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Abstract. Many practical, especially real-time, systems are expected
to be predictable under various sources of unpredictability. To cope with
the expectation, a system must be modeled and analyzed precisely for
various operating conditions. This represents a problem that grows with
the dynamics of the system and that must be, typically, solved before the
system starts to operate. Due to the general complexity of the problem,
this paper focuses just to processor based systems with interruptible exe-
cutions. Their predictability analysis becomes more difficult especially
when interrupts may occur at arbitrary times, suffer from arrival and
servicing jitters, are subject to priorities, or may be nested and un/-
masked at run-time. Such a behavior of interrupts and executions has
stochastic aspects and leads to the explosion of the number of situations
to be considered. To cope with such a behavior, we propose a simulation
model that relies on a network of stochastic timed automata and involves
the above-mentioned behavioral aspects related to interrupts and execu-
tions. For a system, modeled by means of the automata, we show that
the problem of analyzing its predictability may be efficiently solved by
means of the statistical model checking.
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Execution · Priority · Jitter · Nesting · Masking · Late arrival
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1 Introduction

Predictability plays an important role in terms of applicability of many systems
in practice. Especially, this holds for real-time (RT) systems [1]. They must
operate both in a functionally correct way and on time, mostly because of their,
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typically, cyber-physical nature. The problem with analyzing predictability lies
in the following facts. Firstly, predictability of a system must be analyzed for
various operating conditions. Typically, such an analysis is expected to be per-
formed at the very beginning of the system’s development cycle. Practically, it
must be done “much earlier” before the system starts to operate or even before
its prototype exists (e.g., for specified conditions, it must be analyzed well in
advance if some property may never be violated or, if some property always
holds). Secondly, a designer of a predictable system must face many sources
of unpredictability such as environmental changes, disturbances and anomalies,
effects of aging and degradation, defects and damages, operator errors, lack of
energy, aperiodicity of events, digitization effects, or drift of a digital clock.

Scope of This Paper. As the problem is too complex to be fully resolved (let
alone in this article), we have decided to limit the scope of this paper just to
digital, processor (CPU) based systems detecting events through interrupts. The
main advantage of such a detection is that no CPU time is consumed regarding
an event until the corresponding interrupt is triggered. At a glance, interrupts
may look like random variables, adverse effects of which can be neither simply
analyzed nor mitigated. However, more careful investigation of interrupt-related
aspects reveals new solutions to both the analysis and mitigation. In particu-
lar, the predictability analysis of RT systems typically builds on the values of
parameters such as the best-case execution time (BCET), worst-case execution
time (WCET) or worst-case response time (WCRT). Their values are utilized
later, e.g., to facilitate the process of analyzing schedulability of a set of RT
tasks constrained, by their deadlines etc., in the time domain [2].

Basically, two approaches to analyzing the parameters, such as WCET, of a
system exist [3]: the static timing analysis (e.g., analysis of source codes of the
system’s software) and dynamic timing analysis (being typically performed using
a real platform, its credible simulator or emulator [4]). Some papers, such as [5,6]
present a credible simulation model of a CPU system (including architectural
elements such as pipelines or caches) to analyze WCET competitively to a real
platform or its emulator.

In this paper, we have decided to use the latter approach, but to abstract
from architectural details and substitute them by a stochastic model. To meet
our expectation, the model must be expressive enough to allow a credible pre-
dictability analysis of CPU based systems for various sources of unpredictability.
At the input of our approach, we suppose that both the computational platform
and the software it executes are known and analyzed precisely, along with param-
eters such as BCET and WCET. This allows us to focus on further sources of
unpredictability (particularly, on those related to interrupts) and on quantifica-
tion of further important parameters (especially, from the schedulability analysis
viewpoint), such as CPU load, WCRT, stack utilization, interrupt service and
latency times or throughput of produced/serviced interrupt requests.

Structure of This Paper. The rest of this paper is organized as follows.
Section 2 introduces phenomena being modeled and analyzed in this paper.
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Section 3 presents our model, basic interrupt scenarios, queries for checking pre-
dictability parameters and, finally, representative results. Section 4 concludes the
paper.

2 Preliminary

In this section, we present principles playing an important role in understand-
ing the problem solved in this paper. First of all (Sect. 2.1), we remind con-
cepts behind managing the control flow of a program and the CPU context.
Secondly (Sect. 2.2), we summarize basic mechanisms and overheads associated
with detecting events through interrupts in CPU systems. Finally (Sect. 2.3),
we discuss effects of processing interrupt requests (IRQs) to the execution of a
program.

2.1 CPU Context and Control Flow of a Program

At this point, we assume that a reader is familiar with technical aspects behind
CPUs and their programming, memory and exception/interrupt models, mech-
anisms they use to execute a program etc. Such an assumption allows us to skip
the phase of repeating well-known facts and emphasize further aspects, impor-
tant from the viewpoint of this paper. For the sake of simplicity, the following
emphasizing text focuses just to single-CPU systems, processing instructions in a
single operating mode, often denoted as the “run” mode. Aspects of multi-CPU
systems and of executing a program in further modes such as test, debug/tracing,
wait or (deep) sleep are not discussed – we leave it for further work.

First of all, we would like to emphasize that a CPU is a highly sequential
circuit, the inner state of which, denoted as the “context” as well, is a func-
tion of many events (a change of the value of an external signal, the start of an
instruction etc.) and partial/sub states, e.g., contents of a program/data mem-
ory, pipeline and CPU registers such as the stack pointer (SP), program counter
(PC) or condition code register (CCR). Both the events in a CPU and its inner
state have a significant impact to the control flow of a program executed by the
CPU. Events may be either synchronous (e.g., a function call) or asynchronous
(e.g., an exception) to the control flow.

To guarantee the correctness of the control flow at run-time (i.e., its consis-
tency with a programmer’s intention), a program must be written so that events,
temporarily allowed to change the intended control flow, are managed in a way
allowing to return the control flow back. Practically, such a management is typ-
ically divided into two phases. The goal of the first phase is to store the CPU
context (at least, the content of PC) before the control flow changes due to an
event (such as a function call). The purpose of the second phase is to restore the
CPU context back, i.e., to resume the control flow changed by the event (e.g., by
placing the return address of the called function into PC). Let it be noted there
that the CPU context may differ for various events; for example, if an exception
occurs, further registers, such as CCR, must be stored with PC.
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The CPU context is typically stored onto the stack; some CPUs, however,
store their context (fully or partially) into special registers as well. Independently
on a particular technical solution and if needed, we often denote such a storing
as “stacking” and restoring as “unstacking” in this paper.

2.2 IRQ Processing Aspects

Now, let us focus on the execution viewpoint. Ideally, a CPU is continuously busy
by processing instructions of a program it executes (we denote the program as
“main()” or “main”, too). Asynchronously to the program control flow, an inter-
rupt request (IRQ) may occur; for an illustration, see Fig. 1a. At the time of its
occurrence, however, the IRQ can be masked (if it is maskable), an instruction
may subject to processing etc. Until such a situation is over, servicing of the
IRQ cannot start, which delays a reaction to the IRQ. After such an obstacle
disappears, stacking of the CPU context starts. Typically, it ends by disabling
all (maskable) interrupts followed by the arbitration of IRQs that are pending
at that moment. The arbitration fetches the vector of the highest-priority pend-
ing IRQ and loads it into the CPU’s program counter (PC). By the loading,
the associated interrupt service routine (ISR), denoted as “(IRQ) handler” too,
starts. Typically, an ISR consists of an application specific prologue, the service
itself and an application specific epilogue. An ISR completes by unstacking the
CPU context, etc.

Priority
⏐
⏐

ctx↓/ctx↑:
CPU context store/load

IRQy

IRQx

a) Basic handling of IRQs ctx↓ ISRx ctx↑ ctx↓ ISRy ctx↑

b) Nesting of IRQ handlers ctx↓ ISRx ctx↓ ISRy ctx↑ ISRx ctx↑

c) Late-arriving of IRQs ctx↓ ISRy ctx↑ ctx↓ ISRx ctx↑

d) Tail-chaining of IRQ handlers ctx↓ ISRy ISRx ctx↑

Fig. 1. An illustration to an exception entry, handling and return for ARMR© CortexR©

and four different interleaving patterns (a, b, c, d) when two IRQs (IRQx, IRQy) are
raised consecutively in the order IRQx, IRQy.

If IRQs are unmasked in IRQ handlers, the handlers may nest (embed) in
an recurrent way (Fig. 1b). This happens if an IRQ (y), of a sufficiently high
priority, pends while an IRQ (x), of lower priority, is being serviced. Then, a
handler (ISRx) of the lower-priority IRQ is preempted by a handler (ISRy) of
the higher-priority IRQ, where “preempted” means that the execution of the
ISRx stops, its CPU context is stacked and then, the execution of the ISRy
starts. After the ISRy completes, the CPU context switches back to resume the
ISRx, etc. If a higher-priority IRQ (y) occurs after a lower-priority IRQ (x), but
during the stacking initiated by the IRQx, the ISRy may start prior to ISRx
(Fig. 1c). Such a behavior is possible if the so-called “late-arriving” mechanism
is enabled to minimize interrupt response times of higher-priority IRQs.
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Further mechanism, denoted as “tail-chaining”, may be enabled to minimize
the un/stacking overhead regarding IRQ handlers. The mechanism is applicable
if a lower-priority IRQ (x) is pending just after a handler of a higher-priority
IRQ (y) completes. If it is so, the unstacking after finishing the ISRy and (con-
sequent) stacking before starting the ISRx are not performed. Practically, this
mechanism saves the CPU time and minimizes both the interrupt response time
and interrupt recovery time of IRQs (Fig. 1d).

2.3 Effects of IRQ Processing to Program Execution

Below, we discuss effects of processing an IRQ to the execution of a program
(“main”). For simplicity, we suppose just two unmasked IRQs, the first arriving
at tIRQi

and the second arriving at tIRQi+1 , handled by ISRi and ISRi+1, resp.
(see Fig. 2). Because the un/stacking and handling times are typically fixed for
an IRQi and the given platform (in total, the overhead is tIRQiover), the CPU
spends at most tmaini

= ΔtIRQi
− tIRQiover units of time by executing the

program within ΔtIRQi
. In other words, tmaini

is proportional to IRQ inter-
arrival times (ΔtIRQi

). Ideally, from the program execution viewpoint, it holds
ΔtIRQi

� tIRQiover (Fig. 2a). With decreasing ΔtIRQi
, tmaini

decreases as well
(see Fig. 2b, c), but is nonzero if ΔtIRQi

> tIRQiover. In the worst-case (ΔtIRQi
≤

tIRQiover), no CPU time remains to execute the program, i.e., tmaini
≤ 0. A

system may stop working correctly or collapse suddenly if tmaini
drops below

an application-specific level. This is typically denoted as the interrupt overload
(IOV) effect [7], the seriousness of which grows with the criticality of a program.

a) ctx↓ ISRi ctx↑ main() ctx↓ ISRi+1

b) ctx↓ ISRi ctx↑ main() ctx↓ ISRi+1

c) ctx↓ ISRi ctx↑ main() ctx↓ ISRi+1

ctx↓/ctx↑:
CPU context
store/load

tIRQiover tmaini

tmaini

tIRQi
tIRQi+1ΔtIRQi

tmaini

Fig. 2. An illustration to the effect of processing an IRQ to the execution of a program.

2.4 Mitigating Adverse Effects of IRQ-Based Event Detection

Adverse effects, such as IOV, of detecting events through interrupts cannot be
always avoided. But, they can be, often efficiently, mitigated to maximize the pre-
dictability of a system. Such a mitigation can be done at various levels, depending
on the nature of an effect. For example, so-called timing disturbance effects can
be efficiently solved in a hardware (e.g., by reconfigurability of IRQ priorities)
[7,8] or in a software (e.g., using the common (joint) ISR/task priority space
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[9,10] or, resource access protocols [2,12] able to avoid effects such as priority
inversion and deadlock). Further effects, implying from the inability of a sys-
tem to predict IRQ arrival times, can be efficiently mitigated by the so-called
event limiters (for an illustration, see Fig. 3). An event limiter [7] is a mechanism
constructed to bound the number of event services, i.e. to limit the CPU time
consumed for that purpose, within a predefined interval (tlimit). Basically, this
can be done in four ways (Fig. 3a–d), each characterized by a different approach
to detecting an event and to the limiting.

cpu event poll event service waiting loop event poll

cpu event poll event service ctx↓ ISRtimer ctx↑ event poll

timer start, run to overflow

cpu ctx↓ I=1, event service ctx↑ ctx↓ ISRtimer, I=0 ctx↑

timer start, run to overflow

cpu c↓ event s.1 c↑ c↓ I=1, event s.N c↑ c↓ ISRtimer,I=0 c↑

timer start, run to ov.

a)

b)

→

→

→

→c)

→

→d)

tlimitevent

ctx↓/ctx↑: CPU context store/load

I=1/I=0: mask/unmask interrupts
ctx↓/ctx↑: CPU context store/load

I=1/I=0: mask/unmask interrupts
c↓/c↑: CPU context store/load

IRQ

Fig. 3. An illustration to polling based event limiters that measure time by an active,
software waiting loop (a) or an on-chip timer (b), resp., and interrupt based event
limiters – strict (c), bursty (d); the green slots allow the CPU to execute a useful code.
(Color figure online)

The first approach (Fig. 3a) represents a purely software implementation of
an event limiter. At the beginning, the limiter detects an event by checking the
event flag in a polling loop. If the flag is set, the event service starts. Then, an
(well-tuned) active waiting loop starts to disallow checking an event flag before
tlimit expires. In the second approach (Fig. 3b), the process of measuring time in
a loop that wastes the CPU time is replaced by using a timer for that purpose.
The timer measures time independently of the CPU and is able to signalize the
end of the measurement by issuing an IRQ. This allows the CPU to execute a
useful code of a program while the measurement is in a progress. However, using
a timer leads to further overheads such as time needed to configure, start or stop
the timer, to un/stack the CPU context and to execute the IRQ handler. The
approaches from Fig. 3a, b are often denoted as the polling based event limiters.
Alternatively, one may use so-called interrupt based limiters (Fig. 3c, d). Such
limiters expect that an event is detected by an IRQ. If the IRQ is unmasked
etc. (see Sect. 2.2), its handler starts (Fig. 3c, strict limiter). In the handler,
further IRQs (except of timer’s) are masked, the event is serviced and a timer is
configured to generate an IRQ after a predetermined time. In the timer’s IRQ
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handler, IRQs are unmasked again to resume the IRQ based event detection
not before tlimit expires. The approach from Fig. 3d (bursty limiter, the recent
industrial practice [13]) differs in a way it masks IRQs. Rather that (strictly)
mask IRQs in each event handler, it masks IRQs in the last from a burst of (N)
IRQ handlers. For N= 1, the bursty limiter reduces to the strict one.

3 Our Approach

This section introduces our approach, based on the means of Uppaal SMC [21],
and demonstrates its applicability for the purposes of analyzing predictability of
CPU based systems. Firstly, we present (Sect. 3.1) key aspects of our approach
(Sect. 3.2). Secondly (Sect. 3.2), we clarify what we mean by the so-called inter-
rupt scenarios. Finally, we present (Sect. 3.3) representative queries and results
regarding predictability analysis of CPU systems in various interrupt scenarios.

To the best of our knowledge, we offer the most complex solution to analyzing
predictability of interruptible CPU systems. Existing approaches, such as [15],
analyze predictability for masked IRQs, [11,16] are limited to a simplified model
and an analytical solution – they only support periodic IRQs, but do not support
nesting of IRQ handlers, execution jitters, un/masking, priorities and arbitration
of IRQs at runtime. Authors of [17] expect that an IRQ occurs not before the
so-called hyper-period while in [18], it is supposed that an IRQ occurs each time
an instruction completes. In [19], a method supporting nesting and priorities of
IRQs is proposed, however, disregarding, unpredictability of IRQ arrival times,
un/masking of IRQs at runtime and variability in executing IRQ handlers.

3.1 Proposed Model

Hardware and main(). Our model of hardware consists of three key parts:
(Fig. 4a–c): the model of a system (a), of a CPU within the system (b) and of
an IRQ controller within the CPU (c) whereas parts b, c have been introduced
in [14]1. In this paper, they are extended (see Fig. 4) by further aspects, such
as late arriving, tail chaining, synchronization and measurements by means of
stop-watches. To avoid re-publishment of the same ideas, the following text only
summarizes main extensions we have made to [14]. For more details about the
original models, please consult [14] and the footnote at the bottom of this page.

Simply said, the model of a system (Fig. 4a) generates the reset signal for all
CPUs in the system and performs the system-level initialization. Next, the model
of a CPU (Fig. 4b) waits until it receives the reset signal. Before it happens all
CPU-level stopwatches are forced not to progress (ttotal measures the total
time consumed by the corresponding CPU (cpu), tmain measures the time cpu
spends by executing main(), tover measures the time cpu spends by managing
interrupt limiters and t e measures the time to dispatch events in a system).
Then, it either fetches and processes an instruction of main() or, if an IRQ

1 models are available at http://www.fit.vutbr.cz/∼strnadel/publ/2018/dandt/.

http://www.fit.vutbr.cz/~strnadel/publ/2018/dandt/
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pends at the moment, it skips that and moves to irqPend. Here it stays while a
pending IRQ exists. The control flow of main() is given by the fetch() function
that may reflect a stochastic behavior of main() and/or particular aspects of
pipelines, caches etc. As a presentation of the aspects is beyond the scope of this
paper, please find concepts of their modeling, e.g., in [5]. Consequently, we limit
this paper just to the former way of controlling the flow of main() in our model.
Simply said, we understand instructions of main() just as a factor affecting
the interrupt latency. Last, the model of an IRQ controller (Fig. 4c) waits until
the corresponding CPU is ready to process an IRQ. Then, it either moves to
isrFetch (to perform the tail-chaining of IRQ handlers, when enabled) or, it
captures IRQ flags by calling captif() and moves to exeStop (to interrupt
either main() or an IRQ handler, whichever is being executed at the moment).
After stacking the CPU context, the model checks (when enabled) if a late
arriving IRQ is pending at the moment, masks IRQs for the given CPU and
arbitrates pending IRQs. Finally, it fetches the vector of an IRQ handler that
has won the arbitration and then, it starts the handler.

a)
b)

The models are accessible at http://www.fit.vutbr.cz/~strnadel/publ/2018/isola/

c) d)

e)

Fig. 4. Skeletons of revised models: (a) system (the model Sys), (b) CPU (Cpu), (c)
IRQ controller (irqCtrl), (d) IRQ handler (isrSWI) and (e) IRQ source (irqRst).

IRQ Handler and Sources. The basic model of an IRQ handler has been
introduced in [14] as well. In this paper, it is extended to cover the tail chaining
functionality (see Fig. 4d). Alike in the case of Fig. 4b–c, the following text just
summarizes main extensions we have made to [14]. For more details about the
original model, please consult [14]. After the servicing completes in the extended
model, the function tc check() tests the preconditions for tail-chaining and the
model moves to done. If the tail-chaining has been activated, the CPU context
remains stacked and the corresponding IRQ controller is signaled to start a new
(tail-chained) IRQ handler without prior stacking of the CPU context etc. If the
tail-chaining has not been activated, the handler completes by unstacking the
CPU context and resuming the unstacked execution.
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Figure 4e illustrates a simplified skeleton used to model an IRQ source. Basi-
cally, the main role of an IRQ source lies in setting the corresponding IRQ flag.
In our model, this is done by calling new irq(). Dynamics of such a setting may
be expressed in many ways depending on the nature (one-shot, periodic, aperi-
odic, sporadic [14] etc.) of a particular source. In our illustration, an IRQ source
sets its IRQ flag in random moments, given by the exponential distribution of
probability (with its parameter set to DLY).

Events. To facilitate the modeling and analysis of “non-IRQ” events (e.g., of
un/masking of IRQs) being produced synchronously to instructions of main(),
we have decided to create a separate automaton per a system/CPU (for a simple
example, see Fig. 5). Let us note here that each CPU uses a separate clock
(t e[cpu]) to manage the occurrence times of events. For such a clock, it holds
that it progresses during the execution of main(). If needed, it may be reset
to express relativity (of the occurrence times) with respect to the time being
spent in main(). Moreover, an event is synchronized, by xdone[cpu]?, with the
completion of an instruction of the corresponding CPU. Such a synchronization
is needed to avoid the modeling of unrealistic/contradictory behaviors such as
a change of an IRQ mask during the execution of main(), but asynchronously
to main(). The function event(e) encapsulates more complex actions related
to an event e. At its start, the model from Fig. 5 waits until main() consumes
1000 units of the CPU time. Then, it starts to produce the predefined events in
a cyclic, main() dependent, manner.

Fig. 5. Illustration to modelling of events in a system/CPU.

Event Limiters. In Fig. 3, we have presented concepts of the so-called event
limiters. Below, we present an approach we have utilized to model the limiters.
First, let us focus to modeling of a polling based event limiter designed to mea-
sure tlimit by an active waiting loop (Fig. 6a). It is supposed that the limiter
starts at the beginning of main(), so it first waits for entering main(). Then, it
stays in sync until an instruction completes. This model expects that the event
flag is cyclically checked (in poll) by the first instruction of main(). If the flag
is unset, the model moves (via done) to initiate further checking. Otherwise, the
model clears both the IRQ request (given by id) and the clock tlim to measure
tlimit, then moves to service. Here, it loops until the servicing takes BCET to
WCET units of the CPU time. Then, the model moves to wait entry, where it
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loops actively until tlimit is over. Finally, it moves toward starting a new polling
instance. Let us note that serv0 and wait0 represent a potential preemption
of the servicing/waiting process by an IRQ handler. During such a preemption,
neither of the associated clocks progresses because the CPU time is not con-
sumed by the limiter. However, some of the clocks progress in serv1, wait1 to
measure the consumption of the CPU time by the limiter.

a)
b)

Fig. 6. Models of polling based event limiters that measure tlimit time using (a) an
active waiting loop (full model), (b) a timer (model cutout).

Figure 6b illustrates a cutout of the model of a polling based event limiter
designed to measure tlimit by a timer. As this limiter differs from the previous
one just in the right part of the figure, nothing but details to that part are
presented. Before entering wait entry, IRQs for the timer are enabled and then,
the timer stars to expire after (tlimit-tlim) units of time, if greater than zero.
Comparing wait1 in Fig. 6a, the CPU time is never consumed while staying in
wait in Fig. 6b. The models of the strict and bursty limiters from Fig. 3b, c are
absent in Fig. 6 simply because their modeling is trivial. Particularly, it is just
necessary to modify the body of isr prologue(cpu, id) of an IRQ handler to
be limited. For the strict limiter, we must modify the body to mask all IRQs
(except of timer’s) and then, start a timer to unmask the IRQs after it overflows
(the unmasking is done in the timer’s IRQ handler). For the bursty limiter, we
must add further modification, i.e., to increment a counter of events that started
within the tlimit window and to check if the counter value has reached the burst
size (N). If so, we initiate the strict functionality.

Further Aspects. To quantify parameters of predictability, such as WCRT,
our models have utilized various instruments that have not been explained yet.
The most important ones are discussed in the following text. Firstly, the CPU
utilization factor of a cpu (Ucpu) is quantified as the ratio of tmain[cpu] to
ttotal[cpu] (see Fig. 4b). An accurate estimation of that parameter is needed,
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e.g., to predict the schedulability of (a set of) RT tasks using a schedulability
analysis based on the CPU utilization. Secondly, we have utilized the clock tserv
to measure the CPU time needed to service an event, either in an IRQ (Fig. 4d)
or by an event limiter (Fig. 6). Regarding an event limiter, we are interested in
further times as well – particularly, in tserv tot (total time needed to service all
events detected by the limiter), tover (overhead of the limiter per an event) and
tover tot (total overhead of the limiter across all detected events). Moreover,
we utilize a couple of counters to gather the numbers of events, started han-
dlers, serviced events etc.; we increment the counters in the bodies of new irq(),
isr prologue() and isr epilogue(), respectively. The measurements like that
allows us to compare effects of various event handling approaches from the pre-
dictability viewpoint. Thirdly, we are able to analyze the evolution of the stack
pointer (SP) during runtime. For that purpose, we manipulate SP in functions
such as ctx store(cpu) from Fig. 4c, ctx load(cpu) from Fig. 4d or a func-
tion call within the execution of main(). Such an analysis simplifies our efforts
of adjusting safe stack sizes for RT tasks etc. in the given interrupt scenario.
Fourthly, we measure the interrupt latency time, i.e., the time between ith occur-
rence of an IRQ and starting the corresponding handler. Probably, this has been
one of the most challenging problems to solve in the area of measurement. We
have decided to solve the problem by means of a spawnable timed automaton
(see Fig. 7). Such an automaton is created dynamically, after an IRQ occurs (the
occurrence is detected via the channel eIrq[cpu][id], see Fig. 4d). Then, the
automaton measures time (tilat) until the corresponding IRQ handler starts
(it is signalized via the channel isr start[cpu][id]).

Fig. 7. An illustration to the spawnable automata for measuring the interrupt latency.

3.2 Interrupt Scenarios

We have decided to test and demonstrate applicability of our model from Sect. 3.1
in various interrupt scenarios, details to which follow. The identifier of a scenario
is prefixed by “SC”. To refer unambiguously to a particular scenario, we have
encoded its characteristics into a binary string being situated in the right sub-
script of “SC”. For parts of the string (i.e., base and suffix), see Fig. 8.

The value of a bit within the base part of the string (Fig. 8a) represents
a boolean flag that indicates presence (1) or absence (0) of the corresponding
feature such as nesting of IRQs or enabling a particular IRQ source. If an event
limiter is utilized, then the string is completed with a 2-bit suffix “xy” (Fig. 8b,
where xy = 00 for the polling limiter w. an active waiting loop, xy = 01 for the
polling limiter w. timer, xy = 10 for the strict limiter and finally, xy = 11 for
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a) n+3

ne
st

n+2

la
rr

n+1

ta
ilc

n

IR
Qn

. . .

. . .

0

IR
Q0

feature flag

index b) 1

x

0

y limiter id

index

Fig. 8. An illustration to encoding an interrupt scenario: (a) base, (b) suffix.

the bursty limiter. The suffix is separated from the base by a dash (“—”); if
needed, the feature flags indexed by n, n+1 may be separated by a dot (“.”). If
it is necessary to observe impacts of modifying an attribute of a scenario to a
system, we prepare a set of modifications for that purpose and identify each of
them by Roman numerals in the right superscript of “SC”. For an illustration,
let us present some representatives of encoding a scenario (for n = 2): SC00001,
SC000.10, SC11101−10, SC110.11−11, SCI

110.11−11, SCV
000.10.

During the testing/demonstration, we have utilized four IRQ sources (i.e.,
n = 3 in Fig. 8a), referred to as IRQ0 (non-maskable, highest priority IRQ with
arrivals given by the normal distribution of probability), IRQ1 (maskable, higher-
middle priority IRQ with periodical arrivals), IRQ2 (maskable, lower-middle pri-
ority IRQ with periodical arrivals) and IRQ3 (maskable, lowest priority IRQ with
arrivals given by the uniform distribution of probability). For their characteris-
tics, see Fig. 9 please.

Fig. 9. Characteristics (i.e., probability distribution functions, PDFs) of IRQ sources:
(a) IRQ0, (b) IRQ1, (c) IRQ2, (d) IRQ3. Vertical, dashed red lines do mark mean
values. (Color figure online)

3.3 Queries and Results

Due to the limited space, we have restricted this section to just selected represen-
tatives of queries and results. For the same reason, we skip herein an introduction
to the query language and refer to [20,21] instead.

Our representative results are summarized in Figs. 10, 11 and 12. They
were produced by the toolset Uppaal SMC [21] based on queries, details
to which follow. Figure 10 shows the results of a query in the form
simulate 1 [<= 2500] {exePri, isrNest, . . . , cpu(0).main } being applied to
four distinct interrupt scenarios.

Figure 11 presents results of four queries. Firstly, Fig. 11a shows an impact of
the IRQ arrival rate to the CPU utilization for various event limiters. The sub-
figures (a)–(c) result from a query in the form E[<= 25000] (max : . . .). Secondly,
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Fig. 11b relies on measuring tilat (see Fig. 7) for IRQ0 and IRQ3. Thirdly,
Fig. 11c results from estimating the maximum of texe (see Fig. 4d). Finally,
Fig. 11d results from a query in the form Pr[<= 2500] {<> isrNest >= 3}. It
shows the probability distribution function (PDF) and the mean of time instants
when the ISR nesting level exceeds 2.

The last figure (Fig. 12) shows how our approach scales with the number of
IRQ sources. We can conclude that it scales about linearly in the time domain
and sub-linearly in the space (memory) domain.

Fig. 10. An illustration to effects of (a) no nesting of IRQ handlers, no late arriving, no
tail chaining, (b) nesting of IRQ handlers (c) late arriving (d) nesting of IRQ handlers,
late arriving and tail chaining under SCxxx.1111. Vertical, dashed violet lines in (b)–(d)
do mark the start times of the nesting, late arriving and tail chaining, respectively.
(Color figure online)

Fig. 11. Representative results of our SMC based predictability analysis. A, B, C and
D represent scenarios SC100.1111, SC000.1111, SCI

100.1111 and SCII
100.1111, respectively.

The modification I decreases both the mean and deviation of IRQ0 ten times. Alike, II
decreases BCET and WCET of IRQ1, IRQ2 ten times. All results, except (d), hold for
the 25 ms window.
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Fig. 12. The scalability of the SMC process as a function of the number of IRQ sources.
The modification I decreases both the mean and deviation of IRQ0 ten times. Alike, II
decreases BCET and WCET of IRQ1, IRQ2 ten times.

4 Conclusion

This paper presents a simulation model of a processor based system with inter-
ruptible executions. To analyze the predictability of such a system, our model
copes with adverse phenomena such as processing instructions of a program,
arbitrary occurrence times of interrupts, jitters of interrupt occurrence/servic-
ing times, priorities, or nesting and un/masking of interrupts at run-time. Such
phenomena have stochastic aspects and lead to the explosion of the number of
situations to be considered. In the paper, we show that such an explosion is
effectively solvable by means of the statistical model checking. We show that
such a checking is able to facilitate the analysis of parameters such as interrupt
latency, interrupt servicing time, CPU utilization and to minimize the over/un-
derestimation of their values. In the near future, we plan to move from the
single-CPU environment to multi/many-CPU environment and to extend our
model to involve the operating system, application and power consumption lev-
els as well.
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