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Walk-set induced connectedness in digital spaces

JOSEF ŠLAPAL

ABSTRACT. In an undirected simple graph, we define connectedness induced by a set of walks of the same
lengths. We show that the connectedness is preserved by the strong product of graphs with walk sets. This
result is used to introduce a graph on the vertex set Z2 with sets of walks that is obtained as the strong product
of a pair of copies of a graph on the vertex set Z with certain walk sets. It is proved that each of the walk sets in
the graph introduced induces connectedness on Z2 that satisfies a digital analogue of the Jordan curve theorem.
It follows that the graph with any of the walk sets provides a convenient structure on the digital plane Z2 for
the study of digital images.

1. INTRODUCTION

Digital images may be considered to be approximations of real ones and, therefore, to
be able to study them, we need the digital spaces Zm, m > 0 an integer, to be equipped
with structures that provide a connectedness behaving analogously to the connectedness
in the Euclidean (real) spaces. It is one of the basic tasks of digital topology, a theory that
was founded for the study of geometric and topological properties of digital images, to
find such convenient structures on the digital spaces. In the classical approach to digital
topology (see [6-7]), adjacency graphs with the vertex set Zm are used to provide such
structures. For example, the well-known 4- and 8-adjacencies are used on the digital plane
Z2 and the 6-, 18-, and 26-adjacencies are used on the digital space Z3. A disadvantage
of the classical approach is that the connectedness in the digital space Zm given by an
adjacency graph does not behave analogously to the connectedness in the Euclidean space
Rm and so the adjacencies do not provide a satisfactory model of the Euclidean topology.
Particularly, on the digital plane Z2, neither 2-adjacency nor 4-adjacency itself allows for
an analogue of the Jordan curve theorem (recall that the classical Jordan curve theorem
states that a simple closed curve separates the real plane into precisely two components).
To obtain such an analogue, we have to use a combination of the two adjacencies - see
[3-4]. The present graphical software is mostly based on employing such a combination.

It was only in 1990 that E. D. Khalimsky, R. Kopperman and P. R. Meyer [2] proposed
a new, topological approach to digital topology. They showed that there is a topology on
Z2, the so-called Khalimsky topology, which allows for an analogue of the Jordan curve
theorem, thus providing a convenient digital model of the Euclidean plane, and can, the-
refore, be used for studying and processing digital images. The topological approach has
then been developed by many authors - see e.g. [9-11].

In [12], graphs with path partitions are introduced and studied where the path parti-
tions considered are nothing but certain sets of walks in these graphs. It was shown in
[12] that path partitions provide graphs with a special connectedness that allows for an
analogue of the Jordan curve theorem so that these graphs may be used as convenient
background structures on the digital plane for the study of digital images. In the present
paper, we continue the graph-theoretic approach to digital topology discussed in [12].
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But, in difference to [12], we employ sets of walks, which are more general than path par-
titions, and study the induced connectedness. It will be shown that the connectedness is
preserved by the strong product of graphs. Thus, having the connectedness induced by a
walk set in a graph on the digital line Z, the connectedness is preserved also in the graph
on Zm, m > 0 an integer, obtained as the strong product of m copies of the graph on Z. We
will discuss the connectednesses induced by certain special walk sets in the 2-adjacency
graph on the digital line Z which generalize the connectedness given by the Khalimsky
topology. The strong product of a pair of copies of this graphs with such a walk set will
be shown to allow for a digital analogue of the Jordan curve theorem, i.e., to provide a
convenient structure on the digital plane Z2 for the study of digital images.

We will work with some basic graph-theoretic concepts only - we refer to [1] for them.
By a graph G = (V,E), we understand an (undirected simple) graph (without loops) with
V 6= ∅ the vertex set and E ⊆ {{x, y}; x, y ∈ V, x 6= y} the set of edges. We will say
that G is a graph on V . Two vertices x, y ∈ V are said to be adjacent (to each other) if
{x, y} ∈ E. Recall that a walk in G is a (finite) sequence (xi| i ≤ n) = (x0, x1, ..., xn) of
vertices (i.e., elements of V ) such that every pair of consecutive vertices is adjacent. The
natural number (i.e., finite ordinal) n is called the length of the walk (xi| i ≤ n). A walk
(xi| i ≤ n) in G is called a path if xi 6= xj whenever i, j ≤ n, i 6= j, and it is called a circle
if xi 6= xj whenever i, j < n, i 6= j, and x0 = xn. A subset A ⊆ V is connected if any
two different vertices x, y ∈ A can be joined by a walk in G contained in A, i.e., there is a
walk (xi| i ≤ n) in G such that x0 = x, xn = y, and xi ∈ A for every i ≤ n. Note that an
equivalent definition of a connected subset A ⊆ V is obtained by replacing ”walk” with
”path” in the previous one.

Recall that, given graphs G1 = (V1, E1) and G2 = (V2, E2), we say that G1 is a subgraph
of G2 if V1 ⊆ V2 and E1 ⊆ E2. If, moreover, V1 = V2, then G1 is called a factor of G2. A
graph (V1, E1) is said to be an induced subgraph of a graph (V2, E2) if it is a subgraph of
(V2, E2) such that E1 = E2 ∩ {{x, y}; x, y ∈ V1}. We then briefly speak about the induced
subgraph V1 of (V2, E2).

In [8], the concept of a strong product of two graphs was introduced. We will extend
this concept on an arbitrary family of graphs as follows:

Definition 1.1. Given graphs Gj = (Vj , Ej , ), j = 1, 2, ...,m (m > 0 a natural num-
ber), we define their strong product to be the graph

∏m
j=1 Gj = (

∏m
j=1 Vj , E) with the

set of edges E = {{(x1, x2, ..., xm), (y1, y2, ..., ym)}; there exists a nonempty subset J ⊆
{1, 2, ...,m} such that {xj , yj} ∈ Ej for every j ∈ J and xj = yj for every j ∈ {1, 2, ...,m}−
J}.

Clearly, the usual (direct) product of a family of graphs Gj = (Vj , Ej , ), j = 1, 2, ...,m,
i.e., the graph (

∏m
j=1 Vj , E) where E = {{(x1, x2, ..., xm), (y1, y2, ..., ym)}; {xj , yj} ∈ Ej

for every j = 1, 2, ...,m}, is a factor of the strong product of the family.

2. GRAPHS WITH WALK SETS

In the sequel, n will denote a natural number with n > 1.
Let G = (V,E) be a graph. Then we denote by Pn(G) the set of all walks of length

n in G. If B ⊆ Pn(G) and G1 = (V1, E1) is an induced subgraph of G, then the set
B ∩ V n+1

1 ⊆ Pn(G1) will also be denoted by B.
For every subset B ⊆ Pn(G), we put

B∗ = {(xi| i ≤ m) ∈ V m+1; 0 < m ≤ n and there exists (yi| i ≤ n) ∈ B such that xi =
yi for every i ≤ m or xi = ym−i for every i ≤ m}.
The elements of B∗ will be called B-initial segments in G. Thus, a B-initial segment (xi| i ≤
m) in G is a sequence consisting of the first m + 1 members of a walk belonging to B
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ordered according to the walk or conversely - see the following figure (with sequences
represented by arrows oriented from the first to the last members):

-
-

�

x0 xmxn

Definition 2.2. Let Gj be a graph and Bj ⊆ Pn(Gj) for every j = 1, 2, ...,m (m > 0 a
natural number). Then we define the strong product of the paths Bj , j = 1, 2, ...,m, to be
the set

∏m
j=1 Bj = {((x1

i , x
2
i , ..., x

m
i )| i ≤ n); there is a nonempty subset J ⊆ {1, 2, ...,m}

such that (xji | i ≤ n) ∈ Bj for every j ∈ J and (xji | i ≤ n) is a constant sequence for every
j ∈ {1, 2, ...,m} − J}.

It is evident that
∏m
j=1 Bj ⊆ Pn(

∏m
j=1 Gj).

Given a graph G and B ⊆ Pn(G), we will employ the walks in G that are formed by
subsequent B-initial segments in G. More precisely, we define:

Definition 2.3. Let G = (V,E) be a graph and B ⊆ Pn(G). A sequence C = (xi| i ≤ r),
r > 0 a natural number, of vertices of V is called a B-walk in G if there is an increasing
sequence (ik| k ≤ p) of natural numbers with i0 = 0 and ip = r such that ik− ik−1 ≤ n and
(xi| ik−1 ≤ i ≤ ik) ∈ B∗ for every k with 0 < k ≤ p (see the figure below). The sequence
(ik| k ≤ p) is said to be a binding sequence of C.
If the members of C are pairwise different, then C is called a B-path in G.
A B-walk C is said to be a B-circle if, for every pair i0, i1 of different natural numbers with
i0, i1 ≤ r, xi0 = xi1 is equivalent to {i0, i1} = {0, r}.

. . .
xi0 xi1 xi2 xip−1

xip

x0 xm

Of course, every B-walk (B-path, B-circle) in a graph G = (V,E) is a walk (path, circle)
in G and both concepts coincide if B = P1(G).

Observe that, if (x0, x1, ..., xr) is a B-walk in G, then (xr, xr−1, ..., x0) is a B-walk in G,
too (B-walks are closed under reversion). Further, if C1 = (xi| i ≤ r) and C2 = (yi| i ≤ s)
are B-walks in G such that xr−1 = y0, then, putting zi = xi for all i ≤ r and zi = yi−r for
all i with r < i ≤ r + s, we get a B-walk (zi| i ≤ r + s) in G (B-walks are closed under
composition). We denote the B-walk (zi| i ≤ r + s) by C1 ⊕ C2.

Definition 2.4. Let G = (V,E) be a graph and B ⊆ Pn(G). A set A ⊆ V is said to be B-
connected in G if any two different vertices of G belonging to A can be joined by a B-walk
in G contained in A. A maximal B-connected set in G is called a B-component of G.

In particular, every B-walk (and thus every B-circle) in a graph G (where B ⊆ Pn(G))
is B-connected in G. Clearly, a subset A ⊆ V is connected in a graph G = (V,E) if and
only if it is P1(G)-connected in G.

Note that, given a graph G = (V,E) and B ⊆ Pn(G), the union of a finite sequence of
nonemptyB-connected subsets of V isB-connected if the intersection of every consecutive
pair of the subsets is nonempty (because B-walks are closed under composition).

Proposition 2.1. Let Gj = (Vj , Ej) be a graph, Bj ⊆ Pn(Gj), and Yj ⊆ Vj be a subset for
every j = 1, 2, ...,m. If Yj is a Bj-connected set in Gj for every i = 1, 2, ..., n, then

∏m
j=1 Yj is a∏m

j=1 Bj-connected set in
∏m
j=1 Gj .

Proof. If m = 1, then the statement is trivial. Therefore, we will suppose that m > 1.
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First, we will show that the statement is true if Yj = (yji | i ≤ pj) is aBj-initial segment in
Gj for every j = 1, 2, ...,m. For each j = 1, 2, ...,m, there is a walk (xji | i ≤ n) ∈ B such that
yji = xji for all i ≤ pj or yji = xjpj−i for all i ≤ pj (because (yji | i ≤ pj) is a Bj-initial segment
in Gj). Let y ∈

∏m
j=1{y

j
i ; i ≤ pj} be an arbitrary element. Then, for each j = 1, 2, ...,m,

there is a natural number qj , qj < pj , such that y = (y1q1 , y
2
q2 , ..., y

m
qm). It follows that either

(y1q1−i| i ≤ q1) or (y1i | q1 ≤ i ≤ p1) is a B1-initial segment in G1 with the first member
y1q1 and the last one x1

0. Denote this B1-initial segment by (z1i | i ≤ r1) and put C1 =

((z1i , y
2
q2 , y

3
q3 , ..., y

m
qm)| i ≤ r1). Clearly, C1 is a

∏m
j=1 Bj-initial segment in

∏m
j=1 Gj with all

members belonging to
∏m
j=1{y

j
i ; i ≤ pj}, with the first member y, and with z1r1 = x1

0. It
follows that either (y2q2−i| i ≤ q2) or (y2i | q2 ≤ i ≤ p2) is a B2-initial segment in G2 with the
first member y2q2 and the last one x2

0. Denote this B2-initial segment by (z2i | i ≤ r2) and put
C2 = ((x1

0, z
2
i , y

3
q3 , y

4
q4 , ..., y

m
qm)| i ≤ r2). Clearly, C2 is a

∏m
j=1 Bj-initial segment in

∏m
j=1 Gj

with all members belonging to
∏m
j=1{y

j
i ; i ≤ pj} such that z20 = y2q2 and z2r2 = x2

0. Thus,
C1 ⊕ C2 is a

∏m
j=1 Bj-walk in

∏m
j=1 Gj with all members belonging to

∏m
j=1{y

j
i ; i ≤ pj},

with the first member y, and with the last one (x1
0, x

2
0, y

3
q3 , y

4
q4 , ..., y

m
qm). Repeating this

construction m-times, we get
∏m
j=1 Bj-initial segments C1, C2,...,Cm in

∏m
j=1 Gj with the

members of each of them belonging to
∏m
j=1{y

j
i ; i ≤ pj} such that C1 ⊕C2 ⊕ ...⊕Cm is a∏m

j=1 Bj-walk in
∏m
j=1 Gj with the first member y and the last one (x1

0, x
2
0, ..., x

m
0 ). We have

shown that any point of
∏m
j=1{y

j
i ; i ≤ pj} can be connected with the point (x1

0, x
2
0, ..., x

m
0 )

by a
∏m
j=1 Bj-walk in the graph

∏m
j=1 Gj contained in

∏m
j=1{y

j
i ; i ≤ pj}.

Second, we will show that the statement is true if Yj = (xji | i ≤ pj) is a Bj-walk in
Gj for every j = 1, 2, ...,m. If m = 1, then the statement is trivial. Let m > 1. For
each j = 1, 2, ...,m, let (ijk| k ≤ qj) be the binding sequence of (xji | i ≤ pj), i.e., a se-
quence of natural numbers with ij0 = 0 and ijqj−1 = pj − 1 such that (xji | i

j
k ≤ i ≤

ijk+1) is a Bj-initial segment in Gj whenever k ≤ qj . For every j = 1, 2, ...,m, putting
Cjk = {xji ; ijk ≤ i ≤ ijk+1}, we get {xji ; i ≤ pj} =

⋃
k<qj

Cjk. Therefore,
∏m
j=1{x

j
i ; i ≤

pj} =
⋃
k1<q1

⋃
k2<q2

...
⋃
km<qm

∏m
j=1 C

j
kj

where
∏m
j=1 C

j
kj

is connected in
∏m
j=1 Gj whe-

never kj < qj , j = 1, 2, ...,m, by the previous part of the proof. Thus, for any kj < qj ,
j = 1, 2, ...,m − 1, (

∏m
j=1 C

j
kj
| km < qm) is a finite sequence of connected sets with no-

nempty intersection of every consecutive pair of them. Hence, the set
⋃
km<qm

∏m
j=1 C

j
kj

is connected in
∏m
j=1 Gj . Consequently, for every kj with kj < qj , j = 1, 2, ...,m − 2,

(
⋃
km<qm

∏m
j=1 C

j
kj
| km−1 < qm−1) is a finite sequence of connected sets with nonempty

intersection of any consecutive pair of them. Thus, the set
⋃
km−1<qm−1

⋃
km<qm

∏m
j=1 C

j
kj

is connected in
∏m
j=1 Gj . After repeating this considerations m-times, we get the con-

clusion that the set
⋃
k1<q1

⋃
k2<q2

...
⋃
km<qm

∏m
j=1 C

j
kj

=
∏m
j=1{y

j
i ; i ≤ pj} is

∏m
j=1 Bj-

connected in
∏m
j=1 Gj .

Finally, let Yj be a connected set in Gj for every j ∈ {1, 2, ...,m} and let (x1, x2, ..., xm),
(y1, y2, ..., ym) ∈

∏m
j=1 Gj be arbitrary points. Then, for every j ∈ {1, 2, ...,m}, there is a

Bj-walk (zji | i ≤ pj) in Gj joining the points xj and yj which is contained in Yj . Hence,
the set

∏m
j=1{z

j
i | i ≤ pj} contains the points (x1, x2, ..., xm) and (y1, y2, ..., ym) and is a

connected set in
∏m
j=1 Gj by the previous part of the proof. Thus, there is a Bj-walk

C in
∏m
j=1 Gj joining the points (x1, x2, ..., xm) and (y1, y2, ..., ym) which is contained in
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j=1{z

j
i | i ≤ pj}. Since

∏m
j=1{z

j
i | i ≤ pj} ⊆

∏m
j=1 Yj , C is contained in

∏m
j=1 Yj . Therefore,∏m

j=1 Yj is a
∏m
j=1 Bj-connected set in

∏m
j=1 Gj . The proof is complete. �

3. CONNECTEDNESS IN Z2 INDUCED BY THE STRONG PRODUCT OF CERTAIN WALK SETS
IN THE 2-ADJACENCY GRAPH ON Z

To obtain possible applications of the introduced concept of B-connectedness (in a
graph G where B ⊆ Pn(G)) in digital topology, we focus on a particular graph G on
the digital plane Z2 and certain sets of walks of the same lengths in the graph. We will
show that this graph allows for a digital analogue of the Jordan curve theorem. To this
end, we define:

Definition 3.5. Let G be a graph on Z2 and B ⊆ Pn(G). A finite B-connected subset
J ⊆ Z2 is called a B-Jordan curve in G if the following two conditions are satisfied:

(1) For every z ∈ J , there are precisely two elements of J adjacent to z.
(2) The induced subgraph Z2 − J of G has precisely two B-components

By the 2-adjacency graph on Z we understand the graph Z2 = (Z, A2) where A2 =
{{p, q}; p, q ∈ Z, |p− q| = 1}.

From now on, B will denote the walk set B ⊆ Pn(Z2) given as follows:
B = {(xi| i ≤ n) ∈ Pn(Z2); there is an odd number l ∈ Z such that xi = ln + i for all i ≤
n or xi = ln− i for all i ≤ n}.
Thus, the walks belonging to B are the arithmetic sequences (xi| i ≤ n) of integers with
the difference equal to 1 or −1 and with x0 = ln where l ∈ Z is an odd number (so that B
is a set of paths) - see the following figure where the walks belonging to B are represented
as arrows (oriented from the first to the last members of the sequences):

- - -� � �... ...

-3n -2n -n 0 n 2n 3n

It may easily be seen that Z is a B-connected set in Z2. For B ⊆ P1(Z2), the B-
connectedness coincide with the connectedness given by the Khalimsky topology on Z
generated by the subbase {{2k − 1, 2k, 2k + 1}; k ∈ Z} - cf. [5].

In the sequel, m will denote (similarly to n) a natural number with m > 0. Using results
of the previous section, we may propose new structures on the digital spaces convenient
for the study of digital images. Such a structure on Zm is obtained as the strong product
of m copies of the 2-adjacency graph on Z with the walk set given by the strong product of
m-copies of the walk set B. More formally, we may consider the graph Gm =

∏m
j=1 Gj on

Zm, where Gj is the 2-adjacency graph on Z for every j ∈ {1, 2, ...,m}, with the walk set
Bm ⊆ Pn(Gm) given by Bm =

∏m
j=1 Bj where Bj = B for every j ∈ {1, 2, ...,m} (note that

every walk from Bm is a path). Of course, G1 is the 2-adjacency graph on Z and G2 and
G3 coincide with the well known 8-adjacency graph on Z2 and 26-adjacency graph on Z3,
i.e., the graphs (Z2, A8) where A8 = {{(x1, y1), (x2, y2)}; (x1, y1), (x2, y2) ∈ Z2, max{|x1−
x2|, |y1−y2|} = 1} and (Z3, A26) where A26 = {{(x1, y1, z1), (x2, y2, z2)}; (x1, y1, z1), (x2, y2,
z2) ∈ Z3, max{|x1 − x2|, |y1 − y2|, |z1 − z2|} = 1}, respectively.

As an immediate consequence of Proposition 1 we get:

Theorem 3.1. Zm is a connected set in Gm.

In the case B ⊆ P1(Z2), the Bm-connectedness in the graph Gm (on Zm) coincides
with the connectedness in the Khalimsky topology on Zm and B2-Jordan curves in G2

coincide with the Jordan curves in the Khalimsky topology on Z2 introduced in [2]. The
connectedness in the Khalimsky topology (on Zm) coincides with the connectedness in
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FIGURE 1. A section of the connectedness graph of the Khalimsky topo-
logy on the digital plane.

the so-called connectedness graph of the topology. In Figure 1, the connectedness graph
of the Khalimsky topology on the digital plane Z2 is demonstrated.

Since the Khalimsky topology is well known, we will suppose that B ⊆ Pn(Z2) where
n > 1. Furthermore, we will restrict our considerations to m = 2 because this case is the
most important one with respect to possible applications in digital topology. Thus, we
will focus on the graph G2 with the walk set B2.

We denote by G(B2) the factor of the 8-adjacency graph on Z2 whose edges are those
{(x1, y1), (x2, y2)} ∈ A8 that satisfy one of the following four conditions for some k ∈ Z:
x1 − y1 = x2 − y2 = 2kn,
x1 − y1 = x2 − y2 = 2kn,
x1 = x2 = 2kn,
y1 = y2 = 2kn.
A section of the graph G(B2) is demonstrated in Figure 2 where only the vertices (2kn, 2ln),
k, l ∈ Z, are marked out (by bold dots) and thus, on every edge drawn between two such
vertices, there are 2n − 1 more (non-displayed) vertices, so that the edges represent 2n
edges in the graph G(B2). Clearly, every circle C in G(B2) is a B2-connected set in G2

because it is a B2-circle in G2. Indeed, C consists (i.e., is the union) of a finite sequence
of paths in B2, hence B2-initial segments, such that every two consecutive paths have a
point in common.
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FIGURE 2. A section of the graph G(B2).
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Definition 3.6. A circle J in the graph G(B2) is said to be n-fundamental if, whenever
((2k + 1)n, (2l + 1)n) ∈ J for some k, l ∈ Z, one of the following two conditions is true:
{((2k + 1)n− 1, (2l + 1)n− 1), (2k + 1)n+ 1, (2l + 1)n+ 1))} ⊆ J ,
{((2k + 1)n− 1, (2l + 1)n+ 1), (2k + 1)n+ 1, (2l + 1)n− 1))} ⊆ J .

The n-fundamental circles are just the circles in the graph demonstrated in Figure 2 that
turn only at (some of) the vertices marked out by the bold dots.

Theorem 3.2. If J is an n-fundamental circle in the graph G(B2), then J is a B2-Jordan curve in
G(B2) such that one B2-component of the induced subgraph Z2 − J of G(B2) is finite, the other
one is infinite, and the union of any of them with J is a B2-connected set in G(B2).

Proof. Let J be an n-fundamental circle in G(B2). It is evident that the condition (1) in
Definition 3.1 is satisfied. For every point z = ((2k + 1)n, (2l + 1)n), k, l ∈ Z, each of the
following four subsets of Z2 is called an n-fundamental triangle (given by z):
{(r, s) ∈ Z2; 2kn ≤ r ≤ (2k + 2)n, 2ln ≤ s ≤ (2l + 2)n, y ≤ x+ 2ln− 2kn},
{(r, s) ∈ Z2; 2kn ≤ r ≤ (2k + 2)n, 2ln ≤ s ≤ (2l + 2)n, y ≥ 4ln+ 2kn− x},
{(r, s) ∈ Z2; 2kn ≤ r ≤ (2k + 2)n, 2ln ≤ s ≤ (2l + 2)n, y ≥ x+ 2ln− 2kn},
{(r, s) ∈ Z2; 2kn ≤ r ≤ (2k + 2)n, 2ln ≤ s ≤ (2l + 2)n, y ≤ 4ln+ 2kn− x}.
The points of any n-fundamental triangle form a segment of the shape of a (digital) rec-
tangular triangle. Obviously, in each of the four n-fundamental triangles given by z, z
is the middle point of the hypotenuse of the triangle. Every line segment constituting
an edge of any of the four triangles represents precisely 2n + 1 points forming the cor-
responding edge of the corresponding n-fundamental triangle. Clearly, the edges of any
n-fundamental triangle form a circle in the graph G(B2), hence a B2-circle in G2. The four
types of 2-fundamental triangles are demonstrated in Figure 3.

We will show that every n-fundamental triangle is B2-connected in G2 and so is also
every set obtained from an n-fundamental triangle by subtracting some of its edges. Let
z = ((2k + 1)n, (2l + 1)n), k, l ∈ Z, be a point and consider the n-fundamental triangle
T = {(r, s) ∈ Z2; 2kn ≤ r ≤ (2k + 2)n, 2ln ≤ s ≤ (2l + 2)n, y ≤ x + 2ln − 2kn}. Then
T is the (digital) triangle ABC with the vertices A = (2kn, 2ln), B = ((2k + 2)n, 2ln),
C = ((2k + 2)n, (2l + 2)n). For every u ∈ Z, (2k + 1)n ≤ u ≤ (2k + 2)n, the sequence
Gu = ((u, y)| 2ln ≤ y ≤ u + 2(l − k)n) is a B2-path in G2 (contained in T ), so that
Gu is a B2-connected set. Similarly, for every v ∈ Z, 2ln ≤ v ≤ (2l + 1)n, the sequence
Hv = ((x, v)| v+2(k−l)n ≤ x ≤ (2k+2)n) is a B2-path in G2 (contained in T ), so that Hv is
a B2-connected set. We clearly have T =

⋃
{Gu; (2k+1)n ≤ u ≤ (2k+2)n}∪

⋃
{Hv; 2ln ≤

v ≤ (2l+1)n}. It may easily be seen that Gu∩Hv 6= ∅whenever (2k+1)n ≤ u ≤ (2k+2)n
and 2ln ≤ v ≤ (2l + 1)n. For every natural number i < 2n+ 2, we put

Si =

{
G(2k+1)n+ i

2
if i is even,

H2ln+ i−1
2

if i is odd.

Then (Si| i < 2n + 2) is a sequence with the property that its members with even indices
form the sequence (Gu| (2k + 1)n ≤ u ≤ (2k + 2)n) and those with odd indices form the
sequence (Hv| 2ln ≤ v ≤ (2l + 1)n). Hence,

⋃
{Si| i < 2n + 2} =

⋃
{Gu; (2k + 1)n ≤

u ≤ (2k + 2)n} ∪
⋃
{Hv; 2ln ≤ v ≤ (2l + 1)n} and every pair of consecutive members of

(Si| i < 2n + 2) has a non-empty intersection. Thus, since T =
⋃
{Si| i < 2n + 2}, T is

B2-connected. For each of the other three n-fundamental triangles given by z, the proof
is analogous, and the same is true also for every set obtained from an n-fundamental
triangle (given by z) by subtracting some of its edges.

We will say that a (finite or infinite) sequence S of n-fundamental triangles is a tiling
sequence if the members of S are pairwise different and every member of S, excluding
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the first one, has an edge in common with at least one of its predecessors. Given a tiling
sequence S of n-fundamental triangles, we denote by S′ the sequence obtained from S by
subtracting, from every member of the sequence, all its edges that are not shared with any
other member of the sequence. By the firs part of the proof, for every tiling sequence S
of n-fundamental triangles, the set

⋃
{T ; T ∈ S} is B2-connected and the same is true for

the set
⋃
{T ; T ∈ S′}.

Let J be an n-fundamental circle in the graph G(B2). Then J constitutes the border of a
polygon SF ⊆ Z2 consisting of n-fundamental triangles. More precisely, SF is the union
of some n-fundamental triangles such that any pair of them is disjoint or meets in just
one edge in common. Let U be a tiling sequence of the n-fundamental triangles contained
in SF . Since SF is finite, U is finite, too, and we have SF =

⋃
{T ; T ∈ U}. As every

n-fundamental triangle T ∈ U is B2-connected, so is SF . Similarly, U ′ is a finite sequence
with SF − J =

⋃
{T ; T ∈ U ′} and, since every member of U ′ is connected (by the first

part of the proof), SF − J is connected, too.
Further, let V be a tiling sequence of n-fundamental triangles which are not contained in
SF . Since the complement of SF in Z2 is infinite, V is infinite, too. Put SI =

⋃
{T ; T ∈ V }.

As every n-fundamental triangle T ∈ V is B2-connected, so is SI . Similarly, V ′ is a finite
sequence with SI − J =

⋃
{T ; T ∈ V ′} and, since every member of V ′ is connected (by

the first part of the proof), SI − J is connected, too.
It may easily be seen that every B2-walk C = (zi| i ≤ k), k > 0 a natural number, in the
8-adjacency graph G2 on Z2 connecting a point of SF − J with a point of SI − J meets
J (i.e., meets an edge of an n-fundamental triangle which is contained in J). Therefore,
the set Z2 − J = (SF − J) ∪ (SI − J) is not B2-connected in (Z2, uB2). We have shown
that SF − J and SI − J are B2-components of the induced subgraph Z2 − J of G(B2), so
that the condition (2) in Definition 3.1 is satisfied. Thus, J is a B2-Jordan curve in G(B2).
Clearly, SF −J is finite, SI−J is infinite, and both SF and SI are B2-connected. The proof
is completed. �
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FIGURE 3. The four types of 2-fundamental triangles.

The following example illustrates the results attained and shows their possible appli-
cations in digital image processing.

Example 3.1. Consider the following (digital picture of a) triangle:

r r r r r r r r rr rr rr rr

(0,0)=A B C D=(8,0)

E =(4,4)
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The triangle is a 2-fundamental circle in G(B2), hence a B2-Jordan curve in G(B2) by
Theorem 3.2. But, for B ⊆ P1(Z2), the triangle is not a B2-Jordan curve in G(B2) because
it does not satisfy the condition (1) in Definition 3.1. In other words, the triangle is not a
Jordan curve in the Khalimsky topology on Z2 (because Jordan curves in the Khalimsky
topology on Z2 may never turn at the acute angle π

4 ). In order that this triangle be a Jordan
curve in the Khalimsky topology on Z2, we have to delete the points A,B,C and D. But this
will lead to a substantial deformation of the triangle.

4. CONCLUSION AND FUTURE WORK

We introduced and studied a connectedness in simple graphs induced by sets of walks
of the same lengths. We discussed a graph on the digital plane Z2 with certain sets of
walks of the same lengths and showed that the connectedness induced by any of these sets
of walks allows for a digital analogue of the Jordan curve theorem. We even demonstrated
that, for the considered sets of walks of the same lengths greater than 1, the connectedness
provides a richer variety of Jordan curves than the Khalimsky topology on the digital
plane. Since Jordan curves represent boundaries of objects in digital images, this result
indicates that the graph introduced provides a convenient structure on the digital plane Z2

for solving the problems of digital image processing that are closely related to boundaries
such as pattern recognition, boundary detection, contour filling, etc.

The graph discussed is obtained as the strong product of two copies of the 2-adjacency
graph on the digital line Z with a certain set of walks. It would be a natural continuation
of our investigations to study graphs (with walk sets) that are obtained as strong products
on m copies of the 2-adjacency graph for an arbitrary natural number m > 2. But such
general investigations would be quite laborious and, therefore, in the forthcoming rese-
arch, we will start with the most simple and applicable case of m = 3. Our goal will be to
show that the walk set in the graph on the digital plane Z3 obtained as the strong product
of three copies of the 2-adjacency graph on the digital line Z induces a connectedness that
satisfies the Jordan-Brouwer theorem (i.e., the 3-dimensional analogue of the Jordan curve
theorem).
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[11] Šlapal, J., Topological structuring of the digital plane, Discr. Math. Theoret. Comput. Sci., 15 (2013), 165–176



236 Josef Šlapal
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