
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume X, Number X, XXXX, XXX–XXX

Unlimitedly Deep Pushdown Automata and
Their Computational Completeness

Lucie Charvát1 and Alexander Meduna2

1,2Brno University of Technology
Faculty of Information Technology

Božetěchova 2, 612 66 Brno, Czech Republic
2Centre of Excellence IT4Innovations

Email: icharvatl@fit.vutbr.cz, meduna@fit.vutbr.cz

Abstract. The present paper defines the notion of an unlimitedly deep push-
down automaton. In essence, this automaton expands the topmost expandable non-
input symbol in its pushdown list. This expanded symbol, however, may not occur
on the very top of the pushdown; instead, it may appear deeper in the pushdown.
The paper demonstrates that this notion represents an automaton-based counter
part to the notion of a state grammar. Indeed, both are equally powerful. There-
fore, unlimitedly deep pushdown automata are computationally complete–that is,
they are as powerful as Turing machines. In fact there are computationally com-
plete with no more than four states.

1 Introduction
Consider the standard transformation that turns any context-free grammar to an equiv-
alent pushdown automaton M that acts as a top-down parser (see [1–3]). During every
move, M either pops or extends its pushdown depending on the symbol occurring on
the pushdown top. If an input symbol occurs on the pushdown top, M compares the
pushdown top symbol with current input symbol, and if they coincide, M pops the top-
most symbol from pushdown and proceeds to the next input symbol on the input tape.
If a nonterminal occurs on the pushdown top, M expands its pushdown so it replaces
the top nonterminal according to an expansion rule with a string.

In this paper, we define the notion of an unlimitedly deep pushdown automaton as
a slight generalization of M . The generalized version works exactly as M except that
it can make expansions deeper in the pushdown. Whenever automaton is unable to find
an expansion rule applicable to the topmost non-input symbol, it proceeds deeper in
the pushdown to the second topmost nonterminal, and so on. In this way, M continues
descending deeper into the pushdown until it either finds nonterminal to be expanded
or reaches the pushdown bottom.

The paper proves that unlimitedly deep pushdown automata are equally power-
ful as state grammars, which generate the family of recursively enumerable languages



Example et al., Romjist Template 2

(see [4]). Therefore, unlimitedly deep pushdown automata are computationally com-
plete.

2 Preliminaries
We assume that the reader is familiar with formal language theory (see Harrison [5] or
Meduna [6,7]). For an alphabet V , V ∗ represents the free monoid generated by V under
the operation thus free semigroup generated by V under the operation of concatenation.
For every w ∈ V ∗ and K ⊆ V ∗, max-suffix(w,K) denotes the longest suffix of w
that is in K; analogously, max-prefix(w,K) denotes the longest prefix of w that is in
K. Let alph(w) denote the set of all symbols that occur in w.

A state grammar is a quintuple G = (V,W, T, P, S), where V is a alphabet, W is
a finite set of states, T ⊆ V is the alphabet of terminals, N = V −T , P ⊆ (W ×N)×
(W × (N ∪ T )∗) is a finite set of relation and S ∈ N is the start symbol. Instead of
(q, A, p, v) ∈ P , we write (q,A) → (p, v) ∈ P throughout. If (q, A) → (p, v) ∈ P
implies v 6= ε, then G is ε−free. Let u, v ∈ V ∗, (q, A) → (p, x) ∈ P , and alph(u)∩
{B | (q,B) → (o, y) ∈ P , o ∈ W , y ∈ V ∗} = ∅. Then, uAv ⇒ uxv. In the standard
manner, we extend⇒ to⇒m, m ≥ 0. Based on⇒m, we define⇒+ and⇒∗ as usual.
The language of G, L(G), is defined as L(G) = {w ∈ T ∗ | (q, S) ⇒∗ (p, w), q, p ∈
W}.

Families of languages generated by state grammar are denoted by L(ST ) and
L(ε−freeST ) denote the language families generated by state grammars and ε−free
state grammars, respectively. L(RE) and L(CS) denote the families of recursively
enumerable and context-sensitive languages, respectively.

3 Definitions
An unlimitedly deep pushdown automaton, UDPDA for short, is 7-tuple,M=(Q,T,N,
R, s, S, F ), where Q is a finite set of states, T is a finite alphabet of input symbols, N
is a finite alphabet of non-input symbols, N contains a bottom symbol denoted by #,
R ⊆ (Q× (N −#)×Q× ((N ∪ T )−#)∗)∪ (Q×#×Q× ((N ∪ T )−#)∗{#})
is a finite relation, s ∈ Q is the start state, S ∈ N is the start pushdown symbol, and
F ⊆ Q is a finite set of final states. Instead of (q, A, p, v) ∈ R, we write qA→ pv ∈ R
and call qA → pv a rule; R is the set of rules in M . If qA → pv ∈ R implies v 6= ε,
M is ε−free.

A configuration of M is a triple in Q × T ∗ × ((N ∪ T ) − #)∗{#}. X denotes
the set of all configurations of M . Let x, y ∈ X be two configuration. M pops its
pushdown from x to y, symbolically written as xp ⇒ y, if x = (q, az, au), y =
(q, z, u), where a ∈ T , z ∈ T ∗, u ∈ (N ∪ T )∗. M expands its pushdown from x to y,
symbolically written as xe ⇒ y, if x = (q, w, uAv), y = (p, w, uvz), qA → pv ∈ R,
alph(u) ∩ {B | qB → p′z′, p′ ∈ Q, z′ ∈ (N ∪ T )∗} = ∅, where A ∈ N , u, v, z ∈
(N ∪ T )∗, q, p ∈ Q. To express that M makes xe ⇒ y according to qA → pv, we
write xe ⇒ y[qA→ pv]. M makes a move from x to y, symbolically written as x⇒ y
if M either xe ⇒ y or xp ⇒ y. In the standard manner, extend p ⇒, e ⇒,⇒ to p ⇒m,
e ⇒m, ⇒m, respectively, where m ≥ 0; then, bases on p ⇒m, e ⇒m ⇒m, define
p ⇒+, p ⇒∗, e ⇒+, e ⇒∗,⇒+, and⇒∗.

We define L(M) = {w ∈ T ∗ | (s, w, S) ⇒∗ (f, ε,#)} in M with f ∈ F},
fL(M) = {w ∈ T ∗ | (s, w, S) ⇒∗ (f, ε, u#)} in M , where f ∈ F , u ∈ (N ∪ T )∗



Example et al., Romjist Template 3

and εL(nM) = {w ∈ T ∗ | (s, w, S)⇒+ (q, ε,#)}, where q ∈ Q.
L(UDPDA) andL(ε−freeUDPDA) denote the families accepted by UDPDAs and

ε−freeUDPDAs, respectively.

4 Results
We will show that L(RE) = L(UDPDA) and L(CS) = L(ε−freeUDPDA). To do so,
we first prove Lemmas 1 and 2.

Lemma 1. For every state grammar G, there exists an UDPDAM such that L(G) =
L(M).

Proof. Construction. Let
G = (V,W, T, P, S)

be a state grammar. Set N = V − T . Next, we construct an UDPDA

M = (Q,T,N,R, s, S,W ).

Set Q =W ∪ {s}, where s 6∈W . The rules are constructed as follows.

1. for every (p, S)→ (q, x) ∈ P , p, q ∈W , add s#→ pS# to R;

2. for every (p,A)→ (q, x) ∈ P , p, q ∈W , A ∈ N , add pA→ qx to R.

To establish L(G) = L(M), we prove the following following claim.

Claim 1. Let (p, S) ⇒j (q, xz) in G, where p, q ∈ W , x ∈ T ∗, and z ∈ (NV ∗)∗.
Then, (p, xw, S#)⇒∗ (q, w, z#) in M , where p, q ∈ Q and w ∈ T ∗.

Proof. This claim is proved by induction on j ≥ 0.
Basis. Let j = 0, so (p, S) ⇒0 (p, S) in G, where p ∈ W and S ∈ N . Then, from 2
in the construction, we obtain

(p, w, S#)⇒0 (p, w, S#)

in M , so the basis holds.
Induction Hypothesis. Assume there is i ≥ 0 such that Claim 1 holds true for all
0 ≤ j ≤ i.
Induction Step. Let (p, S) ⇒i+1 (q, xuαv) in G, where x ∈ T ∗, u ∈ (NV ∗)∗,
α, v ∈ V ∗ and p, q ∈W . Since i+ 1 ≥ 1, we can express (p, S)⇒i+1 (q, uxv) as

(p, S)⇒i (h, xuAv)⇒ (q, xuαv)

[(h,A)→ (q, α)]

where A ∈ N and h ∈W . By the induction hypothesis, we have

(p, xyw, S#)⇒∗ (h, yw, uAv#)

where y is max-prefix(uαv, T ∗). Since (h,A) → (q, α) ∈ P , according to 2 in the
construction, we also have hA→ qα ∈ R. Thus,

(h, yw, uAv#)⇒ (q, w, z#)

[hA→ qα]

where z is max-suffix(uαv,NV ∗). Therefore, Claim 1 holds true.



Example et al., Romjist Template 4

Claim 2. Let (p, xw, S#) ⇒j (q, w, z#) in M , where p, q ∈ Q, x,w ∈ T ∗ and
z ∈ (NV ∗)∗. Then, (p, S)⇒∗ (q, xz) in G, where p, q ∈W .

Proof. This claim is proved by induction on j ≥ 0.
Basis. Let j = 0, so (p, w, S#)⇒0 (p, w, S#) inM , where p ∈ Q and S ∈ N . Then,
from 2 in the construction, we obtain

(p, S)⇒0 (p, S)

in G, so the basis holds.
Induction Hypothesis. Assume there is i ≥ 0 such that Claim 2 holds true for all
0 ≤ j ≤ i.
Induction Step. Let (p, xyw, S#) ⇒i+1 (q, w, z#) in M , where x, y, w ∈ T ∗, z ∈
(NV ∗)∗ and p, q ∈ Q. Since i+1 ≥ 1, we can express (p, xyw, S#)⇒i+1 (q, w, z#)
as

(p, xyw, S#)⇒i (h, yw, uAv#)⇒ (q, w, z#)

[hA→ qα]

where A ∈ N , α ∈ V ∗, z is max-suffix(uαv,NV ∗), y is max-prefix(uαv, T ∗) and
h ∈ Q. By the induction hypothesis, we have

(p, S)⇒∗ (h, xuAv)

Since hA → qα ∈ R, according to 2 in construction, we also have (h,A) → (q, α) ∈
P . Thus,

(h, xuAv)⇒ (q, xuαv)

[(h,A)→ (q, α)]

Therefore, Claim 2 holds true.

We have shown that Claim 1 and Claim 2 hold. Thus, Lemma 1 must hold as well.

Lemma 2. For every UDPDAM , there exists a state grammar G such that L(M) =
L(G).

Proof. Construction. Let

M = (Q,T,N,R, s, S, F )

be an UDPDA. Set V = T ∪N . Next, we construct a state grammar

G = (V,W, T, P, S).

Set W = Q ∪ {s′}, where s′ 6∈ Q. The rules are constructed as follows.

1. for every sA→ qx ∈ R, q ∈ Q, add (s′, S)→ (s,A) to P;

2. for every pA→ qx ∈ R, p, q ∈ Q, A ∈ N , add (p,A)→ (q, x) to P .

To establish L(M) = L(G), we prove the following following claim.

Claim 3. Let (p, xw, S#) ⇒j (q, w, z#) in M , where p, q ∈ Q, x,w ∈ T ∗ and
z ∈ (NV ∗)∗. Then, (p, S)⇒∗ (q, xz) in G, where p, q ∈W .



Example et al., Romjist Template 5

Proof. This claim is proved by induction on j ≥ 0.
Basis. Let j = 0, so (p, w, S#)⇒0 (p, w, S#) inM , where p ∈ Q and S ∈ N . Then,
from 2 in the construction, we obtain

(p, S)⇒0 (p, S)

in G, so the basis holds.
Induction Hypothesis. Assume there is i ≥ 0 such that Claim 2 holds true for all
0 ≤ j ≤ i.
Induction Step. Let (p, xyw, S#) ⇒i+1 (q, w, z#) in M , where x, y, w ∈ T ∗, z ∈
(NV ∗)∗ and p, q ∈ Q. Since i+1 ≥ 1, we can express (p, xyw, S#)⇒i+1 (q, w, z#)
as

(p, xyw, S#)⇒i (h, yw, uAv#)⇒ (q, w, z#)

[hA→ qα]

where A ∈ N , α ∈ V ∗, z is max-suffix(uαv,NV ∗), y is max-prefix(uαv, T ∗) and
h ∈ Q. By the induction hypothesis, we have

(p, S)⇒∗ (h, xuAv)

Since hA → qα ∈ R, according to 2 in construction, we also have (h,A) → (q, α) ∈
P . Thus,

(h, xuAv)⇒ (q, xuαv)

[(h,A)→ (q, α)]

Therefore, Claim 3 holds true.

Claim 4. Let (p, S) ⇒j (q, xz) in G, where p, q ∈ W , x ∈ T ∗, and z ∈ (NV ∗)∗.
Then, (p, xw, S#)⇒∗ (q, w, z#) in M , where p, q ∈ Q and w ∈ T ∗.

Proof. This claim is proved by induction on j ≥ 0.
Basis. Let j = 0, so (p, S) ⇒0 (p, S) in G, where p ∈ W and S ∈ N . Then, from 2
in the construction, we obtain

(p, w, S#)⇒0 (p, w, S#)

in M , so the basis holds.
Induction Hypothesis. Assume there is i ≥ 0 such that Claim 1 holds true for all
0 ≤ j ≤ i.
Induction Step. Let (p, S) ⇒i+1 (q, xuαv) in G, where x ∈ T ∗, u ∈ (NV ∗)∗,
α, v ∈ V ∗ and p, q ∈W . Since i+ 1 ≥ 1, we can express (p, S)⇒i+1 (q, uxv) as

(p, S)⇒i (h, xuAv)⇒ (q, xuαv)

[(h,A)→ (q, α)]

where A ∈ N and h ∈W . By the induction hypothesis, we have

(p, xyw, S#)⇒∗ (h, yw, uAv#)

where y is max-prefix(uαv, T ∗). Since (h,A) → (q, α) ∈ P , according to 2 in
construction, we also have hA→ qα ∈ R. Thus,

(h, yw, uAv#)⇒ (q, w, z#)

[hA→ qα]

where z is max-suffix(uαv,NV ∗). Therefore, Claim 4 holds true.



Example et al., Romjist Template 6

We have shown that Claim 3 and Claim 4 holds. Thus, Lemma 2 must hold as well.

Theorem 1. L(ST ) = L(UDPDA) = L(RE)

Proof. This theorem follows from Lemma 1 and Lemma 2.

Corollary 1. LetL ∈ L(RE). Then there exists an UDPDAM = (Q,T,N,R, s, S, F )
such that L = L(M) and Q has no more than four states.

Proof. This corollary follows from Theorem 1 in this paper and Theorem 2 in [4].

Theorem 2. L(ε−freeST ) = L(ε−freeUDPDA) = L(CS)

Proof. This theorem follows from Theorem 1 in this paper and Theorem 2 in [3].

Can Theorem 2 be established in terms of ε−freeUDPDAs with a limited number
of states?

Aknowledgement
This work was supported by The Ministry of Education, Youth and Sports of the Czech
Republic from the National Programme of Sustainability (NPUII); project IT4Innovations
excellence in science - LQ1602; the TAČR grant TE01020415; and the BUT grant FIT-
S-14-2299.

References
[1] A. Meduna, Formal Languages and Computation: Models and Their Applications, Auerbach

Publications, 2014.

[2] A. V. Aho, J. D. Ullman, The Theory of Parsing, Translation, and Compiling, Prentice Hall,
1972.

[3] T. Kasai, An hierarchy between context-free and context-sensitive languages, Journal of
Computer and System Sciences 4 (5) (1970) 492–508.

[4] G. Horvat, A. Meduna, On state grammars, Acta Cybernetica 1988 (8) (1988) 237–245.

[5] M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, 1978.

[6] A. Meduna, Automata and Languages: Theory and Applications, Springer, 2000.

[7] A. Meduna, P. Zemek, Regulated Grammars and Automata, Springer, 2014.


