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Abstract
This paper introduces and studies a combined model of jumping finite automata and sensing
5′ → 3′ Watson-Crick finite automata. The accepting power of the new model is compared with
the original models and also with some well-known language families. Furthermore, the paper
investigates changes in the accepting power when restrictions are applied on the model.

1. Introduction

In recent years, several papers studied finite automata models with multiple heads that process
the input string in non-conventional ways (see [2, 3, 7, 8, 9, 10]). Traditionally, when the model
utilizes several heads, either each head works on its own tape, or all heads read the same input
string in a symbol-by-symbol left-to-right way. In contrast, there are also well-established formal
grammars that generate strings in a parallel way, but this process is usually very different than
the reading with several heads. In the grammars, the sentential form is repeatedly rewritten on
several places at once until the process creates the final string. The presented finite automata
models with the non-conventional processing have their behavior set somewhere between the
mentioned models. They utilize several heads, but these heads cooperate on a single tape to
process the single input string. Therefore, every symbol in the input string is read only once,
and the heads do not work in the traditional symbol-by-symbol left-to-right way.

The first group of these models is based on jumping finite automata (see [5, 6, 2, 3]). This
concept is in its core focused on discontinuous information processing. In essence, a jumping
finite automaton works just like a classical finite automaton except it does not read the input
string in a symbol-by-symbol left-to-right way. After the automaton reads a symbol, the head
can jump over (skip) a portion of the tape in either direction. Once an occurrence of a symbol
is read on the tape, it cannot be re-read again later. Generally, this model can very easily define
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even non-context-free languages if the order of symbols is unimportant for the language. On
the other hand, the resulting language families of these models are usually incomparable with
the classical families of regular, linear, and context-free languages. When this concept utilizes
multiple heads, the heads can naturally jump on specific positions in the tape, and thus they
can easily work on different places at once in parallel.

The second group is represented by sensing 5′ → 3′ Watson-Crick (WK) finite automata (see
[7, 8, 9, 10, 11]). This is a biology-inspired concept. In essence, a WK automaton also works
just like a classical finite automaton except it uses a WK tape (i.e., double-stranded tape),
and it has a separate head for each of the two strands in the tape. This is therefore a concept
that always naturally uses two heads. In a 5′ → 3′ WK automaton, both heads read their
specific strand in the biochemical 5′ to 3′ direction. In a computing point of view, however, this
means that they read the double strand sequence in opposite directions. Finally, a 5′ → 3′ WK
automaton is sensing if the heads sense that they are meeting each other, and the processing
of the input ends if for all pairs of the sequence one of the letters is read. Sensing 5′ → 3′ WK
automata generally accept the family of linear languages.

Even though that these concepts are significantly different, their models sometimes work in a
very similar way. Both concepts are also not mutually exclusive in a single formal model. This
paper defines jumping 5′ → 3′ WK automata—a combined model of jumping finite automata
and sensing 5′ → 3′ WK automata—and studies their characteristics. We primarily investigate
the accepting power of the model and also the effects of restrictions on the model.

2. Preliminaries

This paper assumes that the reader is familiar with the theory of automata and formal languages
(see [4, 13]). This section recalls only the crucial notions used in this paper.

For a set Q, card(Q) denotes the cardinality of Q, and 2Q denotes the power set of Q. For
an alphabet (finite nonempty set) V , V ∗ represents the free monoid generated by V under the
operation of concatenation. The unit of V ∗ is denoted by ε. Members of V ∗ are called strings.
Set V + = V ∗ − {ε}; algebraically, V + is thus the free semigroup generated by V under the
operation of concatenation. For x ∈ V ∗, |x| denotes the length of x, and alph(x) denotes the
set of all symbols occurring in x; for instance, alph(0010) = {0, 1}. For a ∈ V , |x|a denotes the
number of occurrences of a in x. Let X and Y be sets; we call X and Y to be incomparable if
X 6⊆ Y , Y 6⊆ X, and X ∩ Y 6= ∅.

A general grammar or, more simply, a grammar is quadruple G = (N, T, S, P ), where N and
T are alphabets such that N ∩ T = ∅, S ∈ N , and P is a finite set of rules of the form
x → y, where x, y ∈ (N ∪ T )∗ and alph(x) ∩ N 6= ∅. If x → y ∈ P and u, v ∈ (N ∪ T )∗,
then uxv ⇒ uyv [x → y], or simply uxv ⇒ uyv. In the standard manner, extend ⇒ to ⇒n,
where n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗. The language generated by G, L(G), is
defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}. We recognize several special cases of grammars: G is
a context-sensitive grammar if every x → y ∈ P satisfies x = αAβ and y = αyβ such that



A JUMPING 5′ → 3′ WATSON-CRICK FINITE AUTOMATA MODEL 3

A ∈ N , α, β ∈ (N ∪ T )∗, and y ∈ (N ∪ T )+. G is a context-free grammar if every x → y ∈ P
satisfies x ∈ N . G is a linear grammar if every x→ y ∈ P satisfies x ∈ N and y ∈ T ∗NT ∗∪T ∗.
G is a regular grammar if every x→ y ∈ P satisfies x ∈ N and y ∈ TN ∪ T .

A finite automaton is a quintuple A = (V,Q, q0, F, δ), where V is an input alphabet, Q is a
finite set of states, V ∩ Q = ∅, q0 ∈ Q is the initial (or start) state, and F ⊆ Q is a set of
final (or accepting) states. The mapping δ is a transition function. If δ : Q× (V ∪ {ε})→ 2Q,
then the device is non-deterministic; if δ : Q× V → Q, then the automaton is deterministic. A
string w is accepted by a finite automaton if there is a sequence of transitions starting from q0,
ending in a state in F , and the symbols of the sequence yield w. A language is regular if and
only if it can be recognized by a finite automaton.

Let REG, LIN, CF, and CS denote the families of regular, linear, context-free, and context-
sensitive languages, respectively.

2.1. Jumping Finite Automata

A general jumping finite automaton (see [5, 6]), a GJFA for short, is a quintuple M =
(Q,Σ, R, s, F ), whereQ is a finite set of states, Σ is an input alphabet, Q∩Σ = ∅, R ⊆ Q×Σ∗×Q
is finite, s ∈ Q is the start state, and F ⊆ Q is a set of final states. Members of R are referred
to as rules of M . If (p, y, q) ∈ R implies that |y| ≤ 1, then M is a jumping finite automaton,
a JFA for short. A configuration of M is any string in Σ∗QΣ∗. The binary jumping relation,
symbolically denoted by y, over Σ∗QΣ∗, is defined as follows. Let x, z, x′, z′ ∈ Σ∗ such that
xz = x′z′ and (p, y, q) ∈ R; then, M makes a jump from xpyz to x′qz′, symbolically writ-
ten as xpyz y x′qz′. In the standard manner, extend y to yn, where n ≥ 0; then, based
on yn, define y+ and y∗. The language accepted by M , denoted by L(M), is defined as
L(M) = {uv : u, v ∈ Σ∗, usv y∗ f, f ∈ F}. We say that M accepts w if and only if
w ∈ L(M). M rejects w if and only if w ∈ Σ∗ − L(M).

More recently, double-jumping modes for GJFAs were introduced (see [2]), which perform two
single jumps simultaneously. Both jumps always follow the same rule, however, they are perfor-
med on two different positions on the tape and thus handle different parts of the input string.
Additionally, these jumps cannot ever cross each other (i.e., the initial mutual order of reading
positions is preserved during the whole accepting process). The specific double-jumping modes
then assign one of the three jumping directions to each of the two jumps—(1) to the left, (2)
to the right, and (3) in either direction. We omit the precise formal definition.

2.2. Watson-Crick Finite Automata

In this part we recall some well-known concepts of DNA computing and related formal language
theory. Readers who are not familiar in these topics should read [11].

Let V be an alphabet and ρ ⊆ V × V be its complementary relation. For instance, V =
{A,C,G, T} is usually used in DNA computing with the Watson-Crick complementary relation
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{(T,A), (A, T ), (C,G), (G,C)}. The strings built up by complementary pairs of letters are
double strands (of DNA).

A Watson-Crick finite automaton (or shortly, a WK automaton) is a finite automaton working
on a Watson-Crick tape, that is, a double-stranded sequence (or molecule) in which the lengths
of the strands are equal and the elements of the strands are pairwise complements of each other:
[ a1b1 ][ a2b2 ] . . . [ anbn ] = [ a1a2...anb1b2...bn ] with ai, bi ∈ V and (ai, bi) ∈ ρ (i = 1, . . . , n). The notation [ w1

w2 ]
is used only for strings w1, w2 with equal length and satisfying the complementary relation ρ.
The set of all double-stranded strings with this property is denoted by WKρ(V ). For double-
stranded strings for which these conditions are not necessarily satisfied, the notation ( w1

w2 ) is
used throughout the paper. Formally, a WK automaton is M = (V, ρ,Q, q0, F, δ), where V ,
Q, q0, and F are the same as in finite automata, ρ ⊆ V × V is a symmetric relation, and the
transition mapping δ : (Q× ( V

∗
V ∗ )) → 2Q in such a way that δ(q, ( w1

w2 )) (q ∈ Q, w1, w2 ∈ V ∗) is
non-empty only for finitely many values of (q, ( w1

w2 )).

The elementary difference between finite automata and WK automata, besides the doubled
tape, is the number of heads. WK automata scan each of the two strands separately with a
unique head. In classical WK automata, the processing of the input sequence ends if all pairs
of the sequence are read with both heads. There are also some restricted variations of WK
automata which are widely used in the literature (see, e.g., [11]):

• N : stateless, i.e., with only one state: if Q = F = {q0};
• F : all-final, i.e., with only final states: if Q = F ;
• S : simple (at most one head moves in a step) δ : (Q× (( V

∗

{ε} ) ∪ ( {ε}
V ∗

)))→ 2Q;

• 1 : 1-limited (exactly one letter is being read in a step) δ : (Q× (( V
{ε} ) ∪ ( {ε}

V
)))→ 2Q.

Further variations such as NS, FS, N1, and F1 WK automata can be identified in a straight-
forward way by using multiple constraints.

In 5′ → 3′ WK automata (see [7, 8, 9, 10]), both heads start from the 5′ end of the appropriate
strand. Physically/mathematically and from a computing point of view they read the double-
stranded sequence in opposite directions, while biochemically they go to the same direction.
A 5′ → 3′ WK automaton is sensing if the heads sense that they are meeting (i.e., they are
close enough to meet in the next step or there is a possibility to read strings at overlapping
positions). In sensing 5′ → 3′ WK automata, the processing of the input sequence ends if for
all pairs of the sequence one of the letters is read. Due to the complementary relation, the
sequence is fully processed; thus, the automaton makes a decision on the acceptance.

In the usual WK automata, the state transition is a mapping of the form (Q × ( V
∗

V ∗ )) → 2Q.
In a transition q′ ∈ δ(q, ( w1

w2 )), we call rl = |w1| and rr = |w2| the left and right radius of the
transition (they are the lengths of the strings that the heads read from left to right and from
right to left in this step, respectively). The value r = rl + rr is the radius of the transition.
Since δ(q, ( w1

w2 )) is non-empty only for finitely many triplets of (q, w1, w2), there is a transition
(maybe more) with the maximal radius for a given automaton. Let δ be extended by the sensing
condition in the following way: Let r be the maximum of the values rl + rr for the values given
in the transition function of the original WK automaton. Then, let δ′ : (Q× ( V

∗
V ∗ )×D)→ 2Q,
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where D is the sensing distance set {−∞, 0, 1, . . . , r,+∞}. This set gives the distance of the
two heads between 0 and r, +∞ when the heads are further than r, or −∞ when the heads are
after their meeting point. Trivially, this automaton is finite, and D can be used only to control
the sensing (i.e., the appropriate meeting of the heads). To describe the work of the automata,

we use the concept of configuration. A configuration ( w1
w2 )(q, s)(

w′1
w′2

) consists of the state q, the

actual sensing distance s, and the input [
w1w′1
w2w′2

] ∈ WKρ(V ) in such a way that the first head

(upper strand) has already processed the part w1, while the second head (lower strand) has
already processed w′2. A step of the automaton, according to the state transition function, can
be of the following two types:

(1) Normal steps : ( w1
w2y )(q,+∞)(

xw′1
w′2

) ⇒ ( w1x
w2 )(q′, s)(

w′1
yw′2

), for w1, w2, w
′
1, w

′
2, x, y ∈ V ∗ with

|w2y| − |w1| > r, q, q′ ∈ Q, if and only if [
w1xw′1
w2yw′2

] ∈ WKρ(V ) and q′ ∈ δ(q, ( xy ),+∞), and

s =

{
|w2| − |w1x| if |w2| − |w1x| ≤ r;

+∞ in other cases.

(2) Sensing steps : ( w1
w2y )(q, s)(

xw′1
w′2

) ⇒ ( w1x
w2 )(q′, s′)(

w′1
yw′2

), for w1, w2, w
′
1, w

′
2, x, y ∈ V ∗, if and

only if [
w1xw′1
w2yw′2

] ∈WKρ(V ) and q′ ∈ δ(q, ( xy ), s), and s′ =

{
s− |x| − |y| if s− |x| − |y| ≥ 0;

−∞ in other cases.

In the standard manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, define ⇒+

and ⇒∗. The accepted language, denoted by L(M), can be defined by the final accepting
configurations that can be reached from the initial one: A double strand [ w1

w2 ] is accepted by

a sensing 5′ → 3′ WK automaton M if and only if ( ε
w2 )(q0, s0)(

w1
ε ) ⇒∗ [

w′1
w′2

](qf , 0)[
w′′1
w′′2

], for

qf ∈ F , where [
w′1
w′2

][
w′′1
w′′2

] = [ w1
w2 ] with the proper value of s0 (it is +∞ if |w1| > r, elsewhere it is

|w1|); since the full input is processed by the time the heads meet.

From a biochemical point of view, a double-stranded sequence has no distinguishable start
and end. Consequently, each word that is accepted by a WK automaton has a complement-
symmetric pair which is also in the language. This fact does not cause any problem in connection
to formal language theory. For instance, double strands having only A and C in a strand (and
thus having T and G in the other) can represent languages over a binary alphabet: considering
the pair [ AT ] as letter a and [ CG ] as letter b in the new alphabet V ′.

At the end, we briefly mention other closely related 5′ → 3′ WK automata models. Besides
the sensing version, the papers [7, 8, 9] also define the full-reading sensing version. The formal
definition remains practically identical, however, the automaton continues with the reading
after the meeting point, and both heads have to read the whole strand from the 5′ end to the
3′ end. The resulting behavior therefore combines some properties of classical WK automata
and sensing 5′ → 3′ WK automata. It can be easily seen that the full-reading sensing version
is generally stronger than the sensing version. Lastly, the paper [10] introduces a version of
sensing 5′ → 3′ WK automata without the sensing distance. It shows that it is not strictly
necessary to know the precise sensing distance and that we can obtain the same power even if
we are able to recognize only the actual meeting event. Nonetheless, this result does not hold
in general if we consider the restricted variations of these models.
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3. Definitions

Considering sensing 5′ → 3′ WK automata and full-reading sensing 5′ → 3′ WK automata, there
is quite a large gap between their behaviors. The definition of sensing 5′ → 3′ WK automata
states that we need to read only one of the letters from all pairs of the input sequence before it
is fully processed. However, this also limits the positioning of the heads because they can read
letters only until they meet. On the other hand, the definition of full-reading sensing 5′ → 3′

WK automata allows the heads to traverse the whole input. Nonetheless, this also means that
all pairs of the input sequence will be read twice. Considering other models, jumping finite
automata offer a mechanism that allows heads to skip (jump over) some symbols. Moreover, in
some of the recently introduced double-jumping modes, these automata behave very similarly
to 5′ → 3′ WK automata. It is therefore our goal to fill the gap by introducing the jumping
mechanism into sensing 5′ → 3′ WK automata. We want the heads to be able to traverse the
whole input, but we also want to read all pairs of the input sequence only once.

It is possible to fit the jumping mechanism straightforwardly into the original definition of
sensing 5′ → 3′ WK automata. Observe that we are also newly tracking only the meeting event
of the heads and not the precise sensing distance.

Definition 3.1 A sensing 5′ → 3′ WK automaton with jumping feature is a 6-tuple M =
(V, ρ,Q, q0, F, δ), where V , ρ, Q, q0, and F are the same as in WK automata, V ∩ {#} = ∅,
δ : (Q × ( V

∗
V ∗ ) × D) → 2Q, where D = {⊕,	} indicates the mutual position of heads, and the

transition function assigns a nonempty set only for finitely many triplets of (Q × ( V
∗

V ∗ ) × D).
We denote the head as I-head or J-head if it reads from left to right or from right to left,
respectively. We use symbol ⊕ if the I-head is on the input tape positioned before the J-head;

otherwise, we use symbol 	. A configuration ( w1
w2 )(q, s)(

w′1
w′2

) has the same structure as in sensing

5′ → 3′ WK automata; however, s indicates only the mutual position of heads, and a partially

processed input (
w1w′1
w2w′2

) may not satisfy the complementary relation ρ. A step of the automaton

can be of the following two types: Let w′1, w2, x, y ∈ V ∗ and w1, w
′
2 ∈ (V ∪ {#})∗.

(1) Reading steps: ( w1
w2y )(q, s)(

xw′1
w′2

) y ( w1{#}|x|
w2

)(q′, s′)(
w′1

{#}|y|w′2
), where q′ ∈ δ(q, ( xy ), s), and s′

is either ⊕ if |w2| > |w1x| or 	 in other cases.

(2) Jumping steps: ( w1
w2v )(q, s)(

uw′1
w′2

) y ( w1u
w2 )(q, s′)(

w′1
vw′2

), where s′ is either ⊕ if |w2| > |w1u|
or 	 in other cases.

Note that the jumping steps are an integral and inseparable part of the behavior of the automa-
ton, and thus they are not affected by the state transition function. In the standard manner,
extend y to yn, where n ≥ 0; then, based on yn, define y+ and y∗. The accepted lan-
guage, denoted by L(M), can be defined by the final accepting configurations that can be reached
from the initial one: A double strand [ w1

w2 ] is accepted by a sensing 5′ → 3′ WK automaton
with jumping feature M if and only if ( ε

w2 )(q0,⊕)( w1
ε ) y∗ ( w

′
1
ε )(qf ,	)(

ε
w′2 ), for qf ∈ F , where

w′1 = a1a2 . . . an, w′2 = b1b2 . . . bn, ai, bi ∈ (V ∪ {#}), and either ai = # or bi = #, for all
i = 1, . . . , n, for some n ≥ 0.
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From a practical point of view, however, this definition is not ideal. The automaton can
easily end up in a configuration that cannot yield accepting results, and the correct positions
of auxiliary symbols # need to be checked separately at the end of the process. Therefore,
we present a modified definition that has the jumping mechanism integrated more into its
structure. We are also using a simplification for complementary pairs and treat them as single
letters. Such a change has no effect on the accepting power, and this form of input is more
natural for formal language theory.

Definition 3.2 A jumping 5′ → 3′ WK automaton is a quintuple M = (V,Q, q0, F, δ), where
V , Q, q0, and F are the same as in WK automata, V ∩ {#} = ∅, the state transition function
δ : (Q× V ∗ × V ∗ ×D)→ 2Q, where D = {⊕,	} indicates the mutual position of heads, and δ
assigns a nonempty set only for finitely many quadruples of (Q×V ∗×V ∗×D). A configuration
(q, s, w1, w2, w3) consists of the state q, the position of heads s ∈ D, and the three unprocessed
portions of the input tape: (a) before the first head (w1), (b) between the heads (w2), and
(c) after the second head (w3). A step of the automaton can be of the following four types:
Let x, y, u, v, w2 ∈ V ∗ and w1, w3 ∈ (V ∪ {#})∗.

(1) ⊕-reading: (q,⊕, w1, xw2y, w3) y (q′, s, w1{#}|x|, w2, {#}|y|w3), where q′ ∈ δ(q, x, y,⊕),
and s is either ⊕ if |w2| > 0 or 	 in other cases.

(2) 	-reading: (q,	, w1y, ε, xw3) y (q′,	, w1, ε, w3), where q′ ∈ δ(q, x, y,	).

(3) ⊕-jumping: (q,⊕, w1, uw2v, w3) y (q, s, w1u,w2, vw3), where s is either ⊕ if |w2| > 0 or
	 in other cases.

(4) 	-jumping: (q,	, w1{#}∗, ε, {#}∗w3) y (q,	, w1, ε, w3).

In the standard manner, extend y to yn, where n ≥ 0; then, based on yn, define y+ and y∗.
The accepted language, denoted by L(M), can be defined by the final accepting configurations
that can be reached from the initial one: A string w is accepted by a jumping 5′ → 3′ WK
automaton M if and only if (q0,⊕, ε, w, ε) y∗ (qf ,	, ε, ε, ε), for qf ∈ F .

Even though the structure of this definition is considerably different from Definition 3.1, it is
not hard to show that both models accept the same family of languages.

Proposition 3.3 The models of Definitions 3.1 and 3.2 accept the same family of languages.

Proof. (sketch). This proposition can be proven by construction (from both sides). Let M1 =
(V1, ρ, Q, q0, F, δ1) from Definition 3.1 and M2 = (V2, Q, q0, F, δ2) from Definition 3.2. The
states can clearly remain identical. We can define bijection ϕ : ρ → V2. Let ϕ(ai, a

′
i) = xi and

ϕ(bi, b
′
i) = yi, where ai, a

′
i, bi, b

′
i ∈ V1, (ai, a

′
i), (bi, b

′
i) ∈ ρ, xi, yi ∈ V2, for all i = 1, . . . , n, n is

a positive integer. Any δ1(q, (
a1...an
b′1...b

′
m

), s) can be converted into δ2(q, x1 . . . xn, y1 . . . ym, s), for
some n,m ≥ 0, and vice versa. With this transformation, we reason that both models accept
the same inputs. Observe that the reading in the first model marks processed positions in the
configuration with the auxiliary symbol #, and, at the end, the model checks whether each pair
of symbols was read precisely once. On the other hand, the second model allows only correct
transitions that do not violate this reading condition. Furthermore, it keeps only unprocessed
parts of the input in the configuration. Consequently, the second model requires more types of
steps to handle the different stages of the process. Before the heads meet, either the ⊕-reading
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reads some symbols and marks them (with #) for the other head, or the ⊕-jumping skips some
symbols and leaves them for the other head. After the meeting point, either the 	-reading reads
remaining symbols that were previously skipped, or the 	-jumping erases marked symbols from
the configuration. Besides that, the reading and jumping behave analogically in both models
and thus give the same resulting accepting power. A rigorous version of this proof is left to the
reader. 2

Hereafter, we primarily use Definition 3.2.

4. Examples

To demonstrate the behavior of the automata, we present a few simple examples.

Example 4.1 Let us recall that L = {w ∈ {a, b}∗ : |w|a = |w|b} is a well-known non-linear
context-free language. We show that, even though the jumping directions in the model are
quite restricted, we are able to accept such a language. Consider the following jumping 5′ → 3′

WK automaton

M = ({a, b}, {s}, s, {s}, δ)

with the state transition function δ: δ(s, a, b,⊕) = {s} and δ(s, a, b,	) = {s}. Starting from
s, M can either utilize the jumping or read simultaneously with both heads (the I-head reads
a and the J-head reads b), and it always stays in the sole state s. Now, consider the inputs
aaabbb and baabba. The former can be accepted by using three ⊕-readings and one 	-jumping:

(s,⊕, ε, aaabbb, ε) y (s,⊕,#, aabb,#) y (s,⊕,##, ab,##) y
(s,	,###, ε,###) y (s,	, ε, ε, ε).

The latter input is more complex and can be accepted by using one ⊕-jumping, two ⊕-readings,
one 	-jumping, and one 	-reading:

(s,⊕, ε, baabba, ε) y (s,⊕, b, aabb, a) y (s,⊕, b#, ab,#a) y
(s,	, b##, ε,##a) y (s,	, b, ε, a) y (s,	, ε, ε, ε).

It is not hard to see that, by combining different types of steps, we can accept any input
containing the same number of a’s and b’s, and thus L(M) = L.

Example 4.2 Consider the following jumping 5′ → 3′ WK automaton

M = ({a, b}, {s}, s, {s}, δ)

with the state transition function δ: δ(s, a, b,⊕) = {s}. Observe that this is almost identical
to Example 4.1, however, we cannot use the 	-reading anymore. Consequently, we also can-
not effectively use the ⊕-jumping because there is no way how to process remaining symbols
afterwards. As a result, the accepted language changes to L(M) = {anbn : n ≥ 0}.
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Lastly, we give a more complex example that uses all parts of the model.

Example 4.3 Consider the following jumping 5′ → 3′ WK automaton

M = ({a, b, c}, {s0, s1, s2}, s0, {s0}, δ)

with δ: δ(s0, a, b,⊕) = {s1}, δ(s1, ε, b,⊕) = {s0}, δ(s0, c, c,	) = {s2}, and δ(s2, ε, c,	) = {s0}.
We can divide the accepting process of M into two stages. First, before the heads meet, the
automaton ensures that for every a on the left side there are two b’s on the right side; other
symbols are skipped with the jumps. Second, after the heads meet, the automaton checks if
the part before the meeting point has double the number of c’s as the part after the meeting
point. Thus, L(M) = {w1w2 : w1 ∈ {a, c}∗, w2 ∈ {b, c}∗, 2 · |w1|a = |w2|b, |w1|c = 2 · |w2|c}.

5. General results

These results cover the general behavior of jumping 5′ → 3′ WK automata without any further
restrictions. Let SWK, JWK, GJFA, and JFA denote the language families accepted by sen-
sing 5′ → 3′ WK automata, jumping 5′ → 3′ WK automata, general jumping finite automata,
and jumping finite automata, respectively.

Due to space constraints, some of our proofs are only sketched.

Considering the previous results on other models that use the jumping mechanism (see [5, 6,
1, 2]), it is a common characteristic that they define language families that are incomparable
with the classical families of regular, linear, and context-free languages. On the other hand,
sensing 5′ → 3′ WK automata (see [7, 8, 9, 10]) are closely related to the family of linear
languages. First, we show that the new model is able to accept all regular and linear languages.
Furthermore, the accepting power goes beyond the family of linear languages.

Lemma 5.1 For every regular language L, there is a jumping 5′ → 3′ WK automaton M such
that L = L(M).

Proof. Consider a finite automatonN = (V,Q, q0, F, δ1) such that L(N) = L. We can construct
the jumping 5′ → 3′ WK automaton M = (V,Q, q0, F, δ2) where δ2(q, a, ε,⊕) = δ1(q, a) for all
q ∈ Q, a ∈ (V ∪ {ε}). Observe that with such a state transition function the ⊕-reading steps
always look like this: (q,⊕, w1, aw2, w3) y (q′, s, w1{#}|a|, w2, w3), where q′ ∈ δ2(q, a, ε,⊕),
w2 ∈ V ∗, w1, w3 ∈ (V ∪ {#})∗, and s is either ⊕ if |w2| > 0 or 	 in other cases. There are no
possible 	-reading steps. The ⊕-jumping can be potentially used to skip some symbols before
the heads meet; nonetheless, the resulting configuration will be in the form (q, s, w1, w2, w3)
where alph(w1w3) ∩ V 6= ∅. Since there is no way how to read such symbols in w1 and w3, the
configuration cannot yield an accepting result. Consequently, any input string will be read in
M the same way as in N (the remaining #’s will be erased with the 	-jumping afterwards).
Thus, L(M) = L(N) = L. 2

Lemma 5.2 For every sensing 5′ → 3′ WK automaton M1, there is a jumping 5′ → 3′ WK
automaton M2 such that L(M1) = L(M2).
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Proof. This can be proven by construction. Consider any sensing 5′ → 3′ WK automaton
M1. A direct conversion would be complicated, however, let us recall that LIN = SWK (see
Theorem 2 in [9]). Consider a linear grammar G = (N, T, S, P ) such that L(G) = L(M1). We
can construct the jumping 5′ → 3′ WK automaton M2 such that L(M2) = L(G). Assume that
qf 6∈ (N ∪ T ). Define M2 = (T,N ∪ {qf}, S, {qf}, δ), where B ∈ δ(A, u, v,⊕) if A→ uBv ∈ P
and qf ∈ δ(A, u, ε,⊕) if A → u ∈ P (A,B ∈ N , u, v ∈ T ∗). By the same reasoning as
in the proof of Lemma 5.1, only the ⊕-reading can be effectively used before the heads meet.
Consequently, it can be easily seen that M2 reads all symbols in the same fashion as G generates
them. Moreover, the heads of M2 can meet each other with the accepting state qf if and only
if G can finish the generation process with a rule A→ u. Thus, L(M2) = L(G) = L(M1). 2

Theorem 5.3 LIN = SWK ⊂ JWK.

Proof. SWK ⊆ JWK follows from Lemma 5.2. LIN = SWK was proven in [9]. JWK 6⊆
LIN follows from Example 4.1. 2

The next two characteristics follow from the previous results.

Theorem 5.4 Jumping 5′ → 3′ WK automata without 	-reading steps accept linear languages.

Proof. Consider any jumping 5′ → 3′ WK automaton M = (V,Q, q0, F, δ) that has no possible
	-reading steps. Expanding the reasoning in the proof of Lemma 5.2, if there are no possible
	-reading steps, the ⊕-jumping cannot be effectively used, and we can construct a linear
grammar that generates strings in the same fashion asM reads them. Define the linear grammar
G = (Q, V, q0, R), where R is constructed in the following way: (1) For each p ∈ δ(q, u, v,⊕),
add q → upv to R. (2) For each f ∈ F , add f → ε to R. Clearly, L(G) = L(M). 2

Proposition 5.5 The language family accepted by double-jumping finite automata that perform
right-left and left-right jumps (see [2]) is strictly included in JWK.

Proof. First, Theorem 3.18 in [2] shows that jumping finite automata that perform right-left
and left-right jumps accept the same family of languages. Second, Theorem 3.7 in [2] shows
that this family is strictly included in LIN. Finally, Theorem 5.3 shows that LIN is strictly
included in JWK. 2

Even though the model is able to accept some non-linear languages, the jumping directions
of the heads are quite restricted compared to general jumping finite automata. Consequently,
there are some languages accepted by jumping 5′ → 3′ WK automata and general jumping
finite automata that cannot be accepted with the other model.

Lemma 5.6 There is no jumping 5′ → 3′ WK automaton M such that L(M) = {anbncn :
n ≥ 0}.

Proof. (sketch). It is clear that with a finite memory the automaton can remember only a finite
amount of symbols that were already processed. Intuitively, therefore, for a long enough input
the automaton must be able to repeatedly perform some sequence of steps in some phase that
reads a correlated number of a’s, b’s, and c’s. Nonetheless, in any such a sequence, some head
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has to jump over a portion of the unprocessed input to read b’s, and this head can no longer
read the symbols it skipped. The skipped portion has to contain either all remaining a’s or
c’s. These a’s or c’s can still be read with the other head, but, in order to reach them, this
head would have to skip the other remaining portion of the input. This portion would have to
contain all remaining b’s and also either all remaining c’s or a’s. Consequently, there cannot
be a repeatable sequence of steps that reads distinct symbols from three different places. 2

Lemma 5.7 There is no jumping 5′ → 3′ WK automaton M such that L(M) = {w ∈ {a, b, c}∗ :
|w|a = |w|b = |w|c}.

Proof. (sketch). Assume that there is a jumping 5′ → 3′ WK automaton M such that L(M) =
{w ∈ {a, b, c}∗ : |w|a = |w|b = |wc|}. Intuitively, such an automaton must be able to properly
check the number of symbols in any input w = anbncn, where n is a positive integer. However,
the argument in the sketch of the proof of Lemma 5.6 shows that it is not possible. 2

Proposition 5.8 JWK is incomparable with GJFA and JFA.

Proof. The language {w ∈ {a, b}∗ : |w|a = |w|b} from Example 4.1 and the language {w ∈
{a, b, c}∗ : |w|a = |w|b = |w|c} from Lemma 5.7 are accepted with (general) jumping finite
automata (see Example 5 in [5]). The language {anbn : n ≥ 0} from Example 4.2 is not
accepted with (general) jumping finite automata (see Lemma 19 in [5]). 2

The last group of results compares the accepting power of the model with the families of
context-sensitive and context-free languages.

Theorem 5.9 JWK ⊂ CS.

Proof. Clearly, the use of two heads and the jumping behavior can be simulated by linear
bounded automata, so JWK ⊆ CS. From Lemma 5.6, CS − JWK 6= ∅. 2

Lemma 5.10 There are some non-context-free languages accepted by jumping 5′ → 3′ WK
automata.

Proof. Consider the following jumping 5′ → 3′ WK automaton

M = ({a, b, c, d}, {s}, s, {s}, δ)

with the state transition function δ: δ(s, a, c,⊕) = {s} and δ(s, d, b,	) = {s}. The accepting
process has two stages. First, before the heads meet, the automaton reads the same number
of a’s and c’s. Second, after the heads meet, the automaton reads the same number of d’s and
b’s. Thus, L(M) = {w1w2 : w1 ∈ {a, b}∗, w2 ∈ {c, d}∗, |w1|a = |w2|c, |w1|b = |w2|d}.
Proof by contradiction. Assume that L(M) is a context-free language. The family of context-
free languages is closed under intersection with regular sets. Let K = L(M)∩{a}∗{b}∗{c}∗{d}∗.
Clearly, there are some strings in L(M) that satisfy this forced order of symbols. Furthermore,
they all have the proper correlated numbers of these symbols. Consequently, K = {anbmcndm :
n,m ≥ 0}. However, K is a well-known non-context-free language (see Chapter 3.1 in [12]).
That is a contradiction with the assumption that L(M) is a context-free language. Therefore,
L(M) is a non-context-free language. 2
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Lemma 5.11 There is no jumping 5′ → 3′ WK automaton M such that L(M) = {anbncmdm :
n,m ≥ 0}.

Proof. (sketch). It is clear that with a finite memory the automaton can remember only a finite
amount of symbols that were already processed. As it is known from finite automata, a single
head alone cannot recognize strings anbn or cmdm. Intuitively, therefore, the automaton has to
use both heads to process such a string. But in order to do so, some head has to jump over the
other part (anbn or cmdm). However, since the heads cannot travel back on the tape, there is
no way how to use both heads to process both parts. 2

Theorem 5.12 JWK and CF are incomparable.

Proof. JWK 6⊆ CF follows from Lemma 5.10. CF 6⊆ JWK follows from Lemma 5.11. Lastly,
LIN ⊂ JWK and LIN ⊂ CF. 2

6. Results on restricted variations

In this section, we compare the accepting power of unrestricted and restricted variations of
jumping 5′ → 3′ WK automata. This paper considers the same standard restrictions as they
are defined for Watson-Crick finite automata. Since these restrictions regulate only the state
control and reading steps of the automaton, the jumping is not affected in any way. Let JWK
denote the language family accepted by jumping 5′ → 3′ WK automata. We are using prefixes
N, F, S, 1, NS, FS, N1, and F1 to specify the restricted variations of jumping 5′ → 3′ WK
automata and appropriate language families.

In the field of DNA computing, the empty string/empty sequence usually does not belong to
any language because it does not refer to a molecule. This paper is not so strict and thus
considers the empty string as a possible valid input. Nonetheless, the following proofs are
deliberately based on more complex inputs to mitigate the impact of the empty string on the
results.

Note that there are some inherent inclusions between language families based on the application
of restrictions on the model. Additionally, several other basic relations can be established
directly from the restriction definitions:

Lemma 6.1 The following relations hold: (i) N JWK ⊆ F JWK; (ii) 1 JWK ⊆ S JWK;
(iii) F1 JWK ⊆ FS JWK; (iv) N1 JWK ⊆ NS JWK; (v) NS JWK ⊆ FS JWK;
(vi) N1 JWK ⊆ F1 JWK.

Proof. These results follow directly from the definitions since the stateless restriction (N) is a
special case of the all-final restriction (F) and the 1-limited restriction (1) is a special case of
the simple restriction (S). 2

Due to space constraints, we present only a quick overview of the results.
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Theorem 6.2 S JWK = JWK.

Proof. (idea). Any general reading step can be replaced with two simple reading steps and a
new auxiliary state that together accomplish the same action. 2

Example 6.3 Consider the following jumping 5′ → 3′ WK automaton M = ({a, b, c}, {s, f},
s, {f}, δ) with the state transition function δ:

δ(s, a, b,⊕) = {s}, δ(f, a, b,⊕) = {f}, δ(f, a, b,	) = {f},
δ(s, cc, ε,⊕) = {f}, δ(s, ε, cc,⊕) = {f}.

It is clear that the first three transitions mimic the behavior of Example 4.1. The other two
transitions ensure that the input is accepted only if it also contains precisely one substring cc.
Therefore, L(M) = {w1ccw2 : w1, w2 ∈ {a, b}∗, |w1w2|a = |w1w2|b}.

Theorem 6.4 1 JWK ⊂ JWK.

Proof. (idea). There is no 1 jumping 5′ → 3′ WK automaton M such that L(M) = {w1ccw2 :
w1, w2 ∈ {a, b}∗, |w1w2|a = |w1w2|b}. 2

Example 6.5 Consider the following 1 jumping 5′ → 3′ WK automaton M = ({a, b}, {s, p},
s, {s}, δ) with the state transition function δ:

δ(s, a, ε,⊕) = {p}, δ(p, ε, b,⊕) = {s},
δ(s, a, ε,	) = {p}, δ(p, ε, b,	) = {s}.

It is not hard to see that the resulting behavior is similar to Example 4.1. The automaton now
reads a’s and b’s with separate steps and uses one auxiliary state that is not final. Consequently,
L(M) = {w ∈ {a, b}∗ : |w|a = |w|b}.

Theorem 6.6 LIN ⊂ 1 JWK.

Proof. (idea). For every linear grammar G, there is a 1 jumping 5′ → 3′ WK automaton M
such that L(G) = L(M). Example 6.5 shows that 1 JWK 6⊆ LIN. 2

Theorem 6.7 F JWK ⊂ JWK.

Proof. (idea). There is no F jumping 5′ → 3′ WK automaton M such that L(M) = {cancbnc :
n ≥ 0} ∪ {ε}. 2

Example 6.8 Consider the following F (in fact, even N) jumping 5′ → 3′ WK automaton
M = ({a, b, c}, {s}, s, {s}, δ) with the state transition function δ:

δ(s, a, b,⊕) = {s}, δ(s, a, b,	) = {s},
δ(s, cc, ε,⊕) = {s}, δ(s, ε, cc,⊕) = {s}.

This is a slightly modified version of Example 6.3 where the substring cc can occur arbitrarily
many times. Therefore, L(M) = {w ∈ {a, b, cc}∗ : |w|a = |w|b}. L(M) 6∈ 1 JWK.
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Theorem 6.9 N JWK ⊂ F JWK.

Proof. (idea). From Lemma 6.1, N JWK ⊆ F JWK. There is no N jumping 5′ → 3′ WK
automaton M such that L(M) = {ε, a}. 2

Proposition 6.10 FS JWK ⊂ F JWK.

Proof. (idea). There is no FS jumping 5′ → 3′ WK automaton M such that that L(M) =
{ccancc : n ≥ 0} ∪ {ε}. 2

Example 6.11 Consider the following FS jumping 5′ → 3′ WK automaton M = ({a, b, c},
{s, p}, s, {s, p}, δ) with the state transition function δ:

δ(s, a, ε,⊕) = {p}, δ(p, ε, b,⊕) = {s},
δ(s, a, ε,	) = {p}, δ(p, ε, b,	) = {s},
δ(s, cc, ε,⊕) = {s}, δ(s, ε, cc,⊕) = {s},
δ(p, cc, ε,⊕) = {p}, δ(p, ε, cc,⊕) = {p}.

As a result, L(M) = {w ∈ {a, b, cc}∗ : |w|a = |w|b or |w|a = |w|b + 1}.
This automaton is just a combination of previous approaches from Examples 6.5 and 6.8. Note
that L(M) resembles the resulting language of Example 6.8.

Proposition 6.12 F1 JWK ⊂ FS JWK.

Proof. (idea). There is no F1 jumping 5′ → 3′ WK automaton that accepts {aa}∗. 2

Corollary 6.13 F1 JWK ⊂ 1 JWK. 2

Theorem 6.14 NS JWK ⊂ REG.

Proof. (idea). For any NS jumping 5′ → 3′ WK automaton we can construct a finite automaton
that accepts the same language. 2

Proposition 6.15 N1 JWK ⊂ NS JWK.

Proof. This proof is analogous to that of Proposition 6.12. 2

Corollary 6.16 The following relations hold: (i) NS JWK ⊂ N JWK; (ii) NS JWK ⊂
FS JWK; (iii) N1 JWK ⊂ F1 JWK. 2

All the obtained results comparing the accepting power of unrestricted and restricted variations
of jumping 5′ → 3′ WK automata are summarized in Figure 1.
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S JWK = JWK

1 JWK

LIN

REG

F JWK

FS JWK N JWK

F1 JWK

NS JWK

N1 JWK

Figure 1: A hierarchy of language families closely related to the unrestricted and restricted variations
of jumping 5′ → 3′ WK automata is shown. If there is an arrow from family X to family Y in the
figure, then X ⊂ Y . Furthermore, if there is no path (following the arrows) between families X and
Y , then X and Y are incomparable.

7. Conclusion

The results clearly show that, with the addition of the jumping mechanism into the model, the
accepting power was increased above sensing 5′ → 3′ WK automata. The model is now able
to accept some non-linear and even some non-context-free languages. On the other hand, the
jumping movement of the heads is restricted compared to jumping finite automata, and this
limits its capabilities to accept languages that require discontinuous information processing.
Considering the comparison with full-reading sensing 5′ → 3′ WK automata, the results are
not yet clear. However, we know that there are some languages, like {anbncn : n ≥ 0}, that
cannot be accepted by jumping 5′ → 3′ WK automata and that are accepted by full-reading
sensing 5′ → 3′ WK automata (see [7, 8, 9]).

If we compare the hierarchies of language families related to the restricted variations of jumping
5′ → 3′ WK automata and sensing 5′ → 3′ WK automata (see [8, 9, 10]), there are several
noticeable remarks. Most importantly, the 1-limited restriction (1) has a negative impact on the
accepting power, which is usually not the case in sensing 5′ → 3′ WK automata. In parts where
several restrictions are combined together, the hierarchy structure resembles sensing 5′ → 3′

WK automata without the sensing distance. Nonetheless, almost all restricted variations, with
the exception of NS and N1, are still able to accept some non-linear languages.

Lastly, the reader may notice that the 	-jumping can be used only in situations where it is
forced by the current configuration. Furthermore, jumping finite automata usually immediately
erase symbols from the configuration and do not use the auxiliary symbol #. It is therefore a
question whether this part could be safely removed from the model. Without it, the conversion
from Definition 3.1 cannot be straightforward, and it is not clear whether the accepting power
remains identical. Observe that, if we remove #’s, the configuration can create new connected
strings that were not in the original input and for which there can be a possible 	-reading step.



16 Radim Kocman, Benedek Nagy, Zbyněk Křivka, Alexander Meduna
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