
TRAU : SMT solver for string constraints
Parosh Aziz Abdulla

Uppsala University, Sweden
parosh@it.uu.se

Mohamed Faouzi Atig
Uppsala University, Sweden

mohamed faouzi.atig@it.uu.se

Yu-Fang Chen
Academia Sinica, Taiwan

yfc@iis.sinica.edu.tw

Bui Phi Diep
Uppsala University, Sweden

bui.phi-diep@it.uu.se

Lukáš Holı́k
Brno University of Technology, Czech Republic

holik@fit.vutbr.cz

Ahmed Rezine
Linköping University, Sweden

ahmed.rezine@liu.se

Philipp Rümmer
Uppsala University, Sweden

philipp.ruemmer@it.uu.se

Abstract—We introduce TRAU, an SMT solver for an ex-
pressive constraint language, including word equations, length
constraints, context-free membership queries, and transducer
constraints. The satisfiability problem for such a class of con-
straints is in general undecidable. The key idea behind TRAU is
a technique called flattening, which searches for satisfying assign-
ments that follow simple patterns. TRAU implements a Counter-
Example Guided Abstraction Refinement (CEGAR) framework
which contains both an under- and an over-approximation
module. The approximations are refined in an automatic manner
by information flow between the two modules. The technique
implemented by TRAU can handle a rich class of string constraints
and has better performance than state-of-the-art string solvers.

I. INTRODUCTION

The recent years have seen a wealth of research on string
constraints, in particular in the form of SMT solvers that can
efficiently check satisfiability of quantifier-free formulas over
a background theory of strings and regular expressions (e.g.,
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]). String solvers
can be applied in a variety of verification approaches, for
instance in software model checking to take care of implication
and path feasibility checks; the most widespread adoption has
occurred in the area of security analysis for languages like
JavaScript and PHP, for instance to discover information leaks
or vulnerability to injection attacks (e.g., [12], [13], [14]). To
process constraints from those domains, it is necessary for
string solvers to handle a delicate combination of (theoretically
and practically) highly challenging operations: concatena-
tion in word equations, to model assignments in programs;
context-free grammar, to model properties or attack patterns;
string length, to express string manipulation in programs; and
transduction, to express sanitisation, escape operations, and
replacement operations in strings. Since the full combination
of those theories is known to be undecidable, many SMT
solvers are complete only for certain fragments of the full
logic.

In this paper, we present TRAU, an SMT solver for string
constraints, that can handle all of the above mentioned
operations. TRAU implements the framework of Counter-
Example Guided Abstraction Refinement (CEGAR) proposed
in [8]. This framework contains both an under- and an over-
approximation module. The key idea behind TRAU is a tech-
nique called flattening [8]. It is based on the observation that

both satisfiability and unsatisfiability of common constraints
can be shown through witnesses of simple patterns that can
be captured by flat languages (i.e., a language consisting of
the set of words in w∗

1w
∗

2⋯w
∗

n where w1,w2, . . . ,wn are
finite words). Compared to [8], TRAU implements several
optimizations that are keys to its current efficiency (namely,
a precise and efficient over-approximation module and a
better strategy for splitting equalities). Furthermore, TRAU can
handle efficiently the case of transduction, which is the string
operation that is currently least well supported in existing
string solvers, albeit extremely important for security analysis,
and often a bottleneck in applications. (Observe that the tool
in [8] does not support transducer constraints.) We show
that transduction can elegantly be reduced to context-free
membership constrains. In fact, the technique implemented by
TRAU can handle a rich class of string constraints and has
better performance than state-of-the-art string solvers.

Related Work. During the last years, several SMT solvers for
strings and related logics have been introduced. A number of
tools handle string constraints, including context-free member-
ship, by fixing an upper bound on the length of the possible
solutions (e.g., [1], [12], [13], [15], [16]). In contrast, the
under-approximation module of TRAU does not impose any
bound on the length of solutions but rather limits the search
only for solutions that belong to flat languages in a similar
manner to [8]. More recently, DPLL(T)-based string solvers
lift the restriction of strings of bounded length; this generation
of solvers includes Z3-str [3], CVC4 [5], S3 [4], Norn [17],
and Sloth [11]. Most of those solvers are more restrictive than
TRAU in their support for language constraints. To the best
of our knowledge, TRAU and Hampi [1] are the only string
solvers which can handle context-free membership constraints.
Observe that TRAU does not impose any bound on the length
of the solutions while Hampi does. Furthermore, TRAU im-
plements a DPLL(T)-style proof procedure for strings in a
similar manner to [17] in order to gain in efficiency. Another
related technique are automata-based solvers for analyzing
string-manipulated programs (e.g., [2], [6], [18]). However,
many kinds of constraints, including length constraints, word
equations, and context-free grammars, cannot be handled by
such automata-based solvers in a complete manner. Compared



to [8], TRAU implements several optimizations, including a
DPLL(T)-style proof procedure, that are keys to its current
efficiency. Furthermore, TRAU supports transducer constraints
which is not the case of [8].

II. PRELIMINARIES

Let Σ be a finite alphabet. We use Σ∗ to denote the set
of finite words over Σ, and use ε to denote the empty word.
For a word w ∈ Σ∗, we use length (w) to denote the length
of w. We denote by wR the reverse image of w. A language
L ⊆ Σ∗ is said to be (p,q)-flat, for some p,q ∈ N, if there are
words w1,w2, . . . ,wq ∈ Σ∗ such that length (wi) ≤ p for all
i ∶ 1 ≤ i ≤ q, and L = (w1)

∗ ⋅ (w2)
∗⋯(wq)

∗.
A Context-Free Grammar (CFG) is defined by a quadruple

G = ⟨N,T,P,S⟩ where N is a finite set of non-terminals, T is
a finite set of terminals, P is a finite set of productions, and
S ∈ N is the start symbol. The language L(G) of the grammar
G is defined in the standard manner.

A Pushdown Automaton (PDA) is defined by P =

⟨Q,Σ,Γ,∆, qinit, qacc⟩ where Q is a finite set of states, Σ
is a finite input alphabet, Γ is a stack alphabet, ∆ ⊆ (Q×Γ∗ ×
(Σ ∪ {ε}) × Γ∗ × Q) is a finite set of transitions, qinit ∈ Q
is the initial state, and qacc ∈ Q is the accepting state. The
language L(P) of the pushdown automaton P is defined in
the standard manner (where the stack content is empty at
the initial and final configurations). It is well-known that the
class of languages accepted by pushdown automata and the
one accepted by context free grammars coincide (i.e., given
a pushdown automaton P (resp. a context-free grammar G),
one can construct a context-free grammar G (resp. a pushdown
automaton P) such that L(P) = L(G)).

A Finite-State Transducer is T = ⟨Q,Σ,∆, qinit , qacc⟩,
where Q is a finite set of states, Σ is a finite alphabet,
∆ ⊆ Q × (Σ ∪ {ε}) × (Σ ∪ {ε}) ×Q is the transition relation,
qinit ∈ Q is the initial state, and qacc ∈ Q is the accepting state.
For words w1,w2 ∈ Σ∗, we write w2 ∈ T (w1) to denote that
there is a sequence q0 ⟨a1, b1⟩ q1 ⟨a2, b2⟩⋯ ⟨an, bn⟩ qn such
that q0 = qinit , qn = qacc , ⟨qi, ⟨ai+1, bi+1⟩ , qi+1⟩ ∈ ∆ for all
i ∶ 0 ≤ i < n, w1 = a1a2⋯an, and w2 = b1b2⋯bn.

III. THE STRING CONSTRAINT LANGUAGE

In this section, we define string constraints over a finite
alphabet Σ and a finite set of variables X ranging over Σ∗.

ψ ::= φ ∣ ψ ∧ ψ
φ ::= φs ∣ φi ∣ φt ∣ φg
φs ::= trs = trs ∣ trs ≠ trs
φt ::= trs ∈ T (trs)
φg ::= trs ∈ G
φi ::= tri ≥ tri
trs ::= w ∣ x ∣ trs ● trs
tri ::= length (trs) ∣ k

Fig. 1: Constraint Syntax

The syntax
of a formula
ψ is given in
Figure 1. ψ is
given in the
conjunctive
normal form
where each
literal clause
can be either
a string (dis-
)equality φs,
a context-free

Over-Approx

Z3

Under-Approx

ψ, Covered = ∅

UNSAT

SAT
⟨p,q⟩

ϕ

UNSAT

Covered← {⟨p,q⟩}

Fig. 2: Architecture of TRAU

membership φg , a transducer constraint φt or an arithmetic
constraint φi. A string equality (resp. disequality) is of the
form trs = trs (resp. (trs ≠ trs)) where trs is a (string) term.
Each string term trs is a sequence composed of variables in
X and symbols from Σ.

Formally, a string term is either a word w ∈ Σ∗, a string
variable x ∈ X or a concatenation of two string terms. A
transducer constraint is of the form trs ∈ T (trs) where T is
a transducer and trs is a string term. A context-free grammar
membership constraint is of the form trs ∈ G where G is a
context-free grammar and trs is a string term. An arithmetic
constraint φi is a relational expression between two integer
terms tri where an integer term is either the length of a string
term length (trs) or an integer k.

The formula ψ is said to be satisfiable iff there is an
interpretation η ∶ X ↦ Σ∗ such that η satisfies ψ. Otherwise,
it is said to be unsatisfiable.

IV. ARCHITECTURE OVERVIEW

In this section, we present the architecture of our tool TRAU
which checks the satisfiability of string constraint formulae (as
defined in Section III). The architecture of TRAU is shown in
Figure 2. TRAU consists of two main modules, namely the
Over-Approx module and the Under-Approx module. It uses
the SMT solver Z3 to handle arithmetic constraints.

The Over-Approx module takes as input a formula ψ and
a finite set Covered ⊆ N2 of (abstract) parameters. The set
Covered is empty at the beginning. This set stores abstract
parameters used by the Under-Approx module to check the
satisfiability in previous iterations. The Over-Approx then
constructs an over-approximation ψ′ of ψ. The formula ψ′

is constructed such that it falls in the decidable fragment
of the theory of strings with regular membership constraints
and length constraints [7]. Thus, we are able to apply similar
techniques as the ones used in Norn [7] to check the satisfia-
bility of ψ′. If ψ′ is unsatisfiable, then ψ is unsatisfiable, and
TRAU terminates. If ψ′ is satisfiable, a satisfying assignment
for ψ′ is returned. Then we extract an abstract parameter
α = ⟨p,q⟩ ∈ N2 from the satisfying interpretation η ∶ X ↦ Σ∗



as follows: α is one of minimal pairs such that for any variable
x ∈ X, the word η(x) belongs to an α-flat language [8].

The Under-Approx module takes as input the abstract pa-
rameter α and the set of constraints ψ. It limits the search
only for solutions of ψ that belong to an α-flat language. By
[8], checking the existence of a solution ψ that belongs to an
α-flat language can be reduced to the satisfiability problem
of an existential Presburger formula. Therefore, the Under-
Approx module produces as output an existential Presburger
formula ϕ such that ϕ is satisfiable iff there is an interpretation
η ∶ X↦ Σ∗ such that η satisfies ψ and for every variable x ∈ X,
we have that η(x) belongs to an α-flat language.

Then, Z3 checks the satisfiability of the existential Pres-
burger formula ϕ. If Z3 returns that ϕ is satisfiable, then
we deduce that ψ is also satisfiable. In that case, we can
even construct an interpretation η that satisfies ψ, and TRAU
terminates. In the case Z3 returns that ϕ is unsatisfiable, we
are unable to find a solution of ψ that is accepted by an α-
flat language. Thus, α is added to the set Covered and the
control is given back to the Over-Approx module to produce
a new pair α which is not in Covered (by requiring that the
solutions do not belong to an α-flat language).

V. EFFICIENT HANDLING OF TRANSDUCER CONSTRAINTS

TRAU handles transducer constraints differently from the
method presented in [8]. Rather than extending the Under-
Approx module to transducers, we transform transducer con-
straints to context-free membership constraints. Let ψ be a
string constraint and let φt be a transducer constraint appearing
in ψ. Let us assume that φt is of the form t′ ∈ T (t) where
T = ⟨Q,Σ,∆, qinit , qacc⟩ is a transducer and t and t′ are
string terms. In order to construct the context-free membership
constraints, we first construct a pushdown automaton P such
that a word w is accepted by P iff there are two words
u and v such that u ∈ T (v) and w = v ⋅ ♯ ⋅uR where
♯ is a fresh symbol (not in Σ). The pushdown automaton
P = ⟨Q ∪ {qfinal},Σ ∪ {♯},Σ,∆′, qinit, qfinal⟩ has the same
set of states as T plus one extra accepting state qfinal ∉ Q.
Any accepting run of P can be split into two phases. In the first
phase, the pushdown automaton simulates the transducer by:
(i) performing the same changes on the state, (ii) reading the
same input letter, and (iii) pushing into the stack the output
letter read by the transducer. Formally, for each transition
⟨q, ⟨a, b⟩ , q′⟩ of T , the pushdown automaton P has a transition
of the form ⟨q, ε, a, b, q′⟩. At the end of this phase, the push-
down automaton reaches the same state as the transducer, reads
the same input word, and stores the output word read by the
transducer into its stack. The second phase of the pushdown
automaton P starts, in non-deterministic manner, when its
current state is qacc. First, the pushdown moves its state from
qacc to qfinal while reading the special ♯ (i.e., the pushdown
automaton P has the following transition ⟨qacc, ε, ♯, ε, qfinal⟩).
From the state qfinal, the pushdown automaton P starts
emptying its stack while reading each popped symbol (i.e.,
the pushdown automaton P has a transition of the form
⟨qfinal, a, a, ε, qfinal⟩ for each letter a ∈ Σ). It is easy to see

that a word w is in L(P) iff there are two words u and v
such that u ∈ T (v) and w = v ⋅ ♯ ⋅uR.

Let G be a context-free grammar that accepts the same
language as the pushdown automaton P (i.e., L(G) = L(P)).
Let G1 (resp. G2) be the context-free grammar that accepts
exactly the following set of words {w ⋅ ♯ ⋅wR ∣w ∈ Σ∗} (resp.
Σ∗).

Now, we can replace the transducer constraint φt by the
conjunction of the following context-free membership con-
straints: t ⋅ ♯ ⋅y ∈ G, y ⋅ ♯ ⋅t′ ∈ G1 and t ⋅ y ⋅ t′ ∈ G2 where
y is a fresh variable. Observe that we need the constraint
t ⋅ y ⋅ t′ ∈ G2 to enforce that the interpretations η(y), η(t),
and η(t′) are over the alphabet Σ (since the alphabet of the
newly constructed formulas is {Σ ∪ ♯}). Let us assume that
ψ′ is the string constraint obtained from ψ by replacing any
transducer constraint by the conjunction of the three context-
free membership constraints (constructed as described above).
Then, it is easy to see that ψ is satisfiable iff ψ′ is satisfiable.

VI. OPTIMIZING THE OVER-APPROXIMATION MODULE

Suppose that we have a constraint formula ψ together with
a set Covered ⊆ N2 of parameter values. We assume w.l.o.g.
that ψ does not contain any transducer constraints (see Section
V). The over-approximation module in [8] proceeds as follows:
First, it replaces any context-free membership constraint of the
form trs ∈ G in ψ by a constraint of the form trs ∈ L where
L is a regular language accepting the upward closure of L(G)
[19], [20]. Then, it limits the search only for solutions that do
not belong to any α-flat language with α ∈ Covered. Finally,
it replaces any occurrence of a variable x by a fresh copy
of x that satisfies the same word equation, membership and
length constraints as x. The resulting string constraints falls
in the decidable fragment of the theory of strings [7], [17].
In contrast, TRAU adopts a lazy approach in the replacement
of variables. More precisely, TRAU starts by choosing an
occurrence of a variable x to replace by a fresh copy that
satisfies the same membership and length constraints. Then,
TRAU checks if the resulting string constraint satisfies the
acyclicity condition of [7], [17]. If it is the case then the
replacement procedure terminates. Otherwise, TRAU chooses
another occurrence of a variable to replace by a fresh copy.

VII. OPTIMIZING THE UNDER-APPROXIMATION MODULE

We present one important optimization that TRAU imple-
ments. This optimization significantly improves the Under-
Approx module (implemented in [8]) when applied to equality
constraints. In practice, after flattening an equality constraint
(i.e., computing a finite-state automaton that characterizes the
intersection of flat languages), the size of the constructed
automaton A could become fairly large. Consequently, the
arithmetic SMT solver may have poor performance when
checking the satisfiability of the constructed existential Pres-
burger formula characterizing the Parikh image [21], [22] of
A. We found that problem can be improved by combining the
flattening technique proposed in [8] with the DPLL(T)-style
proof procedure and the length-guided splitting of equalities



CVC4 Z3-str3 S3P TRAU-PRE TRAU

sat 35235 34495 35264 35202 35264
unsat 12014 11799 12014 12019 12014
timeout 35 350 6 63 6Kaluza suite

error/unknown 0 640 0 0 0
sat 7 8 6 - 8
unsat 4 4 1 - 4
timeout 0 0 5 - 0PISA suite

error/unknown 1 0 0 - 0
sat 7 8 6 - 8
unsat 0 0 0 - 0
timeout 1 0 1 - 0AppScan suite

error/unknown 0 0 1 - 0
sat - - 3 - 11
unsat - - 10 - 2
timeout - - 0 - 4Transducer suite

error/unknown - - 4 - 0
sat 618 605 - - 723
unsat 160 190 - - 261
timeout 247 207 - - 0StringFuzz suite

error/unknown 0 23 - - 41

TABLE I: Experimental results. All satisfying results of TRAU are cross-checked by S3P to guarantee correct solutions. Runtime
was limited to 20s for the Kaluza, PISA, AppScan, StringFuzz suites and to 100s for the Transducer suite. The row “(un)sat”
indicates the number of benchmarks for which the solvers report (un)satisfiable.

procedure used in [7]. This is mainly due to the fact that we
limit the search for solutions that belong to α-flat languages.

Fix a set of constraints ψ, a finite set of variables X, and
an abstract parameter α = ⟨p,q⟩. To handle the equality con-
straints efficiently, we proceed as follows: First, we construct
the string constraint ψ′ by replacing any occurrence of a
variable x in ψ, that belongs to an (p,q)-flat language, by
x1 ⋅x2⋯xq where x1, x2, . . . , xq are fresh variables that belong
to (p,1)-flat languages. Assume w.l.o.g that ψ′ contains an
equality constraint φs of the form x1⋯xm = y1 ⋅ y2⋯yn.
Observe that x1, . . . , xm, y1, . . . , yn belong to (p,1)-flat lan-
guages. Then, for every j ∶ 1 ≤ j ≤ m (resp. i ∶ 1 ≤ i ≤ n),
we construct a string constraint ϕ (resp. ϕ′) from ψ′ by: (1)
deleting the equality constraint φs from ψ′, (2) replacing
any occurrence of the variable y1 (resp. x1) by x1 ⋅ x2⋯xj
(resp. y1 ⋅ y2⋯yi), and (3) adding the equality constraint
xj+1⋯xm = y2⋯yn (resp. x2⋯xm = yi+1⋯yn). For each string
constraint ϕ (resp. ψ′), we repeat the procedure of splitting
of the equality constraints until the obtained string constraint
does not contain equality constraints. Finally, we declare the
string constraint ψ to be satisfiable if one of the constructed
string constraints is satisfiable; otherwise we add the abstract
parameter α = ⟨p,q⟩ to the set Covered.

Observe that such a splitting strategy will limit the search
space for solutions to a subset of (p,q)-flat languages. How-
ever, this is not a restriction since if ψ is satisfiable then for
the abstract parameter α = ⟨1,q⟩, with q is the maximal length
of the strings appearing in a satisfying assignment of ψ, the
splitting strategy will lead to a satisfiable string constraint.

This splitting strategy is also significantly improved by
using a DPLL(T)-Style proof procedure and a length-guided
splitting procedure as in [7].

VIII. EXPERIMENTAL RESULTS

In this section, we describe the experimental evaluation of
the TRAU solver to validate the effectiveness of the techniques
presented in the paper. We have implemented TRAU as an
open source solver and used Z3 [23] as the SMT solver
to handle generated arithmetic constraints from the Under-
Approx module. TRAU takes inputs in SMTLIB format. TRAU
does not run any parts concurrently to boost the performance.
We compare TRAU against four other state-of-the-art string
solvers, namely Z3-str3 [10], CVC4 [5], [24] (the newest
version), S3P [25], and TRAU-PRE [26]. We do not compare
with Sloth [11] since it does not support length constraints
which disqualifies it in a majority of our test cases. For our
comparison with Z3-str3, we use the version that is part of Z3
4.6. Each benchmark suite draws from real world applications
with diverse characteristics. The summary of the results is
given in Table I. All experiments were performed on an Intel
Core i7 2.7Ghz with 8 GB of RAM. In most experiments, the
time limit is 20s since it is widely used in the evaluation of
other string solvers.

Kaluza suite. The Kaluza suite [12] is generated by a
JavaScript symbolic execution engine. It consists of 47284 test
cases, including length, regular and (dis)equality constraints.
For this suite, CVC4 times out on 35 cases while TRAU-PRE
times out on 63 cases. Z3-str3 times out on 350 cases and



cannot answer on 640 cases. TRAU and S3P have the same
performance, which is better than the other solvers as they
time out only in 6 cases. When increasing the timeout to 40s,
TRAU can solve all the remaining cases (they all are sat cases)
while other solvers cannot.

PISA and AppScan suite. The PISA suite includes constraints
from real-world Java sanitizer methods that were used in the
evaluation of the PISA system [27]. The suite has 12 tests,
including transducer constraints such as Substring, IndexOf,
and Replace operations. The AppScan suite is derived from
security warnings output by IBM Security AppScan Source
Edition [28]. The suite has 8 tests, including transducer
constraints and (dis)equality constraints. In both suites, the
performance of TRAU is comparable to Z3-str3 (they are able
to solve all test cases). CVC4 cannot give an answer for 1 test
case in each suite. TRAU-PRE cannot run these suites since it
does not support transducer constraints.

Transducer suite. The Transducer suite is inspired by the
Google closure library [29], which supports sanitizing strings
to protect websites from vulnerabilities. The suite has 17
tests, including transducer constraints such as Replace and
ReplaceAll. Since only S3P and TRAU support ReplaceAll
constraints, we do not include Z3-str3, CVC4, and TRAU-PRE
in this comparison. Within the time limit, TRAU showed the
satisfiability of 11 tests while S3P did it only for 3 tests.

StringFuzz suite. StringFuzz [30] is a fuzzer for automatically
generating SMT-LIB string constraints. StringFuzz can help
in exposing bugs and performance issues for string solvers.
We use StringFuzz to generate 1025 tests including word
(dis)equalities and regular membership constraints. These gen-
erated tests consist of a combination of small and large
examples (in terms of the number of used variables and
expected lengths of satisfying string assignments). TRAU can
solve 984 tests (of them 723 tests are sat and 261 tests are
unsat) in the suite. CVC4 and Z3-str3 can determine the
satisfiability of only 778 and 795 tests, respectively. We do
not run S3P and TRAU-PRE because they do not support some
constraints in the suite. TRAU gives up in 41 tests containing
non-membership constraints that are currently not supported.

ACKNOWLEDGEMENTS

This research has been partially supported by the Swedish
Research Council (VR) under grant 2014-5484, by the
Swedish Foundation for Strategic Research (SSF) under the
project WebSec (Ref. RIT17-0011), the Czech Science Foun-
dation project 16-24707Y, the IT4IXS: IT4Innovations Ex-
cellence in Science project (LQ1602), the FIT BUT internal
project FIT-S-17-4014, and the Ministry of Science and Tech-
nology of Taiwan (project 106- 2221-E-001-009-MY3).

REFERENCES

[1] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst,
“HAMPI: A Solver for String Constraints,” in ISTA’09. ACM, 2009,
pp. 105–116.

[2] F. Yu, M. Alkhalaf, and T. Bultan, “Stranger: An automata-based string
analysis tool for PHP,” in TACAS’10, ser. LNCS, vol. 6015. Springer,
2010, pp. 154–157.

[3] Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A Z3-based string solver
for web application analysis,” in ESEC/FSE’13. ACM, 2013, pp. 114–
124.

[4] M.-T. Trinh, D.-H. Chu, and J. Jaffar, “S3: A symbolic string solver for
vulnerability detection in web applications,” in CCS’14. ACM, 2014,
pp. 1232–1243.

[5] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters, “A DPLL(T)
theory solver for a theory of strings and regular expressions,” in CAV’14,
ser. LNCS, vol. 8559. Springer, 2014, pp. 646–662.

[6] S. Kausler and E. Sherman, “Evaluation of string constraint solvers in
the context of symbolic execution,” in ASE ’14. ACM, 2014, pp. 259–
270.

[7] P. A. Abdulla, M. F. Atig, Y. Chen, L. Holı́k, A. Rezine, P. Rümmer, and
J. Stenman, “String constraints for verification,” in CAV’14, ser. LNCS,
vol. 8559. Springer, 2014, pp. 150–166.

[8] P. A. Abdulla, M. F. Atig, Y. Chen, B. P. Diep, L. Holı́k, A. Rezine, and
P. Rümmer, “Flatten and conquer: a framework for efficient analysis of
string constraints,” in PLDI. ACM, 2017, pp. 602–617.

[9] A. W. Lin and P. Barceló, “String solving with word equations and
transducers: towards a logic for analysing mutation XSS,” in POPL’16.
ACM, 2016, pp. 123–136.

[10] M. Berzish, Y. Zheng, and V. Ganesh, “Z3str3: A string solver with
theory-aware branching,” CoRR, vol. abs/1704.07935, 2017.

[11] L. Holı́k, P. Janku, A. W. Lin, P. Rümmer, and T. Vojnar, “String con-
straints with concatenation and transducers solved efficiently,” PACMPL,
vol. 2, no. POPL, pp. 4:1–4:32, 2018.

[12] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A Symbolic Execution Framework for JavaScript,” in IEEE Symposium
on Security and Privacy. IEEE Computer Society, 2010, pp. 513–528.

[13] P. Saxena, S. Hanna, P. Poosankam, and D. Song, “FLAX: Systematic
discovery of client-side validation vulnerabilities in rich web applica-
tions,” in NDSS. The Internet Society, 2010.

[14] F. Yu, M. Alkhalaf, and T. Bultan, “Stranger: An automata-based
string analysis tool for PHP,” in TACAS, ser. LNCS, J. Esparza and
R. Majumdar, Eds., vol. 6015. Springer, 2010, pp. 154–157.

[15] J. D. Scott, P. Flener, J. Pearson, and C. Schulte, “Design and implemen-
tation of bounded-length sequence variables,” in CPAIOR, ser. LNCS,
D. Salvagnin and M. Lombardi, Eds., vol. 10335. Springer, 2017, pp.
51–67.

[16] J. D. Scott, P. Flener, and J. Pearson, “Constraint solving on bounded
string variables,” in CPAIOR, ser. LNCS, vol. 9075. Springer, 2015,
pp. 375–392.

[17] P. A. Abdulla, M. F. Atig, Y. Chen, L. Holı́k, A. Rezine, P. Rümmer, and
J. Stenman, “Norn: An SMT solver for string constraints,” in CAV’15,
ser. LNCS, vol. 9206. Springer, 2015, pp. 462–469.

[18] H. Wang, T. Tsai, C. Lin, F. Yu, and J. R. Jiang, “String analysis via
automata manipulation with logic circuit representation,” in CAV’16, ser.
LNCS, vol. 9779. Springer, 2016, pp. 241–260.

[19] J. van Leeuwen, “Effective constructions in well-partially- ordered free
monoids,” Discrete Mathematics, vol. 21, no. 3, pp. 237 – 252, 1978.

[20] M. F. Atig, A. Bouajjani, and T. Touili, “On the reachability analysis
of acyclic networks of pushdown systems,” in CONCUR’08, ser. LNCS,
vol. 5201. Springer, 2008, pp. 356–371.

[21] R. Parikh, “On context-free languages,” J. ACM, vol. 13, no. 4, 1966.
[22] J. Esparza, P. Ganty, S. Kiefer, and M. LuttenbergSer, “Parikh’s theorem:

A simple and direct automaton construction,” Inf. Process. Lett., vol.
111, no. 12, pp. 614–619, 2011.

[23] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
TACAS’08, ser. LNCS, vol. 4963. Springer, 2008, pp. 337–340.

[24] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters,
“CVC4,” 2016. [Online]. Available: http://cvc4.cs.nyu.edu/papers/
CAV2014-strings/

[25] M. Trinh, D. Chu, and J. Jaffar, “Progressive reasoning over recursively-
defined strings,” in CAV’16, ser. LNCS, vol. 9779. Springer, 2016, pp.
218–240.

[26] “Trau Solver.” [Online]. Available: https://github.com/diepbp/Trau
[27] T. Tateishi, M. Pistoia, and O. Tripp, “Path- and index-sensitive string

analysis based on monadic second-order logic,” ACM Trans. Softw. Eng.
Methodol., vol. 22, pp. 1–33, 2013.

[28] “IBM Security AppScan Tool and Source.” [Online]. Available:
https://www.ibm.com/us-en/marketplace/ibm-appscan-source.

[29] “Google Closure Library.” [Online]. Available: https://github.com/
google/closure-library/.

[30] “StringFuzz.” [Online]. Available: https://github.com/dblotsky/stringfuzz


