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Abstract. We propose a novel guess-and-check principle to increase the
efficiency of thread-modular verification of lock-free data structures. We
build on a heuristic that guesses candidates for stateless effect summaries
of programs by searching the code for instances of a copy-and-check pro-
gramming idiom common in lock-free data structures. These candidate
summaries are used to compute the interference among threads in linear
time. Since a candidate summary need not be a sound effect summary,
we show how to fully automatically check whether the precision of can-
didate summaries is sufficient. We can thus perform sound verification
despite relying on an unsound heuristic. We have implemented our app-
roach and found it up to two orders of magnitude faster than existing
ones.

1 Introduction

Verification of concurrent, lock-free data structures has recently received consid-
erable attention [2,3,14,28,29]. Such structures are both of high practical rele-
vance and, at the same time, difficult to write. A common correctness notion in
this context is linearizability [15], which requires that every concurrent execution
can be linearized to an execution that could also occur sequentially. For many
data structures, linearizability reduces to checking control-flow reachability in a
variant of the data structure that is augmented with observer automata [2]. This
control-flow reachability problem, in turn, is often solved by means of thread-
modular analysis [4,19]. Our contribution is on improving thread-modular analy-
ses for verifying linearizability of lock-free data structures.

Thread-modular analyses compute the least solution to a recursive equation

X = X ∪ seq(X) ∪ interfere(X) .
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The domain of X are sets of views, partial configurations reflecting the perception
of a single thread about the shared heap. Crucially, thread-modular analyses
abstract away from the correlation among the views of different threads. Function
seq(X) computes a sequential step, the views obtained from X by letting each
thread execute a command on its own views. This function, however, does not
reflect the fact that a thread may change a part of the shared heap seen by
others. Such interference steps are computed by interfere(X). It is this function
that we improve on. Before turning to the contribution, we recall the existing
approaches and motivate the need for more work.

In the merge-and-project approach to interference (e.g., [4,11,19,22]), a
merge operation is applied on every two views in X to determine all merged
views consistent with the given ones. On each of the consistent views, one thread
performs a sequential step, and the result is projected to what is seen by the
other thread. The approach has problems with efficiency. The number of merge
operations is exactly the square of the number of views in the fixed point. In
addition, every merge of two views is expensive. It has to consider all consistent
views whose number can be exponential in the size of the views.

The learning approach to interference [24,34] derives, via symbolic execution,
a symbolic update pattern for the shared heap. The learning process is inte-
grated into the fixed-point computation, which incurs an overhead. Moreover,
the number of update patterns to be learned is bounded only by the number
of reachable views. An interference step applies the learned update patterns to
all views, which again is quadratic in the number of views. Moreover, although
update patterns abstract away from thread-local information, computing each
application still requires a potentially expensive matching. There are, however,
fragments of separation logic with efficient entailment [7].

What is missing is an efficient approach to computing interferences among
threads.

Main Ideas of the Contribution. We propose to compute interfere(X) by
means of so-called effect summaries. An effect summary for a method M is
a stateless program QM which over-approximates the effects that M has on
the shared heap. With such summaries at hand, the interference step can be
computed in linear time by executing the method summaries QM for all methods
M on the views in the current set X. This is a substantial improvement in
efficiency over merge-and-project and learning techniques, which require time
roughly quadratic in the size of the fixed-point approximant, X, and possibly
exponential in the size of views.

Technically, statelessness is defined as atomicity and absence of persis-
tent local state. We found both requirements typically satisfied by methods of
lock-free data structures. For our approach, this means stateless summaries are
likely to exist (which is confirmed by our experiments). The reason why the
atomicity requirement holds is that the methods have to preserve the integrity
of the data structure under interleavings. The absence of persistent state holds
since interference by other threads may invalidate local state at any time.
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We propose a heuristic to compute, from a method M , a stateless pro-
gram QM which is a candidate for being an effect summary of M . Whether
or not this candidate is indeed a summary of M is checked on top of the actual
analysis, as discussed below. Our heuristic is based on looking for occurrences of
a programming idiom common in lock-free data structures which we call copy-
and-check blocks. Such a block is a piece of code that, despite lock-free execution,
appears to be executed atomically. Roughly, we identify each such block and turn
it into an atomic program.

Programmers achieve the above mentioned atomicity of copy-and-check
blocks by first creating a local copy of a shared variable, performing some compu-
tation over it, checking whether the copy is still up-to-date and, if so, publishing
the results of the computation to the shared heap. A classic implementation of
such blocks is based on compare-and-swap (CAS) instructions. In this case, for
a local variable t and a shared variable T, the copy-and-check block typically
starts with an assignment t=T and finishes with executing CAS(T,t,x) which
atomically checks whether t==T holds and, if so, changes the value of T to x.
Hereafter, we will denote such blocks as CAS blocks, and we will concentrate on
them since they are rather common in practice [8,23,31]. However, we note that
the same principle can be used to handle other kinds of copy-and-check blocks,
e.g., those based on the load-link/store-conditional (LL/SC) mechanism.

The idea of program analyses to employ the intended behavior of CAS blocks
by treating them as atomic is quite natural. The reason why it is not common
practice is that this approach is not sound in general. The atomicity may be
introduced too coarsely, and, as a result, an interfere(X) implementation based
on the guessed candidate summaries may miss interleavings present in the actual
program. For our analysis, this means that its soundness is conditional upon the
fact that the candidate summaries used are indeed proper effect summaries. It
must be checked that they are stateless and that they cover all effects on the
shared heap. We propose a fully automatic and efficient way of performing those
checks. To the best of our knowledge, we are the first to propose such checks.

To check whether candidate summaries indeed cover the effects of the meth-
ods for which they were constructed, the idea is to let the methods execute under
any number of interferences with the candidate summaries and see if some effect
not covered by the candidate summaries can be obtained. Formally, we use the
program Q =

⊕
i QMi

, which executes a non-deterministically chosen candidate
summary QMi

of a method Mi, execute the Kleene iteration Q∗ in parallel with
each method M , and check whether the following inclusions holds:

Effects(M ‖ Q∗) ⊆ Effects(Q∗).

If this inclusion holds, Q∗ covers the actual interference all methods may cause.
Hence, our novel implementation of interfere(X) explores all possible interleav-
ings. The cost of the inclusion test is asymptotically covered by that of computing
the fixed point, and practically negligible. It can be checked in linear time (in
the size of the fixed point) by performing, for every view in X, a sequential step
and testing whether the effect of the step can be mimicked by the candidate
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summaries. It is worth pointing out the cyclic nature of our reasoning: we use
the candidate summaries to prove their own correctness.

Statelessness is an important aspect in the above process. It guarantees that
the sequential iteration of Q∗ explores the overall interference the methods of the
data structure cause. As we are interested in parametric verification, the overall
interference is, in fact, the one produced by an unbounded number of concur-
rent method invocations. Hence, computing this interference using candidate
summaries requires us to analyse the program

∏∞
Q, which is a parallel com-

position of arbitrarily many Q instances. However, statelessness guarantees that
each of these instances executes atomically without retaining any local state.
While the atomicity ensures that the concurrent Q instances cannot overlap,
the absence of local state ensures that Q instances cannot influence each other,
even if executed consecutively by the same thread. Hence, we can use a single
thread executing the iteration Q∗ in order to explore the interference caused by∏∞

Q. This justifies the usage of Q∗ for the effect coverage above. The check for
statelessness is similar to the one of effect coverage. If both tests succeed, the
analysis information is guaranteed to be sound.

Overview of the Approach, Its Advantages, and Experimental Evalu-
ation. Overall, our thread-modular analysis proceeds as follows. We employ the
CAS block heuristic to compute candidate summaries. We use these candidates
to determine the interferences in the fixed-point computation. Once the fixed
point has been obtained, we check whether the candidates are valid summaries.
If so, the fixed point contains sound information, and can be used for verification
(or, an on-the-fly computed verification result can be used). Otherwise, verifica-
tion fails. Currently, we do not have a refinement loop because it was not needed
in our experiments.

Our method overcomes the limitations of the previous approaches as follows.
The summary program, Q, is quadratic in the syntactic size of the program—not
in the size of the fixed point. The interference step executes the summary on all
views in the current set X, which means an effort linear rather than quadratic in
the fixed-point approximant. Moreover, Q is often acyclic and hence needs linear
time to execute, as opposed to the worst case exponential merge or match. In
our benchmarks, we needed at most 5 very short summaries, usually around 3–5
lines of code each. The computation of candidate summaries (based on cheap
and standard static analyses) and their check for validity are separated from the
fixed point, and the cost of both operations is negligible. We stress that our fixed
point as well as the validity check do not rely on the actual algorithm used to
compute the summary.

We implemented our thread-modular analysis with effect summaries on top
of our state-of-the-art tool [14] based on thread-modular reasoning with merge-
and-project. We applied the implementation to verify linearizability in a number
of concurrent list implementations. Compared to [14], we obtain a speed-up of
two orders of magnitude. Moreover, we managed to infer stateless effect sum-
maries for all our case studies except the DGLM queue [8] under explicit memory
management (where one needs to go beyond statelessness). However, we are not
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aware of any automatic approach that would be able to verify linearizability of
this algorithm.

2 Effect Summaries on an Example

The main complication for writing lock-free algorithms is to guarantee robustness
under interleavings. The key idea to tackle this issue is to use a specific update
pattern, namely the CAS-blocks discussed in Sect. 1. We now show how CAS
blocks are employed in Treiber’s lock-free stack implementation under garbage
collection, the code of which is given in Listing 1. The push method implements
a CAS block by: (1) copying the top of stack pointer, top=ToS, (2) linking
the node to be inserted to the current top of stack, node.next=top, and
(3) making node the new top of stack in case no other thread changed the
shared state, CAS(ToS,top,node). Similarly, pop proceeds by: (1) copying
the top of stack pointer, top=ToS, (2) querying its successor, next=top.next,
and (3) swinging ToS to that successor in case the stack did not change,
CAS(ToS,top,next).

struct Node { data_t data; Node next; }
shared Node ToS;

void push(data_t in) {
Node node = new Node(in);
while (true) {

Node top = ToS;
node.next = top;
if(CAS(ToS, top, node)){

return;
} } }

S1: atomic {
/* push */
Node node = new Node(*);
node.next = ToS;
ToS = node;

}

bool pop(data_t& out) {
while (true) {

Node top = ToS;
if(top == NULL){

return false;
}
Node next = top.next;
if(CAS(ToS, top, next)){

out = top.data;
return true;

} } }

S2: atomic {
/* pop */
assume(ToS != NULL);
ToS = ToS.next;

} S3: atomic { /* skip */ }

Listing 1. Pseudo code of the Treiber’s lock-free stack [31] and its effect summaries.

Following the CAS-block idiom, the only statements modifying the shared
heap in Treiber’s stack are the CAS operations. Hence, we identify three types of
effects on the shared heap. First, a successful CAS in push makes ToS point to a
newly allocated cell that, in turn, points to the previous value of ToS. Second, a
successful CAS in pop moves ToS to its successor ToS.next. Since we assume
garbage collection, the removed element is not freed but remains in the shared
heap until collected. Third, the effect of any other statement on the shared heap
is the identity.

With the effects of Treiber’s stack identified, we can turn towards finding
an approximation. For that, consider the program fragments from Listing 1: S1
covers the effects of the CAS in push, S2 covers the effects of the CAS in pop,
and, lastly, S3 produces the identity-effect covering all remaining statements.
Then, the summary program is Q = S1 ⊕ S2 ⊕ S3.
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To obtain the non-trivial summaries S1 and S2, it suffices to concentrate
on the block of code between the top=ToS assignment and the subsequent
CAS(ToS,top, ) statement. Without going into details (which will be provided
in Sect. 5), the summaries result from considering the code between the two
statements atomic, performing simplification of the code under this atomicity
assumption, and including some purely local initialization and finalization code
(such as the allocation in the push method).

3 Programming Model

A concurrent program P is a parallel composition of threads T . The threads are
while-programs formed using sequential composition, non-deterministic choice,
loops, atomic blocks, skip, and primitive commands. The syntax is as follows:

P :: = T
∣
∣ P ‖P T :: = T1;T2

∣
∣ T1 ⊕ T2

∣
∣ T ∗ ∣

∣ atomic T
∣
∣ skip

∣
∣ C .

We use Thrd for the set of all threads. We also write P ∗ to mean a program
P with the Kleene star applied to all threads. The syntax and semantics of
the commands in C are orthogonal to our development. We comment on the
assumptions we need in a moment.

We assume programs whose threads implement methods from the interface
of the lock-free data structure which is to be verified. The fact that, at runtime,
we may find an arbitrary (finite) number of instances of each of the threads
corresponds to an arbitrary number of concurrent method invocations. The veri-
fication task is then formulated as proving a designated shared heap unreachable
in all instantiations of the program. Since thread-modular analyses simultane-
ously reason over all instantiations of the program, we refrain from making this
parameterization more explicit. Instead, we consider program instances simply
as programs with more copies of the same threads.

We model heaps as partial and finite functions h :Var ∪ N � N. Hence, we
do not distinguish between the stack and the heap, and let the heap provide
valuations for both the program variables from V ar and the memory cells from
N. We use H for the set of all heaps. Initially, the heap is empty, denoted by
emp with dom(emp) = ∅. We write ⊥ if a partial function is undefined for an
argument: h(e) = ⊥ if e �∈ dom(h).

We assume each thread has an identifier from Tid ⊆ N. A program state is
a pair (s, cf ) where s ∈ H is the shared heap and cf :Tid → Thrd × H maps the
thread identifiers to thread configurations. A thread configuration is of the form
(T, o) with T ∈ Thrd and o ∈ H being a heap owned by T . If cf = {i → (T, o)}
contains a single mapping, we write simply (s, (T, o)).

Our development crucially relies on having a notion of separation between the
shared heap s and the owned heap o of a thread T . However, the actual definitions
of what is owned and what shared are a parameter to our development. We just
require the separation to respect disjointness of the shared and owned heaps and
to be defined such that it is preserved across execution of program statements.
The latter is formalized below in Assumption 1. To render disjointness formally,
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we say that a state (s, cf ) is separated, denoted by separate(s, cf ), if, for every
i1, i2 ∈ dom(cf ) with cf (ij) = (Tij , oij ) and i1 �= i2, we have dom(s)∩dom(oij )∩
N = ∅ and dom(oi1)∩dom(oi2)∩N = ∅. Note that, in order to allow for thread-
local variables, the heaps need to be disjoint only on memory cells (but not on
variables), thus the additional intersection with N.

We use → to denote program steps. The sequential semantics of threads is
as expected for sequential composition, choice, loops, and skip. An atomic block
atomic T summarizes a computation of the underlying thread T into a single
program step. The semantics of primitive commands depends on the actual set
C. We do not make it precise but require it to preserve separation in the following
sense.

Assumption 1. Foreverystep(s, (T, o)) →(s′, (T ′, o′))withseparate(s, (T, o)),
we have separate(s′, (T ′, o′)).

The semantics of a concurrent program incorporates the requirement for
separation into its transition rule. A thread may only update the shared heap
and those parts of the heap it owns. No other parts can be modified. Therefore,
we let threads execute in isolation and ensure that the combined resulting state
is separated:

(s, cf (i)) → (s′, cf ′′) cf ′ = cf [i → cf ′′] separate(s′, cf ′)
(par)

(s, cf ) → (s′, cf ′)

Although a precise notion of separation is not needed for the development of
our approach in Sect. 4, we give, for illustration, the notion we use in our imple-
mentation and experiments. In the case of garbage collection (like in Java), the
owned heap of a thread includes, as usual, its local variables and cells accessible
from these variables, which were allocated by the thread but never made acces-
sible through the shared variables. The shared heap then contains the shared
variables, all cells that were once made accessible from them, as well as cells
waiting for garbage collection. For the case of explicit memory management, we
need a more complicated mechanism of ownership transfer where a shared cell
can become owned again. We propose such a mechanism in Sect. 6.

We assume the computation of the program under scrutiny to start from an
initial state initP = (sinit, cf init,P ) where sinit is the result of an initialization
procedure. The initial thread configurations, denoted by cf init,T , are of the form
(T, emp). The initialization procedure is assumed to be part of the input pro-
gram. We are interested in the shared heaps reachable by program P from its
initial state:

SH(P ) := {s | ∃ cf . initP →∗ (s, cf )}.
In what follows, we assume that the correctness of a program P can be read

of its reachable shared heaps, SH(P ). For this, some instrumentation of P might
be needed. Such instrumentations are possible for a variety of properties. In
particular, the instrumentation with observer automata from Sect. 1 allows one
to check for linearizability.
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4 Interference via Summaries

We now present our new approach to computing the effect of thread inter-
ference steps on the shared heap (corresponding to evaluating the expression
interfere(X) from Sect. 1 for a set of views X) in a way which is suitable for
concurrency libraries. In particular, we introduce a notion of a stateless effect
summary Q: a program whose repeated execution is able to produce all the
effects on the shared heap that the program under scrutiny, P , can produce.
With a stateless effect summary Q at hand, one can compute interfere(X) by
repeatedly applying Q on the views in X until a fixed point is reached. Here,
statelessness assures that Q is applicable repeatedly without any need to track
its local state.

Later, in Sect. 5, we provide a heuristic for deriving candidates for stateless
effect summaries. Though our experiments show that the heuristic we propose
is very effective in practice, the candidate summary that it produces is not
guaranteed to be an effect summary, i.e., it is not guaranteed to produce all the
effects on the shared heap that P can produce. A candidate summary which is not
an effect summary is called unsound. To guarantee soundness of our approach
even when the obtained candidate summary is unsound, we provide a test of
soundness of candidate summaries. Interestingly, as we prove, it is the case that
even (potentially) unsound candidate summaries can be used to check their own
soundness—although this step appears to be cyclic reasoning.

4.1 Stateless Effect Summaries

We start by formalizing the notion of statelessness. Intuitively, a thread is state-
less if it terminates after a single step and disposes its local heap. Formally, we
say that a thread T of a program Q is stateless if, for all reachable shared heaps
s ∈ SH(Q∗) and all transitions (s, cf init,T ) →(s′, cf ), we have cf = (skip, emp).
A program Q is stateless if so are all its threads. Note that statelessness should
hold from all reachable shared heaps rather than from just all heaps. While an
atomic execution to skip would be easy to achieve from all heaps, a clean-up
yielding emp can only be achieved if we have control over the thread-local heap.
Also note that statelessness basically requires a thread to consist of a top-level
atomic block to ensure termination in a single step.

For an example, consider the summary S1 of push in Treiber’s stack from
Listing 1. It is stateless because (1) the top-level atomic block ensures execution
in a single step, and (2) the allocated node is published, i.e., moved from the
owned heap to the shared heap.

Next, we define the effects of a program P , denoted by EF (P ) ⊆ H × H, to
be the set EF (P ) = {(s, s′) | initP →∗ (s, cf ) → (s′, cf ′)}. This set generalizes
the reachable shared heaps, SH(P ): it contains all atomic (single-step) updates
P performs on the heaps from SH(P ).

In Treiber’s stack, as discussed in Sect. 2, the updates performed by the CAS
statements are effects. The remaining statements also yield effects. However,
since they do not modify the shared heap, they produce the identity effect.
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Altogether, a program Q is a (stateless) effect summary of P if it is stateless
and EF (T ‖Q∗) ⊆ EF (Q∗) holds for all threads T ∈ P . We refer to this inclusion
as the effect inclusion. Intuitively, it states that Q∗ subsumes all the effects T
may have under interference with Q∗. The lemma below shows that the effect
inclusion can be used to check whether a candidate summary is indeed an effect
summary. Moreover, the check can deal with the different threads separately.

Lemma 1. If Q is stateless and EF (T ‖Q∗) ⊆ EF (Q∗) holds for all T ∈ P,
then we have EF (P ) ⊆ EF (P ‖Q∗) ⊆ EF (Q∗).

In what follows, we describe our novel thread-modular analysis based on effect
summaries. We assume that, in addition to the program P under scrutiny, we
have a program Q which is a candidate for being a summary of P (obtained, e.g.,
by the heuristic that we provide in Sect. 5). In Sect. 4.2, we first provide a fixed-
point computation where the interference step is implemented by a repeated
application of the candidate summary Q. We show that if the candidate summary
Q is an effect summary, then the fixed point we compute is a conservative over-
approximation of the reachable shared heaps of P . Next, in Sect. 4.3, we show
that the fact whether or not Q is indeed an effect summary of P can be checked
efficiently on top of the computed fixed point (even though the fixed point need
not over-approximate the reachable shared heaps of P ).

In the case that the test of Sect. 4.3 fails, Q is not an effect summary of P ,
and our verification fails with no definite answer. As future work, one could think
of proposing ways of patching the summaries based on feedback from the failed
test. Then, along the lines of [5,6], the previously computed, unsound state space
can be reused: one applies the newly added summaries to the already explored
states and continues with the analysis afterwards. However, in our experiments,
using the heuristic computation of candidate summaries proposed in Sect. 5, this
situation has not happened for any program where a stateless effect summary
exists. In the only experiment where our approach failed (the DGLM queue
under explicit memory management, which has not been verified by any other
fully automatic tool), the notion of stateless effect summaries itself is not strong
enough. Hence, a perhaps more interesting question for future work is how to
further generalize the notion of effect summaries.

4.2 Summaries in the Fixed-Point Computation

To explore the reachable shared heaps of a program P , we suggest a thread-
modular analysis which explores the reachable states of the threads T ∈ P in
isolation. To account for the possible thread interleavings of the original program,
we apply interference steps to the threads T by executing the provided summary
Q. Conceptually, this process corresponds to exploring the state space of the two-
thread programs T ‖Q∗ for all syntactically different threads T ∈ P . Technically,
we collect the reachable states of those programs in the following least fixed point:

X0 = {(sinit, (T, emp)) | T ∈ P}
Xi+1 = Xi ∪ seq(Xi) ∪ interfere(Xi) .
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Since Q∗ has no internal state, the analysis only keeps the thread-local config-
urations of the threads T . Functions seq(·) and interfere(·) compute sequential
steps (steps of T ) and interference steps (steps of Q∗), respectively, as follows:

seq(Xi) = {(s′, cf ′) | ∃ (s, cf ) ∈ Xi. (s, cf ) → (s′, cf ′)}
interfere(Xi) = {(s′, cf ) | separate(s′, cf ) ∧ ∃ s, cf ′.

(s, cf ) ∈ Xi ∧ (s, cf init,Q) → (s′, cf ′)} .

Function seq(Xi) is standard. For interfere(Xi) we apply Q to each configuration
(s, cf ) ∈ Xi by letting it start from the shared heap s and its initial thread-local
configuration cf init,Q. Then we extract the updated shared heap, s′, resulting in
the post configuration (s′, cf ). Altogether, this procedure applies to the views
in Xi the shared heap updates dictated by Q. The thread-local configurations,
cf , of threads T are not changed by interference. This locality follows from the
separation.

The following lemma states that the set of shared heaps collected from the
above fixed point is indeed the set of reachable shared heaps of all T ‖Q∗. Let
Xk be the fixed point and define R = {s | ∃cf . (s, cf ) ∈ Xk}.

Lemma 2. If Q is a summary of P , then R =
⋃

T∈P SH(T ‖Q∗).

With the state space exploration in place, we can turn towards a soundness
result of our method: given an appropriate summary Q, the fixed-point compu-
tation over-approximates the reachable shared heaps of P .

Theorem 1. If Q is a summary of P , then we have SH(P ) ⊆ SH(Q∗) = R.

The rationale behind the theorem is as follows. Relying on Q being a summary of
P provides the effect inclusion. So, Lemma 1 yields EF (P ‖Q∗) ⊆ EF (Q∗). From
the definition of effects we can then conclude SH(P ‖Q∗) ⊆ SH(Q∗). Thus, we
have SH(P ) ⊆ SH(Q∗) because SH(P ) ⊆ SH(P ‖Q∗) is always true. This shows
the first inclusion. Similarly, the effect inclusion gives SH(T ‖Q∗) ⊆ SH(Q∗) by
the definition of reachability. Hence, we conclude using Lemma 2.

4.3 Soundness of Summarization

Soundness of our method, as stated by Theorem 1 above, is conditioned by Q
being a summary of P . In our framework, Q is heuristically constructed and
there is no guarantee that it really summarizes P . Hence, for our analysis to
be sound, we have to check summarization; we have to establish (1) the effect
inclusion, and (2) statelessness of Q. To that end, we check that (1) every update
T performs on the shared heap in the system T ‖Q∗ can be mimicked by Q, and
that (2) every execution of Q terminates in a single step and does not retain
persistent local state. We implement those checks on top of the fixed point, Xk,
as follows:

∀ (s, cf ) ∈ Xk ∀ s′, cf ′, i ∃cf ′′.
(s, cf ) → (s′, cf ′) =⇒ (s, cf init,Q) → (s′, cf ′′) (chk-mimic)

∧(s, cf init,Q(i)) → (s′, cf ′) =⇒ cf ′ = (skip, emp) (chk-stateless)
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The above properties indeed capture our intuition. The former, (chk-mimic),
states that, for every explored T -step of the form (s, cf ) → (s′, cf ′), the effect
(s, s′) is also an effect of Q. That is, executing Q starting from s yields s′.
This establishes the effect inclusion as required by Lemma 1. The latter check,
(chk-stateless), states that every thread of Q must terminate in a single step
and dispose its owned heap. This constraint is relaxed to those shared heaps
which have been explored during the fixed-point computation. That is, it ensures
statelessness of Q on all heaps from R. The key aspect is to guarantee that R
includes SH(Q∗) as required by the definition. We show that this inclusion follows
from the check.

The above checks rely on the fixed point, which, in turn, is computed using
the candidate summary Q. That is, we use Q to prove its own correctness. Nev-
ertheless, our development results in a sound analysis as stated by the following
theorem.

Theorem 2. The fixed point Xk satisfies (chk-mimic) and (chk-stateless)
if and only if Q is a summary of P .

5 Computing Effect Summaries

We now provide our heuristic for computing effect summaries. It is based on CAS
blocks between an assignment t=T, denoted as checked assignment, and a CAS
statement CAS(T,t,x), denoted as checking CAS below. Since we compute a
summary for each such block, the number of summaries is at most quadratic in
the size of the input.

In what follows, consider some method M given by its control-flow
graph (CFG) G = (V,E, vinit , vfinal). The CFG has a unique initial and a unique
final state, which we will use in our construction. Return commands are assumed
to lead to the final state. As we are only interested in the effect on the shared
heap, we drop return values from return commands. Likewise, we skip assign-
ments to output parameters unless they are important for the flow of control in
M . We assume the summaries to execute with non-deterministic input values,
and so we replace every input parameter with a symbolic value ∗. Conditionals,
loops, and CAS commands are represented by two edges, for the successful and
failing execution, respectively. Let easgn := (vasgns , t=T, vasgnt) be the CFG edge
of the checked assignment, and let the successful branch of the checking CAS
be ecas := (vcas , CAS(T,t,x), vcassuc). Next, let easgn′ := (vasgns , t=T, vasgnt′) be
a copy of the checked assignment to be used as the beginning of the CAS block,
and let ecas′ := (vcas , CAS(T,t,x), vcassuc′) be a copy of the checking CAS to be
used as the end of the CAS block. Here, vasgnt′ and vcassuc′ are fresh nodes.

To give a concise description of effect summaries, the following shortcuts will
be helpful. We write rand(G) for the CFG obtained from G by replacing each
occurrence of a shared variable by a non-deterministic value ∗. By G − S, we
mean the CFG obtained from G by dropping all edges carrying commands from
the set S. Given nodes v1 and v2, we denote by G(v1, v2) the CFG obtained
from G by making v1/v2 the initial/final node, respectively. Given two CFGs G
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and G′, we define G;G′ as their disjoint union where the single final state of G is
merged with the single initial state of G′. Finally, we allow compositions e;G and
G; e of a CFG G with a single edge e, by viewing e as a CFG consisting of a single
edge with the initial/final nodes being the initial/final nodes of e, respectively.

The construction of the summary proceeds in two steps. First we identify the
CAS block and create the control-flow structure, then we clean it up using data
flow analysis and generate the final code of the summary. Note that the clean-up
step is optional but generates a concise form beneficial for verification.

Step 1: Control-flow structure. A summary consists of an initialization phase,
followed by the CAS block, and a finalization phase. The first step results in the
CFG

Ginit ;Gblock ;Gfinal .

The guiding theme of the construction is to preserve all sequences of commands
that may lead through the CAS block.

In the initialization phase, which is intended for purely local initialization, the
method is assumed to be interrupted by other threads in the sense that the values
of shared pointers may spontaneously change. Therefore, we replace all depen-
dencies on shared variables by non-deterministic assignments. Moreover, all
return commands are removed since we have not yet passed the CAS block. Even-
tually, when arriving at the vasgns location, the summary non-deterministically
guesses that the CAS block should begin, and so the control is transferred to it
via the easgn′ edge. Hence, the initialization is:

Ginit := (rand(G) − {return})(vinit , vasgns) .

The CAS block begins with the easgn′ edge, i.e., with the checked assignment,
and ends with the ecas′ edge, i.e., the checking CAS statement. From the CAS
block, we remove all control-flow edges with assignments t=T as we fixed the
checked assignment when entering the CAS block (other assignments of the form
t=T, if present, will give rise to other CAS blocks; and a repeated execution of
the same checked assignment then corresponds to a repeated execution of the
summary). We also remove the return commands as the finalization potentially
still has to free owned heap. Failing executions of the checking CAS do not leave
the CAS block (and typically get stuck due to the removed checked assignments).
Successful executions may leave the CAS block, but do not have to. Eventually,
the summary guesses the last successful execution of the checking CAS and
enters the finalization phase. Hence, we get the following code:

Gblock := easgn′ ; ((G − {return, t=T})(vasgnt , vcas)); ecas′ .

Sometimes, the checked assignment can use local variables assigned prior to
the checked assignment. In such a case, we add edges with these assignments before
the easgn′ edge. This happens, e.g., in the enqueue procedure of Michael&Scott’s
lock-free queue where the sequence tail=Tail;next=tail.next is used. If
the checked assignment is next=tail.next, we start Gblock with edges contain-
ing tail=Tail and next=tail.next.
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Fig. 1. Step 1 in the summary computation for the pop method in Treiber’s stack.

The finalization phase, again, cannot rely on shared variables. However, here,
we preserve the return statements to terminate the execution:

Gfinal := rand(G)(vcassuc , vfinal) .

Figure 1 illustrates the construction on the pop method in Treiber’s stack.
Instead of a CFG, we give the source code. STOP represents deleted edges and
the fact that we cannot move from one phase to another not using the new edges.

Step 2: Cleaning-up and summary generation. We perform copy propagation
using a must analysis that propagates an assignment y=x to subsequent assign-
ments z=y, resulting in z=x. That it is a must analysis means the propagation is
done only if z=y definitely has to use the value of y that stems from the assign-
ment y=x. Moreover, we perform the copy propagation assuming that the entire
summary executes atomically. For the initialization phase, the result is that the
non-deterministic values for shared variables propagate through the code. Simi-
larly, for the CAS block, the shared variables themselves propagate through the
code. For the finalization phase, non-deterministic values propagate only in the
case when a local variable does not receive its value from the CAS block. As a
result, after the copy propagation, the CAS and the finalization block may con-
tain conditionals that are constantly true or constantly false. We replace those
that evaluate to true by skip and remove the edges that evaluate to false. The
result of the copy propagation is illustrated in Fig. 2.

Subsequently, we perform a live variables analysis. A variable is live if it
may occur in a subsequent conditional or on the right-hand side of a subsequent
assignment. Otherwise, it is dead. We remove all assignments to dead variables
including output parameters. In our running example, all assignments to local
variables as well as to the output parameter can be removed.

Next, we remove code that is unreachable, dead, or useless. Unreachable code
can appear due to the modifications of the CFG. Dead code does not lead to



182 L. Hoĺık et al.

Fig. 2. Copy propagation within the summary computation for pop in Treiber’s stack.

the final location. Useless code does not have any impact on the values of the
variables used, which can concern even (possibly infinite) useless loops.

Finally, the resulting code is wrapped into an atomic block, and conditionals
are replaced by assume statements. For the pop method in Treiber’s stack, we
get the summary S2 given in Listing 1.

6 Generalization to Explicit Memory Management

We now generalize our approach to explicit memory management. The problem
is that the separation between the shared and owned heap is difficult to define
and establish in this case. Ownership as understood in garbage collection, where
no other thread can access a cell that was allocated by a thread but not made
shared, does not exist any more. Memory can be freed and reallocated, with
other threads still holding (dangling) pointers to it. These threads can read and
modify that memory, hence the allocating thread does not have strong guarantees
of exclusivity. However, programmers usually try to prevent effects of accidental
reallocations: threads are designed to respect ownership. That is, a thread should
be allowed to execute as if it had exclusive access to the memory it owns.

Our development is parameterized by a notion of separation between the
shared and owned heap. To generalize the results, we provide a new notion of
ownership suitable for explicit memory management. However, the new notion
is not guaranteed to be preserved by the semantics. Instead, we include into our
fixed-point computation a check that the program respects this ownership, and
give up the analysis if the check fails.

To understand how the heap separation is influenced by basic pointer manip-
ulations, we consider the following set of commands C:

x = malloc, x = free, x = y, x = y.sel i, x.sel i = y .

Here, x, y are program variables and sel0, . . . , seln are selectors, from which the
first, say m, are pointer selectors and the rest are data selectors. Command
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x = malloc allocates a record, a free block of addresses a+0, . . . , a+n, and sets
h(x) to a. Command x = free frees the record h(x) + 0, . . . , h(x) + n. Selectors
correspond to field accesses: x.sel i refers to the content of a+ i if x points to a.
The remaining commands have the expected meaning.

6.1 Heap Separation

We work with a three-way partitioning of the heap into shared, owned, and free
addresses. Free are all addresses that are fresh or have been freed and not real-
located. Shared is every address that is reachable from the shared variables and
not free. The reachability predicate, however, requires care. First, we must obvi-
ously generalize reachability from the first memory cell of a record to the whole
record. Second, we must not use undefined pointers for reachability. A pointer
is undefined if it was propagated from uninitialized or uncontrolled memory.
Letting the shared heap propagate through such values would make it possible
for the entire allocated heap to be shared (since undefined pointers can have an
arbitrary value). Then, owned is the memory which is not shared nor free. The
owned memory is partitioned into disjoint blocks that are owned by individual
threads. A thread gains ownership by moving memory into the owned part, and
loses it when the memory is removed from the owned part. The actions by which
a thread can gain ownership are (1) allocation and (2) breaking reachability from
shared variables by an update of a pointer or a shared variable (ownership trans-
fer). An ownership violation is then a modification of a thread’s owned memory
by another thread. This can in particular be (1) freeing or publishing the owned
memory or (2) an update of a pointer therein. A program respects ownership if
it cannot reach an ownership violation.

Let us discuss these concepts formally. We use ⊥ to identify free cells. That
is, in a heap h address a is free if h(a) = ⊥ (also written a /∈ dom(h)). A
record is free if so are all its cells. Consequently, the free command sets all
cells of a record to ⊥. The shared heap is identified by reachability through
defined pointers starting from the shared variables. For undefined pointers we
use the symbolic value udef. Initially, all variables are undefined. Moreover, we
let allocations initialize the selectors of records to udef. We use a value distinct
from ⊥ to detect ownership violations by checking whether ⊥ is reachable from
the shared heap (see below). Value udef is explicitly allowed to be reachable (this
may be needed for list implementations where selectors of sentinel nodes are not
initialized). Let Ptrs be the shared pointer variables. Then, the addresses of the
shared records in a heap h, denoted by records(h) ⊆ N ∪{⊥}, are collected by
the following fixed point (where the address of a record is its lowest address):

S0 = {a | ∃x ∈ Ptrs . h(x) = a �= udef}
Si+1 = {b | ∃ a∈Si ∃ k. a �= ⊥ ∧ 0 ≤ k < m ∧ h(a + k) = b �= udef}

All addresses within the shared records are shared. The remaining cells, i.e.,
those that are neither free nor shared, are owned. This definition establishes a



184 L. Hoĺık et al.

sufficient separation for Assumption 1. It is automatically lifted to the concurrent
setting by Rule (par) following the intuition from above.

It remains to detect ownership violations, which occur whenever a thread
modifies cells owned by other threads. Due to the separation integrated into
Rule (par), threads execute with only the shared heap and their owned heap
being visible. The remainder of the heap is cut away. By choice of ⊥ to identify
free cells, the cut away part appears free to the acting thread. In particular, the
parts owned by other threads appear free. Hence, in order to avoid ownership
violations, a thread must not modify free cells. To that end, an ownership viola-
tion occurs if (A) a free cell is freed again, (B) a free cell is written to, or (C) a
free cell is published to the shared heap. For (A) and (B) we extend the seman-
tics of commands to raise an ownership violation if a free cell is manipulated.
For (C) we check for every program step whether it results in a shared heap
where ⊥ is made reachable.

Formally, we have the following rules.

∃ sel . (s � o)(x).sel /∈ dom(s � o)
(A)

(s, (x = free, o)) → violation

(s � o)(x).sel /∈ dom(s � o)
(B)

(s, (x.sel = y, o)) → violation

(s, cf ) → (s′, cf ′) ⊥ ∈ records(s′)
(C)

(s, cf ) → violation

Note that reading out free cells is allowed by the above rules. This is necessary
because lock-free algorithms typically perform speculating reads and check only
later whether the result of the read is safe to use. Moreover, note that our
detection of ownership violations can yield false-positives. A cell may not be
owned, yet an ownership violation is raised because it appears free to the thread.
We argue that such false-positives are desired as they access truly free memory.
Put differently: an ownership violation detected by the above rules is either
indeed an ownership violation or an unsafe access of free memory, that is, a bug.

6.2 Ownership Transfer

The above separation is different from the one used under garbage collection
in the earlier sections. When an address becomes unreachable from the shared
variables, it is transferred into the acting thread’s owned heap (although other
threads may still have pointers to it). We introduce this ownership transfer
to simplify the construction of summaries. The idea is best understood on an
example.

Under explicit memory management, threads free cells that they made
unreachable from the shared variables to avoid memory leaks. Consider, for
example, the method pop in Treiber’s stack (Listing 1). There, a thread updates
the ToS variable making the former top of stack, say a, unreachable from the
shared heap. In the version for explicit memory management, a is then freed
before returning. If ownership was not transferred and address a stayed shared,
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then two summaries would be needed: one for the update of ToS and one for free-
ing a. However, a stateless version of the latter summary could not learn which
address to free since it starts with the empty local heap and with a unreachable
from the shared heap. If, on the other hand, ownership of a is transferred to the
acting thread, then the former summary can include freeing a (which does not
change the shared heap). Moreover, it is even forced to free a in order to remain
stateless since a would otherwise persist in its owned heap.

We stress that our framework can be instantiated with other notions of sep-
aration, like an analogue of the one for garbage collection or the one of [14],
which both do not have ownership transfer. This would complicate the reason-
ing in Sect. 4, but could lead to a more robust analysis (ownership transfer is
prone to ownership violations).

6.3 ABA Prevention

Additionally, synchronization mechanisms can be incorporated into our app-
roach. For instance, lock-free data structures may use version counters to pre-
vent the ABA problem [23]: a variable leaves and returns to the same address,
and an observer incorrectly concludes that the variable has never changed. A
well-known scenario of this type causes stack corruption in a naive extension
of Treiber’s stack to explicit memory management [23]. To give the observer a
means of detecting that a variable has been changed, pointers are associated
with a counter that increases with every update.

In our analysis, such version counters must be persistent in the shared mem-
ory. Since this is an exception from the above definition of separation, a presence
of version counters must be indicated by the user (e.g., the user specifies that the
version counter of a pointer a is always stored at address a+1). The semantics is
then adapted in such a way that (1) version counters remain in the shared heap
upon freeing, (2) are retained in case of reallocations, and (3) are never trans-
ferred to a thread’s owned heap. The modifications can be easily implemented,
and are detailed in [16]. Last, the thread-modular abstraction has to be adjusted
since keeping all counters ever allocated in every thread view is not feasible. One
solution is to remember only the values of those counters that are attached to
the allocated shared and the thread’s own heap.

7 Experiments and Discussion

To substantiate our claim for practical benefits of the proposed method, we
implemented the techniques from Sects. 4 and 6.1 Therefore, we modified our pre-
vious linearizability checker [14] to perform our novel fixed-point computation.
The modifications were straightforward leveraging the existing infrastructure.

Our findings are listed in Table 1. Experiments were conducted on an Intel
Xeon E5-2670 running at 2.60 GHz. The table includes the running times (aver-
aged over ten runs) and the number of explored views (the size of set X from
1 Available at: https://github.com/Wolff09/TMRexp/releases/SAS17/.

https://github.com/Wolff09/TMRexp/releases/SAS17/
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Table 1. Experimental results: a speed-up of up to two orders of magnitude.

Program Thread-modular [14] Thread summaries

Coarse stack GC 0.29s/343 0.03s/256

MM 1.89s/1287 0.19s/1470

Coarse queue GC 0.49/343 0.05s/256

MM 2.34s/1059 0.98s/2843

Treiber’s stack [31] GC 1.99s/651 0.06s/458

MM 25.5s/3175 1.64s/2926

Michael & Scott’s queue [23] GC 11.0s/1530 0.39s/1552

MM 11700s/19742 102s/27087

DGLM queue [8] GC 9.56s/1537 0.37s/1559

MM Unsafe (spurious) Violation

Sect. 1). Our benchmarks include well-known data structures such as Treiber’s
lock-free stack [31], Michael&Scott’s lock-free queue [23], and the lock-free
DGLM queue [8]. We do not include lock-free set implementations due to lim-
itations of the tool in handling data—not due to limitations of our approach.
We ran each benchmark under garbage collection (GC), and explicit memory
management (MM) with version counters. Additionally, we include for each
benchmark a comparison between our novel fixed point using summaries and
the optimized version of the classical thread-modular fixed point from [14].

Our experiments show that summaries provide a significant performance
boost compared to classical interference. This holds true for both garbage col-
lection and explicit memory management. For garbage collection, we experience
a speed-up of one order of magnitude throughout the entire test suite. Although
comparisons among different implementations are inherently unfair, we note that
our tool compares favorably to competitors [2,3,33,34]. Under explicit memory
management, the same speed-up is present for simple algorithms, like Treiber’s
stack. For slightly more complex implementations, like Michael&Scott’s queue,
we observe a more eminent speed-up of over two orders of magnitude. This speed-
up is present even though the analysis explores a way larger search space than
its classical counterpart. This confirms that our approach of reducing the com-
plexity of interference steps rather than reducing the search space is beneficial
for verification.

Unfortunately, we could not establish correctness of the DGLM queue under
explicit memory management with neither of the fixed points. For the classical
one, the reason was imprecision in the underlying shape analysis which resulted
in spurious unsafe memory accesses. For our novel fixed point, the tool detected
an ownership violation according to Sect. 6. While being correct, the DGLM
queue indeed features such a violation. The update pattern in the deque method
can result in freeing nodes that were made unreachable by other threads. The
problematic scenario only occurs when the head of the queue overtakes the tail.
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Despite the similarity, this behavior is not present in Michael&Scott’s queue
which is why it does not suffer from such a violation.

As hinted in Sect. 6, one could generalize our theory in such a way that
no ownership transfer is required. Without ownership transfer, however, freeing
cells becomes an effect of the shared heap which cannot be mimicked: a stateless
summary cannot acquire a pointer to an unreachable cell and thus not mimic
the free. Consequently, one has to relax the assumption of statelessness. This
inflicts major changes on the fixed point from Sect. 4. Besides program threads,
it would need to include threads executing stateful summaries. Moreover, one
would need to reintroduce interference steps. However, only such interference
steps are required where stateful summaries appear as the interfering thread.
Hence, the number of interference steps is expected to be significantly lower
than for ordinary interference. We consider a proper investigation of these issues
an interesting subject for future work.

8 Related Work

We already commented on the two approaches of computing interference steps.
The merge-and-project approach [4,11,19,22] suffers form low scalability and
precision due to computing too many merge-compatible heaps. To improve pre-
cision of interference, works like [12,30,34] track additional thread correlations;
ownership, for instance. However, keeping more information within thread states
usually has a negative impact on scalability. Moreover, for the programs of our
interest, those techniques were not applicable in the case of explicitly managed
memory which does not provide exclusivity guarantees. Instead, [2,4] proposed
to maintain views of two threads, allowing one to infer the context in which
a views occurs. Since this again jeopardizes scalability, [14] tailored ownership
towards explicit memory management. Still, computing interference remained
quadratic in the size of the fixed point. Our approach improves dramatically on
the efficiency of [14] while keeping its precision.

The learning approach in [32,34,35] and [24–26] performs a variant of
rely/guarantee reasoning [18] paired with symbolic execution and abstract inter-
pretation, respectively. In a fixed point, the interference produced by a thread is
recorded and applied to other threads in consecutive iterations. This computes
a symbolic representation of the inteference which is as precise as the underlying
abstract domain (although the precision may be relaxed by further abstraction
and hand-crafted joins). Our method improves on this in various aspects. First,
we never compute the most precise interference information. Our summaries can
be understood as a form of interpolant between the most precise approxima-
tion and the complement of the bad states. Second, our summaries are syntactic
objects (program code) which are independent of the actual verification proce-
dure and thus reusable. The learned interference may be reused only in the same
abstract domain it was computed in. Third, we show how to lift our approach to
explicit memory management what has not been done before. Fourth, our results
are independent of the actual program semantics relying only on a small core
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language. Our development required to formulate the principles that libraries
rely on (statelessness) which have not been made explicit elsewhere.

Another approach to make the verification of low-level implementations
tractable is atomicity abstraction [1,9,10,20,27,28]. The core idea is to trans-
late a given program into its specification by introducing and enlarging atomic
blocks. The code transformations must be provably sound, with the soundness
arguments oftentimes crafted for a particular semantics only. While generating
summaries is closely related to making the program under scrutiny more atomic,
we pursue a different approach. Our rewriting rules (i.e. the computation of sum-
maries) do not need to be, and indeed are not, provably sound, which allows for
much more freedom. Nevertheless, we guarantee a sound analysis. Our sanity
checks can be understood as an efficient, fully automatic procedure to check
whether or not the applied atomicity abstraction was sound. Additionally, we
do not rely on a particular memory semantics.

Simulation relations are widely used for linearizability proofs [8,9,29,36] and
verified compilation [17,21]. There, one establishes a simulation relation between
a low-level program and a high-level program stating that the latter preserves
the behaviors of the former. Verifying properties of the low-level program then
reduces to verifying the same property for the high-level program. Establishing
simulation relations, however, suffers from the same shortcomings as atomic-
ity abstraction.

Finally, [13] introduces grace periods, an idiom similar to CAS blocks. It
reflects the protocol used by a program to prohibit data corruption. During a
grace period, it is guaranteed that a thread’s memory is not freed. However, no
method for checking conformance to such periods is given. That is, soundness
of the analysis results cannot be checked when relying on grace periods whereas
our sanity checks can efficiently detect unsound verification results.

9 Conclusion

We proposed a new approach for verifying lock-free data structures. The app-
roach builds on the so-called CAS blocks (or, more generally, copy-and-check
code blocks) which are commonly used when implementing lock-free data struc-
tures. We proposed a heuristic that builds stateless program summaries from
such blocks. By avoiding many expensive merge-and-project operations, the app-
roach can greatly increase the efficiency of thread-modular verification. This was
confirmed by our experimental results showing that the implementation of our
approach compares favorably with other competing tools. Moreover, our app-
roach naturally combines with recently proposed reasoning about ownership to
improve the precision of thread-modular reasoning, which allowed us to handle
complex lock-free code efficiently even under explicit memory management. Of
course, our heuristically computed stateless summaries can miss some reach-
able shared heaps, but, as a major part of our contribution, we proved that one
can check whether this is the case on the generated state space. Hence, we can
perform sound verification using a potentially unsound abstraction.
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In the future, we would like to investigate CEGAR to include missing effects
into our summaries. The main question here is how to refine the program code
of a summary using an abstract representation of the missing effects. Further,
it may be necessary to introduce stateful summaries in order to include certain
effects, as revealed by the DGLM queue under explicit memory management.
Moreover, in theory, our approach could increase not only efficiency but also pre-
cision compared with other approaches. This is due to the atomicity of the CAS
blocks that could rule out interleavings that other approaches would explore. We
have not found this confirmed in our experiments. Nevertheless, we find it worth
investigating the theoretical and practical aspects of this matter in the future.
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25. Miné, A.: Relational thread-modular static value analysis by abstract interpre-
tation. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp.
39–58. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54013-4 3
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