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ABSTRACT
This paper gives simple tree-based conditions under which regular-
controlled context-free grammars generate context-free languages of finite
index, so they cannot even generate all context-free languages. It defines
the notion of path-changing derivation step which corresponds to per-
forming two consecutive rewritings of nonterminal symbols present in the
different branches of the derivation tree. It proves that if there exists a cer-
tain constant that limits the number of path-changing derivation steps,
then, the regular-controlled grammar generates a context-free language of
finite index. At the end, we generalize achieved result and provide some
open problems for future study.
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1. Introduction

The theory of formal languages has always struggled to establish conditions under which some gram-
mars decrease their power so they characterize a well-known language family, properly contained in
the language family generated by unrestricted versions of these grammars. This struggle comes as no
surprise because conditions like this often significantly simplify proofs that some languages aremem-
bers of the well-known language family in question. For instance, consider the famous workspace
theorem for general grammars, which fulfils a crucially important role in the grammatically oriented
theory of formal languages as a whole (see Theorem III.10.1 in [14]). This theorem represents a pow-
erful tool to demonstrate that if a general grammar H generates each of its sentences by a derivation
satisfying a prescribed condition (specifically, this condition requires that there is a positive integer k
such thatH generates every sentence y in the generated language L(H) by a derivation in which every
sentential form x satisfies |x| ≤ k|y|), then L(H) is a member of the context-sensitive language fam-
ily. As a result, establishing conditions of this kind really represents a long-lasting and useful trend in
formal language theory.

The present paper contributes to this trend by establishing conditions in terms of context-free
grammars with derivations controlled by regular languages so the resulting conditions allow us to
demonstrate that a language is amember of the family of context-free languages of finite index. To give
an insight into this result, recall that context-free grammars whose derivations are controlled by reg-
ular languages [7] are stronger than their ordinary uncontrolled versions. In fact, regular-controlled
grammars (described in Definition 3.8) are as powerful as matrix grammars – that is, they gen-
erate the family of matrix languages [10]. Surprisingly, the present paper demonstrates that under
some very natural and simple conditions placed upon their derivation trees, this power significantly
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lessens. As a matter of fact, under the conditions, they generate only a certain subfamily of the family
of context-free languages – context-free languages of finite index.

To give an insight into the tree-based conditions, consider a context-free grammar G with the
following rules;

A→ BC, B→ X, C→ Y

and the next derivation

A⇒ BC⇒ XC⇒ XY .

Let us look at the process of the derivation from the perspective of the derivation tree. During the first
step, a branching node is introduced. Then, the derivation continues into the left branch. However,
the last derivation step takes place within the different branch; which is the right one. We call this
phenomenon path-change and discuss it in the terms of regular-controlled grammars.

In essence, we put restrictions on the number of path-changing derivation steps. It is proved that
the language generated by a regular-controlled grammar is context-free of index k if there is a constant
k such that every sentencew in the generated language is the frontier of a derivation tree correspond-
ing to some derivation within which there were k or fewer path-changing derivation steps. Of course,
this k is an upper bound and the minimal index is possibly lower.

Since the tree-based restrictions are independent of the control mechanism, the achieved result
holds for well-known matrix grammars [1] as well.

The paper is organized as follows. First, Sections 2 and 3 give all the necessary terminology.
Then, Section 4 establishes the main result of this paper concerning regular-controlled grammars.
Finally, we generalize the result for other types of grammars and state some open problem areas for
the future study.

2. Preliminaries

We assume that the reader is familiar with discrete mathematics, including graph theory [2, 4, 5] as
well as formal language theory [9, 12, 14].

A directed graph G is a pair G = (V ,E), where V is a finite set of nodes, and E ⊆ V × V is a finite
set of edges. For a node v ∈ V , the number of edges of the form (x, v) ∈ E, x ∈ V , is called an in-degree
of v and denoted by in-d(v). For a node v ∈ V , the number of edges of the form (v, x) ∈ E, x ∈ V ,
is called an out-degree of v and denoted by out-d(v). Let (v0, v1, . . . , vn) be an n-tuple of nodes, for
some n ≥ 0, where vi ∈ V , for 0 ≤ i ≤ n, and there exists an edge (vk, vk+1) ∈ E, for every pair of
nodes vk,vk+1, where 0 ≤ k ≤ n− 1, then, we call it a sequence of the length n. Let (v0, v1, . . . , vn) be
a sequence of the length n, for some n ≥ 0, where vi �= vj, for 0 ≤ i ≤ n, 0 ≤ j ≤ n, i �= j, then, we
call the sequence a path. Let (v0, v1, . . . , vn) be a path inG, for some n ≥ 0, except that v0 = vn, then,
we call it a cycle. A graph G is acyclic iff it contains no cycle.

For a setW, card(W) denotes its cardinality. An alphabet is a finite nonempty set – elements are
called symbols. LetV be an alphabet.V∗ is the set of all strings overV. Algebraically,V∗ represents the
freemonoid generated byV under the operation of concatenation. The identity ofV∗ is denoted by ε.
SetV+ = V∗ − {ε}. Algebraically,V+ is thus the free semigroup generated byV under the operation
of concatenation. For w ∈ V∗, a ∈ V , and A ⊆ V , |w| denotes the length of w, #a(w) denotes the
number of occurrences of the symbol a in w, and #A(w) denotes the number of occurrences of the symbols
from A in w. The alphabet of w, denoted by alph(w), is the set of symbols appearing in w. For u, v ∈
V∗, •(u, v) denotes the shuffle of the strings u and v and is defined as •(u, v) = u1v1u2v2 · · · ukvk,
ui, vi ∈ V∗, 1 ≤ i ≤ k, for some k ≥ 0, where u1u2 · · · uk = u and v1v2 · · · vk = v.

Let⇒ be a relation over V∗. Define the ith power of⇒ as⇒i, for i ≥ 0. The transitive and the
transitive-reflexive closure of⇒ are denoted by⇒+ and⇒∗, respectively. Unless we explicitly stated
otherwise, we write x ⇒ y instead of (x, y) ∈⇒ throughout.
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The families of regular, context-free and context-sensitive languages are denoted by REG, CF and
CS, respectively. Later we define REG and CF.

3. Definitions and examples

Definition 3.1: An (oriented) tree is a directed acyclic graph G = (V ,E), with a specified node R ∈
V called the root such that in-d(R) = 0, and for all x ∈ V − {R}, in-d(x) = 1 and there exists a path
(v0, v1, . . . , vn), where v0 = R, vn = x, for some n ≥ 1. For v, u ∈ V , where (v, u) ∈ E, v is called a
parent of u, u is called a child of v, respectively. For v, u, z ∈ V , where (v, u), (v, z) ∈ E, u is called a
sibling of z. A node without any children is called a leaf.

Let G = (V ,E) be a tree. Define a partial order relation < over V as follows. For a path α =
(m0,m1, . . . ,mk), where m0 = R, mi < mk, 0 ≤ i ≤ k− 1. Then, mi is called a predecessor of mk
and mk is called a descendant of mi. Let x, y, and z be three nodes. If x< y and x< z, we call x a
common predecessor of y and z.

An ordered tree t is a tree, where for every set of siblings there exists a linear ordering. Let o has
the children n1, n2, . . . , nr ordered in this way, where r ≥ 1. Then, n1 is the leftmost child of o, nr
is the rightmost child of o and ni is the direct left sibling of ni+1, ni+1 is the direct right sibling of ni,
1 ≤ i ≤ r − 1, and for 1 ≤ j < k ≤ r, nj is a left sibling of nk and nk is a right sibling of nj.

An ordered tree is called labelled, if there exists a set of labels L and a total mapping l : V → L.
Let t be a labelled ordered tree, then the string of labels of all leaves written in the left-to-right order
is called the frontier of t and denoted by frontier(t). In what follows, we substitute a node of a tree by
its label if there is no risk of confusion.

Definition 3.2: A finite automaton (an FA for short) is a quintuple M = (Q, �, R, s, F), where
Q is a finite set of states, � is an input alphabet, where Q ∩� = ∅, R ⊆ Q× (� ∪ {ε})× Q
is a finite relation, called the set of transitions, s ∈ Q is the initial state, F ⊆ Q is the set of
final states.

Instead of (p, a, q) ∈ R, we write pa→ q ∈ R. A configuration of M is any word from Q�∗. The
relation of a direct move, denoted by , is defined over Q�∗ as follows: if pax, qx ∈ Q�∗, and pa→
q ∈ R, then pax  qx inM.

Let k, ∗, and + denote the kth power of , for some k ≥ 0, the reflexive and transitive closure
of, and the transitive closure of, respectively. The language accepted byM is denoted by L(M) and
defined as

L(M) = {w ∈ �∗ | sw ∗ f , f ∈ F}.

As it is well known, the family of finite automata describes REG (see [8]).

Definition 3.3: A context-free grammar (a CFG for short)G is a quadrupleG = (N,T,P, S), whereN
is an alphabet of nonterminals, T is an alphabet of terminals such thatN ∩ T = ∅, P ⊆ N × (N ∪ T)∗
is a finite set of rules, and S ∈ N is the start symbol. Instead of p : (A, x) ∈ P, where p is a unique label,
we write p : A→ x. If no confusion arises, a rule and its label are interchangeable.

For every u, v ∈ (N ∪ T)∗ and p : A→ x ∈ P,⇒ is the direct derivation relation over (N ∪ T)∗
and we write uAv ⇒ uxv[p] or simply uAv ⇒ uxv. For n ≥ 0, ⇒n denotes the nth power of ⇒.
Furthermore,⇒+ and⇒∗ denote the transitive and the transitive-reflexive closure of⇒, respectively.
Let F (G) = {w ∈ (N ∪ T)∗ | S⇒∗ w} denote the set of all sentential forms of G. The language of G
is L(G) = {w ∈ T∗ | w ∈ F (G)}. CF = {L(G) | G is CFG}.

G is propagating if A→ x ∈ P implies x �= ε or A= S and S does not occur on the right-hand side
of any rule in P, if ε ∈ L(G).

Propagating CFGs characterize CF as well [12].
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150 A. MEDUNA ET AL.

G is said to be in the binary form if any p ∈ P has one of these forms,

A→ BC, A→ x

where A,B,C ∈ N, x ∈ (N ∪ T)∗, and #N(x) ≤ 1. It can be easily shown that for any context-free
grammar G there exists a context-free grammar G′ in the binary form such that L(G) = L(G′). The
proof is similar to the one that is used for constructing an equivalent Chomsky normal form grammar
[3] to a context-free grammar.

G is of index k if for every w ∈ L(G) there exists a derivation

x0 ⇒ x1 ⇒ x2 ⇒ · · · ⇒ xn ⇒ w,

where x0 = S and #N(xi) ≤ k, for all 0 ≤ i ≤ n, for some n ≥ 0. L is a context-free language of index
k if there exists a context-free grammar G of index k, where L(G) = L. The family of all context-free
languages of index k generated by context-free grammars of index k is denoted by kCF. It was proved
that families of context-free languages of finite index form an infinite hierarchy of language families
above regular languages

REG ⊂ 1CF ⊂ 2CF ⊂ 3CF ⊂ · · · ⊂ ∞CF = CF.

Indeed, 1CF denotes the family of linear languages – and there are also context-free languages of an
infinite index (for details see [6, 11, 13]).

Definition 3.4: Let t be a labelled ordered tree. A left-bracketed representation of t denoted by l-rep(t)
can be obtained by applying the following recursive rules:

(1) If t has a root labelled R with subtrees t1, . . . , tk ordered in this way, then l-rep(t) =
R〈l-rep(t1), . . . , l-rep(tk)〉.

(2) If t has a root labelled R with no direct descendants, then l-rep(t) = R.

Definition 3.5: Let G = (N,T,P, S) be a CFG in the binary form.

(1) For p : A→ x ∈ P, A〈x〉 is the rule tree that represents p.
(2) The derivation trees representing derivations in G are defined recursively as follows:

(a) One-node tree with a node labelled X is the derivation tree corresponding to X ⇒0 X in G,
where X ∈ (N ∪ T). Recall that if X = ε, we refer to the node labelled X as ε-node (ε-leaf );
otherwise, we call it non-ε-node (non-ε-leaf ).

(b) Let d be the derivation tree representing X ⇒∗ uAv[ρ] with frontier(d) = uAv, and let p :
A→ x ∈ P. The derivation tree that represents

X ⇒∗ uAv[ρ]⇒ uxv[p]

is obtained by replacing the ith non-ε-leaf in d labelled A, with rule tree corresponding to
p, denoted A〈x〉, where i = |uA|.

(3) A derivation tree in G is any tree t for which there is a derivation represented by t (see item (2)
in this definition).

For any A⇒∗ x [ρ] in G, where A ∈ N, x ∈ V∗, and ρ ∈ P∗, G�(A⇒∗ x[ρ]) denotes the deriva-
tion tree corresponding to A⇒∗ x[ρ]. Just like we often write A⇒∗ x instead of A⇒∗ x [ρ], we
sometimes simplify G�(A⇒∗ x [ρ]) to G�(A⇒∗ x) if there is no risk of confusion. Let G� denote
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the set of all derivation trees in G. Finally, by G�x ∈ G�, we mean a derivation tree whose frontier is
x, where x ∈ F (G).

If a node is labelled with a terminal, it is called a terminal node. If a node is labelled with a nonter-
minal, it is called a nonterminal node. If a leaf node is labelled by ε, it is called an ε-node and denotes
an erasion of a nonterminal. If a node has more than one nonterminal child, it is called a branching
node; otherwise, it is a non-branching node.

Consider a derivation in G of length n ≥ 2, S⇒n w. If the derivation is performed as

S⇒n−2 uAv ⇒ uxByv ⇒ uxzyv,

where uxzyv=w, for some u, v,w, x, y, z ∈ (N ∪ T)∗ and A,B ∈ N, we call the nth step of the
derivation path-preserving – indeed, in a resulting derivation tree the nodes corresponding to
consecutively rewritten nonterminals A and B belong to the same path from R. Otherwise, the
derivation step is path-changing. By definition, the initial derivation step of any derivation is always
path-preserving.

Example 3.6: Let G = ({S,A,B}, {a, b, c, d, e, f },P, S) be a CFG with

P = {1 : S→ aSb, 2 : S→ AB,

3 : A→ cAd, 4 : A→ ε,

5 : B→ eBf , 6 : B→ ε}.

Obviously, L(G) = {an1cn2dn2en3 f n3bn1 | n1, n2, n3 ≥ 0} which is nonlinear context-free language of
index 2. Consider the following derivation:

S⇒ aSb⇒ aABb⇒ acAdBb⇒ acAdeBfb⇒ acdeBfb⇒ acdefb [123546]

A graph representing G�(S⇒∗ acdefb[123546]) is illustrated in Figure 1. Solid lines denote the edges
of the tree, while the dashed lines denote the path of the derivation. If they overlap, the derivation
step is path-preserving; otherwise, it is path-changing. By the definition, the initial derivation step is
always path-preserving. Then, the graph demonstrates that there are precisely three path-changing
derivation steps in S⇒∗ acdefb[123546].

Definition 3.7: Amatrix grammar (MG for short) is a pair H = (G,M), where

• G = (N,T,P, S) is a context-free grammar;
• M is a finite language over the alphabet of rules (M ⊆ P∗).

Figure 1. G�(S⇒∗ acdefb [123546]).
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152 A. MEDUNA ET AL.

For x, y ∈ (N ∪ T)∗,m ∈ M,H performs a direct derivation step from x to y according to thematrix
m denoted by x⇒ y[m], if and only if there are x0, x1, . . . , xn such that x0 = x, xn = y, and

• x0 ⇒ x1[p1]⇒ x2[p2]⇒ · · · ⇒ xn[pn] in G, and
• m = p1p2 . . . pn, where pi ∈ P, 1 ≤ i ≤ n, for some n ≥ 1.

The transitive and reflexive closure is defined and denoted as usual. Then,

L (H) = {x ∈ T∗ | S⇒∗ x}

is the language generated by H. The family of languages generated by matrix grammars is called the
family of matrix languages and introduced in [1].

Definition 3.8: A regular-controlled grammar (an RCG for short)H is a pairH = (G,C), where core
grammar G = (N,T,P, S) is a context-free grammar and control language C ⊆ P∗ is a regular lan-
guage. If S⇒∗ w[α] in G and αβ ∈ C, for some α,β ∈ P∗, we put S⇒∗ w [α] in H or S⇒∗ w in H
for short. The language generated by H, denoted by L(H), is defined as

L(H) = {w ∈ T∗ | S⇒∗ w[α] in G,α ∈ C}.

We define the family of all regular-controlled languages, denoted by RC, as

RC = {L | L = L(H) and H is RCG}.

It was previously proved that CF ⊂ RC ⊂ CS—indeed, RC coincides with the family of matrix
languages [10].

Let us demonstrate the notion of regular-controlled grammars.

Example 3.9: Let H = (G,C) be an RCG with G = ({S,A,B}, {a, b},P, S), where

P = {1 : S→ AB,

2 : A→ aA, 3 : B→ aB,

4 : A→ bA, 5 : B→ bB,

6 : A→ a, 7 : B→ a,

8 : A→ b, 9 : B→ b}

and

C = 1{23, 45}∗{67, 89}.
Observe the control language. After applying the initial rule, there are always consecutive pairs of
rules 23 and 45 applied. Eventually, the derivation finishes with application of rules 67 or 89. Then,

L(H) = {ww | w ∈ {a, b}+},

which is the well-known non-context-free context-sensitive language.
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Example 3.10: Let H = (G,C) be an RCG with G = ({S,A,B}, {a, b, c, d},P, S), where

P = {1 : S→ aAcB,

2 : A→ aA, 3 : B→ cB,

4 : A→ bA, 5 : B→ dB,

6 : A→ b, 7 : B→ d}

and

C = 1{23}∗{45}∗67.
Observe the construction of H. By the control language, after the application of the initial rule, first,
zero or more consecutive applications of rules 23 are performed, second, zero or more consecutive
applications of rules 45 are performed. Finally, the derivation finishes by the rules 67. Then,

L(H) = {ambncmdn | m, n ≥ 1}

which is the well-known non-context-free context-sensitive language.

All the previous notation concerning CFGs and their derivation trees still applies for RCGs,
however, not every derivation of a core grammar is legal according to the control language.

Theorem 3.11: Let H = (G,C) be an arbitrary RCG. Then, there exists RCG H′ = (G′,C′) with
L(H) = L(H′), where G′ is in the binary form.

Proof: We introduce Algorithm 1 for conversion of RCG into a corresponding RCG in the binary
form and prove its correctness.

Claim 1: Algorithm 1 is correct.

Proof: Basic idea. The initial steps 1 through 8 construct a template for the resulting grammar.
During 9 through 24 every rule which does not satisfy binary form is decomposed and replaced

by three new rules. The first and the second rule is in the binary form. If the third rule does not
satisfy the binary form, it enters the following iterative process, however, with shorter right-hand
side than the replaced one; this ensures the finiteness of the procedure. Additionally, a new homo-
morphism is introduced to substitute the replaced rule in the control language with the sequence of
newly introduced rules. This iterative process finally defines a finite hierarchy of homomorphisms.

Since REG is closed under homomorphism (see [14]), in the last 25th step of the algorithm a new
control language is established by application of the defined homomorphisms. The complete rigorous
proof is left to the reader. �

Since for any RCG H we can construct RCG H′ in the binary form, where L(H) = L(H′), the
Theorem 3.11 holds. �

For any RCG H = (G,C), where G is in the binary form, we say that H is in the binary form. In
what follows, unless explicitly stated otherwise, we automatically assume that every RCG is in the
binary form.
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154 A. MEDUNA ET AL.

Algorithm 1 Conversion of RCG into the binary form
Input: An arbitrary RCG H = (G,C), G = (N,T,P, S).
Output: RCG H′ in the binary form with L(H′) = L(H).
1: Construct H′ = (G′,C′), G′ = (N′,T,P′, S); C′ = P′ = ∅, N′ = N.
2: for all r ∈ P do
3: if r satisfies the binary form then
4: P′ ← P′ ∪ {r}
5: P← P − {r}
6: end if
7: end for
8: i← 0
9: while there exists r : A→ w ∈ P do
10: for uXv = w and alph(u) ∩ N = ∅ and X ∈ N do
11: N′ ← 〈uX〉, 〈v〉
12: P′ ← P′ ∪ {r1 : A→ 〈uX〉〈v〉, r2 : 〈uX〉 → uX}
13: if 〈v〉 → v satisfies the binary form then
14: P′ ← P′ ∪ {r3 : 〈v〉 → v}
15: else
16: P← P ∪ {r3 : 〈v〉 → v}
17: end if
18: end for
19: Define a new homomorphism hi over P ∪ P′:
20: hi(x) = r1r2r3, for x = r;
21: hi(x) = x, otherwise.
22: P← P − {r}
23: i← i+ 1
24: end while // P = ∅
25: C′ ← {w | w = hi(hi−1(· · · h1(h0(x)) · · · )), x ∈ C}

Example 3.12: Let H = (G,C) be an RCG with G from Example 3.6 and

C = {1}∗{2}{3}∗{4}{5}∗{6}.
Obviously, G is in the binary form. Even though L(H) = L(G), the derivation S⇒∗ acdefb [123546]
from Example 3.6 is not legal in H, since 123546 /∈ C. However, 123456 ∈ C and, thus,

S⇒ aSb⇒ aABb⇒ acAdBb⇒ acdBb⇒ acdeBfb⇒ acdefb[123456]

in H. A graph representing G�(S⇒∗ acdefb[123456]) is illustrated in Figure 2.

Figure 2. G�(S⇒∗ acdefb [123456]).
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Notice that there is only one path-changing derivation step despite the grammar is clearly of index
2. Indeed, a grammar with only linear rules is obviously of index 1 and no path-changing derivation
steps occur in its derivations. For a grammar in the binary form the index as well as theminimal num-
ber of path-changing derivation steps increase by one for every branching derivation step, because
every branch must be ones terminated in a successful derivation. Therefore, if there is a constant k
limiting the number of path-changes, the index of a grammar is at most k+1.

4. Results

In the present section, we establish the main result of the study.

Theorem 4.1: If there is a constant k ≥ 0 and a regular-controlled grammar H in binary form such
that, for every w ∈ L(H), there exist a derivation of w in H with at most k path-changing derivation
steps, then L(H) is a context-free language, and moreover, it is of index k+1.

An RCG satisfying restriction from Theorem 4.1 is said to be k-restricted.

Proof: Let H = (G,C), G = (N,T,P, S), be an RCG in the binary form such that L(H) = L and let
k ≥ 0 be a constant such that for every x ∈ L(H), there exists a derivation S⇒∗ x inH with k or fewer
path-changing derivation steps.

Preliminary transformation. Construct H = (G,C), G = (N,T,P, S), as follows. Initially, set C =
∅, N = N, and P = {r | r : A→ w ∈ P, #N(w) = 1}. Define the new homomorphism h over P as
h(x) = x, for all x ∈ P. For every rule r : A→ BC ∈ P, where A,B,C ∈ N, add new nonterminal 〈r〉
to N and two new rules

r1 : A→ 〈r〉C, r2 : 〈r〉 → B

to P and redefine h so that h(r) = r1r2. For every rule r : A→ w ∈ P, where A ∈ N and w ∈ T∗, add
new nonterminal 〈r〉 to N and two new rules

r1 : A→ 〈r〉, r2 : 〈r〉 → w

to P and redefine h so that h(r) = r1r2. Finally set C = h(C).

Claim 2: L(H) = L(H).

Proof: Since H is constructed so that every rule of the form r : A→ BC or r : A→ w is substituted
by two always consecutively applied rules r1 : A→ 〈r〉C and r2 : 〈r〉 → B or r1 : A→ 〈r〉 and r2 :
〈r〉 → w, respectively, working equally, it is obvious that the claim holds. �

Moreover, the preliminary transformation does not add any new branching and, thus, preserves k
as a valid limit of path-changes.

The previous transformation aims to simplify the next construction proof.We avoid path-changes
during branching and directly before leafs. Additionally, after every branching the derivation always
continues with the left child node.

Construction. LetM = (Q,P,R, s, F) be a finite automaton such that L(M) = C. Set

Q≤k =
k⋃

i=0
Qi,N = {〈A|q|r|s|t|f 〉 | A ∈ N; q ∈ Q; r, s, t ∈ Q≤k; f ∈ F ∪ {ε}},

N′ = {〈A|q|r|s|t|f 〉 | A ∈ N; q ∈ Q; r, s, t ∈ Q≤k,

f ∈ F ∪ {ε}} ∪ {〈S′|s|ε|ε|ε|ε〉} ∪ N,

where S′ /∈ N. Construct a context-free grammar G′ = (N′,T,P′, 〈S′|s|ε|ε|ε|ε〉). Set P′ = ∅. Con-
struct P′ by performing (I) through (VI) given next.
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(I) For all x ∈ Q≤k and f ∈ F, add 〈S′|s|ε|ε|ε|ε〉 → 〈S|s|ε|ε|x|f 〉 to P′;
(II) for all r : A→ uBv ∈ P, qr  p ∈ R, x, y, z ∈ Q≤k, and f ∈ F ∪ {ε}, whereB ∈ N,uv ∈ T∗, add

(i) 〈A|q|x|y|z|f 〉 → u〈B|p|x|y|z|f 〉v,
(ii) 〈A|q|x|y|z|f 〉 → u〈B|p|x|y|z|f 〉v to P′;

(III) for all r : A→ uBv ∈ P, qr  p ∈ R, g ∈ Q, x, y, z ∈ Q≤k, and f ∈ F ∪ {ε}, where B ∈ N, uv ∈
T∗, add 〈A|g|gx|qy|z|f 〉 → u〈B|p|x|y|z|f 〉v to P′;

1. for all r : A→ w ∈ P and qr  p ∈ Q, where w ∈ T∗, add
(i) 〈A|q|p|ε|ε|ε〉 → w,
(ii) 〈A|q|p|ε|ε|ε〉 → w to P′;

(V) for all r : A→ w ∈ P and qr  f ∈ Q, where w ∈ T∗, f ∈ F, add
(i) 〈A|q|ε|ε|ε|f 〉 → w,
(ii) 〈A|q|ε|ε|ε|f 〉 → w to P′;

(VI) for all r : A→ BC ∈ P, qr  p ∈ R, B,C ∈ N, g ∈ Q, x1x2, y1y2, z1z2z3z4 ∈ Q≤k, f ∈ F ∪ {ε},
f1f2 = f , add
(i) 〈A|q| • (x1, x2)| • (y1, y2)|gz1z2z3z4|f 〉 → 〈B|p| • (x1, gz1)| • (y1, z2)|z3|f1〉〈C|g| •

(x2, z2)| • (y2, z1)|z4|f2〉,
(ii) 〈A|q| • (x1, x2)| • (y1, y2)|gz1z2z3z4|f 〉 → 〈B|p| • (x1, gz1)| • (y1, z2)|z3|f1〉〈C|g| •

(x2, z2)| • (y2, z1)|z4|f2〉,
(iii) 〈A|q| • (x1, x2)|g • (y1, y2)|z1z2z3z4|f 〉 → 〈B|p| • (x1, z1)| • (y1, z2)|z3|f1〉〈C|g| •

(x2, z2)| • (y2, z1)|z4|f2〉,
(iv) 〈A|q| • (x1, x2)|g • (y1, y2)|z1z2z3z4|f 〉 → 〈B|p| • (x1, z1)| • (y1, z2)|z3|f1〉〈C|g| •

(x2, z2)| • (y2, z1)|z4|f2〉 to P′.

Define the new morphism γ : (N′ ∪ T)∗ → (N ∪ T)∗ such that for 〈A|q|x|y|z|f 〉 ∈ N ′, γ (〈A|q|x|
y|z|f 〉) = A, γ (x) = x otherwise.

Basic idea. The context-free grammar G′ is designed to simulate the derivations of H. Since in
any derivation of H there are k or fewer path-changes, G′ nondeterministically decides about all the
path-changes during the initial derivation step. To satisfy the restrictions given by control language
C, the automatonM, L(M) = C, is encoded in the rules of G′. While performing linear derivations,
the consecutivity of states is ensured. When a new branching node is introduced, it is nondetermin-
istically decided about path-changes between both subtrees of the derivation tree which are encoded
in nonterminals and simulated by context-free rules.

Let us describe the composite nonterminal symbols in greater detail. For a symbol

〈A|q|x|y|z|f 〉

composed of symbol A, states q and f, and the stings of zero up to k states x, y, and z, we refer to
A, q, x, y, z, and f as a first, second, third, fourth, fifth, and sixth component, respectively. The first
component encodes nonterminal symbol itself, while the others encode states of the finite automaton
M with L(M) = C. The second component encodes the current state of M. The third component
holds the string of states from which there is a path-change underneath the current branch of the
derivation tree, while the fourth component holds the string of states into which there is a path-
change underneath the current branch of the derivation tree. The fifth component represents a string
of branching states, which are to be set as the branching ones during the rest of the derivation. Finally,
the sixth component encodes the final state ofM to be reached.

Let us informally describe six classes of the rules of G′:

(I) An initial rule of the form 〈S′|s|ε|ε|ε|ε〉 → 〈S|s|ε|ε|x|f 〉 rewriting the start symbol is applied
only once at the beginning of any derivation. It nondeterministically generates x – a string of all
states in which there is a path-change – and f – a final state ofM to be reached – which are then
saved in the fifth and sixth component of a nonterminal, respectively.
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(II) The rules of the form 〈A|q|x|y|z|f 〉 → u〈B|p|x|y|z|f 〉v simulate consecutive path-preserving lin-
ear derivations which are designed to follow transitions inM or path-changes into the right child
of a new branching node. The first component of a nonterminal represents nonterminal in G,
while the second represents a state ofM.

(III) The rules of the form 〈A|g|gx|qy|z|f 〉 → u〈B|p|x|y|z|f 〉v represent path-changes. Since the third
component of a nonterminal represents a string of states in which the path-changes out of the
subtree of the current node occur, a path-change may be performed only when the first symbol
corresponds to the current state ofM. The fourth component represent a string of states in which
the path-changes into the subtree of the current node occur. Since there is a path-change out and
the node is not terminal, if the derivation is successful, there once follows a path-change back
simulated by the rule.
Notice that the rules (III) cannot rewrite noterminals from N generated by the rules (VI). They
simulate path-change out and the following path-change back at once which, however, does not
correspond to a path-change into the right subbranch of a new branching node.

(IV) The rules of the form 〈A|q|p|ε|ε|ε〉 → w act slightly similarly to (III), however, a new node is
terminal and M does not terminate yet, thus, a path-change out of the current branch must
be performed, but there is no path-change back. Additionally, all the previously nondetermin-
istically planned path-changes must be already done – the fourth and sixth component of a
nonterminal is empty and the third contains precisely one state.

(V) A rule of the form 〈A|q|ε|ε|ε|f 〉 → w terminates the current derivation with respect toM, there-
fore, there follows no path-change. In every successful derivation there is always exactly one such
rule applied.

(VI) The last class of the rules represents branching. Since G is in the binary form, every node has
at most two children. Moreover, by the preliminary transformation of H it is ensured that the
derivation follows by rewriting the left newly introduced nonterminal, thus, we do not consider
other cases (e.g. path-changing while branching). To terminate the right branch, theremust once
occur a path-change into it which is planned while branching. A path-change may lead from the
subtree of the left branch – (i)– (ii) – or is already planned – (iii)–(iv).
The third and fourth components of 〈A|q| • (x1, x2)| • (y1, y2)|z1z2z3z4|f 〉 are nondeterminis-
tically divided into newly introduced branches, but the mutual order of the states is preserved,
and some path-changes from the fifth componentmay be nondeterministically planned between
both new branches. Finally, if f ∈ F, it is decided into which branch it is put.

We note that there is a lot of rules or nonterminals which possibly do not occur in any successful
derivation. Moreover, a nondeterministic generation and distribution of path-changing states may
result into blocking of a derivation. As we prove next, this, however, does not change the language of
the grammar.

To clarify the construction part of the proof of Theorem 4.1, we provide Example A.8 in
Appendix 1.

Claim 3: If S⇒m w in H, where m ≥ 0 and w ∈ (N ∪ T)∗, then 〈S′|s|ε|ε|ε|ε〉 ⇒∗ w′ in G′, where
w′ ∈ (N′ ∪ T)∗ and γ (w′) = w.

Proof: We prove the statement by induction onm ≥ 0.
Basis Let m= 0. That is, S⇒0 S in H. Clearly, 〈S′|s|ε|ε|ε|ε〉 ⇒ 〈S|s|ε|ε|x|f 〉 in G′, where

γ (〈S|s|ε|ε|x|f 〉) = S, for some x ∈ Q≤k and f ∈ F, so the basis holds.
Induction Hypothesis Suppose that there exists n ≥ 0 such that Claim 3 holds for all m with 0 ≤

m ≤ n.
Induction StepLet S⇒n+1 w inH. Then, S⇒n v ⇒ w, where v ∈ (N ∪ T)∗, and there exists r ∈ P

such that v ⇒ w [r]. By the induction hypothesis, 〈S′|s|ε|ε|ε|ε〉 ⇒∗ v′, where γ (v′) = v, inG′. Next,
we consider the following five forms of r according to the construction of G′.
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(1) Let r : A→ u1Bu2 ∈ P, for some A,B ∈ N, u1, u2 ∈ T∗, and v ⇒ w [r] is a path-preserving
derivation step or a path-changing derivation step into a node with some sibling. By the con-
struction of G′, there exists a rule 〈A|q|x|y|z|f 〉 → u1〈B|p|x|y|z|f 〉u2 in P′, where qr  p ∈ R,
x, y, z ∈ Q≤k, and f ∈ F ∪ {ε}. Without any loss of generality, suppose q,x,y,z,f are correct. Then,
there exists a derivation

v′ ⇒ w′ [〈A|q|x|y|z|f 〉 → u1〈B|p|x|y|z|f 〉u2]
in G′, where γ (w′) = w.

(2) Let r : A→ u1Bu2 ∈ P, for some A,B ∈ N, u1, u2 ∈ T∗, and v ⇒ w[r] is a path-changing
derivation step into a node without siblings. By the construction of G′, there exists a rule
〈A|g|gx|qy|z|f 〉 → u1〈B|p|x|y|z|f 〉u2 in P′, where g ∈ Q, qr  p ∈ R, x, y, z ∈ Q≤k, and f ∈ F ∪
{ε}. Without any loss of generality, suppose g,q,x,y,z,f are correct. Then, there exists a derivation

v′ ⇒ w′ [〈A|g|gx|qy|z|f 〉 → u1〈B|p|x|y|z|f 〉u2]
in G′, where γ (w′) = w.

(3) Let r : A→ x ∈ P, for some A ∈ N, x ∈ T∗, and alph(w) ∩ N �= ∅. By the construction of G′,
there exists a rule 〈A|q|p|ε|ε|ε〉 → x in P′, where qr  p ∈ R. Without any loss of generality,
suppose q is correct. Then, there exists a derivation

v′ ⇒ w′ [〈A|q|p|ε|ε|ε〉 → x]

in G′, where γ (w′) = w.
(4) Let r : A→ x ∈ P, for some A ∈ N, x ∈ T∗, and w ∈ T∗. By the construction of G′, there exists

a rule 〈A|q|ε|ε|ε|f 〉 → x in P′, where qr  f ∈ R, f ∈ F. Without any loss of generality, suppose
q is correct. Then, there exists a derivation

v′ ⇒ w′ [〈A|q|ε|ε|ε|f 〉 → x]

in G′, where γ (w′) = w.
(5) Let r : A→ BC ∈ P, for some A,B,C ∈ N. By the construction of G′, there exists a rule
〈A|q|x1|y1|z1|f1〉 → 〈B|p|x2|y2|z2|f2〉〈C|g|x3|y3|z3|f3〉 in P′, where qr  p ∈ R, xi,yi,zi ∈ Q≤k,
fi ∈ F ∪ {ε}, and without any loss of generality, suppose q,g,xi,yi,zi,fi are correct, for 1 ≤ i ≤ 3.
Then, there exists a derivation

v′ ⇒ w′ [〈A|q|x1|y1|z1|f1〉 → 〈B|p|x2|y2|z2|f2〉〈C|g|x3|y3|z3|f3〉]
in G′, where γ (w′) = w.

We covered all possible forms of p, so the claim holds. �

Let us remark that assumption of correctness of nonterminals of G′ results from the fact that the
rules cover all possibilities—that is there is always a proper rule to be used.

Claim 4: Consider any w ∈ T∗, where w /∈ L(H). Then, w /∈ L(G′).

Proof: We prove this by contradiction.
Assumption. Suppose there exists w ∈ T∗, where w /∈ L(H) and w ∈ L(G′).

(1) First, suppose w /∈ L(G). That is, there exists a derivation

〈S′|s|ε|ε|ε|ε〉 ⇒ 〈S|s|ε|ε|x|f 〉 ⇒∗ u⇒ v [A→ X]⇒∗ w,
inG′, where γ (u) � γ (v) inG, for some u, v ∈ (N ′ ∪ T)∗, 〈S|s|ε|ε|x|f 〉 ∈ N′, andA→ X ∈ P′.
Then, γ (A)→ γ (X) /∈ P. However, since by the construction of G′ every non-initial rule A→
X ∈ P′ is introduced according to some γ (A)→ γ (X) ∈ P, this is a contradiction.
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(2) Second, suppose w ∈ L(G), however, for every derivation S⇒∗ w[d] in G, d /∈ C. In the terms
ofM, there is no derivation sd ∗ q, for any q ∈ Q, or sd  q and q /∈ F. Consider a derivation

〈S′|s|ε|ε|ε|ε〉 ⇒ 〈S|s|ε|ε|x|f 〉 ⇒∗ w,

in G′, for some 〈S|s|ε|ε|x|f 〉 ∈ N′, and a corresponding derivation S⇒∗ w [d] in G, for some
d ∈ R∗.
(a) Suppose there is no derivation sd ∗ q, for any q ∈ Q. Then, there exist u, v ∈ (N ′ ∪ T)∗

and 〈A|q|x|y|z|f 〉 → X ∈ P′, where

〈S′|s|ε|ε|ε|ε〉 ⇒ 〈S|s|ε|ε|x|f 〉 ⇒∗ u⇒ v[〈A|q|x|y|z|f 〉 → X]⇒∗ w,

in G′, and a corresponding derivation

S⇒∗ γ (u) [d1]⇒ γ (v) [r]⇒∗ w[d2]

in G, where d1rd2 = d, r : A→ γ (X) ∈ P, sd1 ∗ q, and there is no derivation sd1r ∗ q′,
for any q, q′ ∈ Q.
(i) Suppose γ (u)⇒ γ (v)[r] is a path-preserving derivation step. Then, 〈A|q|x|y|z|f 〉 →

X is from (II) or (sec(1)) through (VI) depending on X. By the construction of G′, the
rule 〈A|q|x|y|z|f 〉 → X is introduced according to a transition qr  p ∈ R, for some
p ∈ Q. Therefore, however, sd1r ∗ p inM, which is a contradiction.

(ii) Suppose γ (u)⇒ γ (v)[r] is a path-changing derivation step. The states in which the
path-changing derivation steps are always to be performed – represented by the string
x – are nondeterministically generated by the initial derivation step

〈S′|s|ε|ε|ε|ε〉 ⇒ 〈S|s|ε|ε|x|f 〉

in the fifth component of 〈S|s|ε|ε|x|f 〉. Therefore, q ∈ alph(x). However, before the
path-change can be simulated by G′, the state must get to the third and fourth com-
ponent of some nonterminals which can be done by the rule (VI) only. Then, by some
rule

〈A1|q1|x1|y1|z1|f1〉 → 〈A2|q2|x2|y2|z2|f2〉〈A3|q3|x3|y3|z3|f3〉 ∈ P′,

where #q(z1) ≥ #q(z2)+ #q(z3)+ 1,

〈S|s|ε|ε|x|f 〉 ⇒∗ u1〈A1|q1|x1|y1|z1|f1〉u2
⇒ u1〈A2|q2|x2|y2|z2|f2〉〈A3|q3|x3|y3|z3|f3〉u2,

for some u1, u2 ∈ (N′ ∪ T)∗. Therefore, q ∈ alph(x2) or q ∈ alph(x3) and since these
two cases are symmetric, without any loss of generality, let us consider only q ∈
alph(x2). Then, also q3 = q and

〈A3|q3|x3|y3|z3|f3〉 = 〈A3|q|x3|y3|z3|f3〉

or q ∈ alph(y3) and to once get rid of it

〈A3|q3|x3|y3|z3|f3〉 ⇒∗ w1〈A|g|gx|qy|z|f 〉w2

for some w1,w2 ∈ (N′ ∪ T)∗. Either 〈A3|q|x3|y3|z3|f3〉 or 〈A|q|x|y|z|f 〉 represents the
target of the path-change later denoted by Z. Additionally, G′ must once get rid of q in
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x2, otherwise, the derivation is not successful. Hence,

〈A2|q2|x2|y2|z2|f2〉 ⇒∗ v1Yv2,

where Y = 〈A4|q|qx4|y4|z4|f4〉which consequently allows an application of a rule (III)
erasing q, for some v1, v2 ∈ (N′ ∪ T)∗ and 〈A4|q|qx4|y4|z4|f4〉 ∈ N′, or Y ∈ T∗ and

〈A2|q2|x2|y2|z2|f2〉 ⇒∗ v1〈A′|q′|q|ε|ε|ε〉v2[〈A′|q′|q|ε|ε|ε〉 → Y]

⇒ v1Yv2,

for some 〈A′|q′|q|ε|ε|ε〉 → Y ∈ P′. Combining the previous observations and state-
ments, we get

〈S′|s|ε|ε|ε|ε〉 ⇒∗ u1v1Yv2w1Zw2u2.

Since G′ is a context-free grammar, without any loss of generality, we can suppose that
the derivation followsM—that is, sd1  q ∈ M. Then, the derivation

u1v1Yv2w1Zw2u2 ⇒ u1v1Yv2w1Xw2u2

represents a path-changing derivation step changing the path of the derivation from Y
to X. By the construction of G′, the rule 〈A|q|x|y|z|f 〉 → X or 〈A|g|gx|qy|z|f 〉 → X by
which the last derivation step is performed is introduced according to a transition qr 
p ∈ R, for some p ∈ Q. Therefore, however, sd1r ∗ p inM, which is a contradiction.

(d) Suppose sd ∗ q, where q ∈ Q− F. In every successful derivation of G′, there is precisely
one rule (V) applied – G′ must once get rid of f generated by the initial derivation step –
which represents final accepting transition ofM. SinceG′ is a context-free grammar, without
any loss of generality, we can consider an application of such rule is always performed at the
end of any successful derivation; this is also consistent withM and, thus, C. Then, however,
q ∈ F, which is a contradiction.

Since the assumption always results in contradiction, it is incorrect. �

ByClaim 3, if S⇒∗ w inH, then 〈S′|s|ε|ε|ε|ε〉 ⇒∗ w′ inG′, where γ (w′) = w. If S⇒∗ w inH and
w ∈ T∗, thenw ∈ L(H). Since γ (w′) = w′ = w, forw ∈ T∗,w′ ∈ L(G′). By Claim 4, L(G′)− L(H) =
∅. Therefore, L(H) = L(G′). By Claim 2 L(H) = L(H) and Theorem 4.1 holds. �

Corollary 4.2: Let L be a context-free language of an infinite index. Then, there exists no k-restricted
regular-controlled grammar H such that L(H) = L, for any 1 ≤ k <∞.

Corollary 4.3: A language L is context-free of index k if there is a constant k ≥ 1 and a propagating
regular-controlled grammar H in the binary form such that L = L(H) and for every x ∈ L(H), there
exists a derivation S⇒∗ x in H with k or fewer path-changing derivation steps.

We introduced the binary form of regular-controlled grammars to simplify the proof of
Theorem 4.1. Notice, however, it can be generalized for all k-restricted RCGs. A proof of the following
theorem is, thus, left to the reader.

Theorem 4.4: A language L is context-free of index k+1 if there is a constant k ≥ 0 and a regular-
controlled grammar H such that L = L(H) and for every x ∈ L(H), there exists a derivation S⇒∗ x in
H with k or fewer path-changing derivation steps.

The control mechanism of regular-controlled grammars influences the order in which the core
grammars apply their rules. However, the notion of path-change as well as the given restrictions are
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independent of this controlmechanism and are related only to the core grammars and their derivation
trees. Therefore, we can state the achieved result in a more general context.

Corollary 4.5: A language L is context-free of index k if there is a constant k ≥ 1 and a (propagating)
matrix grammar H such that L = L(H) and for every x ∈ L(H), there exists a derivation S⇒∗ x in H
with k or fewer path-changing derivation steps.

Notice that phrase structure grammars, parallel grammars, random context grammars, and other
regulated grammars generate their languages in various ways. This variety gives rise to the following
open problem.

Open Problem 4.6: How to naturally restrict derivation trees of other types of grammars? How they
influence their generative power?

Throughout the paper, we restrict the number of path-changes in a constant way. It is quite natural
to think about more general restriction.

Open Problem 4.7: Consider non-constant restriction of path-changes, such as functions over the
sentential form lengths. What is the generative power of regular-controlled grammars restricted in
this way?
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Appendix 1. Theorem 4.1 : Proof : construction: illustration
Example A.8: Consider RCGH = (G,C) from Example 3.12 and let k= 1. Recall G = ({S,A,B}, {a, b, c, d, e, f },P, S),
C = {1}∗{2}{3}∗{4}{5}∗{6}, and

P = {1 : S→ aSb, 2 : S→ AB,

3 : A→ cAd, 4 : A→ ε,

5 : B→ eBf , 6 : B→ ε}.

Construct H′ = (G,C) according to the preliminary transformation of the proof of Theorem 4.1 with G =
({S,A,B, 〈2〉, 〈4〉, 〈6〉}, {a, b, c, d, e, f },P, S),

P = {1 : S→ aSb, 21 : S→ 〈2〉B, 22 : 〈2〉 → A,

3 : A→ cAd, 41 : A→ 〈4〉, 42 : 〈4〉 → ε,

5 : B→ eBf , 61 : B→ 〈6〉, 62 : 〈6〉 → ε},

and C = {1}∗{21}{22}{3}∗{41}{42}{5}∗{61}{62}. Define an FA M = {{s, sq, q, qp, p, pf , f }, {1, 21, 22, 3, 41, 42, 5, 61, 62},
R, s, {f }} with

R = {s1  s, s21  sq, sq22  q,

q3  q, q41  qp, qp42  p,

p5  p, p61  pf , pf 62  f }.

Next, we define a CFG simulating H′, however, to make it as readable as possible, we list only essential nonter-
minals and rules; despite this example is quite simple, the grammar contains thousands of them, but only very
few nonterminals are reachable and terminating (see [9]) and very few rules applicable in any derivation. Define
G′ = (N′, {a, b, c, d, e, f },P′, 〈S′|s|ε|ε|ε|ε〉) with

N′ = {〈S′|s|ε|ε|ε|ε〉, 〈S|s|ε|ε|p|f 〉, 〈〈2〉|sq|p|ε|ε|ε〉, 〈B|p|ε|ε|ε|f 〉,
〈A|q|p|ε|ε|ε〉, 〈〈4〉|qp|p|ε|ε|ε〉, 〈〈6〉|pf |ε|ε|ε|f 〉}

P′ = {0̇ : 〈S′|s|ε|ε|ε|ε〉 → 〈S|s|ε|ε|p|f 〉,
1̇ : 〈S|s|ε|ε|p|f 〉 → a〈S|s|ε|ε|p|f 〉b,
2̇ : 〈S|s|ε|ε|p|f 〉 → 〈〈2〉|sq|p|ε|ε|ε〉〈B|p|ε|ε|ε|f 〉,
3̇ : 〈〈2〉|sq|p|ε|ε|ε〉 → 〈A|q|p|ε|ε|ε〉,
4̇ : 〈A|q|p|ε|ε|ε〉 → c〈A|q|p|ε|ε|ε〉d,
5̇ : 〈A|q|p|ε|ε|ε〉 → 〈〈4〉|qp|p|ε|ε|ε〉,
6̇ : 〈〈4〉|qp|p|ε|ε|ε〉 → ε,

7̇ : 〈B|p|ε|ε|ε|f 〉 → e〈B|p|ε|ε|ε|f 〉f ,
8̇ : 〈B|p|ε|ε|ε|f 〉 → 〈〈6〉|pf |ε|ε|ε|f 〉,
9̇ : 〈〈6〉|pf |ε|ε|ε|f 〉 → ε,

· · · }.
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Figure A1. G′�(〈S′|s|ε|ε|ε|ε〉 ⇒∗ acdefb[0̇1̇2̇3̇4̇5̇6̇7̇8̇9̇]).

For easier referencing, we add a unique label to each rule. Consider the derivation 123456 inG from Example 3.12. The
corresponding derivation in G′ is as follows.

〈S′|s|ε|ε|ε|ε〉 ⇒ 〈S|s|ε|ε|p|f 〉 [0̇]

⇒ a〈S|s|ε|ε|p|f 〉b [1̇]

⇒ a〈〈2〉|sq|p|ε|ε|ε〉〈B|p|ε|ε|ε|f 〉b [2̇]

⇒ a〈A|q|p|ε|ε|ε〉〈B|p|ε|ε|ε|f 〉b [3̇]

⇒ ac〈A|q|p|ε|ε|ε〉d〈B|p|ε|ε|ε|f 〉b[4̇]
⇒ ac〈〈4〉|qp|p|ε|ε|ε〉d〈B|p|ε|ε|ε|f 〉b [5̇]

⇒ acd〈B|p|ε|ε|ε|f 〉b [6̇]

⇒ acde〈B|p|ε|ε|ε|f 〉fb [7̇]

⇒ acde〈〈6〉|pf |ε|ε|ε|f 〉fb [8̇]

⇒ acdefb [9̇]

However, it also corresponds to s121223414256162 ∗ f inM and, thus, toH′. Notice step 0̇, where 〈S|s|ε|ε|p|f 〉 is gener-
ated. It encodes that the grammar must once simulate a path-change in state p and apply terminating rule entering final
state f – which is step 9̇ – with respect toM. In branching step 2̇, state p is put to the third component of 〈〈2〉|sq|p|ε|ε|ε〉
which encodes that it once must be reached in the left branch – this is done in step 6̇ – and to the second component of
〈B|p|ε|ε|ε|f 〉 simulating that the derivation continues from the same state with respect toM. Figure A1 demonstrates
how G′ followsM.
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