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Abstract. The present paper defines the notion of an unlimitedly deep push-
down automaton. In essence, this automaton expands the topmost expandable non-
input symbol in its pushdown list. This expanded symbol, however, may not occur
on the very top of the pushdown; instead, it may appear deeper in the pushdown.
The paper demonstrates that this notion represents an automaton-based counter
part to the notion of a state grammar. Indeed, both are equally powerful. There-
fore, unlimitedly deep pushdown automata are computationally complete–that is,
they are as powerful as Turing machines. In fact there are computationally com-
plete with no more than four states.

1 Introduction
Consider the standard transformation that turns any context-free grammar to an equiv-
alent pushdown automaton M that acts as a top-down parser (see [1–3]). During every
move, M either pops or extends its pushdown depending on the symbol occurring on
the pushdown top. If an input symbol occurs on the pushdown top, M compares the
pushdown top symbol with current input symbol, and if they coincide, M pops the top-
most symbol from pushdown and proceeds to the next input symbol on the input tape.
If a nonterminal occurs on the pushdown top, M expands its pushdown so it replaces
the top nonterminal according to an expansion rule with a string.

In this paper, we define the notion of an unlimitedly deep pushdown automaton as
a slight generalization of M . The generalized version works exactly as M except that
it can make expansions deeper in the pushdown. Whenever automaton is unable to find
an expansion rule applicable to the topmost non-input symbol, it proceeds deeper in
the pushdown to the second topmost nonterminal, and so on. In this way, M continues
descending deeper into the pushdown until it either finds nonterminal to be expanded
or reaches the pushdown bottom.

The paper proves that unlimitedly deep pushdown automata are equally power-
ful as state grammars, which generate the family of recursively enumerable languages
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(see [4]). Therefore, unlimitedly deep pushdown automata are computationally com-
plete.

2 Preliminaries
We assume that the reader is familiar with formal language theory (see Harrison [5] or
Meduna [6,7]). For an alphabet V , V ∗ represents the free monoid generated by V under
the operation thus free semigroup generated by V under the operation of concatenation.
For every w ∈ V ∗ and K ⊆ V ∗, max-suffix(w,K) denotes the longest suffix of w
that is in K; analogously, max-prefix(w,K) denotes the longest prefix of w that is in
K. Let alph(w) denote the set of all symbols that occur in w.

A state grammar is a quintuple G = (V,W, T, P, S), where V is a alphabet, W is
a finite set of states, T ⊆ V is the alphabet of terminals, N = V −T , P ⊆ (W ×N)×
(W × (N ∪ T )∗) is a finite set of relation and S ∈ N is the start symbol. Instead of
(q, A, p, v) ∈ P , we write (q,A) → (p, v) ∈ P throughout. If (q, A) → (p, v) ∈ P
implies v 6= ε, then G is ε−free. Let u, v ∈ V ∗, (q, A) → (p, x) ∈ P , and alph(u)∩
{B | (q,B) → (o, y) ∈ P , o ∈ W , y ∈ V ∗} = ∅. Then, uAv ⇒ uxv. In the standard
manner, we extend⇒ to⇒m, m ≥ 0. Based on⇒m, we define⇒+ and⇒∗ as usual.
The language of G, L(G), is defined as L(G) = {w ∈ T ∗ | (q, S) ⇒∗ (p, w), q, p ∈
W}.

Families of languages generated by state grammar are denoted by L(ST ) and
L(ε−freeST ) denote the language families generated by state grammars and ε−free
state grammars, respectively. L(RE) and L(CS) denote the families of recursively
enumerable and context-sensitive languages, respectively.

3 Definitions
An unlimitedly deep pushdown automaton, UDPDA for short, is 7-tuple,M=(Q,T,N,
R, s, S, F ), where Q is a finite set of states, T is a finite alphabet of input symbols, N
is a finite alphabet of non-input symbols, N contains a bottom symbol denoted by #,
R ⊆ (Q× (N −#)×Q× ((N ∪ T )−#)∗)∪ (Q×#×Q× ((N ∪ T )−#)∗{#})
is a finite relation, s ∈ Q is the start state, S ∈ N is the start pushdown symbol, and
F ⊆ Q is a finite set of final states. Instead of (q, A, p, v) ∈ R, we write qA→ pv ∈ R
and call qA → pv a rule; R is the set of rules in M . If qA → pv ∈ R implies v 6= ε,
M is ε−free.

A configuration of M is a triple in Q × T ∗ × ((N ∪ T ) − #)∗{#}. X denotes
the set of all configurations of M . Let x, y ∈ X be two configuration. M pops its
pushdown from x to y, symbolically written as xp ⇒ y, if x = (q, az, au), y =
(q, z, u), where a ∈ T , z ∈ T ∗, u ∈ (N ∪ T )∗. M expands its pushdown from x to y,
symbolically written as xe ⇒ y, if x = (q, w, uAv), y = (p, w, uvz), qA → pv ∈ R,
alph(u) ∩ {B | qB → p′z′, p′ ∈ Q, z′ ∈ (N ∪ T )∗} = ∅, where A ∈ N , u, v, z ∈
(N ∪ T )∗, q, p ∈ Q. To express that M makes xe ⇒ y according to qA → pv, we
write xe ⇒ y[qA→ pv]. M makes a move from x to y, symbolically written as x⇒ y
if M either xe ⇒ y or xp ⇒ y. In the standard manner, extend p ⇒, e ⇒,⇒ to p ⇒m,
e ⇒m, ⇒m, respectively, where m ≥ 0; then, bases on p ⇒m, e ⇒m ⇒m, define
p ⇒+, p ⇒∗, e ⇒+, e ⇒∗,⇒+, and⇒∗.

We define L(M) = {w ∈ T ∗ | (s, w, S) ⇒∗ (f, ε,#)} in M with f ∈ F},
fL(M) = {w ∈ T ∗ | (s, w, S) ⇒∗ (f, ε, u#)} in M , where f ∈ F , u ∈ (N ∪ T )∗
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and εL(nM) = {w ∈ T ∗ | (s, w, S)⇒+ (q, ε,#)}, where q ∈ Q.
L(UDPDA) andL(ε−freeUDPDA) denote the families accepted by UDPDAs and

ε−freeUDPDAs, respectively.

4 Results
We will show that L(RE) = L(UDPDA) and L(CS) = L(ε−freeUDPDA). To do so,
we first prove Lemmas 1 and 2.

Lemma 1. For every state grammar G, there exists an UDPDAM such that L(G) =
L(M).

Proof. Construction. Let
G = (V,W, T, P, S)

be a state grammar. Set N = V − T . Next, we construct an UDPDA

M = (Q,T,N,R, s, S,W ).

Set Q =W ∪ {s}, where s 6∈W . The rules are constructed as follows.

1. for every (p, S)→ (q, x) ∈ P , p, q ∈W , add s#→ pS# to R;

2. for every (p,A)→ (q, x) ∈ P , p, q ∈W , A ∈ N , add pA→ qx to R.

To establish L(G) = L(M), we prove the following following claim.

Claim 1. Let (p, S) ⇒j (q, xz) in G, where p, q ∈ W , x ∈ T ∗, and z ∈ (NV ∗)∗.
Then, (p, xw, S#)⇒∗ (q, w, z#) in M , where p, q ∈ Q and w ∈ T ∗.

Proof. This claim is proved by induction on j ≥ 0.
Basis. Let j = 0, so (p, S) ⇒0 (p, S) in G, where p ∈ W and S ∈ N . Then, from 2
in the construction, we obtain

(p, w, S#)⇒0 (p, w, S#)

in M , so the basis holds.
Induction Hypothesis. Assume there is i ≥ 0 such that Claim 1 holds true for all
0 ≤ j ≤ i.
Induction Step. Let (p, S) ⇒i+1 (q, xuαv) in G, where x ∈ T ∗, u ∈ (NV ∗)∗,
α, v ∈ V ∗ and p, q ∈W . Since i+ 1 ≥ 1, we can express (p, S)⇒i+1 (q, uxv) as

(p, S)⇒i (h, xuAv)⇒ (q, xuαv)

[(h,A)→ (q, α)]

where A ∈ N and h ∈W . By the induction hypothesis, we have

(p, xyw, S#)⇒∗ (h, yw, uAv#)

where y is max-prefix(uαv, T ∗). Since (h,A) → (q, α) ∈ P , according to 2 in the
construction, we also have hA→ qα ∈ R. Thus,

(h, yw, uAv#)⇒ (q, w, z#)

[hA→ qα]

where z is max-suffix(uαv,NV ∗). Therefore, Claim 1 holds true.
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Claim 2. Let (p, xw, S#) ⇒j (q, w, z#) in M , where p, q ∈ Q, x,w ∈ T ∗ and
z ∈ (NV ∗)∗. Then, (p, S)⇒∗ (q, xz) in G, where p, q ∈W .

Proof. This claim is proved by induction on j ≥ 0.
Basis. Let j = 0, so (p, w, S#)⇒0 (p, w, S#) inM , where p ∈ Q and S ∈ N . Then,
from 2 in the construction, we obtain

(p, S)⇒0 (p, S)

in G, so the basis holds.
Induction Hypothesis. Assume there is i ≥ 0 such that Claim 2 holds true for all
0 ≤ j ≤ i.
Induction Step. Let (p, xyw, S#) ⇒i+1 (q, w, z#) in M , where x, y, w ∈ T ∗, z ∈
(NV ∗)∗ and p, q ∈ Q. Since i+1 ≥ 1, we can express (p, xyw, S#)⇒i+1 (q, w, z#)
as

(p, xyw, S#)⇒i (h, yw, uAv#)⇒ (q, w, z#)

[hA→ qα]

where A ∈ N , α ∈ V ∗, z is max-suffix(uαv,NV ∗), y is max-prefix(uαv, T ∗) and
h ∈ Q. By the induction hypothesis, we have

(p, S)⇒∗ (h, xuAv)

Since hA → qα ∈ R, according to 2 in construction, we also have (h,A) → (q, α) ∈
P . Thus,

(h, xuAv)⇒ (q, xuαv)

[(h,A)→ (q, α)]

Therefore, Claim 2 holds true.

We have shown that Claim 1 and Claim 2 hold. Thus, Lemma 1 must hold as well.

Lemma 2. For every UDPDAM , there exists a state grammar G such that L(M) =
L(G).

Proof. Construction. Let

M = (Q,T,N,R, s, S, F )

be an UDPDA. Set V = T ∪N . Next, we construct a state grammar

G = (V,W, T, P, S).

Set W = Q ∪ {s′}, where s′ 6∈ Q. The rules are constructed as follows.

1. for every sA→ qx ∈ R, q ∈ Q, add (s′, S)→ (s,A) to P;

2. for every pA→ qx ∈ R, p, q ∈ Q, A ∈ N , add (p,A)→ (q, x) to P .

To establish L(M) = L(G), we prove the following following claim.

Claim 3. Let (p, xw, S#) ⇒j (q, w, z#) in M , where p, q ∈ Q, x,w ∈ T ∗ and
z ∈ (NV ∗)∗. Then, (p, S)⇒∗ (q, xz) in G, where p, q ∈W .
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Proof. This claim is proved by induction on j ≥ 0.
Basis. Let j = 0, so (p, w, S#)⇒0 (p, w, S#) inM , where p ∈ Q and S ∈ N . Then,
from 2 in the construction, we obtain

(p, S)⇒0 (p, S)

in G, so the basis holds.
Induction Hypothesis. Assume there is i ≥ 0 such that Claim 2 holds true for all
0 ≤ j ≤ i.
Induction Step. Let (p, xyw, S#) ⇒i+1 (q, w, z#) in M , where x, y, w ∈ T ∗, z ∈
(NV ∗)∗ and p, q ∈ Q. Since i+1 ≥ 1, we can express (p, xyw, S#)⇒i+1 (q, w, z#)
as

(p, xyw, S#)⇒i (h, yw, uAv#)⇒ (q, w, z#)

[hA→ qα]

where A ∈ N , α ∈ V ∗, z is max-suffix(uαv,NV ∗), y is max-prefix(uαv, T ∗) and
h ∈ Q. By the induction hypothesis, we have

(p, S)⇒∗ (h, xuAv)

Since hA → qα ∈ R, according to 2 in construction, we also have (h,A) → (q, α) ∈
P . Thus,

(h, xuAv)⇒ (q, xuαv)

[(h,A)→ (q, α)]

Therefore, Claim 3 holds true.

Claim 4. Let (p, S) ⇒j (q, xz) in G, where p, q ∈ W , x ∈ T ∗, and z ∈ (NV ∗)∗.
Then, (p, xw, S#)⇒∗ (q, w, z#) in M , where p, q ∈ Q and w ∈ T ∗.

Proof. This claim is proved by induction on j ≥ 0.
Basis. Let j = 0, so (p, S) ⇒0 (p, S) in G, where p ∈ W and S ∈ N . Then, from 2
in the construction, we obtain

(p, w, S#)⇒0 (p, w, S#)

in M , so the basis holds.
Induction Hypothesis. Assume there is i ≥ 0 such that Claim 1 holds true for all
0 ≤ j ≤ i.
Induction Step. Let (p, S) ⇒i+1 (q, xuαv) in G, where x ∈ T ∗, u ∈ (NV ∗)∗,
α, v ∈ V ∗ and p, q ∈W . Since i+ 1 ≥ 1, we can express (p, S)⇒i+1 (q, uxv) as

(p, S)⇒i (h, xuAv)⇒ (q, xuαv)

[(h,A)→ (q, α)]

where A ∈ N and h ∈W . By the induction hypothesis, we have

(p, xyw, S#)⇒∗ (h, yw, uAv#)

where y is max-prefix(uαv, T ∗). Since (h,A) → (q, α) ∈ P , according to 2 in
construction, we also have hA→ qα ∈ R. Thus,

(h, yw, uAv#)⇒ (q, w, z#)

[hA→ qα]

where z is max-suffix(uαv,NV ∗). Therefore, Claim 4 holds true.
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We have shown that Claim 3 and Claim 4 holds. Thus, Lemma 2 must hold as well.

Theorem 1. L(ST ) = L(UDPDA) = L(RE)

Proof. This theorem follows from Lemma 1 and Lemma 2.

Corollary 1. LetL ∈ L(RE). Then there exists an UDPDAM = (Q,T,N,R, s, S, F )
such that L = L(M) and Q has no more than four states.

Proof. This corollary follows from Theorem 1 in this paper and Theorem 2 in [4].

Theorem 2. L(ε−freeST ) = L(ε−freeUDPDA) = L(CS)

Proof. This theorem follows from Theorem 1 in this paper and Theorem 2 in [3].

Can Theorem 2 be established in terms of ε−freeUDPDAs with a limited number
of states?
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