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Abstract—Various electronic systems play an important role
in our everyday lives. Some of them serve for fun or to make
our lives easier. These systems are useful but not necessary; when
they malfunction, the consequences are not critical. On the other
hand, there are systems which are more or less critical, and
their failure can cause undesirable consequences. For example,
a failure in medicine, aviation, the army or automotive systems
can cause high economic losses and/or endanger human health.
These systems must be protected against the impact of faults, and
flawless operation must be ensured. Fault tolerance is one of the
techniques that will ensure this. There are many fault-tolerance
methodologies targeted towards various systems and technologies,
and new methodologies are being investigated. It is also important
to verify these techniques; this is the main topic of this paper.
An evaluation platform for testing fault-tolerance methodologies
targeted towards SRAM-based FPGAs (Field Programmable
Gate Arrays) is presented and demonstrated. A robot for seeking
a path through a maze and the processor-based robot controller
serve as an experimental system case study. Experimental results
with the unhardened and hardened versions of the processor-
based robot controller are presented and discussed.

Keywords—Soft-core Processor, NEO430, TMR, FPGA, Fault
Tolerance, Robot Controller, Reconfiguration.

I. INTRODUCTION

We meet with various electronic systems playing important
roles in our everyday lives. These systems are integrated
in various commonly used devices such as cars, intelligent
buildings, and some entertainment systems. Electronic systems
make our lives easier, monitor our health, and provide new
opportunities. It is very important to ensure the reliability
of systems, the failure of which can cause high economic
losses and/or can endanger human health. The current trend
is to increase chip-level integration, which allows us to make
electronic systems smaller and integrate more functionality
into a smaller area on the chip. The problem is that this trend
also leads to greater sensitivity to faults. The number of digital
systems with a high demand on reliability, such as medicine,
space, and industry, is growing as well. It is important to
protect these systems against the consequences of faults.

Two main approaches to increase reliability are currently
used. The first is called fault avoidance [1]. It is a very
challenging and expensive approach; the primary goal is to
completely prevent failures in the system using more reliable
parts, manufacturing processes, etc. The second approach is
called fault tolerance [2]. Fault tolerance accepts the fact

that a fault can appear, but the goal of this approach is to
keep the system functional, even in the presence of faults.
Techniques based on the various types of redundancies are
used for this purpose. The most common types are spatial and
time redundancy. Time redundancy is based on computation
repeating and the results from the independent runs are then
compared. On the other hand, spatial redundancy usually uses
n-copies of the same functional unit and comparator to guar-
antee the proper function. Many fault tolerance methodologies
exist, which combine and improve these basic methods, e.g.
hardware and time redundancy are combined in the approach
presented in [3].

Many fault-tolerant methodologies have been developed,
among others, to Field Programmable Gate Arrays (FPGAs)
and new types are under investigation [2], [4], because FPGAs
are becoming more popular due to their flexibility and re-
configurability. FPGAs are an alternative solution to Applica-
tion Specific Integrated Circuits (ASICs), which are beneficial
in systems that are produced in small series. Fault-tolerance
methodologies targeted towards FPGAs are often based on
spatial redundancy, specifically on Triple Modular Redundancy
(TMR), which uses three copies of the same functional unit.
The disadvantage is the high consumption of resources, which
is leading scientists to develop some improvements. A new
technique based on the identification of critical bits of the
bitstream and their hardening with TMR is presented in [5].
The practical aspects of TMR implementation on the FPGA
and the proper location of triplicated units is discussed in [6].
It is advantageous to place individual copies in the disjoint
areas. The unconventional use of TMR combined with High
Level Synthesis is presented in [7].

The second reason why so many techniques are inclined
towards FPGAs is their sensitivity to faults and their ability to
be reconfigured if a fault occurs in the configuration memory.
FPGAs are composed of configurable logic blocks [8], which
are connected by programmable interconnection. The config-
uration is stored as a bitstream in the SRAM memory. The
problem, from the point of view of reliability, is that FPGAs
are quite sensitive to faults caused by charged particles [9].
This particles can induce the inversion of a bit in the bitstream,
and this may lead to a change in its behavior. This event is
called Single Event Upset (SEU) [2]. The advantage is that
faults which occurred in the configuration memory can be
repaired by Partial Dynamic Reconfiguration (PDR) [10].
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It is important to test and evaluate fault-tolerance tech-
niques. Various approaches to the evaluation of fault tolerance
exist. Some of them are performed on a theoretical level; for
example, a simulation method for SEU emulation is presented
in [11]. Another approach is the use of artificial fault injection
directly into the design implemented in the FPGA. Special
evaluation boards are developed for these purposes; one of
them is proposed in [12] and [13]. The combination of simu-
lation method and hardware evaluation is discussed in [14].

The goals of our research are to develop an evaluation
platform for testing fault-tolerance techniques based on func-
tional verification. Our evaluation platform was presented in
[15]. The proposed platform is able to monitor the impact of
faults on an electro-mechanical system; this means monitoring
the impact of faults both on the electronic controller and
the mechanical part, because electronic controllers usually
control some kind of mechanical part in real applications. Our
evaluation platform was tested and demonstrated with the use
of an experimental electro-mechanical system (a robot in a
maze and its electronic controller) with TMR applied. The
next step is to use another experimental system, apply some
kind of fault tolerance technique, and demonstrate the use of
an evaluation platform, which is the main topic of this paper.

This paper is organized as follows. Section II introduces
a previously developed evaluation platform for monitoring the
impact of faults on electro-mechanical applications. The exper-
imental electro-mechanical system composed of a robot in a
maze and its processor-based robot controller are proposed in
Section III. Experiments with proposed experimental systems
are presented in Section IV together with their comparison with
previously obtained results. Section V concludes the paper and
presents the plans for our future research.

II. THE EVALUATION PLATFORM AND THE EVALUATION

PROCESS

An evaluation platform for monitoring the impact of faults
on electro-mechanical systems was presented in our previous
work [15]. The evaluation process based on the evaluation
platform was also presented previously. In this paper, the de-
scription of the evaluation platform and the evaluation process
are brought to mind, and a case study with a new, experimental
electronic controller

A. The Evaluation Platform for Monitoring the Impact of
Faults on an Electro-mechanical System

Our evaluation platform is based on Functional Verification
[16]. The main task of functional verification is to check
whether a verified circuit meets its specifications. It compares
the outputs of a verified circuit running in an RTL simulator
with those of a reference model. In the case of the fault
injection, the verified circuit must be implemented into the
FPGA, so we do not use classical simulation-based functional
verification, but modified FPGA-based functional verification.
Our platform uses functional verification as a tool for monitor-
ing the impacts of faults injected into an electronic controller
implemented into the FPGA.

The two main components of the proposed evaluation
platform shown in Figure 1 are a computer and an FPGA
development board. The platform is designed to monitor the

impact of faults on the electro-mechanical application, so the
mechanical part (or its simulation) is an important unit running
on the computer. The mechanical part is connected with the
FPGA through an Ethernet interface. The software part of the
verification environment is also running on the computer and
performs the evaluation of the impacts of injected faults on
both the electronic and the mechanical parts.

The use of an FPGA development board where an elec-
tronic controller is implemented allows us to inject faults
directly into the FPGA. The fault injector is one of the
components which runs on the computer. Our fault injector
[17] is based on the partial reconfiguration. It reads part of the
configuration bitstream from the configuration memory, then
the specified bits of the bitstream are inverted and a modified
part of the bitstream is configured back to the configuration
memory. A JTAG interface is used for reading bitstreams from
the FPGA and writing modified bitstreams back to the FPGA.

Fig. 1. The architecture of the proposed evaluation platform.

An important metric in functional verification is coverage.
It measures how well the verification scenarios cover the
behavior of the DUT and provide feedback that determines
when the verification process can be ended. Depending on
the required coverage criteria, the Code coverage metrics
can serve as an example. Code coverage measures how well
the verification scenarios cover the source code of the DUT.
Typical code coverage metrics are toggle, statement, branch,
condition, expression, and FSM coverage.

B. The Three Phases of the Evaluation Process

The evaluation process of fault impact monitoring is shown
in Figure 2. The proposed process is divided into three main
phases. Simulation-based functional verification is performed
in the first phase. The VHDL description is used as the DUT
and the C/C++ implementation of the electronic controller is
used as a reference model. The simulation-based verification
environment, which is used in this phase, is usually developed
during the development cycle of the whole system. In this
phase, the correctness of the electronic controller design is
evaluated. The main output of the first phase is a test as to
whether the electronic controller works correctly, according to
the specification. This is important, because we have to ensure
that the electronic controller does not contain any functional
errors in its implementation. The generated set of verification
scenarios must lead to maximum code coverage, which ensures
that much of the code is verified. It is also important to point
out that the set of verification scenarios acquired in this phase
can be used in the subsequent phase.
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Fig. 2. The flow of phases in the FT evaluation system verification.

The evaluation of the impact of faults on the electronic
controller is a task for the second phase, which consists of veri-
fication of the electronic controller implemented into the FPGA
with the verification scenarios obtained during the previous
phase. Modifications of the verification environment used in
the previous phase are needed for this phase because functional
verification serves merely as a communication observer. It
monitors and checks communication between the mechanical
part and the electronic controller, and errors in communication
are reported and analyzed. In this phase, artificial faults are
injected into the FPGAs using an implemented fault injector.
The output of this phase is a list of verification runs with
information about the injected faults and the results of the ver-
ification run (success, failure). The injected faults are divided
into two categories: Faults with no impact on the electronic
part, and faults which cause mismatches on the output of the
electronic part. Various strategies of fault injection may be
used in this phase (e.g. one fault per verification run, multiple
faults in the same functional unit, or multiple faults in different
functional units).

The analysis of the faults that corrupted the mechanical
part is the goal of the third phase. The information from
the sensors on the mechanical part are used for monitoring
its behavior. These sensors usually provide sufficient infor-
mation about the behavior. Some additional modifications of
the verification environment are needed for this phase. It is
necessary to implement evaluation of the behavior from the
sensor information. The outputs of the third phase also form a
list of verification scenarios with the injected faults and their
impact on the mechanical part. The faults can cause failure
of the mechanical part, with collisions or inaccuracies in the
behavior of the mechanical part.

C. Verification Scenario Generation

An important tool in functional verification is verification
scenario generation. We need to generate a set of verification
scenarios which ensure sufficient code coverage and which

also would be suitable for our robot controller. The universal
Stimuli Generator was designed for these purposes. It performs
pseudo-random generation, which is appropriate to capture the
usual and unusual verification scenarios through the whole
state space for various systems.

The versatility of the generator is ensured by the proba-
bilistic grammar with constraints which was presented in [18].
Probabilistic grammar is the common context-free grammar
which has defined probabilities for its rewriting rules. The
constraints are our extension of this grammar, which modifies
the probabilities of rewriting rules during the generation.
Thanks to this, we are able to control the generation process
and get the valid verification scenario for various systems. In
probabilistic grammar, the desired verification scenarios are
encoded using finite language. In the constraints, there are
conditions in which a specific rewriting rule of the grammar
gets a new probability value. For this reason, it is ensured that
a particular rewriting rule is applied in certain situations, but
in other situations, it is not applied. Therefore, we are able
to get valid scenarios for a system (a subset of all possible
scenarios).

As can be seen from the previous text, in the previous
period we dealt with various activities in the area of evaluating
the design of fault-tolerant systems. Our new activity, namely
the use of a soft-core processor as the robot controller and its
use in fault-tolerant system design, certainly belongs to this
area.

III. CASE STUDY: SOFT-CORE PROCESSOR-BASED ROBOT

CONTROLLER

A robot in a maze, and its electronic controller imple-
mented in the FPGA, were used as an experimental electro-
mechanical system (Figure 3) in our previous work [15].
Unfortunately, we have no real robot device, so we use
a Player/Stage [19] tool for the robot and its environment
simulation. The task for our robot and its controller is to seek
a path through a maze. The electronic robot controller was a
”hard coded” implementation configured into the FPGA. There
are various possibilities to implement an electronic controller,
one of them is to use soft-core processor implemented on
FPGA together with some additional components and create a
System on Chip (SoC). The robot controller implemented as
an SoC with a processor is used for experiments in this paper.

Fig. 3. The robot in the maze and its electronic controller.

As an experimental processor we chose the NEO430
Processor [20], which is a customizable and microcontroller-
like processor for FPGA designs. This processor is based on
Texas Instruments MSP430 [21] instruction set architecture
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and provides compatibility with the original instruction set.
The architecture of the processor is shown in Figure 4. The
processor already implements standard features like a timer,
a watchdog, UART and SPI serial interfaces (implemented
together as a USART unit), general purpose IO ports, an
internal bootloader, and internal memory for program code and
data. All of the peripheral modules are optional; it is possible
to exclude them from implementation to reduce the size of
the system. Any additional modules can be connected via a
Wishbone bus.

Fig. 4. The architecture of the NEO430 Processor [20].

The use of the NEO430 Processor as the main part of
our robot controller is shown in Figure 5. Optional peripheral
modules which are used in our design are shown. We use
a Custom Functional Unit (CFU) as an input interface for
data with information about the robot’s position in the maze
(DIST A, DIST B, DIST C – simplified GPS) and the dis-
tances from the barriers in the robot four-neighborhood (S 0,
S 1, S 2, S 3). The CFU is connected to the processor system
bus and allows writing data to the registers. Information about
the robot’s position and barriers is written in registers, which
makes it available from the CPU.

Fig. 5. The architecture of the robot controller composed of the NEO430
Processor.

The input data are processed by the processor and the
General-purposes inputs and outputs (GPIO) are used for
communication with the MOVE unit. The MOVE unit controls
the mechanical robot by setting the speed in the X and Y axis
for a specified time, according to the input values. The input is
just the direction of the movement and activation signal (ACT).
The movement is confirmed by a DONE signal produced by
the MOVE unit. The processor must wait for the DONE signal

before the next input data are processed and the next movement
is activated.

The boot-loader was used only for program debugging.
In the experimental version of the processor-based robot
controller, the program is stored in the instruction read-only
memory (ROM). The UART is connected to the output inter-
face of the whole FPGA and can then be connected to the
computer. This allows us to monitor additional information
about the program behavior. A simple ”left hand on the wall”
method is used as a searching algorithm. This means that at
each crossroad, the robot turns left. The program is composed
of several steps, which are performed until the robot reaches
the goal position:

1) Read the information about the robot’s position and
barriers in the robot 4-neighborhood; the DIST A,
DIST B and DIST C values represent represent the
distances from the fixed points A, B, and C in a
map. From these values, the position coordinates are
calculated. The S x values represent distances from
barriers in the 4-neighborhood.

2) Evaluate the position and the barriers and calculate
the next position. A simple ”left hand on the wall”
algorithm is implemented.

3) The command to execute the robot’s movement is
sent to the MOVE unit, which sets the speed in the
X and Y directions for a specified time and the robot
moves to the next position.

Our evaluation platform is designed mainly for testing
fault-tolerance methodologies, so the current experiments cor-
respond with this. For the experiments discussed in the next
section, a hardened version of our experimental system was
developed, which allows us to compare the impact of faults on
on the electronic and mechanical parts, on both the hardened
and unhardened versions of the experimental system. The com-
monly used Triple Modular Redundancy (TMR) was chosen
for our experiments because it is a basic method, which is
used in many practical applications and forms the basis of
more advanced techniques. Of course, it is possible to use other
fault-tolerance techniques and the main steps of our evaluation
process will be the same.

The use of TMR architecture as an FT technique for our
processor-based robot controller is shown in Figure 6. There
are three instances of the processor with a majority voter for
correct output determination. We use a majority voter that
works ”per bits”. The connection of the UART interface with
the outer world is done only for a single instance of the
processor.

IV. CASE STUDY: EXPERIMENTAL RESULTS

The main part of this paper deals with experiments and
experimental results. The complete evaluation process is per-
formed and reported in the following section. The verification
environments needed for the evaluation in each phases of the
evaluation process are shown and described together with their
practical use during evaluation. A great deal of attention is paid
to results analysis and the achieved results are compared with
the results obtained during experiments with the original robot
controller.
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Fig. 6. The architecture of the TMR version of the robot controller composed
of NEO430 Processor.

A. The First Phase - Simulation-based Functional Verification

The first phase focuses on simulation-based functional
verification of the evaluated electronic controller. The output of
this phase is a robot controller without implementation faults,
which ensures that errors detected in the following phases are
caused by injected faults. The verification scenarios (images
of mazes) are generated with the use of our universal stimuli
generator in order to achieve maximum code coverage. Set of
verification scenarios with high code coverage is also one of
the outputs of this phase.

The verification environment used in the first phase is
implemented according to Universal Verification Methodology
(UVM) and is shown in Figure 7. The robot controller as the
DUV (Device Under Verification) is equipped with verification
components. The inputs for the robot controller (DUV) are
the outputs of the simulation of the robot in the maze, which
is driven by the outputs of the robot controller. An important
component is the Golden Model, which generates the reference
outputs for comparison with the outputs of the DUT.

Fig. 7. The architecture of the verification environment for the robot
controller.

We evaluated three types of mazes with various dimen-
sions, and our goal is to find which size is good enough for
the subsequent phases. Three sizes of maze (shown in Figure

8) were evaluated: 7x7, 15x15, and 31x31 cells. The average
number of steps that must be done by the robot on the way
to the finish position is shown in Table I. It can be seen that,
with the increasing dimensions of a maze, the number of steps
the robot has to go through also increases.

Fig. 8. Three types of mazes - the example of one scenario for each type.

TABLE I. AVERAGE NUMBER OF ROBOT STEPS

Maze size 7x7 15x15 31x31

Average number of steps 15 99 342

For each maze dimension, we generated 1,000 mazes
through our generator, which differ in corner composition
and also in the start and finish position for the robot in the
maze. We have verified the obtained mazes in the process of
functional verification for a correct output (the robot reached
the finish position after the prescribed number of steps) and
obtained the value of the code coverage for these mazes. The
number of verification scenarios for the evaluation was chosen
as 1, 10, 100 and 1,000. In total, we performed an evaluation
of 3,000 verification scenarios with different mazes. The main
objective of these experiments is to find the dimension and
number of mazes that will provide the highest code coverage.

The result of the experiments with measured code coverage
is presented in Table II. The achieved maximum total code
coverage is 75.80% for almost all test scenarios. The difference
is in the dimension of a maze 7x7 cells with 1 verification
scenario, where the total code coverage was 75.49%. The in-
ability to reach 100% total code coverage is due to the complex
implementation of the processor used. In the processor, there
are many functional units, signals, buses, etc. which are not
fully utilized, because the robot controller is, in principle, a
simple automaton compared to the processor’s possibilities.
The table also shows that with the increasing dimension of
the maze the achieved coverage does not increase. This is due
to the fact that one verification scenario carries several input
transactions. It is also clear from the table that just one maze
is sufficient to reach maximum coverage.

During experiments, the robot always arrived at the finish
position. The robot did not freeze on a place, crash, or behave
unusually, so we can say that the robot controller is properly
verified on 3,000 input stimuli and, therefore, it does not
contain any implementation errors.

Based on the previous paragraphs, we will select one
suitable maze for the subsequent phases. The selection of an
appropriate maze is done based on the total code coverage for
the individual mazes. The coverage is shown in Figure 9, with
a box plot graph which shows the range of coverage achieved.
The lower dash indicates the minimum achieved coverage,
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TABLE II. THE RESULT OF EXPERIMENTS WITH MEASURED CODE COVERAGE.

# of verification scenarios 1 10 100 1000

Size of mazes 7x7 15x15 31x31 7x7 15x15 31x31 7x7 15x15 31x31 7x7 15x15 31x31

Statement coverage 72.01 % 72.24 % 72.24 % 72.24 % 72.24 % 72.24 % 72.24 % 72.24 % 72.24 % 72.24 % 72.24 % 72.24 %

Branch coverage 69.46 % 69.66 % 69.66 % 69.66 % 69.66 % 69.66 % 69.66 % 69.66 % 69.66 % 69.66 % 69.66 % 69.66 %

Expression coverage 59.09 % 59.09 % 59.09 % 59.09 % 59.09 % 59.09 % 59.09 % 59.09 % 59.09 % 59.09 % 59.09 % 59.09 %

Condition coverage 76.92 % 78.02 % 78.02 % 78.02 % 78.02 % 78.02 % 78.02 % 78.02 % 78.02 % 78.02 % 78.02 % 78.02 %

Total coverage 75.49 % 75.80 % 75.80 % 75.80 % 75.80 % 75.80 % 75.80 % 75.80 % 75.80 % 75.80 % 75.80 % 75.80 %

while the upper dash shows the maximum achieved coverage.
The middle square defines the first and third quartiles (range of
achieved coverages between 25% and 75%). The line between
the quartiles represents the median value of the coverage. The
figure shows that when increasing the dimensions of the maze,
the maximum coverage is hit more frequently, because more
steps of the robot are performed. However, this does not change
the fact that from each dimension, a certain number of mazes
can be selected, because they reached the maximum possible
coverage. Based on Table I, which contains information about
the average number of steps of the robot (15 steps for 7x7,
99 steps for 15x15, and 342 for 31x31 cells), we chose the
maze with dimensions of 15x15 cells. For our experiments,
we need a sufficient number of steps to detect a mismatch
after the fault injection. For this reason, the 15x15 and 31x31
dimensions are suitable, but the 31x31 maze already contains
too many steps that do not bring any benefits and just prolong
the time to perform the experiments.

Fig. 9. The box and whisker chart for the selection of the right maze for the
robot controller.

The final step is to select the maze with dimensions of
15x15 cells, which has the optimal number of steps of the robot
from the start to the finish position. We chose the maze with the
maximum code coverage of 75.80% and with 85 steps, which
is an optimal number from our point of view. The selected
maze, including the start and finish positions, and the path
that the robot must follow, are shown in Figure 10.

Fig. 10. The selected maze for the robot controller and its path between the
start and finish position, which the robot found.

B. The Second and the Third Phases

The second phase focuses on the evaluation of the impact
of faults on the output of the electronic controller. We use a
processor-based robot controller whose outputs are commands
for robot movement. We must monitor whether the commands
for the robot in the maze are being generated properly. The
main task of the third phase is to monitor the impact of faults
on the mechanical part. The mechanical part is the robot in the
maze which is equipped with sensors measuring the distances
from the walls and the current position. The outputs of these
sensors can be used for monitoring the behavior of the robot
in the maze. We can detect collision of the robot with the wall,
stopping on place and, other behavior of the robot.

The UVM-based verification environment for both the
second and the third phases is shown in Figure 11. The
proposed verification environment covers the tasks for both
the second and the third phases. For the second phase of
the evaluation process, this verification environment monitors
communication before the simulated robot in the maze and its
robot controller running on FPGA. It operates as an observer
without any direct intervention in the monitored communica-
tion. The correctness of the communication is evaluated by
comparison with the outputs of the reference model. The third
phase of the evaluation process is done by monitoring the
outputs from the sensors and evaluating these outputs. We can
detect a small or zero distance from a wall, which is a critical
situation. In addition, we can detect when the robot stops in
any given place, or when the robot chooses to go in a direction
that does not match the implemented searching algorithm.

Fig. 11. The architecture of the FPGA-based verification environment for
the robot controller.

Figure 11 shows that the fault injector is an important
component. Thanks to the use of the FPGA board we can inject
faults directly into the configuration bitstream. We use our
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previously implemented fault injector [17], which allows us to
invert the specified bit of the bitstream. The fault injector uses
reconfiguration of the FPGA configuration bitstream. At first,
part of the configuration bitstream is read, then the specified
bit is inverted, and the modified bitstream is configured back
to the configuration memory. The fault injector is able to find
the relation between the bit of the bitstream representing the
Look-up Tables (LUTs) and the specified area on the FPGA.
This means that we are able to inject artificial faults into the
LUTs corresponding with the specified functional units.

Two different strategies of fault injection are used in these
experiments: Multiple faults and single faults. Experiments
are done for the mentioned unhardened version and the TMR
version of the processor-based robot controller. The number
of verification runs that were performed for each version
of the robot controller and each fault injection strategy is
5000 verification runs. Experimental results are compared
with the same experiments with the original hard-coded robot
controller.

1) Multiple fault injection: Permanent bit-flips were in-
jected into utilized LUT contents with a constant period of 15s.
This period was chosen experimentally, based on the system
failure manifestation time. This means that in each 15s only
one SEU was injected into the whole robot controller unit LUT
contents (only utilized LUT bits are considered) until the robot
failed or reached the finish position.

The experimental results for multiple fault injection strat-
egy are summarized in Table III. It shows the results of
both the unhardened and the TMR versions of the processor-
based robot controller and it contains a comparison with the
original hard-coded robot controller. One can see, see that the
unhardened electronic version failed in 44.02% and the TMR
version failed in 8.14% of the cases. This confirms that TMR
is a beneficial approach, even though the increase in resource
consumption is high. The table also shows the impact of faults
on the mechanical robot; a large number of electronic failures
leads to the robot stopping in a place which is less critical
than a collision with a wall. The reliability improvement was
calculated according to Equation 1. the In comparison with
the original hard-coded robot controller, the processor-based
robot controller is more susceptible to faults. This fact is
evident both for the unhardened and the TMR version. This
phenomenon was expected, because the processor represents a
more complex design with lots of partial components. These
experiments confirmed our expectations.

TABLE III. A COMPARISON OF THE IMPACT OF multiple FAULTS

INJECTED INTO THE UNHARDENED AND HARDENED VERSIONS OF THE

PROCESSOR-BASED ROBOT CONTROLLER AND THE ORIGINAL HARD

CODED ROBOT CONTROLLER.

Monitored impact
Processor-based RC Original hard-coded RC

noft tmr noft tmr

Electronic OK [−] 2751 4593 3544 4839
Electronic failed [−] 2201 407 1456 161
Electronic failed [%] 44.02% 8.14% 29.12% 3.22%

Finish not reached [−] 2179 403 1429 161
Collision with wall [−] 55 7 11 0
Robot stop on place [−] 2124 396 1418 161

Reliability improvement [%] 81.5% 88.9%

reliab improv =
failuresnoft − failurestmr

failuresnoft
∗ 100 (1)

The experimental results for the multiple fault injection
strategy are also presented in Figure 12, where number of
faults which led to electronic failure is shown. This chart shows
that the number of faults which led to an electronic failure of
hardened processor-based robot controller is higher than in the
case of an unhardened robot controller. The same situation
is true in the case of the original robot controller, but there
are some differences between the hard-coded original robot
controller and the processor-based robot controller. The chart
shows that the original unhardened robot controller needs a few
more injected faults in order to fail. The situation is different
in the case of the TMR versions of the robot controller. In this
case, the number of faults which led to a failure is almost the
same.

Fig. 12. The box plot shows a statistical comparison of the number of
injected faults which led to electronic failure for both the processor-based and
the original robot controllers.

2) Single fault injection: Exactly one bit-flip of the utilized
LUT contents of a particular component was injected per
verification run, and its impact on the behavior of the whole
controller unit was observed.

The experimental results for single fault injection into the
unhardened and TMR versions of the processor-based robot
controller are presented in Table IV. It is obvious that the
number of failures is lower than in the case of multiple fault
injection. As can be seen, almost all faults are tolerated in
the TMR version. Even in the case of single fault injection
the number of electronic failures which leads to a collision
with the wall is low. The comparison with the original
hard-coded robot controller is also shown in Table IV. This
table confirms our findings realized during the experiments
with multiple injections. In the case of single fault injection,
the difference is not so significant, but Table IV shows that
processor based robot controller is more sensitive to injected
single faults than original hard coded robot controller. It is
also interesting that both single and multiple faults injected
into processor based robot controller without fault tolerance
mechanism led to more collisions of robot with wall. This also
confirms our assumption that the processor is a more complex
system with multiple vulnerable components.

TABLE IV. A COMPARISON OF THE IMPACT OF single FAULTS

INJECTED INTO THE UNHARDENED AND HARDENED VERSIONS OF THE

PROCESSOR-BASED ROBOT CONTROLLER AND THE ORIGINAL HARD

CODED ROBOT CONTROLLER.

Monitored impact
Processor-based RC Original hard-coded RC

noft tmr noft tmr

Electronic OK [−] 4729 4997 4802 4998
Electronic failed [−] 271 3 198 2
Electronic failed [%] 5.42% 0.06% 3.96% 0.04%

Finish not reached [−] 271 3 195 2
Collision with wall [−] 16 0 1 0
Robot stop on place [−] 255 3 194 2

Reliability improvement [%] 98.8% 98.9%
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V. CONCLUSIONS AND FUTURE RESEARCH

The evaluation platform for monitoring the impact of
faults on the electro-mechanical system was presented in
this paper. The presented evaluation platform is based on
functional verification, and the evaluation process is divided
into three phases. The first phase uses classical simulation-
based functional verification and verifies the correctness of
the experimental system. The second phase focuses on fault
injection directly into an electronic controller running on
an FPGA. In this phase, modified FPGA-based verification
environment is necessary. Monitoring the impact of injected
faults on the mechanical part is a task for the third phase. The
third phase also uses an FPGA-based verification environment
modified for monitoring the behavior of the mechanical part.

The whole evaluation process was experimentally evaluated
in our research and demonstrated in this paper. A robot for
seeking a path through a maze with a new processor-based
robot controller serves as an experimental electro-mechanical
application. The new robot controller is designed as a sys-
tem on a chip composed of an NEO430 soft-core processor,
equipped with supporting peripheral components. Experiments
corresponding with the first phase were performed, and one
maze with high code coverage was selected for the subsequent
phases. The second and third phases were performed with the
use of one combined FPGA-based verification environment.
Experiments with fault injection were done for both the
unhardened and the TMR versions of a processor-based robot
controller. Experimental results show that TMR is beneficial
both for multiple and single fault injection strategy. The
comparison of the results gained from the processor-based
robot controller with the previously evaluated hard-coded robot
controller was also mentioned. Our experiments show that the
processor-based robot controller is a more susceptible to faults
than the original hard-coded robot controller. The experiments
confirmed our assumption that a processor is more complex
system with a number of critical components.

As a future work, we plan to apply some sophisticated fault
tolerance techniques on the presented experimental electro-
mechanical system and repeat the complete evaluation process.
One of the possible improvements is the use of reconfiguration
for faulty module recovery and synchronization of the recov-
ered module (processor in our case study) with failure-free
modules.
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