
Regular Expression Matching with Pipelined Delayed
Input DFAs for High-speed Networks
Denis Matoušek

Juraj Kubiš
imatousekd@fit.vutbr.cz
xkubis15@stud.fit.vutbr.cz

Brno University of Technology
Faculty of Information Technology

Brno, Czech Republic

Jiří Matoušek
Jan Kořenek

imatousek@fit.vutbr.cz
korenek@fit.vutbr.cz

Brno University of Technology
Faculty of Information Technology
Centre of Excellence IT4Innovations

Brno, Czech Republic

ABSTRACT
Regular expression matching (RE matching) is a widely used
operation in network security monitoring applications. With
the speed of network links increasing to 100Gbps and 400
Gbps, it is necessary to speed up packet processing and pro-
vide RE matching at such high speeds. Although many RE
matching algorithms and architectures have been designed,
none of them supports 100Gbps throughput together with
fast updates of an RE set. Therefore, this paper focuses on the
design of a new hardware architecture that addresses both
these requirements. The proposed architecture uses multi-
ple highly memory-efficient Delayed Input DFAs (D2FAs),
which are organized to a processing pipeline. As all D2FAs
in the pipeline have only local communication, the proposed
architecture is able to operate at high frequency even for
a large number of parallel engines, which allows scaling
throughput to hundreds of gigabits per second. The paper
also analyses how to scale the number of engines and the
capacity of buffers to achieve desired throughput. Using the
parameters obtained while matching a sample RE set repre-
sented by a D2FA in a real network traffic, the architecture
can be tuned for wire-speed throughput of 400Gbps.

KEYWORDS
Regular expression matching, 100Gbps, 400Gbps, Delayed
Input DFA, Pipelined automata

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ANCS ’18, July 23–24, 2018, Ithaca, NY, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5902-3/18/07. . . $15.00
https://doi.org/10.1145/3230718.3230730

ACM Reference Format:
Denis Matoušek, Juraj Kubiš, Jiří Matoušek, and Jan Kořenek. 2018.
Regular Expression Matching with Pipelined Delayed Input DFAs
for High-speed Networks. In ANCS ’18: Symposium on Architec-
tures for Networking and Communications Systems, July 23–24, 2018,
Ithaca, NY, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/3230718.3230730

1 INTRODUCTION
The speed of network links is constantly increasing with
the amount of network devices and the size of data centers.
Large data centers started to use 100Gb links to connect
top-of-rack switches and call for 400Gb and 1 Tb links. With
the increasing speed of network links, a network security
and monitoring analysis have to be accelerated to achieve
wire-speed throughput. One of the most computationally
intensive task is regular expression matching (RE matching).
REs are widely used to identify application protocols, detect
network security incidents, or diagnose specific network
issues.
Current processors are not powerful enough to achieve

100Gbps throughput. Throughput of one processor core is
limited to less than one Gbps [2]. Matching speed can be
increased to hundreds of Gbps only at the cost of a large
number of processor cores. To achieve 100Gbps through-
put, Bro IDS [10] had to use five servers with 10Gbps input
lines and one switch. Although network processors have
dedicated hardware units for RE matching, these units have
usually throughput [2] significantly lower than the capacity
of network links. To achieve 100Gbps, 400Gbps, or 1 Tbps
throughput, it is more efficient to use hardware acceleration
using FPGA technology.
Many hardware architectures utilize a non-deterministic

finite automaton (NFA) to map an RE matching task to an
FPGA [4, 5, 9]. A lot of researchers tried to optimize hardware
architectures in order to reduce FPGA logic utilization and
support more REs, because RE matching has been primarily

1

104

https://doi.org/10.1145/3230718.3230730
https://doi.org/10.1145/3230718.3230730
https://doi.org/10.1145/3230718.3230730

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Denis Matoušek, Juraj Kubiš, Jiří Matoušek, and Jan Kořenek

motivated by intrusion detection systems with a large set
of REs. Throughput of the NFA architectures has been in-
creased by multi-striding [1, 3] and spatial-stacking [11, 12].
Both these techniques increase the throughput by processing
multiple input symbols at a single step.
The scaling of processing speed using multi-striding is

limited because the number of transitions grows exponen-
tially with the increasing number of simultaneously pro-
cessed input symbols. The circuit frequency drops because
of the increasing complexity of transition logic that limits
the throughput in the order of tens of Gbps [1, 3, 7]. Spa-
tial stacking features the frequency drop and limitation of
throughput in the order of tens of Gbps as well [11, 12].
Both techniques are able to scale the throughput only to
tens of Gbps. Therefore, pipelined automata architecture has
been introduced to scale the processing speed to 100Gbps
or 400Gbps throughput [7].

Mapping an NFA to an FPGA is highly efficient because of
massively parallel processing provided by FPGA logic. For
network attack mitigation, a fast change of an RE set is more
important than the number of matched REs, because REs are
determined by a network traffic analysis (e.g., DNS attack
detection) and they have to be uploaded to a matching engine
as soon as possible. The NFA-based architectures need FPGA
reconfiguration, which is strongly technology dependent
and slow in updating the RE set. Therefore, we have focused
on hardware architectures which use a deterministic finite
automaton (DFA) and utilize an on-chip memory to store
DFA’s transition table. The new RE set can then be uploaded
only by changing the content of the memory. The problem of
a DFA is a large size of the transition table. Therefore, Kumar
et al. have introduced Delayed Input DFA (D2FA) [6], which
has significantly fewer transitions and needs less memory
resources.
Delayed Input DFA (D2FA) [6] reduces the size of the

transition table by replacing specific groups of transitions
of the original automaton with default transitions. The set
of states does not change. A default transition is triggered if
any other transition cannot be triggered for the current input
symbol and the current state. It means that D2FA may need
to trigger multiple transitions to accept single input symbol,
and thus accessing the transition table multiple times. As
a result, the throughput of input data processing can drop.

Therefore, the paper deals with the design of a high-speed
RE matching architecture, which (i) utilizes a memory-effi-
cient D2FA to allow a fast change of an RE set and (ii) is
able to achieve 100Gbps throughput. We have designed the
parallel D2FA architecture, which consists of multiple D2FAs
organized to a processing pipeline. As D2FAs use only lo-
cal communication, the architecture is able to operate at
high frequency and to scale throughput to hundreds of Gbps.

Figure 1: The architecture with k pipelined automata
sharing a packet buffer, which stores three N -bit data
words (columns) comprising packets P1-P4. Eachword
is divided into k independent n-bit data blocks (rows).

To achieve wire-speed throughput, the architecture intro-
duces additional processing engines connected to the second
port of a transition table memory, which deal with default
transitions. The paper provides a detailed analysis of the
architecture presenting information about buffers’ sizes, the
relation between the number of D2FAs and target through-
put, and FPGA logic utilization for 100Gbps and 400Gbps
throughput.

The paper is structured as follows. After the brief introduc-
tion of the previously proposed architecture with pipelined
automata in Section 2, the paper presents the proposed ar-
chitecture and analyses the properties of utilized buffers
(Section 3). In order to evaluate the architecture, Section 4
focuses on the properties of D2FAs representing a real set
of REs and on the process of RE matching in a real network
traffic. The analyzed properties of the buffers as well as FPGA
resource utilization of the proposed architecture are evalu-
ated in Section 5. The paper is concluded in Section 6.

2 ARCHITECTUREWITH PIPELINED
AUTOMATA

The architecture with pipelined automata was proposed by
Matoušek et al. [7] in order to allow RE matching with
throughput in the order of hundreds of Gbps. As shown
in Figure 1, the architecture consists of k parallel FSMs or-
ganized to a processing pipeline and a shared packet buffer.
N -bit input data words are stored in the buffer as k inde-
pendent n-bit data blocks and each FSM can directly read
the blocks stored on a corresponding buffer’s row. Using
such block of data and the current state of RE matching (i.e.,
a state from the previous FSM), the FSM can determine the
next state of matching and pass it to the next FSM. If the
next state is a final state, the FSM outputs a match bitmap
encoding the matched RE(s).
RE matching of a packet starts in an FSM corresponding

to the first block of its data and continues in successive FSMs
2

105

Regular Expression Matching with Pipelined Delayed
Input DFAs for High-speed Networks ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

until the last block of packet’s data is processed. Therefore,
a pipeline comprising k FSMs is able to perform matching in
k packets in parallel. However, to achieve the full utilization
of the pipeline, the buffer has to contain at least k packets
and the FSMs corresponding to the first block of packets’
data must not be utilized for RE matching in another packet.
As demonstrated in [7], both throughput and resource

utilization of the architecture scale linearly with the number
of FSMs. Because each FSM communicates only locally (with
the buffer and neighboring FSMs), increasing their number
does not have a negative effect on operating frequency. The
throughput can thus be scaled to hundreds of Gbps.

Even though the authors of [7] used NFAs, the architecture
itself does not preclude the use of DFAs. Nevertheless, used
automata have to have a constant matching rate of one input
block of data per clock cycle.

3 PROPOSED ARCHITECTURE
When designing an RE matching architecture proposed in
this paper, we addressed two main requirements: (i) ability
to achieve 100Gbps and 400Gbps throughput and (ii) pos-
sibility to perform fast updates of an RE set. Although the
architecture with pipelined automata [7] is able to achieve
desired throughput and architectures based on D2FA [6] are
able to perform fast updates, none of these approaches is
able to fulfill both requirements at the same time. Therefore,
we propose a new RE matching architecture that is inspired
by the pipelined-automata approach and utilizes D2FAs. We
have already briefly sketched this architecture in [8].

3.1 Pipelined D2FAs
The main issue that an architecture with pipelined D2FAs
has to address is triggering default transitions without de-
laying the whole pipeline, which would negatively affect
architecture’s throughput. To deal with this issue, instead of
k pipelined FSMs, we propose to usek pipelined matching en-
gines (MEs), each of which comprises two automata—D2FA0
for standard transitions and D2FA1 for default transitions.
The architecture of a single ME is shown in Figure 2. Its core
consists of two D2FAs sharing a BlockRAM (BRAM) that
stores their common transition table. While the basic func-
tion implemented by these automata corresponds to original
D2FA, each of them implements some modifications that
allow to use it in the proposed architecture.

D2FA0 triggers just a single transition defined by a current
state and input symbol (i.e., an n-bit data block from the
buffer) and then decides on further processing in the current
ME. If D2FA0 triggered a standard transition, the new state
is sent towards the ME’s output. But in case of a default
transition, a (new state, input symbol) tuple is submitted
for further processing by D2FA1 via FIFOdef, which has the

Figure 2: Matching engine architecture

capacity of s tuples. Regardless of the transition, D2FA0 will
process the next input symbol in the next clock cycle. D2FA1
is responsible for triggering sequences of default transitions.
It reads the new state and input symbol from FIFOdef and
repeatedly triggers a corresponding transition until the input
symbol is accepted (i.e., until the transition is not default).
Then D2FA1 sends the new state to the ME’s output and
starts processing the next tuple from FIFOdef.
Since D2FA1 may trigger multiple default transitions per

input symbol, its output is always sent directly to the ME’s
output. To solve possible output collisions, the output of
D2FA0 is buffered in FIFOstd. The worst-case requirement on
its capacity applies when FIFOdef contains s tuples and there
is a long sequence of symbols triggering a standard transition
on the ME’s input. In such situation, each of s tuples will
cause a collision. Thus, to prevent the overflow of FIFOstd,
its capacity has to be at least s items.

3.2 Probability of FIFOdef Overflow
The ME’s architecture guarantees no delays when D2FAs
with radius (i.e., the maximum length of a default path) r ≤ 1
are used. This is because accepting a symbol along a default
path of length r takes 1 + r clock cycles (1 in D2FA0 and r in
D2FA1). Therefore, processing in D2FA1 is as fast or faster
than in D2FA0 when r ≤ 1, but it might be slower when
r > 1. An unlimited sequence of input symbols triggering
a default path longer than 1 will thus require FIFOdef of
infinite capacity. However, if only d out of a sequence of l ≥
d · r input symbols trigger a default transition, the capacity
of FIFOdef can be bounded. Clearly, if accepting d symbols
along a default path of length r requires d · r clock cycles in
D2FA1, then all d tuples written into FIFOdef during l ≥ d · r
clock cycles will also be read from it during this interval.
Since the actual value of parameter d depends on an in-

put traffic and the structure of used D2FAs, we will now
attempt to determine its maximum allowed value dmax for
given r > 1 and constant s . Each of dmax symbols has to pass

3

106

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Denis Matoušek, Juraj Kubiš, Jiří Matoušek, and Jan Kořenek

through FIFOdef. In the worst case, D2FA0 writes a new tuple
into FIFOdef every clock cycle and D2FA1 reads a tuple every
r -th clock cycle. Thus, the number of written tuples form an
infinite geometric sequence starting from s with common
ratio 1/r (while writing s tuples into FIFOdef, s/r tuples are
read, making space for new tuples). The sum of the corre-
sponding series expressed in (1) is equal to dmax . The use
of the floor function corresponds to our aim of finding the
maximum value of d for which FIFOdef does not overflow.

dmax =
⌊
s ·
∑∞

i=0 (1/r)
i
⌋
= ⌊(s · r) / (r − 1)⌋ (1)

Once we are able to compute the value of dmax , we can
determine the probability Pov f of FIFOdef overflow. We will
again analyze the worst case, which is represented by the
shortest sequence of symbols that allows a bounded capac-
ity of FIFOdef (i.e., l = dmax · r). If it contains at most dmax
arbitrarily ordered symbols triggering a default transition,
FIFOdef will not overflow. Pov f can thus be computed as
the complement of probability Pnot_ov f that FIFOdef will not
overflow, as shown in (2) where Pdef and Pstd are the prob-
ability of default and standard transition’s occurrence, re-
spectively. Using (2) we can determine how likely it is that
FIFOdef of size s will overflow when the ME utilizes D2FAs
with radius r and input symbols trigger a default transition
with probability Pdef (Pstd = 1−Pdef). This can facilitate the
selection of appropriate FIFOdef capacity because its overflow
would result in a decrease of architecture’s throughput.

Pov f = 1 − Pnot_ov f = 1 −
∑dmax
d=0

(
l
d

)
· Pddef · P

l−d
std (2)

3.3 Probability of Packet Buffer Overflow
Since each ME can work with s + 1 symbols, in the whole
architecture there might be up to k · (s + 1) different packets,
whose symbols are either waiting for processing in FIFOdef
or are currently under processing in D2FA0. Each of these
packets has to be stored in the packet buffer, thus its capac-
ity could be set to S = k · (s + 1). However, FIFOdef stores
only symbols triggering a default transition. Therefore, even
smaller packet buffer might usually be sufficient.
To determine the probability of packet buffer overflow,

we will transform this problem into the FIFOdef overflow
problem. First of all, we will replace k independent instances
of FIFOdef by FIFOdef shared by all k MEs. It can be shown
that this replacement is transparent if shared FIFOdef sup-
ports k-times faster writing and reading of tuples. Shared
FIFOdef represents all parts of the MEs that can store symbols
triggering a default transition, thus its capacity s determines
the number of packets that have to be stored in the buffer
for these parts of the architecture.
Because shared FIFOdef supports k-time faster reading

and writing, the number of written and read tuples is the

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5 6 7 8 9
 0

 50

 100

 150

 200

 250

 300

 350

 400

#
 o

f
tr

a
n

s
it
io

n
s
 [

−
]

#
 o

f d
e

fa
u

lt tra
n

s
itio

n
s
 [−

]

Radius bound [−]

Transitions
Default transitions

Figure 3: The number of transitions and default tran-
sitions for L7 selected

same as in case of non-shared FIFOdef, which allows us to
compute both dmax and Pov f for shared FIFOdef using (1) and
(2), respectively. The only difference lies in the computation
of the length l of symbols’ sequence. Its value is defined as
l = k · ⌈dmax/k⌉ · r , where ⌈dmax/k⌉ represents the number
of r -clock-cycle steps required for reading all dmax tuples
from shared FIFOdef. During this time, the whole architecture
can process a total of k · ⌈dmax/k⌉ · r symbols.
Now we can finally determine the probability of packet

buffer overflow. Total capacity S of the buffer required for
the architecture with k MEs consists of (i) k packets, whose
symbols are currently under processing in D2FA0 of MEs and
(ii) s packets, whose symbols are currently waiting for pro-
cessing by D2FA1 in shared FIFOdef. Since the buffer has to
be able to store at least k packets, we can constrain its capac-
ity to S ≥ k . This allows us to focus only on the remaining
s packets and define probability that the buffer with capacity
S = k + s will overflow as probability that shared FIFOdef
with capacity s will overflow, which can be computed using
(2). As for non-shared FIFOdef, we can use (2) to facilitate the
selection of appropriate buffer’s capacity.

4 ANALYSIS OF D2FA
In order to evaluate the effectiveness of using D2FA tech-
nique, two analyses were carried out. The first one inspects
the influence of D2FA radius on the size of the transition table.
The other analysis determines the frequency of triggering
a default transition while processing real data. It reveals how
often the transition table needs to be accessed multiple times
to accept a single input symbol.
Both analyses are based on automaton derived from the

set of REs used to classify network traffic. It is denoted “L7 se-
lected” and contains six REs for identification of application
protocols.

The graph in Figure 3 shows the results of the first analysis.
Each data point represents the number of transitions on the
left y axis and the number of default transitions on the right
y axis for D2FA with corresponding radius on the x axis.

4

107

Regular Expression Matching with Pipelined Delayed
Input DFAs for High-speed Networks ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

In the second analysis, a sample of network traffic, which
contains 2 699 525 packets, captured on a real network of
a big ISP was used. The histogram in Figure 4 shows the
results of the second analysis. It represents the probability
distribution of triggering a default transition over the whole
data set for all inspected D2FA radii. Each box represents the
packets that triggered a default transition with probability
on the x axis (boxes are centered).

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

P
a

c
k
e

ts
 [

%
]

Probability of using a default transition [−]

 0

 1

 2

 3

 4

 5

 6

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Radius bound 9
Radius bound 8
Radius bound 7
Radius bound 6
Radius bound 5
Radius bound 4
Radius bound 3
Radius bound 2
Radius bound 1

Figure 4: Probability distribution of triggering a de-
fault transition with detail for L7 selected

The histogram in Figure 4 shows that the majority of the
packets (about 60%) do not trigger any default transition.
In the majority of such cases, it is caused by absence of
application layer in TCP or ICMP packets.

In order to determine an optimal D2FA radius for the pro-
posed architecture, it is necessary to take into account the
results of both analyses. The first analysis revealed logarith-
mic drop of the number of transitions with increasing D2FA
radius. The most distinct drop is seen at the radii one (57.8%
of the size of the original DFA) and two (28.7%). The second
analysis revealed that with rising D2FA radius, the number
of packets with higher probability of triggering a default
transition increases, which can be seen from the distribu-
tion shift to the right-hand side of the histogram. Thus, the
smaller D2FA diameter is, the smaller the probability is. We
chose D2FA radius of two for the design of the architecture
to reduce the size of the transition table and assure reason-
ably small probability of triggering a default transition in
comparison to bigger D2FA radii. In the following text, we
will use the probability of triggering a default transition of
1.5334%. It is computed based on the L7 selected D2FA with
radius of two, which appeared to be the worst case.

Table 1: The probability of FIFOdef overflow and the
theoretical throughput for various FIFOdef capacity

s 1 2 3 ∞

P64
ov f [%] 0.0912 0.0003 0.0000 0.0000

P256
ov f [%] 0.3650 0.0012 0.0000 0.0000

T 64 [Gbps] 99.9088 99.9997 100.0000 100.0000

T 256 [Gbps] 398.5402 399.9953 400.0000 400.0000

5 RESULTS
We will now evaluate the proposed architecture comprising
k = 64 andk = 256MEs, each of which accepts input symbols
of width n = 8 bits and runs at f = 195.3125 MHz. Such
settings should allow to achieve desired throughput T =
100Gbps and T = 400Gbps, respectively. In the evaluation,
we will consider D2FAs with radius r = 2 and the probability
of a symbol triggering a default transition Pdef = 1.5334%.

5.1 FIFOdef
First, we quantify the probability of FIFOdef overflow, whose
analytical solution was presented in Section 3.2. The results
for 64 (P64

ov f) and 256 (P256
ov f) MEs are presented in Table 1.

The values in the table represent probability that FIFOdef
will overflow in at least one of k MEs. Unsurprisingly, the
probability is the highest when the architecture comprises
k = 256 MEs, in which FIFOdef has a capacity of s = 1.
However, even in this worst-case scenario, the probability is
lower than 0.4%. Moreover, for all evaluated values of k , the
probability of FIFOdef overflow when s = 3 is practically the
same as of FIFOdef with infinite capacity.
Even though the probability of FIFOdef overflow is very

low, it might happen. Nevertheless, it affects only throughput
and has no effect on RE matching result’s correctness (it just
stalls the whole pipeline). Therefore, Table 1 also shows
theoretical throughput for 64 (T 64) and 256 (T 256) MEs and
various FIFOdef capacity computed using (3). Similarly to the
upper part of the table, theoretical throughput T k is very
close to desired throughput T even in the worst case and
FIFOdef with a capacity of s = 3 ensures practically the same
theoretical throughput as FIFOdef of infinite capacity.

T k = T · Pkov f (3)

5.2 Packet Buffer
Using the analytical solution presented in Section 3.3 and
Equation (3), we now quantify the probability of packet buffer

5

108

ANCS ’18, July 23–24, 2018, Ithaca, NY, USA Denis Matoušek, Juraj Kubiš, Jiří Matoušek, and Jan Kořenek

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 257 259 261 263 265 267 269 271
 0

 50

 100

 150

 200

 250

 300

 350

 400
 65 66 67 68 69 70 71

P
ro

b
a
b

ili
ty

 o
f

p
a
ck

e
t

b
u
ff

e
r

o
v
e
rfl

o
w

T
h

ro
u

g
h

p
u

t
[G

b
p

s]

Capacity of packet buffer for 256 MEs

Capacity of packet buffer for 64 MEs

Povf
64

T64

Povf
256

T256

Figure 5: The probability of packet buffer overflow
and theoretical throughput of the architecture with 64
and 256 MEs for various packet buffer capacity.

overflow and theoretical architecture’s throughput for vari-
ous capacity of the buffer. The results are presented in Fig-
ure 5, which shows the probability of buffer overflow (Pkov f)
and theoretical throughput (T k) for k = 64 and k = 256 MEs.

The figure confirms expected behavior. A decrease of Pkov f
with an increasing capacity of the buffer, which is natural,
has a positive effect onT k . It is also not surprising that the ac-
tual value of Pkov f andT

k as well as the rate of their decrease
and increase are not the same for architectures comprising
64 and 256 MEs. However, the main finding illustrated in
Figure 5 is similar for both: to retain desired throughput,
it is sufficient to store only a few more than k packets in
the buffer. Specifically, a capacity of S = 71 and S = 271
is sufficient for retaining the throughput of 100Gbps and
400Gbps, respectively. This means that due to default transi-
tions, the capacity of the buffer has to be increased by 10.94%
to support 100Gbps throughput and only by 5.86% to support
400Gbps throughput.

5.3 FPGA Resource Utilization
In order to evaluate the architecture from the point of view
of resource utilization, the architecture of an ME depicted
in Figure 2 and L7 selected RE set with D2FA radius two are
considered. For the sake of brevity, the description of the
process of transformation of an RE set into a transition table
is omitted. The transformation resulted in 4089 items, each
12 bits wide since 212 ≥ 4089. Each item of the transition
table and FIFOdef contains a next state number (12 bits) and
an input symbol (8 bits) that gives 20 bits in total. Each item
of default transition table and FIFOstd contains only a 12-bit
next state number. The capacity of both FIFOs is set to three
items based on the analysis carried out in Section 5.1.

Table 2: Resource utilization (L7 selected, D2FA radius
two)

Component BRAMs LUTs FFs

D2FA pair 3 142 66
FIFOdef/FIFOstd/MUX 0/0/0 28/20/12 14/14/0
Single ME 3 202 94
64 MEs 192 12 928 6016
256 MEs 768 51 712 24 064

Synthesis results summed up in Table 2 show resource
utilization of individual components and of the whole paral-
lel pipeline with 64 MEs (to achieve 100 Gbps throughput)
and 256 MEs (to achieve 400 Gbps throughput). Note that 64
parallel MEs fit into Xilinx Virtex-7 VH580T chip (20.4 % of
block memories are used) and 256 MEs fit into Xilinx Virtex
UltraScale+ VU13P chip (28.6 % of block memories are used).
Since the circuit is deeply pipelined using synchronous block
memories and FIFOs in all stages, the required frequency of
200MHz is met.

6 CONCLUSION
This paper introduces a new RE matching architecture that
supports throughput in the order of hundreds of Gbps and
fast updates of an RE set. The architecture utilizes multiple
parallel D2FAs organized to a processing pipeline, which
allows to scale its throughput linearly with the number of
parallel pipeline stages. Moreover, because of only local com-
munication between neighboring stages, scaling does not
affect architecture’s operating frequency.
Apart from describing the architecture, the paper also

analyses the properties of utilized buffers and the properties
of D2FAs, which the architecture is based on. The results of
these analyses are used in the evaluation of the architecture
with respect to its throughput and utilized FPGA resources.

The architecture able to achieve wire-speed throughput of
100Gbps and 400Gbps comprises 64 and 256 parallel pipeline
stages, respectively. While the 400Gbps architecture fits into
modern Virtex UltraScale+ FPGAs (it utilizes 51 712 LUTs,
24 064 FFs, and 768 BRAMs), the 100Gbps architecture can be
implemented even in older Virtex-7 chips (it utilizes 12 928
LUTs, 6016 FFs, and 192 BRAMs).

ACKNOWLEDGMENT
This work was supported by The Ministry of Education,
Youth and Sports of the Czech Republic from the National
Programme of Sustainability (NPU II); project IT4Innovations
excellence in science - LQ1602. It was also supported by Brno
University of Technology from grant no. FIT-S17-3994.

6

109

Regular Expression Matching with Pipelined Delayed
Input DFAs for High-speed Networks ANCS ’18, July 23–24, 2018, Ithaca, NY, USA

REFERENCES
[1] Michela Becchi and Patrick Crowley. 2008. Efficient Regular Ex-

pression Evaluation: Theory to Practice. In Proceedings of the 4th
ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems (ANCS ’08). ACM, New York, NY, USA, 50–59.
https://doi.org/10.1145/1477942.1477950

[2] Michela Becchi, Charlie Wiseman, and Patrick Crowley. 2009. Evalu-
ating Regular Expression Matching Engines on Network and General
Purpose Processors. In Proceedings of the 5th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS ’09).
ACM, New York, NY, USA, 30–39. https://doi.org/10.1145/1882486.
1882495

[3] Benjamin C. Brodie, David Edward Taylor, and Ron K. Cytron. 2006.
A Scalable Architecture For High-Throughput Regular-Expression
Pattern Matching. SIGARCH Comput. Archit. News 34, 2 (May 2006),
191–202. https://doi.org/10.1145/1150019.1136500

[4] Christopher R. Clark and David E. Schimmel. 2003. Efficient Re-
configurable Logic Circuits for Matching Complex Network Intru-
sion Detection Patterns. In Field Programmable Logic and Application
(FPL ’03), Peter Y. K. Cheung and George A. Constantinides (Eds.).
Springer, Berlin, Heidelberg, Germany, 956–959. https://doi.org/10.
1007/978-3-540-45234-8_94

[5] Christopher R. Clark and David E. Schimmel. 2004. Scalable Pattern
Matching for High Speed Networks. In Proceedings of the 12th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM ’04). IEEE Computer Society, Washington, DC, USA, 249–257.
https://doi.org/10.1109/FCCM.2004.50

[6] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and
Jonathan Turner. 2006. Algorithms to Accelerate Multiple Regular
Expressions Matching for Deep Packet Inspection. SIGCOMM Comput.
Commun. Rev. 36, 4 (Aug. 2006), 339–350. https://doi.org/10.1145/
1151659.1159952

[7] Denis Matoušek, Jan Kořenek, and Viktor Puš. 2016. High-speed
Regular Expression Matching with Pipelined Automata. In 2016 In-
ternational Conference on Field-Programmable Technology (FPT). IEEE,
93–100. https://doi.org/10.1109/FPT.2016.7929431

[8] Denis Matoušek, Jiří Matoušek, and Jan Kořenek. 2018. High-speed
Regular ExpressionMatching with PipelinedMemory-based Automata.
In Proceedings of the 26th IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCM ’18). IEEE Com-
puter Society, Washington, DC, USA, 214–214. https://doi.org/10.1109/
FCCM.2018.00048

[9] Reetinder Sidhu and Viktor K. Prasanna. 2001. Fast Regular Ex-
pression Matching Using FPGAs. In Proceedings of the 9th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM ’01). IEEE Computer Society, Washington, DC, USA, 227–238.
https://doi.org/10.1109/FCCM.2001.22

[10] Vincent Stoffer, Aashish Sharma, and Jay Krous. 2015. 100G Intrusion
Detection. Technical Report. https://commons.lbl.gov/display/cpp/
100G+Intrusion+Detection

[11] Yi-Hua Edward Yang, Weirong Jiang, and Viktor K. Prasanna. 2008.
Compact Architecture for High-throughput Regular ExpressionMatch-
ing on FPGA. In Proceedings of the 4th ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems (ANCS ’08). ACM,
New York, NY, USA, 30–39. https://doi.org/10.1145/1477942.1477948

[12] Yi-Hua Edward Yang and Viktor K. Prasanna. 2012. High-Performance
and Compact Architecture for Regular Expression Matching on FPGA.
IEEE Trans. Comput. 61, 7 (July 2012), 1013–1025. https://doi.org/10.
1109/TC.2011.129

7

110

https://doi.org/10.1145/1477942.1477950
https://doi.org/10.1145/1882486.1882495
https://doi.org/10.1145/1882486.1882495
https://doi.org/10.1145/1150019.1136500
https://doi.org/10.1007/978-3-540-45234-8_94
https://doi.org/10.1007/978-3-540-45234-8_94
https://doi.org/10.1109/FCCM.2004.50
https://doi.org/10.1145/1151659.1159952
https://doi.org/10.1145/1151659.1159952
https://doi.org/10.1109/FPT.2016.7929431
https://doi.org/10.1109/FCCM.2018.00048
https://doi.org/10.1109/FCCM.2018.00048
https://doi.org/10.1109/FCCM.2001.22
https://commons.lbl.gov/display/cpp/100G+Intrusion+Detection
https://commons.lbl.gov/display/cpp/100G+Intrusion+Detection
https://doi.org/10.1145/1477942.1477948
https://doi.org/10.1109/TC.2011.129
https://doi.org/10.1109/TC.2011.129

	Abstract
	1 Introduction
	2 Architecture with Pipelined Automata
	3 Proposed Architecture
	3.1 Pipelined D2FAs
	3.2 Probability of FIFOdef Overflow
	3.3 Probability of Packet Buffer Overflow

	4 Analysis of D2FA
	5 Results
	5.1 FIFOdef
	5.2 Packet Buffer
	5.3 FPGA Resource Utilization

	6 Conclusion
	References

