Booleans functions. However, they do show this to be the case
when evolving resilient functions with a high algebraic degree approaching the
Siegenthaler’s inequality.

To the best of our knowledge, this is the first work to design balanced, resilient
and Siegenthaler functions using LGP, and to experiment with multiple popula-
tion schemes for each of the GP methods while designing cryptographic Boolean
functions. Thanks to this we have shown that the ideal choice of population
scheme depends not only on the GP method but also on the type of function
being evolved.

Still, our work is just one step in the exploration of the diverse and difficult
domain of cryptographic Boolean functions. Future works could expand upon it
by including other cryptographic criteria like algebraic and fast algebraic immu-
nity, or focus on the evolution of functions with other cryptographical uses, like
the design of Boolean functions with high correlation immunity and minimal
hamming weight that can provide protection against side channel cryptographic
attacks. Lastly, it would be interesting to experiment with other population
schemes and examine their influence on each GP method and type of Boolean
function evolved.
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Technische Universität Dortmund (2004)

26. Millan, W., Clark, A., Dawson, E.: An effective genetic algorithm for finding highly
nonlinear boolean functions. In: Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 1997.
LNCS, vol. 1334, pp. 149–158. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0028471

27. Picek, S., Jakobovic, D., Golub, M.: Evolving cryptographically sound Boolean
functions. In: Proceedings of the 15th Annual Conference Companion on Genetic
and Evolutionary Computation, pp. 191–192. ACM (2013)

28. Hrbacek, R., Dvorak, V.: Bent function synthesis by means of Cartesian genetic
programming. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.)
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