
FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 1

Final Report - Machine Learning Outlier Detection
in Safetica’s Data Loss Prevention System

Jan Pluskal, ipluskal@fit.vutbr.cz

Abstract—Data loss prevention systems are becoming neces-
sities in corporate computer system deployments. Nowadays,
when everything is connected, and BYOD (Bring your device)
methodology is tolerated, even encouraged in many companies,
network security administrators are obliged to keep with newest
technologies to prevent threats to business resources. Threats
might be parts of carefully planned corporate espionage, or
simple malware encrypting all resources available to it. No matter
which threat, data have to be kept safe, and each interaction with
critical business resources need to be monitored, authorized and
logged for future analysis.

In this report, we discuss state of the art methods used for
outlier detection, unsupervised learning and statistical analysis.
In the later part, we provide an overview of implemented proof-
of-concept application, console tool, and SQL analyzing scripts.

Keywords—Machine learning, Outlier detection, Data loss pre-
vention

I. INTRODUCTION

This paper aims to summarize State of the Art techniques
usable in a classification of user behavior patterns with a
goal of anomaly detection. This research is conducted on
behest of Safetica Services s.r.o. to complete the first phase
of research contract "Using network analysis techniques to
prevent dataloss." To achieve this, analysis SafeticaâĂŹs DLP
platform is required to identify the key point(s) to be targeted
by this research. .

This paper is structured in the following manner. The
section II describes Safetica’s Data Loss Prevention solution
that monitors end-user stations and collects logs of conducted
user activities. The section examines this platform and tries to
discover key features and data connection point that might be
used as data source for further analysis. The attention is paid
to future feature candidates that will be further examined and
evaluated.

The section III briefly introduces available machine learning
techniques, divides them by their affection to a learning phase
whether they require labeled data, i.e., supervised learning
methods, or not, i.e., unsupervised learning methods. In further
subsection, methods devised to increase accuracy are examined
with consideration to be implemented in the proof-of-concept
solution. Lastly, a comparison of performance measurement
methods is analyzed to select one unified metric to be used in
further performance comparisons.

The section IV examines types of outliers, how they are
usually classified by literature review regarding their relation.
Outliers might be non-contextual, contextual, sub-contextual,

i.e., Types I, II, and III. Additionally, an exhaustive enumer-
ation of outlier detection methods summarizing their affinity
to detect outliers in the respective category, learning phase
approach, and their strong sides and weaknesses.

II. SAFETICA’S DLP PLATFORM

Safetica’s Data-loss-prevention platform is a multiple client-
server architectural based solution. There is a Safetica End-
point Client application installed on End-user devices that
monitors activity on each device. Safetica Endpoint Client
application collects predefined information, notifies admin-
istrator, or restricts particular operation or action, based on
rules defined on a server application. The server application
functions as a controller and collector for Safetica Endpoint
Clients. All information is stored in SQL based database.

This distributed architecture is very scalable, but still, every
operation that could be computed on end-nodes that do not
require contextual data related to multiple end-node devices
would be much more economical to compute directly on an
end-user device. This assumption should be kept in mind
during the machine learning algorithm selection.

For the purpose of this research, only file based
operations will be inspected and further considered in a
context of anomaly detection. For the preliminary study,
presentation_data database was used for inner structure
analysis. A file_operation_log table was used as a primary
data source. Additional context was provided from other
tables like file_operation_log_dgid, file_operation_log_mail,
mail_monitor_log, file_operation_log_print, print_log,
file_operation_log_path_usb, file_operation_log_web.

Features selected to be examined and tested for correlations
are enumerated in Table I.

III. MACHINE LEARNING

In this section, we will focus on basic machine learning
methods and categorization. We provide a brief overview of
machine learning methods used for classification and cluster-
ing.

A. Classification of Machine Learning Methods

Machine learning methods that appear in the most latterly
presented algorithms could be classified by their attitude to
the data processing approach, and by their need of pre-
classified data, to be learned from them or not. We divide
those methods into three classes: supervised, unsupervised and
semi-supervised learning [1].

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 2

Id Feature Db Type
files_view

1 FileTimeStart [files_view].[date_time_start_dtm] S
2 FileTimeStop [files_view].[date_time_end_dtm] S
3 FileDuration
4 FileApplication [files_view].[id_application] C
5 FileAction [files_view].[action] C
6 FileOperation Type [files_view].[operation_type] C
7 FileSourceType [files_view].[source_type] C
8 FileDestinationType [files_view].[destination_type] C
9 FileFileSize [files_view].[file_size] S
10 FileExtension [extension] C

11 FileDataCategory [file_operation_log_dgid].[id_data_category] C

file_operation_log_path_usb
12 UsbDeviceSerial [device_usb].[serial] C

file_operation_log_mail
13 EmailSender [mail_monitor_log].[id_email_sender] C
14 EmailReceiver XXX C
15 EmailSize [mail_size] S

file_operation_log_print
16 PrintPageCount [print_log].[page_count] S
17 PrintCopies [print_log].[copies] S
18 PrintDuplex [print_log].[duplex] C

file_operation_log_web
19 WebUploadDomain [web].[domain] C

TABLE I. CANDIDATE FEATURES SELECTION BASED ON
presentation_data DATABASE. Feature name REPRESENTS A DESCRIPTIVE

NAME OF A FEATURE FOLLOWING A SCHEMA –
(FILE|USB|EMAIL|PRINT|WEB)<FEATUREDESCRIPTION>. Db LOCALIZE

FEATURE IN A STRUCTURE OF presentation_data DATABASE. Type
SYMBOLIZE FOR C A CATEGORICAL VALUE, FOR S A SEQUENTIAL ONE.

B. Supervised learning

The supervised learning is machine learning task which
infers a function from a labeled training data set [2]. In most
cases, the training data consists of input pairs of an N-tuple and
a label. The N-tuple is a vector of N variables describing the
training data sample. The label is a target class label inferred
by the supervisor. The learning algorithm tries to analyze input
training set and produce an inferred function that will be used
for classification of unknown data. Intended behavior would
be using a relatively small training data set for learning the
algorithm that will classify any number of unknown data sets
different from the training set.

1) Bayesian Belief Networks: The simple algorithm
of Bayesian belief networks is based on a Bayes’ theorem and
naive Bayesian classification that is also very fast and accurate
as recent studies have shown [3]. Bayesian belief networks are
probabilistic graphical models, which unlike Naive Bayesian
Classifiers allow the representation of dependencies among
subsets of attributes, that is, given a label of a tuple, the values
of attributes are assumed to be conditionally dependent on one
another. In the case, where is a priori known, that attributes are
independent, the Naive Bayesian classifier is the most accurate
in comparison with all other classifiers [1].

A Belief Network is defined by two components—a directed
acyclic graph and a set of conditional probability tables. Nodes
are representing random variables—discrete or continuous.

The probability table specifies the conditional distribution for
each random variable, for example P (X|Parents(X)) [1].

Let X = (x1, ..., xn) to be a set conversations rep-
resented by attribute tuple Y1, ..., Y2. Probability for each
node in the network is computed as P (x1, ..., xn) =
n∏
i=1

P (xi|Parents(Yi)) where P (x1, ..., xn) is the probability

of a particular combination of values of X , and the values for
P (xi|Parents(Yi)) correspond to entries in the conditional
probability table [1]. Class is identified as a node or set of
nodes with the highest probability.

2) Neural Networks: Neural networks are used for a classi-
fication by backpropagation. The backpropagation is a neural
network learning algorithm. The neural network used for
classification in its simple form is built on three layers: input,
hidden and an output layer. The input layer consists of nodes
representing selected attributes. Output layer is formed by
nodes representing classes. The hidden layer interconnects
each node of the input layer with each node in the output
layer. Each connection is parametrized by its weight.

Any node of hidden or output layer is calculating a weighted
sum of its inputs as O =

∑
i=1

wif(Ii)+θ where f(a) = 1
1+ε−a .

The f(a) is called a squashing function, because it maps a
larger input domain onto the smaller range of 0 to 1 [1]. The
neural network is learning by updating weights and bias (θ) by
back propagation of error that reflects the network’s prediction.

By normalization of output layer values of the trained neural
network, we can obtain a probability vector that identifies
occurrence as belonging to the particular class with a respective
probability.

3) Support Vector Machine: The support vector machine
algorithm could be used for classification of linear as well
as non-linear data. When classifying a nonlinear data, the
algorithm uses a nonlinear mapping function to transform the
original data into a higher dimension that is separable by a
linear hyperplane.

SVMs, even the fastest ones, could be extremely slow
to learn, but after learning phase, they are highly accurate
due to their ability to model complex nonlinear decision
boundaries. They are also much less prone to overfitting than
other methods [1].

4) Decision tree algorithms: The decision three is a flow-
chart like a tree structure, where each internal node detonates
a test on an attribute, each branch represents an outcome
of the test, and each leaf node holds a class label [1]. The
decision tree based algorithms might be slower then Bayes’
theorem in the learning phase, but they are very fast classifiers.
Very familiar representatives are C4.51 and Random Forests
methods.

The C4.5 has adopted a greedy search approach of construc-
tion in a top-down manner with a splitting criterion using the
concept of information entropy [4]. The algorithm works as
follows: checks for base cases; for each attribute a finds the
normalized information gain ration from splitting on a; creates
a decision node that splits on the attribute with the highest

1Has been improved with the version of C5.0 in speed, memory usage and
has been commercially deployed.

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 3

normalized information gain; recurs on the sub-lists obtained
by split, and adds those nodes as children of splitting node.

C. Unsupervised learning
Unsupervised learning, i.e., clustering, tends to gain more

attention recently [5] because of its independence on the
learning phase. All supervised algorithms need learning to
build its model to classify, but user behavior is different for
each job position, personal preferences and team. Therefore,
the learned model of one user in one company might not be
usable in another one.

Unsupervised learning methods are very useful in state of
the art anomaly detection methods for their ability to detect a
new previously unseen occurrence for future analysis. There
are several categories of unsupervised learning according to
their approach to cluster data.

Partitioning methods—this group of methods pre-create a
k categories, therefore, before a method begins to cluster,
there must be some classes a priori known. Methods vary in
optimization heuristics representing a cluster (e.g., K-means,
K-menoids).

Hierarchical methods—create a hierarchical decomposition
of input data set. Two approaches can be used—agglomerative
(i.e., bottom-up) and divisive(i.e., top-down) approach. In
comparison to other methods, when the hierarchical method
split or merge values, this step can never be undone therefore
erroneous decision cannot be corrected.

Other methods like density, model and grid based have not
yet been tested. . .

1) K-means: The K-means method is together with K-
menoids the most commonly partitioning method used. The
method selects k objects randomly as centroids representing
the cluster centers of gravity. All other objects are assigned
to the nearest cluster by the distance computed by the chosen
metric function. Each cluster recalculates its mean followed
by recalculation distances of all objects and their reassignment
to the nearest cluster. This process iteratively continues until
convergence is reached.

2) K-menoids: The K-menoids method has the same itera-
tion algorithm as the K-means with a different representation
of the center of gravity. The K-menoids remedies the biggest
disadvantages of the K-means method which is outliers2. The
outlier with an enormously bigger value than other cluster
objects might distort the mean, therefore K-menoids uses one
of those objects to represent the center of the cluster.

D. Increasing the accuracy
This section has discussed a general overview of machine

learning algorithms, each one of them has its pros and cons.
One method might be very accurate with classifying a partic-
ular subclass, but very inaccurate with the rest. The second
method is opposite to the first, accurately classifying the rest,
which was inaccurately classified by the first, but inaccurately
classifies the particular subclass. Assuming this observation,

2The outliers are objects that represent the noise. It might be an unknown,
suspicious or otherwise unclassifiable user behaviour.

we may ask if there is any general approach how to increase
the accuracy? The answer is that there are several; the most
commonly used are bagging and boosting [1].

1) Bagging: Bagging is an abbreviation of a bootstrap
aggregation. The main idea behind bagging is a usage of
k models of the same algorithm instead of one model. The
labeled training data set is sampled by using bootstrap method
into K subsets. Each subset is assigned to a single M1, ...Mk

model to be trained in it. When classifying, each model
classifies unlabelled data, and the label with the majority of
votes is selected. On the outside, Mk models are conjunct into
one M∗ model.

The bootstrap method samples training data set and chooses
training tuple with some probability, for example, 0.632 form-
ing 0.632 bootstrap method. The training set is tested d times,
with replacement, resulting in a bootstrap sample or training
set of d samples. Considering this, it is very likely that some
training tuples will be used more times than once and others,
which are not used for the training, are moved to the testing
set [1].

2) Boosting: Boosting is based on very similar idea as beg-
ging but it includes a weight assignment mechanism to improve
a learning accuracy. There are several boosting algorithms but
for the sake of simplicity and because it is used in the state-
of-the-art research, the Adaboosting algorithm will be used as
an example.

We are given a D, a set of d labeled tuples. Each tuple is
assigned a weight of 1/d. The method generates k classifiers
and iterates through k rounds. In each round, a training set
Di is created by sampling the D. Each tuple is sampled with
a probability according to its weight. The classification model
Mi is trained on Di. The rest D\Di forms a testing set, which
is processed by classifier Mi. The classification is compared
with the assigned label and weights of tuples are corrected.
If the tuple were classified successfully, the weight would be
decreased; otherwise, it would be increased [1].

This mechanism allows models learned in later iterations
to focus more attention to previously erroneously classified
tuples.

E. Semi-supervised learning
Semi-supervised learning algorithm class should be the

most advanced because it takes benefits from supervised and
unsupervised learning. Using a small amount of labeled data
in conjunction with the vast amount of unlabelled can produce
considerable improvement in learning accuracy.

Semi-supervised learning is very efficient when the labeling
is very expensive and requires a human expert or a physical
experiment. In contrast, an acquisition of unlabelled data is
typically inexpensive.

Theoretically, these methods are based on transductive or
inductive learning/reasoning. Transductive learning is trying
to infer the correct label for given unlabelled data by training
on specific cases alone —the specialization. The opposite is
inductive learning that is understanding a global model from
labeled training classes and classifying unlabelled, based on
the global model knowledge —the generalization.

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 4

Practically, there are two commonly used methods —Self
training and Cotraining.

1) Self-training: Self-training uses a labeled data to train the
classifier. Afterward, classifier tries to label the testing data and
adds tuples with the most confident label to the training set
and the process repeats. The simpleness of these methods is
balanced by possible reinforcement which may occur [1].

2) Cotraining: Cotraining is more error resistant because
there are more classifiers to train. Training data are split
to x mutually exclusive and class-conditionally independent
sets. Each of these sets is assigned to its respective C1, ..Cx
classifier to be trained on. Then, classifiers are used to predict
the class labels for testing data. Each classifier teaches other
classifiers tuples with the most confident prediction; those
tuples are then added to each classifier training set [1].

3) Active learning: Active learning is used when data are
abundant, yet the class labels are only a few or expensive
to obtain. The method is active in that it can query a user
to provide labels. Therefore, the number of tuples needed for
learning is much smaller than typically required.

Let D be all available data, then D = L ∩ U , where
L represents labelled and U unlabelled set, and D \ U ⊆
L
∧
|L| � |U |. The method uses one of the supervised

learning algorithms to create a model trained on labeled tuples.
Afterward, the method analyses unlabelled tuples and chooses
one of more for human oracle to assign a label. Labeled tuples
are used for increase accuracy of the model and the process
repeats.

The method is reliant on algorithm selecting tuples for
querying. Several methods have been presented, but the most
commonly used is uncertainty sampling, which chooses tuples,
with the least confident prediction of labels [1].

4) Transfer learning: Traditional learning algorithms as-
sume that the training data and test data are drawn from the
same distribution and the same feature space. Thus, if the
distribution changes, such methods need to rebuild the models
from scratch [1].

Transfer learning may even deal with continuous slight
changes to the user behavior itself as long as the classifier
observes data in chronological order. This would be very
beneficent in an elimination of false positive warnings, but
it might also introduce false negatives as well.

There are several approaches how to apply transfer learning;
the most common is instance-based transfer. This method
reweighs some of the data from the source identifier and uses
it to learn the target identifier.

The TrAdaBoost, i.e., Transfer AdaBoost is an example
of instance-based transfer learning approach. The algorithm
requires a labeling only of a small part of the new data. It
uses a considerable portion of the old data and filters out the
influence of any that are very different from the new data by
automatically adjusting weights assigned to the training tuples.

F. Measurement of performance
There are several statistical metrics used to measure per-

formance learning methods. If we abstract and consider only
binary classifiers, then we can define terms:

• P (positive) identified occurrence belonging to classifi-
cation class,

• N (negative) identified occurrence not belonging to clas-
sification class,

• TP (true positives) correctly identified occurrence be-
longing to classification class,

• TN (true negatives) correctly identified occurrence not
belonging to classification class,

• FP (false positive) incorrectly identified occurrence as
not belonging to classification class,

• FN (false negatives) incorrectly identified occurrence as
not belonging to classification class,

Based on these terms, the confusion matrix (see Table II) could
be created for analyzing how well the classifier performs.

Classes Positive Negative Total

Positive TP FN P

Negative FP TN N

Total P ′ N ′ P +N

TABLE II. THE CONFUSION MATRIX FOR BINARY CLASSIFIER.

By using information from confusion matrix, other statistical
indicators could be computed. The essential and the most
important is the accuracy (see Equation 1). The accuracy of
a classifier M on given test set is the percentage of test set
tuples that are correctly classified.

accuracy(M) =
TP + TN

P +N
(1)

The error rate or misclassification rate is a supplement of
the accuracy (see Equation 2). It describes a percent coverage
of tuples that were incorrectly classified e.g., false positives
and false negatives in regard to all data.

errorrate(M) =
FP + FN

P +N
= 1− accurasy(M) (2)

The accuracy and the error rate seems to describe the
performance of a classifier reliably but only in the case that
|P | ∼= |N |, in other words, when none of the sets cardinalities
dominates. To better describe performance on more realistic
scenarios when one of bases dominates, we define a sensitivity,
see Equation 3, and a specificity, see Equation 4. The sensi-
tivity, i.e., the true positive recognition rate, is a proportion
of positive tuples that are correctly identified. The specificity,
i.e., the true negative rate, is the proportion of negative tuples
that are correctly identified.

sensitivity(M) =
TP

P
(3)

specificity(M) =
TN

N
(4)

Combining all equations mention above it could be shown
that accuracy is a function of sensitivity and specificity (see

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 5

Equation 5).

accuracy(M) = sensitivity(M)
P

P +N
+

specificity(M)
N

P +N

(5)

Another useful indicators that are commonly used are the
precision, see Equation 6, and the recall, see Equation 7. The
precision, i.e., exactness, is measuring a percentage of tuples
labeled as positive that are positive. Quite similar to this is
the recall, i.e., completeness, which is measuring a percentage
of positive tuples that are labeled as such. Both have meaning
only when they are presented together because there tends to
be an inverse relationship between them where it is possible
to increase one at the cost of reducing the other. Typically,
the recall is set to a constant value, let’s say 0.75, and the
precision is used as a metrics.

precision(M) =
TP

TP + FP
(6)

recall(M) =
TP

TP + FN
=
TP

P
(7)

This combination of the precision and the recall might be
difficult to work with; therefore, they can be combined into
F measure, i.e., F1 or F-score, see Equation 8, which is a
harmonic mean of the precision and the recall and is commonly
used to compare the performance of various classification
methods.

F (M) =
2× precision× recall
precision+ recall

(8)

If there were a preference to put more meaning to one of the
precision or the recall, generalized Fβ measure, see Equation 9,
could be used. Commonly used Fβ measures are F2, which
weights the recall twice as much as the precision, and F0.5,
which weights the precision twice as much as the recall [1].

Fβ =
(1 + β2)× precision× recall
β2 × precision+ recall

(9)

IV. OUTLIER DETECTION

An outlier detection is a task of finding anomalous patterns
that manifest abnormal behavior. The definition what is an
abnormal behavior is defined by a context of given task. An
outlier is a data sample that expresses abnormal patterns. An
outlier detection technique is an outlier detection problem
solver. A normal pattern is a pattern not representing anoma-
lous behavior. The output of an outlier detection method is
typically labeled model, classifying a pattern as a normal data
or outlier. Besides, some outlier detection techniques can also
provide an outlier score describing a probability with which a
sample is classified as an outlier [6].

In routine machine learning task, especially in data mining,
outliers are considered to be noise, errors or damaged data

patterns. In other disciplines, outliers are very useful for
detection of abnormal behavior of studied subject(s). Various
researchers used anomaly detection to identify credit card
frauds, network intrusions or malware activities and doing so,
developed different detection mechanisms that are applicable
in their particular application domain or are generically usable
in multiple areas.

Outliers as patterns that do not express normal behavior are
therefore considered as anomalies. On Figure 1 are present two
clusters, i.e., G1 and G2, and two outliers, i.e., O1 and O2.
Outliers might be in the form of single occurrence, e.g., O1,
or a set of multiple occurrences with a low carnality, e.g., O2.

A. Outlier Types

In pursuit of outliers detection, firstly, we need to review
outlier types to be able to choose best-suited algorithms
and approach. Outliers detection methods behave differently
and are not generic. Outliers are classified based on their
composition and relation to rest of the data [6].

1) Type I: This kind of outliers is the most thoroughly
studied, and the detection is the most straightforward one.
The majority of available researches have been done on Type
I schemes detection. This type is typically defined as an
individual outlying occurrence without any additional context.
On Figure 1, outliers O1 and O2 are instance of a Type I.
These outliers are identifiable by data internal relation analysis,
i.e., analysis of the relationship of an individual instance
concerning the rest of the data.

Fig. 1. Example of two-dimensional outliers. Point labeled O1 and points
labeled O2 deviate significantly from groups of points labeled G1 and G2 [7].

2) Type II: This type is very similar to the Type I, i.e.,
instances are also individual occurrences, but with an exception
that Type II outliers are contextual. Type II outlier is considered
to be outlier only in a particular context. The context is defined
by a data structure as a part of problem formulation. For the
outlier to belong to Type II class, it needs to satisfy two

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 6

properties: data has to have a spatial/sequential nature, and
the behavior is determined by values of behavioral attributes
within a context. The spatial or sequential attributes define a
position of occurrence in a while data set; therefore, they are
creating a context. The behavior attributes do not relate to the
position in a data set; therefore, they are not contextual.

Type II outliers are commonly connected with timeline se-
ries or spatial data, but only, when time or space is considered
to be a spatial or sequential attribute, i.e., introducing a context
to data, not a behavior. On Figure 2 is a timeline series and
points t1 and t2. Both points are in a range of values, but
concerning data series, the point t1 fits, but t2 is obviously
the outlier.

Fig. 2. An example of a contextual outlier. Points labeled t1 and t2 represent
the same temperature value. Though, point t2 is considered an outlier, while
point t1 is not [7].

3) Type III: In comparison with outliers of Type I and II,
Type III outliers are not only single occurrences but anomalous
subsequences or subgraphs that express abnormal behavior in
sequential context. The individual instances of Type III outliers
are not outliers by themselves, but they are considered to be
outliers only in a subsequence context. The same property
condition restricting the presence of spatial/sequential data
nature and the behavior attribute in data has to apply for an
outlier to belong to Type III and more strongly related to data
sequence and not an only individual instance.

On Figure 3 is EKG (electrocardiograph) that shows a
periodical heart rhythm. On x axis at a point of 6000, you
can observe that there was an anomaly when the heart did
not make a pulse. This outlier is not detectable as Type I,
because the point 6000 is in a value range, and also not as
Type II because the pulse consists of multiple points and not
only single occurrence.

B. Detection Approaches

The result of outlier detection can be dual. Detection method
might only label occurrences as outliers without any additional
information, i.e., to behave like binary classifiers, those are
called Labeling Techniques or to provide the Outlier score to
emphasize how strongly is an occurrence considered to be an
outlier. Outlier score based methods are more powerful com-
pared to Labeling Techniques because the decision threshold
with which is outlier proclaimed as outlier may be variably
defined.

Fig. 3. An example of the collective outlier in the human electrocardio-
gram [7].

Outliers detection have been broadly studied in past decades.
A large number of detection methods have been constructed,
a majority of them were based on particular discipline and
are derived from concepts previously known, applied and best
suited for the related problem. Disciplines like Statistics, In-
formation Theory, Classification, and Clustering are a popular
knowledge base for methods to be constructed from.

The most exhaustively studied were outliers of Type I.
Therefore, a majority of methods can detect them, and some
of them are modifiable to also detect outliers of Types II and
III. Some techniques have been constructed solely for complex
Types II and III.

For Type I outliers, we group existing algorithms according
to a discipline and principles that they are based on following
categories. For the sake of brevity, only pros [+], cons [-] and
a brief description of methods [M], types [T] and algorithms
[A] is provided.
• Classification Based [6, pp. 20-23]

- The majority requires expert knowledge, i.e., la-
bels, because of their supervised nature.

◦ Neural Network Based [6, pp. 23-27]
A Multi Layered Preceptrons, Self Organing

Maps, Habituation Based, Neural Trees, Auto-
associative Networks, Adaptive Resonance The-
ory Based, Radial Basic Function Based, Hop-
field Networks, Oscillatory Networks

M Backpropagation
T Supervised, (Unsupervised)
+ Robust method,
+ easily parallelized,
+ fast classification,
+ small model size,
+ multilabel classification,
+ well known,
+ attributes are weighted.
+ Self Organizing Maps are unsupervised.
- Slow in learning phase,
- tends to overfit.

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 7

◦ Bayesian Network Based [6, pp. 27]
A Naive Bayesian Network, Pseudo-Bayes Esti-

mators
M Bayes Theorem
T Supervised
+ Easily paralellized,
+ well known,
+ yields outlier score.
- Not as accurate,
- binary classification.

Training creates a tree-like structure where all
child nodes are variables which feed the value to
one root node for aggregation and classification
of the event as normal or outlier.

◦ Support Vector Machine Based [6, pp. 28]
A Support Vector Machine, Robust Support Vector

Machine
M Kernel functions for hyperplane exportation.
T Supervised, unsupervised based on high and

low-density regions), semi-supervised for single
class classification

+ Fast classification,
+ reasonably accurate,
- binary classification.
- It is hard to find fitting hyperplane exportation

function; kernel functions usually used to ap-
proximate dot product between mapped vectors.

- Overfits when outliers exist in training set.
Separates data belonging to different classes by
fitting a hyperplane between them with maxi-
mized separation.

◦ Rule Based Models [6, pp. 28-29]
A IREP, RIPPER, robust C4.5, ADAM, LERAD
M Frequent Pattern Outlier Factor, Frequent

Episodes
T Supervised, semi-supervised for single-class

classification.
+ Fast classification,
+ reasonably accurate,
+ multilabel classification.
+ Does not overfit when outliers exist in training

set.
Captures normal behavior of data, any instance
not covered by a model is considered as an
outlier.

• Clustering Based [6, pp. 30-31]
A Self-Organizing Maps, K-means Clustering, Ex-

pectation Maximization
M Semantic outlier factor,
T Unsupervised, semi-supervised
+ Detects relation between data.
+ Does not require expert knowledge.
+ Utilized when incremental model creation is

needed.
- The majority is not primarily developed for outlier

detection which is a byproduct of clusterization.
- Usually very computationally expensive.

◦ Based on the assumption that clusters contain
normal data and anything not belonging to the
cluster, or belongs to a small cluster is considered
an outlier.

◦ Clustering partitions data into groups which con-
tain similar objects.

• Nearest Neighbour Based [6, pp. 32-36]
A Probabilistic Suffix Trees, Outlier Detection us-

ing In-degree Number, Multi-granularity Deviation
Factor Recursive Binning, and Re-Projection

M Relative Density Factor, Distribution of pair-wise
distance, Local Outlier Factor, Connectivity-based
Outlier Factor, Set Based Nearest path

T Unsupervised
+ Analyzes each data object with respects to its

neighbors.
+ Does not require expert knowledge.
- Requires well-defined metric to measure proximity,

defined as a distance or similarity.
- Sensitive when data density varies except Local

Outlier Factor aware methods.
- Competitively expensive O(n2).
◦ Based on a knowledge of distance, or proximity

between data. Compared to clustering which is
analyzing data from the outer point of view, NNB
analyzes with respect to local neighbors.

• Statistical [6, pp. 36-45]
+ Usually competitively very efficient.
+ Also incorporates methods that do not require

expert knowledge.
+ Usually yields outlier score.
◦ Assumes that outlier is not generated by a stochas-

tic model. Thus statistical analysis can determine a
probability that data were generated by a statistical
model.

◦ Parametric
+ Single variate or multivariate support.
- Assumes that data are generated with a known

distribution which not always captures real
world scenarios.

A Gaussian Models
M Grubbs, Rosner, Dixon, t-test tests, Maha-

lanobis distance, Maximum Lekhood Esti-
mates,

T Supervised
∗ Assumes normal distribution, computes

variance, mean.
∗ Visualizable using box-plot.
∗ Variety of statistical tests Grubbs, Rosner,

Dixon, t-test tests
∗ Uses metric, like Euclidean, Mahalanobis,

to calculate data similarity, closeness.
A Regression Models

M Maximal likelihood estimation, projection
pursuit, Kurtosis coefficient, Studentized
residuals, Akaike Information Content, Ro-
bust regression, ARIMA

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 8

T Supervised
∗ Extensively investigated for time-series

data.
∗ Tries to fit regression model on data.
∗ Quarrel about completeness among statisti-

cians.
∗ Complexity increase with multivariate data.
∗ Recognizes Observational and Innovations

outliers, i.e., outliers that affects subsequent
observations.

A Mixture of Parametric Models
M Expectation Maximization, extreme value

statistics, Hierarchical shrinkage
T Both supervised and semi-supervised
∗ Methods try to model normal instances and

outliers as separate parametric distributions
in supervised mode. During verification, the
method determines to which distribution
sample belongs to.

∗ In semi-supervised, methods try to models
normal instances as a mixture of models.
A test instance that does not belong to any
distribution is determined to be an outlier.

A Markov and Hidden Markov Models
M Maximum entropy models, Conditional

Random Fields, mixture of HMM
T Supervised
∗ Methods used to model sequential data.
∗ Methods are also able to detect Type II

outliers.
◦ Non-parametric

+ Does not assume knowledge of data distribu-
tion.

+ Very competitively efficient.
Histograms
A Packet Header Anomaly, Application Layer

Anomaly Detection
M Q, S, IS statistic
T semi-supervised, unsupervised
∗ Also called Frequency, counting based.
∗ Typically defines a distance between test

data and learned histogram profile and clas-
sify outlier based on the defined threshold.

A Final State Machines
T Semi-supervised
∗ FSA represents normal data behavior that

has temporal or sequential nature.
∗ Everything that is not identified as normal

is proclaimed to be an outlier.
∗ Mostly focused on Type II and III outlier

detection.
Kernel Functions
A Parazen Windows Estimation
T Supervised, Semi-supervised
∗ Uses kernel functions to approximate den-

sity distribution, similarly to parametric

methods with the only difference that the
distribution function is used.

• Information Theory Based [6, pp. 45-46]
A Local Search Algorithm
M Komogorov Complexity
◦ Utilizing information theoretic measures such as

entropy, relative entropy, relative conditional en-
tropy, information gain, and information cost

◦ Measures regularity and any point that introduces
irregularity is proclaimed to be an outlier.

• Spectral Decomposition Based [6, pp. 46-47]
A Principal Component Analysis (PCA)
M Dimensionality reduction
T Unsupervised, semi-supervised
◦ Based on the assumption that top few PC capture

bulk of variability and expect that smallest PC re-
sult in constant values. Therefore, data that violates
smallest PC are outliers.

• Visualization Based [6, pp. 47]
A Grand tour
M Concentration ellipse
T Unsupervised
◦ Data inside concentration ellipse are normal occur-

rences, outside are outliers. The number of times
an instance is outlier in all projection reflects its
outlier score.

Type II outliers differ from the previous category by their
contextuality. Every Type II outlier is recognized on univer-
sum that contains contextual attributes that define context,
and behavioral attributes to detect outliers within a context.
The contextual attributes provide a structure to the data of
following types: spatial, sequential, profile.

Spatial attributes define a location of data instances in given
context, i.e., neighborhood. Typically used to detect outliers in
geographical information systems [6, pp. 47].

Sequential attributes define a position of data in a given
sequence. Typically used for time-series, event data with
timestamps defined for each instance, such as operating system
calls The difference between time-series and event sequence is
that consecutive inter-arrival time for event data is uneven [6,
pp. 48].

Profile is used when data do not have explicit spatial or
sequential structure but are segmentable or clusterable into
components using a set of contextual attributes [6, pp. 48].

For outliers belonging to the Type II, we do similarly
recognize these categories:
• Reduction to Type I outliers Detection Problem [6, pp.

48-49]
A Per group analysis
M Class outlier detection, Spatial Local Outlier Mea-

sure,
T Unsupervised, semi-supervised
◦ Methods capable of semantic context understand-

ing and outlier detection within.
• Utilizing the Structure in Data [6, pp. 49-51]

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 9

A Robust regression, auto-regression models, ARMA
models, ARIMA models, Markov Chain Monte
Carlo

M Kolmogorov Complexity, Frequent Items Mining,
FSA, Markov Models

◦ Usable in cases where context is not straightfor-
ward, e.g., time-series, event sequences.

Type III outliers are a subset of instances that occur to-
gether as a substructure and whose occurrence is not normal
with respect to normal behavior [6, pp. 51]. The individual
substance is not an outlier by is self, but only might be in a
given context. It is the most challenging type of outliers to be
detected. It requires that data have a structure and recognizes
two types: sequential and spatial.

Sequential Type III methods analyze sub-sequences in se-
quential data and look for sequences that do not fit, i.e.,
outliers. A typical application is to detect call frauds in
sequential call data or numerical time-series sequences.

Spatial Type III methods look for connected subgraphs or
subregions that are not common and detected as outliers. The
application is typical for multi-spectral imagery data and graph
data.

For outliers belonging to the Type III, we do similarly
recognize these categories:
• Handling sequential outlier [6, pp. 51-61]

◦ Reduction to Type I outliers detection problem
A Adaptive Resonance Theory (NN), Clustering,

Box Modeling, RIPPER
T Supervised, unsupervised

Transformation of sequence into a feature space
and application of any Type I method.
Used when sequences are properly aligned.

◦ Modeling Sequences
A Hidden Markov Models, Finite State Automa-

tons, Probabilistic Suffix Trees, Sparse Markov
Trees

M Extracting Short Sequence from a Long Se-
quence, Detecting Outlier Sequences in a Long
Sequence

T Supervised, semi-supervised
Used when sequences are not properly aligned.

◦ Used when assumption about sequence alignment
becomes too prohibitive.

• Handling spatial outliers [6, pp. 61]
A Multivariate Gaussian Random Markov Fields,
M Enthropy, bottom-up subgraph enumeration.
T Unsupervised
◦ Searches for a subgraph or subcomponent that is

anomalous in data.
◦ Very scarcely researched.

V. IMPLEMENTATION

The project required to implement a proof-of-concept solu-
tion to determine a performance of a selected, implemented
algorithm. As a candidate algorithm for implementation was
selected, Enhanced Statistical Probability Identification (ESPI)

supervised statistical machine learning algorithm adapted from
use on the classification of network traffic application protocols
to Safetica’s log operations. The targeted task was to identify
weather the log entry corresponds with user behavior. In other
words, if it is common for a user to perform such operation
or it common behavior for another user, thus it might be an
anomaly behavior for the user performing that operation.

The ESPI algorithm creates fingerprints of normal behavior
extracted from training data, thus creating a model of behavior
of each user. Testing data is used to validate the performance
of the leaned model by running classification and computing
a confusion matrix. Because features used in selected feature
vector was overall general, it was necessary to loosen a bit
criteria for classification and identify result as positive with
some range of inaccuracy which is defined by a tolerance based
on multiplex of σ in normal distribution. Using this technique,
we are able to determine the most significant operations and
the most anomalous operations for each user or a whole data-
set.

A. Data-access Layer
The first of all, a module implementing a data-access-

layer had to be implemented providing an interface adopting
database entities to models suitable for the machine learning
algorithm. Required data is stored across multiple tables,
and complex database queries were used to extract necessary
features.

B. Confusion Matrix
Based on computational analysis of data samples were

computed correlations between features to determine their suit-
ability and eliminate those that would be too much correlated
to be used as features. All previously designed features passed
this test and are used for classification.

C. Proof-of-concept Application
For the development purposes, a WPF application, shown

in Figure 5, Figure 6, and Figure 7 was implemented in-
corporating views designed to show first-hand overview of
classification process, showing:
• Confusion matrix with information about positively or

negatively classified peers.
• Details of positively and negatively classified logs for

each user for investigation purposes.
• Detail grid containing computed values for each model

of user behavior.
• Box graph showing a relevance of composed models in

contrast with statistical measures.

D. Console Application
Secondly, to fasten up the classification process and accom-

modate restrictions for the algorithm to run on limited com-
puting resources, like commodity computer, a precomputation
steps were implemented as a console application transforming
data between Safetica’s database and second database created

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 10

for statistical analytically purposes of this classification. This
application is configurable to extract only desired range of
user logs, can run created feature vectors, user models, and
classification statistics each in turn and efficiently on limited
hardware resources. Example of console application usage is
present on Figure 8.

Fig. 4. Performance monitoring of console application run. The application
was tasked to extract feature vectors from client database, compute statistical
properties, create models and classified 30% of operation logs.

E. SQL Scripts
Thirdly, the classification was implemented as SQL scripts

to be run directly on a second database to eliminate data
transfers between database and application, and rapidly accel-
erate computation. Example of the most common operations
computed by classification implemented in SQL scrips is
shown on Figure 9.
• 01-CreateTable_ClassificationFeatureVectorResults

WithMedian.sql
◦ Creates table ClassificationFeatureVectorRe-

sultsWithMedian
◦ Uses feature vectors and computed models to clas-

sify all feature vectors.
◦ Computes Difference, MedianCont, StdDev, Min,

Max, Avg
• 02-CreateTable_MostTypicalOperations.sql

◦ Creates table MostTypicalOperations
◦ Based on ClassificationFeatureVectorResultsWith-

Median selects all items that satisfy condition
Result.Difference < Result.MedianCount −
3 ∗Result.StdDev and joins results with Statisti-
calFeatureVectors to provide context.

• 03-CreateTable_LeastTypicalOperations.sql
◦ Creates table LeastTypicalOperations
◦ Based on ClassificationFeatureVectorResultsWith-

Median selects all items that satisfy condition
Result.Difference > Result.MedianCount −
3 ∗Result.StdDev and joins results with Statisti-
calFeatureVectors to provide context.

• 04-CreateView_FileOperationLogDetail.sql
◦ Creates view FileOperationLogsDetails
◦ Joins multiple tables from customer database to

provide very detailed context information for clas-
sification results.

• 05-CreateView_CommonOperations.sql
◦ Creates view CommonOperations
◦ Analysis feature vectors per user and grouping all

common ones.
◦ Query is based on FileApplication_Value, File-

OperationType_Value, FileDestinationType_Value,
FileExtension_Value

• S-01-SelectLeastTypicalOperations.sql
◦ Selects the least typical operations for all users.

• S-02-SelectMostTypicalOperations.sql
◦ Selects the most typical operations for all users.

• S-03-CommonOperations.sql
◦ Selects common operations for all users.

• S-04-CommonOperationDetails.sql
◦ Selects common operations for all users with all

details.

VI. CONCLUSION

This paper briefly introduced machine learning as a concept
used for classification and clustering. Basic statistical features
and recommendation how to evaluate performance in order
to compare results of several ML methods are also briefly
discussed.

The contribution of this paper is the analysis of Safetica’s
DPL platform and identification of candidate features that
are to be used in the following proof-of-concept solution
implementation. Also, based on the requirement that outlier
detection is to be run on end-points, a comparison of outlining
detection methods for each type of outlier was summarized.

Based on an acquired knowledge, it is recommended to
proceed with an implementation of statistical based outlier
detector that will be computationally very efficient to run on
end-point devices. Learned models, used for classification of
user behavior, and its byproduct outlier detection, are generally
very space efficient, thus easy to store and fast to transfer.

Statistical methods provide an excellent scalability and fu-
ture extensibility. Because statistical methods can incorporate
weighted features, and even weighted features per model,
whenever there is a new user behavior observed, a simple
feature detecting it can be created and it gives meaning only
for this particular situation without a consequential noise intro-
duction like in a case of conventional ML methods. Because
statistical methods are model-based, i.e., each event that is
classified by them need to have a model, a fingerprint, to be
compared with. Statistical methods do provide an outlier score
which signifies how strongly is the event considered to be an
outlier.

The author believes that because of extensibility of statistical
methods and conventional approaches for outliers detection
of Type II and III, it would be best to implement non-
contextual statistical based outlier detecting proof-of-concept
solution that will be able to create behavioral user models.
Consequential user behavior will be compared to those models
and assumptions will be made, whether the new behavior
corresponds to regular user activities or is to be considered
as the anomaly.

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 11

Based on preliminary considerations of this report, several
applications were implemented to proof merit of author’s
believes, see section V for details.

VII. ACKNOWLEDGEMENT

This research was supported by the EUROPEAN UNION,
European Regional Development Found Operational Pro-
gramme Enterprise and Innovations for Competitiveness and
Czech Ministry of Industry and Trade.

APPENDIX

REFERENCES

[1] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2011.

[2] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning (Adaptive Computation and Machine Learning series). The
MIT Press, 2012.

[3] Y. Wang, Y. Xiang, and S. Yu, “Internet Traffic Classification Using
Machine Learning: A Token-based Approach,” 2011 14th IEEE Interna-
tional Conference on Computational Science and Engineering, pp. 285–
289, 2011.

[4] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, pp. 379–423, 1948. [Online]. Avail-
able: http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf

[5] G. La Mantia, D. Rossi, A. Finamore, M. Mellia, and M. Meo, “Stochas-
tic packet inspection for TCP traffic,” in IEEE International Conference
on Communications, 2010.

[6] V. Chandola, A. Banerjee, and V. Kumar, “Outlier detection: A survey,”
ACM Computing Surveys, 2007.

[7] Wikipedia, “Outlier — Wikipedia, the free encyclopedia,” http://en.
wikipedia.org/w/index.php?title=Outlier&oldid=784274201, 2017, [On-
line; accessed 13-June-2017].

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 12

Fig. 5. Controlling interface of implemented WPF application. Classification process of proof-of-concept application can be parametrized by this interface with
various combinations of training to verification ratio, limitation of a minimal count of training instances, data time span, etc.

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 13

Fig. 6. Visualization of classification results. The top grid contains confusion matrix with detailed information, shown in statistic summary column, describing
miss-classified operations. Graphs provide the contextual comparison of selected classification results, and bottom grids show detailed information on which a
particular operation log was miss-classified for analytical purposes.

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 14

Fig. 7. Models tab shows detailed inner values contained in the model with related statistical details. Depending on a feature type, model value might be
continuous with statistical details, or enumeration of categorical nature.

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 15

. / C l i . exe
2017−11−23 1 5 : 5 4 : 0 4 , 6 3 8 [1] INFO Logger . Log [I n f o Logger . Log] − A p p l i c a t i o n CLI s t a r t e d .
C l i 1 . 0 . 0 . 0
C o p y r i g h t c 2017

−−c o n n e c t i o n−s t r i n g −i m p o r t R e q u i r e d . C o n n e c t i o n s t r i n g f o r Imp or t
DB.

−−c o n n e c t i o n−s t r i n g −e x p o r t R e q u i r e d . C o n n e c t i o n s t r i n g f o r Exp o r t
DB.

−−s t a r t −d a t e t i m e R e q u i r e d . S t a r t i n g d a t e t i m e . (yyyy /MM/ dd
HH:mm: s s)

−−end−d a t e t i m e R e q u i r e d . Ending d a t e t i m e . (yyyy /MM/ dd
HH:mm: s s)

−−min−e v e n t s Minimal l og ge d e v e n t s p e r c l a s s .

−− t r a i n i n g −c l a s s i f i c a t i o n − r a t i o T r a i n i n g t o c l a s s i f i c a t i o n r a t i o .

−−compute−f e a t u r e s Computa tes and s t o r e s f e a t u r e s .

−−compute−models Computa tes and s t o r e s models .

−−s t o r e−l o g s S t o r e s l o g s .

−−c l a s s i f y Run c l a s s i f i c a t i o n s t a t i s t i c s .

−− s t a t i s t i c s S t o r e c l a s s i f i c a t i o n s t a t i s t i c s .

−−exc lude−a p p l i c a t i o n s Exc luded a p p l i c a t i o n IDs .

−− i n n i t i a l −c a t a l o g I n i t i a l c a t a l o g name − DB name .

−−exc lude− l o c a l Exc lude l o c a l s o u r c e o r t a r g e t .

−−exc lude−same−sou rce− t a r g e t Exc lude same s o u r c e and t a r g e t .

−−exc lude−l o c a l−sou rce− t a r g e t Exc lude l o c a l s o u r c e and t a r g e t .

−−f e a t u r e−d i s c r e t e −d i s t a n c e−t y p e Type of d i s t a n c e c o m p u a t a t i o n used f o r
F e a t u r e D i s c r e t e .

−−f e a t u r e−d i s c r e t e −weightc−t y p e Type of we ig h t c o m p u t a t i o n used f o r
F e a t u r e D i s c r e t e .

P r i n t s a l l messages t o s t a n d a r d o u t p u t .

Fig. 8. Usage of console application used to process data from a customer database and preprocess, create models, classifies and computes statistics, all included
in a new export database for future analysis.

FINAL REPORT - MACHINE LEARNING OUTLIER DETECTION IN SAFETICA’S DATA LOSS PREVENTION SYSTEM 16

Fig. 9. Example of output generated by implemented SQL scripts showing details of the most typical operations for the particular user represented by id_user.
Only calculated statistical values are shown because of privacy considerations.

