
Form Methods Syst Des
DOI 10.1007/s10703-017-0289-4

Compositional entailment checking for a fragment
of separation logic

Constantin Enea1 · Ondřej Lengál2 ·
Mihaela Sighireanu1 · Tomáš Vojnar2

© Springer Science+Business Media, LLC 2017

Abstract We present a decision procedure for checking entailment between separation logic
formulas with inductive predicates specifying complex data structures corresponding to finite
nesting of various kinds of singly linked lists: acyclic or cyclic, nested lists, skip lists, etc.
The decision procedure is compositional in the sense that it reduces the problem of checking
entailment between two arbitrary formulas to the problem of checking entailment between a
formula and an atom. Subsequently, in case the atom is a predicate, we reduce the entailment
to testing membership of a tree derived from the formula in the language of a tree automaton
derived from the predicate. The procedure is later also extended to doubly linked lists. We
implemented this decision procedure and tested it successfully on verification conditions
obtained from programs using both singly and doubly linked nested lists as well as skip lists.

Keywords Program analysis · Separation logic · Decision procedure · Tree automata

1 Introduction

Automatic verification of programs manipulating dynamic data structures is challenging
because it requires reasoning about complex program configurations having the form of

B Ondřej Lengál
lengal@fit.vutbr.cz

Constantin Enea
cenea@irif.fr

Mihaela Sighireanu
sighirea@irif.fr

Tomáš Vojnar
vojnar@fit.vutbr.cz

1 IRIF, University Paris Diderot and CNRS, 8 place Aurélie Nemours, 75013 Paris, France

2 FIT, IT4I Centre of Excellence, Brno University of Technology, Božetěchova 2, 61266 Brno, Czech
Republic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-017-0289-4&domain=pdf
http://orcid.org/0000-0002-3038-5875

Form Methods Syst Des

graphs of an unbounded size. One needs expressive formalisms to represent such configu-
rations that are also efficient when used for checking or synthesising inductive invariants.
Separation logic (SL) [17,25] has emerged as one of themost promising formalisms, offering
both high expressiveness and scalability. The latter is due to its support of compositional rea-
soning based on the separating conjunction ∗ and the frame rule, which states that if a Hoare
triple {φ}P{ψ} holds and P does not alter free variables in σ , then {φ ∗ σ }P{ψ ∗ σ } also
holds. Therefore, when reasoning about P , one has to manipulate only specifications for the
heap region altered by P .

SL is usually combined with higher-order inductive definitions describing the data struc-
tures manipulated. Since general inductive definitions entail undecidability [6], various
decidable fragments of SL have been defined in the literature [2,4,15,22] by restricting
the syntax of inductive definitions and the Boolean structure of formulas.

In this work, we focus on a fragment of SLwith inductive definitions expressive enough to
describe program configurations (heaps) containing finite nestings of various kinds of singly
linked lists (acyclic, cyclic, skip lists, etc.) that are common in practice (Sect. 8 defines an
extension to doubly linked lists). Moreover, if we abstract arrays into lists, this fragment can
be used to specify chaining hash tables or data structures used in device drivers [1]. The
formulas in this fragment are of the form ∃ #‰

X : Π ∧ Σ where
#‰

X is a set of variables, Π is
a conjunction of (dis)equalities, and Σ is a set of spatial atoms connected by the separating
conjunction. Spatial atoms can be points-to atoms, describing values of pointer fields of
a given heap location, or inductively defined predicates, describing data structures of an
unbounded size.

We propose a decision procedure for checking the validity of entailments of the form
ϕ ⇒ ψ where ϕ is existentially quantified and ψ is a quantifier-free formula. In addition,
this procedure includes a sub-procedure for satisfiability checking of existentially quantified
formulas. The decision procedure for entailment can be used in Hoare-style reasoning to
check inductive invariants, but also in program analysis frameworks to decide termination of
fixpoint computations. As usual, checking entailments of the form

∨
i ϕi ⇒ ∨

j ψ j can be
soundly approximated by checking that for each i there exists j such that ϕi ⇒ ψ j .

The key idea for deciding ϕ ⇒ ψ is to partition the spatial part of ϕ into several sub-
formulas, each sub-formula corresponding to one spatial atom of ψ . The semantics of the
separating conjunction implies that there must exist a partition such that each sub-formula of
ϕ implies a different atom ofψ . In this way, we reduce the original entailment problem to the
problem of checking a set of simpler entailments ϕP ⇒ P(. . .), where ϕP is a sub-formula of
ϕ and P(. . .) is an inductive predicate fromψ . This reduction shows that the compositionality
principle holds not only for deciding the validity of Hoare triples, but also for deciding the
validity of entailments. Identifying a suitable partition of ϕ requires being able to infer all
(dis)equalities implied by the spatial atoms. The inference step is performed by translating ϕ

into an equisatisfiable Boolean formula and checking whether Boolean formulas denoting
individual (dis)equalities are consistent with it.

Checking simple entailments ϕP ⇒ P(. . .) relies on representing all possible unfoldings
of an inductive predicate using a tree automaton (TA). The validity ofϕP ⇒ P(. . .) is reduced
to testing membership of a tree derived from ϕP in the language of a TA A[P] derived from
P(. . .). The tree encoding of ϕP preserves certain edges of its Gaifman graph (cf. [13]),
called backbone edges, and re-directs other edges to new nodes, related to the original desti-
nation by special symbols. Roughly, such a symbol may be a variable labelling the original
destination, or it may show how to reach the original destination using backbone edges
only.

123

Form Methods Syst Des

The presented decision procedure is sound and complete for the fragment (defined in
Sect. 2), and it is polynomial-time modulo an oracle for deciding unsatisfiability of Boolean
formulas. Practically, we have applied it successfully on verification conditions obtained
from programs using singly/doubly linked nested lists and skip lists. The results show that
our procedure does not only have a theoretically favorable complexity, but also behaves
nicely in practice (our implementation in the tool Spen won one gold and two silver medals
in the competition of SL solvers SL-COMP’14 [26]). The procedure also offers the benefit of
compositionality, which can be exploited within larger verification frameworks by caching
simple entailment queries.

1.1 Related work

Several decision procedures for fragments of SL have been introduced, e.g., [2,5,6,8,11,14–
16,20,22,23]. Some of these works [2,6,8,20] consider the restriction of our SL fragment
to a single inductive predicate describing singly linked lists. In particular, Cook et al. [8]
prove that the satisfiability/entailment problem can be solved in polynomial time. Piskac et
al. [22] show that the Boolean closure of the fragment in [8] can be translated to a decidable
fragment of first-order logic, which implies that the satisfiability/entailment problem can be
decided in NP/co-NP. A similar idea has been used in [23] to deal with an SL fragment able
to describe tree-shaped data structures. A fragment of SL covering overlaid nested lists has
been introduced in Enea et al. [11]. This fragment is incomparable to the one proposed in
this paper, e.g., it cannot describe nestings of cyclic or doubly linked lists while it is able to
deal with data structures sharing the same set of objects. Iosif et al. [15,16] consider more
expressive SL fragments (able to describe, for instance, treeswith parent pointers or treeswith
linked leaves), for which the complexity of the entailment problem is much higher compared
to the decision procedure proposed in this paper. In particular, [16] reduces the validity of an
entailment ϕ ⇒ ψ to language inclusion on TAs recognising models of ϕ andψ respectively
(which is EXPTIME-complete in general). In contrast, our decision procedure deals with
the Boolean structure of the SL formulas using SAT solvers and reduces the validity of the
simple entailments ϕP ⇒ P(. . .) to the membership problem for TAs (which is in PTIME).
Moreover, [16] can also deal with various forms of trees, but it cannot deal with structures
of zero length and with some forms of structure concatenation (such as concatenation of two
DLL segments), which we can handle.

Several decision procedures for extensions of SL with data constraints have been pro-
posed. The decision procedure [22,23] discussed above allows to include data constraints
over list and tree shape predicates, but fails to encode size and multiset constraints. The
fragment introduced in [14] captures Presburger constraints over data and sizes of linear data
structures, mainly singly and doubly liked lists and lists with tail pointers. The authors show
that satisfiability and entailment is decidable for this fragment. The procedure for satisfia-
bility checking extends our Boolean abstraction to an abstraction that uses quantifier free
Presburger formulas, which leads to a complexity in NP. The entailment checking is based
on graph homomorphism and shown to be in Π P

3 mainly due to checking entailment over
size and data constraints. The authors say that they believe that an extension to more com-
plex shapes, including nested data structures, is possible, but leave this question open. For
a general fragment with inductive definitions and data constraints (including size and mul-
tiset), [24] designs incomplete proof search techniques based on user-provided lemmas and
translation to SMT. For the sub-fragment dealing only with trees and nested lists with data,
size, and multiset constraints, Enea et al. [12] propose an incomplete entailment checking
procedure based on proof search, which applies lemmas generated automatically from the

123

Form Methods Syst Des

inductive definitions. In comparison, our work does not consider data constraints, but allows
more general nested list shapes, such as circular nested lists.

Brotherston et al. [5] define a generic automated theorem prover relying on the notion
of cyclic proofs and instantiate it to prove entailments in a fragment of SL with inductive
definitions and disjunctions more general than what we consider. Their entailment checking
procedure is, however, incomplete in general.Brotherston et al. [4] define adecisionprocedure
for satisfiability checking in amore expressive fragment of SL,which isEXPTIME-complete
in general and in NP when restricted to our fragment. As discussed above, our procedure
also tests satisfiability by means of a reduction to Boolean satisfiability, which is also used to
infer (dis)equalities implied by the spatial atoms of an SL formula. Satisfiability checking for
fragments of SL with data constraints are considered in [14,18]. Le et al. [18] present a semi-
decision procedure for satisfiability based on unfolding of inductive definitions combined
with over-approximation of SL formulas by first-order logic formulas using SMT solvers.

This work is an extension of [9]. We consider a slightly smaller class of inductive def-
initions with an additional restriction on the nesting of lists (see Constraint 2 in Sect. 2.3).
This simplification allows a simpler presentation and, to the best of our knowledge, does not
remove any inductive definition of practical interest. Thanks to new insights, we improved the
construction in Sect. 7.3, decreasing the complexity of the complete decision procedure from
exponential to polynomial. We also optimise the implementation of the decision procedure
and provide an updated evaluation.

1.2 Contribution

Overall, the contribution of this work is a novel decision procedure for a rich class of verifi-
cation conditions with singly (or doubly) linked lists, nested lists, and skip lists. As discussed
in more detail in the previous paragraphs, decision procedures for expressive fragments of
SL are still rare. Indeed, we are not aware of any techniques that could decide the class of
verification conditions considered in this work at the same level of efficiency. In particular,
compared to other approaches using TAs [16], our procedure is (i) compositional as it uses
TAs recognising formulas entailing one predicate atom, not arbitrary formulas, and (ii) based
on the (PTIME) membership problem for TAs compared to their (EXPTIME) inclusion
problem.

2 Separation logic fragment

Our logic is a fragment of the symbolic heaps fragment [2] of Separation Logic [25]. The
fragment specifies sets of configurations of programs manipulating the heap. A program
configuration is given by the state of its stack and of its heap. We consider a memory model
where the heap is abstracted by a collection of disjoint memory regions, called records.
We denote by Locs the set of locations at which heap records are stored. Records are sets
of fields, each field storing a reference to a record location. The record types are fixed by
type definitions that also define F, the set of field names. Wlog, we assume that different
record types declare pairwise disjoint sets of field names. A program manipulates the heap
by creating records, setting and accessing their fields, and freeing them. For this, it uses a
set of of program variables Vars stored on the program stack. We assume that Vars contains
the null constant.

123

Form Methods Syst Des

Fig. 1 The syntax of the considered separation logic fragment

2.1 Syntax

The syntax of the Separation Logic fragment we consider is given in Fig. 1. Record locations
that are not stored in program variables are addressed using a set of logical variables LVars
disjoint from Vars.

An SL formula is an existentially quantified conjunction of a pure formulaΠ and a spatial
formula Σ . Wlog, we assume that existentially quantified logical variables have unique
names. The set of program variables used in a formula ϕ is denoted by pv(ϕ). By ϕ(

#‰

E) (resp.
ρ(

#‰

E)), we denote a formula (resp. a set of field-variable pairs) whose set of free variables is
#‰

E , and we use free(ϕ(
#‰

E)) and free(ρ(
#‰

E)) to denote
#‰

E .
Pure formulas characterise the stack of the program using (dis)equalities between location

variables. Given a formula ϕ, pure(ϕ) denotes its pure part Π . We allow set operations to be
applied on vectors, i.e., vectors can be treated as sets of their elements. Moreover, E �= #‰

F is
a shorthand for

∧
Fi∈ #‰

F E �= Fi .
The atomic spatial formula emp denotes an empty heap. The points-to atom E �→

{(fi , Fi)}i∈I denotes a heap containing a record at the location labelled by E whose field fi
points to Fi , for all i . Wlog, we assume that each field fi appears at most once in the set of
pairs {(fi , Fi)}i∈I . The separating conjunction ∗ specifies the union of two disjoint heaps.
The predicate atom P(E,

#‰

F) specifies a heap fragment described by the predicate P and
delimited by its arguments, i.e., all locations it represents are reachable from E and allocated
on the heap, except the locations in

#‰

F .
The fragment is parameterised by a set P of inductively defined predicates. An inductive

definition of P ∈ P is a finite set of rules of the form P(X,
#‰

Y) ::=∃ #‰

Z : Π ∧ Σ . In this
work, we consider only inductive definitions for possibly empty nested list segments, defined
formally in Sect. 2.3.

2.2 Semantics

Formulas of our SL fragment are interpreted over pairs (S, H) where S models the program
stack and H the program heap. The stack S : Vars ∪ LVars → Locs maps variables to
locations. The heap H : Locs × F ⇀ Locs is a partial function that defines values of fields
for some of the locations in Locs. The domain of H is denoted by dom(H), and the set of
locations in the domain of H is denoted by ldom(H). We say that a location
 is allocated
in (S, H) or that (S, H) allocates
 iff
 belongs to ldom(H), and we say that a variable E is
allocated iff the location S(E) is allocated. A location (resp. variable) which is not allocated
is called dangling. A sub-model of (S, H) is a pair (S′, H ′) such that S ⊆ S′, H ⊆ H ′, and
for any
 ∈ ldom(H ′) and f ∈ F, it holds that H ′(
, f) = H(
, f), i.e., a location in the
domain of a sub-model is included with all its fields defined in the model.

123

Form Methods Syst Des

Fig. 2 The | relation (� denotes the disjoint union of sets, P is the set of inductively defined predicates,
[X/Y] denotes a substitution of Y by X , and S[X ←
] denotes the function S′ such that S′(X) =
 and
S′(Y) = S(Y) for any Y �= X)

The set of models satisfying a formula ϕ is given by the relation (S, H) | ϕ defined in
Fig. 2. The semantic rules are standard except the predicate atom where the model satisfying
a predicate P(E,

#‰

F) cannot allocate any variable in
#‰

F as these variables are considered not
to be in its domain (which differs, e.g., from the semantics in [2]). A model satisfying this
property is called well-formed wrt the atom P(E,

#‰

F).
The set of models of a formula ϕ is denoted by [[ϕ]]. Given two formulas ϕ1 and ϕ2, we

say that ϕ1 entails ϕ2, denoted by ϕ1 ⇒ ϕ2, iff [[ϕ1]] ⊆ [[ϕ2]]. By an abuse of notation,
ϕ ⇒ E = F (resp. ϕ ⇒ E �= F) denotes the fact that E and F are interpreted to the same
location (resp. different locations) in all models of ϕ.

2.3 Inductive definitions for nested lists

We consider a class of restricted inductive definitions that are expressive enough to deal with
intricate singly linked lists (including simple lists, lists of circular lists, skip lists of fixed
depth, etc.) while also enabling efficient entailment checking (we also extend our fragment
to doubly linked lists in Sect. 8). We define this class by requiring the following restrictions
on the general inductive definitions. Examples of inductive predicates conforming to our
restrictions are in Fig. 3.

Constraint 1 (Linearity) Each predicate P ∈ P has at least two formal parameters and
exactly two rules: (i) an empty base rule of the form P(E, F,

#‰

B) ::=E = F∧emp specifying
an empty list segment, and (ii) an inductive rule with the following syntax, where Σ ′ does
not contain occurrences of the atom P:

P(E, F,
#‰

B) :: =∃Xtl,
#‰

Z : E �= {F} ∪ #‰

B ∧ E �→ {ρ} ∗ Σ ′
︸ ︷︷ ︸

mat(P)

∗ P(Xtl, F,
#‰

B) (1)

The parameters are divided into three categories: the source (or root) parameter E , the
target parameter F , and the vector of border parameters

#‰

B . The formula E �→ {ρ} ∗ Σ ′ is
called the matrix of P and denoted by mat(P).

123

Form Methods Syst Des

Fig. 3 Examples of inductive definitions used throughout this paper (we omit all base rules
P(E, F,

#‰
B) ::=E = F ∧ emp for all predicates P)

We use the constraint E �= {F} ∪ #‰

B to syntactically denote the semantic constraint that
locations for target and border parameters are not allocated in a non-empty heap specified by
the predicate (see Fig. 2). Intuitively, the inductive rule of P defines a heap composed of a
sequence of sub-heaps specified by the matrix of P between the locations given by the actual
source and target parameters.

The linear form of inductive definition is essential for our decision procedure in (i) com-
puting the Boolean abstraction and (ii) obtaining an elegant translation of Gaifman graphs
of formulas into trees. Relaxing this constraint by allowing non-linear rules (e.g., trees) or
several linear rules (e.g., a list with different next fields) causes awkward form of labels for
the tree and tree automata obtained from the rules.

Constraint 2 (Root atom) For each predicate P ∈ P, the formula Σ ′ does not contain
points-to atoms. The atom E �→ {ρ} is called the root atom, and it is denoted by root(P).
Furthermore, the free variables of ρ contain all existentially quantified variables of the induc-
tive rule, and they can only also contain border parameters, i.e., {Xtl} ∪ #‰

Z ⊆ free(ρ) ⊆
{Xtl} ∪ #‰

Z ∪ #‰

B .

Intuitively, this constraint requires that the occurrence of mat(P) in the next unfolding of
P , which has Xtl as the root, is pointed to by at least one field from E . This condition is
satisfied by all inductive definitions in Fig. 3, but forbids the following inductive definition
of list segments of even length (we often omit the base rule):

evenls(E, F) :: = ∃X1, Xtl : E �= F ∧ E �→ {(f, X1)} ∗
X1 �→ {(f, Xtl)} ∗ evenls(Xtl, F).

Also, this restriction forbids inductive definitions that are not compositional (see Property 4,
pg. 11), such as list segments with fast-forward pointers to the end node:

lstf(E, F) :: = ∃Xtl : E �= F ∧ E �→ {(f, Xtl), (g, F)} ∗ lstf(Xtl, F).

123

Form Methods Syst Des

Note that this is not at a loss of expressiveness because such list segments may be obtained
using the inductive definition below that defines list segments with all elements pointing to
some border location B:

lsb(E, F, B) :: = ∃Xtl : E �= {F, B} ∧ E �→ {(f, Xtl), (g, B)}∗lsb(Xtl, F, B).

Then, lsb(E, F, F) specifies list segments with pointers to the end node of the list.
Moreover, the constraint forbids inductive definitions where the matrix uses an existen-

tially quantified variable Z not pointed to by the root atom,1 such as, e.g.,:

nfls(E, F, B) :: = ∃Xtl, Y, Z : E �= {F, B} ∧ E �→ {(f, Xtl), (g, Y), (h, B)}
∗ ls(Y, Z) ∗ nfls(Xtl, F, B).

To sum up, the second constraint discharges our decision procedure from manipulation of
arithmetic constraints on the length of list segments or enumeration of aliasings between the
existentially quantified variables

#‰

Z used by a rule. Lifting this constraint increases the overall
complexity.

Constraint 3 (Nested list segments) For each P ∈ P, the matrix of P contains the root atom
∗-connected with formulas of the following form (for Q �= P):

Σ ′ :: = Q(Z ,U,
#‰

Y) | �1+ Q[Z ,
#‰

Y] | Σ ′∗Σ ′ | emp
for Z ∈ #‰

Z , U ∈ #‰

Z ∪ #‰

B ∪ {E, Xtl}, #‰

Y ⊆ #‰

B ∪ {E, Xtl} (2)

�1+Q[Z ,
#‰

Y] ≡ ∃Z ′ : mat(Q)(Z , Z ′, #‰

Y) ∗ Q(Z ′, Z ,
#‰

Y) (3)

Notice that F does not appear in thematrix of P . Themacro�1+Q[Z ,
#‰

Y] is used to represent
a non-empty cyclic (nested) list segment on Z whose shape is described by the predicate Q.
We call predicate atoms Q(Z ,U,

#‰

Y) and macros �1+Q[Z ,
#‰

Y] extended predicate atoms.
Intuitively, this constraint requires nested lists to have their sources in

#‰

Z , i.e., in a variable
referenced by a field from the location of E (due to the previous constraint). Except for Xtl,
the target of these nested list segments is either a location pointed to by the fields of E (e.g.,
skl3 in Fig. 3), a border location in

#‰

B (e.g., nll), or E . The�1+ Q[Z ,
#‰

Y]macro is needed
to define nested (non-empty) circular lists; defining them as Q(Z , Z ,

#‰

Y) would make them
empty (the only rule allowed for instances of predicates with matching source and target
parameter is the empty base rule).

The next constraint on the matrix of P is defined using its Gaifman graph [13]. Let Σ be
the matrix of some inductive definition P ∈ P. The Gaifman graph of Σ , denoted Gf [Σ], is
a labelled graph where:

– The set of vertices is given by the set of free and existentially quantified variables in Σ ,
i.e., {E, Xtl} ∪ #‰

B ∪ #‰

Z .
– Edges represent spatial atoms as follows: let E �→ {ρ} be the root atom of Σ , then

for every (f, X) in {ρ}, Gf [Σ] contains an edge from E to X labelled by f ; for every
Q(Z ,U,

#‰

Y), Gf [Σ] contains an edge from Z to U labelled by Q; and for every macro
�1+ Q[Z ,

#‰

Y], Gf [Σ] contains a self-loop on Z labelled by Q.

See Fig. 4 for an example of a Gaifman graph for the matrix of nlcl.

1 Our former work [9] does not include this constraint, thus the procedure proposed was incomplete.

123

Form Methods Syst Des

E Xtl

Z

s

h

ls

Fig. 4 Gf [Σnlcl]

Constraint 4 (Matrix connectedness) Let Σ be the matrix of P ∈ P. Then all infinite paths
of Gf [Σ] either form a cycle going through E or start in E and end in a self-loop built from
some macro �1+ Q[Z ,

#‰

Y], and all maximal finite paths start in E and end in a node from
#‰

B ∪ {Xtl}. Moreover, we require that every vertex of Gf [Σ] has at most one outgoing edge
labelled by a predicate.

Intuitively, the constraint requires that every existential variable in an inductive rule appears
as the source parameter of exactly one extended predicate atom. This ensures that every
existential variable Z is either allocated in the matrix (when the list segment from Z is non-
empty or ends in E) or it aliases the target or a border parameter. The inductive definitions
given in Fig. 3 satisfy the above constraint. The following inductive definition is, however,
forbidden because it contains a dangling variable Z :

npls(E, F, B) :: = ∃Xtl, Y, Z : E �= {F, B} ∧ E �→ {(f, Xtl), (g, Y), (h, Z)}
∗ ls(Y, B) ∗ npls(Xtl, F, B).

The constraint also forbids the following inductive definition:

nls2(E, F, B) :: = ∃Xtl, Y, Z : E �= {F, B} ∧ E �→ {(f, Xtl), (f1, Y), (f2, Z)}
∗ ls(Y, Z) ∗ ls(Z , Y) ∗ nls2(Xtl, F, B).

This is because the Gaifman graph of its matrix contains a loop which is not a self-loop—
it traverses the inner vertices represented by variables Y and Z . Such loops are forbidden
because they may produce dangling variables when the list segments composing the loop are
all empty. Dangling variables are problematic because they may be aliased with any variable
occurring outside the occurrence of a predicate, which is difficult to encode in our procedure.
The following inductive definition satisfies the matrix constraint because the list segment
from Z is a self-loop:

nlls(E, F, B) :: = ∃Xtl, Y, Z : E �= {F, B} ∧ E �→ {(f, Xtl), (f1, Y), (f2, Z)}
∗ ls(Y, Z) ∗ �1+ ls[Z] ∗ nlls(Xtl, F, B).

Finally, the following restrictions limit the use of predicate atoms and fields in inductive
definitions of P. For this, we define the relation ≺P on P by P1 ≺P P2 iff P2 appears in the
matrix of P1; we denote by ≺∗

P
the reflexive and transitive closure of ≺P. For example, if

P = {skl1,skl2,skl3} (cf. Fig. 3), then skl3 ≺P skl2 ≺P skl1 and skl3 ≺∗
P
skl1.

Constraint 5 (No mutual recursion) Given a set of inductive definitions P, ≺∗
P
is a partial

order.

Let F �→(P) denote the set of fields occurring in root(P). For example, in the inductive
definitions in Fig. 3, it holds that F �→(nll) = {s, h} and F �→(skl3) = F �→(skl1) =
{ f3, f2, f1}. Also, let F∗�→(P) denote the union of F �→(P ′) for all P ≺∗

P
P ′. For example,

F
∗�→(nll) = {s, h, f }.

123

Form Methods Syst Des

Constraint 6 (No shared fields) For any two predicates P1 and P2 that are incomparable
wrt ≺∗

P
, it holds that F �→(P1) ∩ F �→(P2) = ∅.

Therefore, we forbid predicates named differently but having exactly the same set of models.
The last two constraints ensure the soundness of our compositional approach for entailment
checking, which selects predicates atoms in the order given by ≺P.

Moreover, to obtain a unique tree from a formula in our procedure, we require the existence
of a total ordering on fields, denoted ≺F, that complies with the inductive definition of
predicates in P. Intuitively, ≺F shall reflect the order in which the inductive definition of
P is unfolded. Therefore, fields used in the root atom E �→ {ρ} of the matrix of P are
ordered before fields of any other predicate called by P . Fields appearing in ρ and going
“one-step forward” (i.e., occurring in a pair (f, Xtl)) are ordered before fields leading to
“inner” locations (i.e., occurring in a pair (f, Z)with Z ∈ #‰

Z), which are ordered before fields
going to the border parameters (i.e., occurring in a pair (f, B) with B ∈ #‰

B). We consider
null a constant, not a border variable.

Formally, for a predicate P defined by an inductive rule as in Eq. (1) (pg. 6), we partition
F �→(P) into four sub-sets: (a) F �→Xtl(P) is the set of fields f occurring in a pair (f, Xtl)

of ρ, (b) F �→Z(P) is the set of fields f occurring in a pair (f, Z) with Z ∈ #‰

Z , (c) F �→B(P)

is the set of fields f occurring in a pair (f, X) with X ∈ #‰

B\{null}, and (d) F �→null(P) is
the set of fields f occurring in a pair (f,null).

Constraint 7 (Totally ordered fields) There exists a total order ≺F on F such that for all P ,
P1, and P2 in P:

∀ f1 ∈ F �→Xtl(P), ∀ f2 ∈ F �→Z(P), ∀ f3 ∈ F �→B(P) : f1 ≺F f2 ≺F f3 and (4)

(f1 ∈ F �→(P1) ∧ f2 ∈ F �→(P2) ∧ f1 �= f2 ∧ P1 ≺P P2) ⇒ f1 ≺F f2. (5)

For instance, if P = {nll,ls} or P = {nlcl,ls}, then s ≺F h ≺F f satisfies the
constraints above. Also, if P = {skl2,skl1}, then both f2 ≺F f1 ≺F f3 and f3 ≺F

f2 ≺F f1 are correct total orderings of fields. Only the last one, however, complies with the
constraint above for P = {skl3,skl2,skl1}. So, fields in F �→null(P) shared with another
predicate Q are ordered to agree with the ordering of fields in Q; in absence of any ordering
constraint, they may be ordered by ≺F in any possible way.

2.4 Properties of models for predicate atoms

The constraints on the inductive definitions, together with the basic syntax and semantics of
the introduced SL fragment, including the restriction to well-formed models, induce some
properties of the considered models of predicate atoms that are important for the soundness
of our procedure. These properties are given in this section.

Some of the properties on well-formedmodels (S, H) of a predicate atom P(E, F,
#‰

B) are
expressed using their representation as labelled directed graphs. The heap graph of a model
(S, H) has as vertices the locations in ldom(H) ∪ img(H); these locations are labelled by
sets of program and logic variables using S−1. The heap graph edges are labelled by fields
such that (
, f,
′) is an edge iff H(
, f) =
′. (Notice that, for certain satisfiable formulas
that use only points-to atoms, the Gaifman graph and the heap graph of its model are the
same.)

Property 1 (Reachability from root) Any location
 in (S, H) is reachable from the location
S(E).

123

Form Methods Syst Des

Proof Constraints 1 and 2 ensure there is a path from the source to the target of a predicate
edge and Constraint 4 ensures connectedness of the predicate’s matrix. ��
Property 2 (No inner dangling) Anymaximal path of (S, H) starting in S(E) is either cyclic
or ends in a location labelled by a variable in {F} ∪ #‰

B . Therefore, only locations labelled by
{F} ∪ #‰

B are dangling.

Proof Follows from Property 1 and Constraint 4. ��
The next property is a consequence of the semantics of formulas—in particular, the restriction
to well-formed models of predicate atoms.

Property 3 (Precise assertions) For any model (S, H) of a formula ϕ including some pred-
icate atom P(E, F,

#‰

B), there exists at most one well-formed sub-model (S′, H ′) of (S, H)

such that (S′, H ′) | P(E, F,
#‰

B).

Proof By contradiction. Suppose (S′, H ′) is the smallest well-formed sub-model (there is at
most one due to determinism of heaps) of (S, H) such that (S′, H ′) | P(E, F,

#‰

B) and that
there exists another well-formed sub-model (S′′, H ′′) such that (S′′, H ′′) | P(E, F,

#‰

B) and
(S′, H ′) is a proper sub-model of (S′′, H ′′). It follows that (S′′, H ′′) contains an allocated
location
 that is not in (S′, H ′). From Property 1, it follows that
 is reachable from S(E),
and from the fact that heaps are deterministic, we know that there is an allocated location
′
in (S′′, H ′′) such that it is a dangling node of (S′, H ′), and
 is reachable from
′. From
Property 2, it follows that
′ ∈ S−1({F} ∪ #‰

B). Therefore, (S′′, H ′′) allocates a node from
{F} ∪ #‰

B , so it is not a well-formed model of P(E, F,
#‰

B), which is a contradiction. ��
Constraints 2–4 imply that inductive definitions are compositional:

Property 4 (Compositional list segments) For any P ∈ P and anywell-formedmodel (S, H)

such that (S, H) | P(E, F,
#‰

B) ∗ P(F,G,
#‰

B) and G is not allocated in (S, H), it holds that
(S, H) | P(E,G,

#‰

B).

Proof By induction on the length of left-hand side occurrence of P . For the base rule E = F ,
a model (S1, H1) | E = F ∧ emp∗P(F,G,

#‰

B) also models P(E,G,
#‰

B). For the inductive
rule, assume that if (S2, H2) | P(Xtl, F,

#‰

B)∗P(F,G,
#‰

B) and (S2, H2) does not allocate
G, then it holds that (S2, H2) | P(Xtl,G,

#‰

B). Let us consider P(E, F,
#‰

B)∗P(F,G,
#‰

B)

such that if we once unfold P(E, F,
#‰

B), we get ψ ::=∃Xtl,
#‰

Z . E �= {F} ∪ #‰

B ∧
mat(P)∗P(Xtl, F,

#‰

B)∗P(F,G,
#‰

B). Suppose (S, H) is a model of ψ that does not allo-
cate G. By the induction hypothesis, we infer that (S, H) | ∃Xtl,

#‰

Z . E �= {G} ∪ #‰

B ∧
mat(P)∗P(Xtl,G,

#‰

B). From the inductive rule of P , it follows that (S, H) | P(E,G,
#‰

B).
��
The key for the encoding of SL formulas entailing predicate atoms P(E, F,

#‰

B) as trees (see
Sect. 6) is given by the following properties. We call a path simple if it does not pass through
the same node repeatedly.

Property 5 (Joining paths) Let (S, H) be a well-formed model of P(E, F,
#‰

B) and
 be an
allocated location in (S, H) with multiple incoming edges such that
 �= S(E). Then there

is a unique edge
′ f→
 with f minimal wrt ≺F. Moreover, the other incoming edges are
last edges of simple paths starting from
′ or
.

123

Form Methods Syst Des

Proof Constraints 1 and 3 imply that there are two cases: (a)
 corresponds to the first node
of a predicate atom R(. . .) (resp. a macro �1+R[. . .]) s.t. P ≺∗

P
R, or (b)
 is an internal

(i.e., not the first) node of R(. . .) (resp. �1+R[. . .]) or P(E, F,
#‰

B).
Case (a): From Constraint 1,
 corresponds to some variable Z ∈ #‰

Z from the non-empty
rule of a predicate T s.t. P ≺∗

P
T ≺P R. Then, from Constraint 2, the root atom root(T)

contains a pair (f, Z) s.t. f is, by Constraint 7, the least label of edges entering
 (wrt ≺F).
Moreover, also by Constraint 7, there are no more f -edges entering
. Hence, the source
of root(T) plays the role of
′.

Case (b): From Constraints 2 and 7, there is a pair (f, Xtl) in root(R) or root(P),
respectively, such that f is smaller (wrt ≺F) than any other edge entering
 (which may be,
e.g., edges in nested list segments from some

#‰

Z variables). Hence,
′ is the predecessor of

according to f .
The last sentence of the property follows from Constraints 3 and 4, in particular from

requirements on the use of inductive predicates and the macro �1+Q[Z ,
#‰

Y], respectively, in
the matrix of an inductive rule. ��
A corollary of the previous property is that for any allocated location
with several incoming
edges, there exist paths σ, σ ′, a location
′ that is not an internal location of σ ′, and an edge
label f such that the following holds: S(E)

σ�
′ f→
 and either

(i) S(E)
σ�
′ σ ′

�
, or

(i) S(E)
σ�
′ f→

σ ′
�
.

Then, given σσ ′ (resp. σ f σ ′) and f , we can unambiguously determine σ f . In particular, for
(i), we can obtain σ f by traversing (S, H) from
 backwards along σσ ′ up to the first node
(in fact,
′) that defines an f edge to a non-null location. Similarly for (ii). This property is
important for the selection of aliasing relations in encoding graphs as trees in Sect. 6.

Property 6 (Minimal path) For any allocated location
 in (S, H), there is a path σmin in its

heap graph from S(E) to
 such that for any edge
i
fi→
i+1 in σmin , the label fi is the least

(wrt ≺F) label among labels of edges entering
i+1.

Proof Follows from the requirement of well-formedness of models of predicate atoms and
Properties 1 and 5. ��
Due to this property, removing edges entering a node that are not labelled by the minimal
field keeps the model connected, so we can represent it using a tree.

3 Compositional entailment checking

We now provide our procedure for reducing the problem of checking validity of entailment
between a pair of formulas to the problem of checking validity of entailment between a for-
mula and an atom. In particular, we consider the problem of deciding validity of entailments
ϕ1 ⇒ ϕ2 where ϕ2 is free of quantifiers and free(ϕ2) ⊆ free(ϕ1), which usually suffices
for checking verification conditions in practice. We assume pv(ϕ2) ⊆ pv(ϕ1); otherwise, the
entailment is trivially invalid.

123

Form Methods Syst Des

Algorithm 1: Compositional entailment checking of ϕ1 ⇒ ϕ2 for ≺ being any total order
compatible with ≺∗

P

1 ϕn
1 ← norm(ϕ1); // normalisation

2 ϕn
2 ← norm(ϕ2);

3 if ϕn
1 = false then return true if ϕn

2 = false then return false // pure parts
4 if pure(ϕn

1) �⇒ pure(ϕn
2) then return false // points-to atoms

5 foreach points-to atom a2 in ϕn
2 do

6 ϕn
1 [a2] ← select(ϕn

1 , a2);
7 if ϕn

1 [a2] �⇒ a2 then return false mark(ϕn
1 [a2]);

// predicate atoms
8 for P2 ← max≺(P) downto min≺(P) do
9 foreach a2 = P2(E, F,

#‰

B) in ϕn
2 s.t. pure(ϕn

1) �⇒ E = F do
10 ϕn

1 [a2] ← select(ϕn
1 , a2);

11 if ϕn
1 [a2] �⇒sh a2 then return false mark(ϕn

1 [a2]);
12 return isMarked(ϕn

1);

The reduction is described inAlgorithm1.The reduction starts bynormalisation (described
in Sect. 4), which adds to both formulas all (dis-)equalities implied by their spatial sub-
formulas and removes all atoms P(E, F,

#‰

B) representing empty list segments, i.e., those
where E = F occurs in the pure part. The normalisation of a formula returns false iff the
formula is unsatisfiable.

The second step tests entailment between the pure parts of the normalised formulas. This
can be done using any decision procedure for quantifier-free formulas in the first-order theory
of equality.

Next, for the spatial parts, the procedure uses the function select, described in Sect. 5,
to build a mapping from spatial atoms of ϕn

2 to sub-formulas of ϕn
1 . The sub-formula of ϕn

1 to
which an atom a2 of ϕn

2 is mapped in this way is denoted as ϕn
1 [a2]. The mapping is built by

first enumerating the points-to atoms of ϕn
2 and only then by enumerating its predicate atoms,

in a decreasing order wrt ≺∗
P
. The decreasing order is important for the completeness of the

procedure (see Sect. 9). Intuitively, the formula ϕn
1 [a2] associated with an atom a2 of ϕn

2
describes the region of a heap modelled by ϕn

1 that should satisfy a2. The construction of
ϕn
1 [a2] may fail, implying that the entailment ϕ1 ⇒ ϕ2 is not valid. In such a case, select

returns emp, causing the algorithm to return false.
For predicate atoms a2 = P2(E, F,

#‰

B), handled in the second loop of the algorithm,
select is called only if there exists a model of ϕn

1 where the heap region that should
satisfy a2 is non-empty, i.e., E = F does not occur in ϕn

1 . In this case, select also
checks that for any model of ϕn

1 , the sub-heap corresponding to the atoms in ϕn
1 [a2] is well-

formed wrt a2. This check is needed since all heaps described by a2 are well-formed (see
Sect. 2.2).

Note that in the well-formedness check above, one cannot speak about ϕn
1 [a2] alone.

Indeed, without the rest of ϕn
1 , the formula ϕn

1 [a2] may have models that are not well-formed
wrt a2 even if the sub-heap corresponding to ϕn

1 [a2] is well-formed for any model of ϕn
1 .

For example, let ϕn
1 = ls(x, y)∗ls(y, z)∗z �→ {(f, t)}, a2 = ls(x, z), and ϕn

1 [a2] =
ls(x, y)∗ls(y, z). If we take models of ϕn

1 only, the sub-heaps corresponding to ϕn
1 [a2] are

all well-formed wrt a2, i.e., they do not allocate the location bound to z. The formula ϕn
1 [a2]

alone has, however, lasso-shaped models where the location bound to z is allocated on the
path between x and y.

123

Form Methods Syst Des

Once ϕn
1 [a2] is obtained, one needs to check that all sub-heaps modelled by ϕn

1 [a2] are
also models of a2. For points-to atoms a2, this boils down to a syntactic identity (modulo
some renaming given by the equalities in the pure part of ϕn

1). For predicate atoms a2, a
special entailment operator ⇒sh is used. We cannot use the usual entailment ⇒ since ϕn

1 [a2]
may have models that are not sub-heaps of models of ϕn

1 (as we have seen in the example
above).

Definition 1 ϕn
1 [a2] ⇒sh a2 iff all models of ϕn

1 [a2] that are well-formed wrt a2 are also
models of a2.

Given a formula ϕ and an atom P(E, F,
#‰

B), the entailment ϕ ⇒sh P(E, F,
#‰

B) is checked
as follows: (1) G[ϕ] is transformed into a tree T [ϕ] by splitting nodes that have multiple
incoming edges, (2) the inductive definition of P(E, F,

#‰

B) is used to construct a TA A[P]
such that T [ϕ] belongs to the language of A[P] only if ϕ ⇒sh P(E, F,

#‰

B). The transfor-
mation of graphs G[ϕ] into trees T [ϕ] is presented in Sect. 6 while the construction of the
TA A[P] is introduced in Sect. 7.

If there exists an atom a2 of ϕn
2 that is not entailed by the associated sub-formula, then

ϕ1 ⇒ ϕ2 is not valid. By the semantics of the separating conjunction, the sub-formulas of ϕn
1

associated with two different atoms of ϕn
2 must not share spatial atoms. In order to avoid such

a scenario, the spatial atoms obtained from each application of select are marked by the
algorithm and cannot be reused in the future. If all entailments between formulas and atoms
are valid, then ϕ1 ⇒ ϕ2 holds provided that all spatial atoms of ϕn

1 are marked (which is
tested by isMarked).

Graph representations. Some of the sub-procedures mentioned above work on a graph rep-
resentation of the input formulas, called SL graphs (which are different from the Gaifman
graphs of matrices of inductive definitions).

Definition 2 (SL graph) Given a formula ϕ, its SL graph, denoted by G[ϕ], is a directed
labelled graph where:

– Each node n represents an equivalence class over the set of variables, i.e., it represents
a maximal set of variables equal wrt the pure part of ϕ, and it is labelled by the set of
variables Var(n) it represents. For every variable E , we then use Node(E) to denote
the node n such that E ∈ Var(n).

– The following edges can appear: (1) Undirected disequality edges from Node(E) to
Node(F) encoding disequalities E �= F . (2) Directed points-to edges from Node(E) to
Node(Ei) labelled by fi that encode spatial atoms E �→ {(f1, E1), . . . , (fn, En)}, for
1 ≤ i ≤ n. (3) Directed predicate edges from Node(E) to Node(F) labelled by P(

#‰

B)

encoding spatial atoms P(E, F,
#‰

B).

For simplicity, we identify a formula ϕ with its graph representation G[ϕ]. This representa-
tion generalises the one proposed in [8] mainly by labelling directed edges with fields and
predicates.

Running example. Below, we use as a running example the entailment ψ1 ⇒ ψ2 between
the following formulas:

123

Form Methods Syst Des

a b c
Fig. 5 A running example of an entailment test ψ1 ⇒ ψ2. a Formula ψ1. b Formula ψ2 = ψn

2 .
c Normalised formula ψn

1

ψ1 ≡ ∃Y1, Y2, Y3, Y4, Z1, Z2, Z3 : x �= z ∧ Z2 �= z ∧ x �→ {(s, Z2), (h, Z1)}∗
Z2 �→ {(s, y), (h, Z3)}∗ls(Z1, z)∗ls(Z3, z)∗ls(y, Y1)∗
skl2(y, Y3)∗ls(Y1, Y2)∗Y3 �→ {(f2, t), (f1, Y4)}∗t �→ {(s, Y2)}∗
Y4 �→ {(f2,null), (f1, t)}

ψ2 ≡ y �= t ∧ nll(x, y, z)∗skl2(y, t)∗t �→ {(s, y)} (6)

The graph representations of these formulas are shown in Fig. 5a, b.2

The formula ψ1 specifies a heap including a cell whose location is referenced by the
(program) variable x and whose fields s and h point to locations Z2 and Z1 (atom x �→
{(s, Z2), (h, Z1)}). The list cell at location Z2 contains a field s referencing the location
stored in the program variable y, and a field h referencing the location of Z3. The nodes Z1

and Z3 are initial nodes of two disjoint singly linked list segments ending in the location
z (atoms ls(Z1, z) and ls(Z3, z)). The node y is the beginning of a singly linked list
segment ending in the location of Y1 (atom ls(y, Y1)) and a skip list segment ending in the
location of Y3 (atom skl2(y, Y3)). The heap between Y3 and t is a fragment of a two-level
skip list with a single element on the ground level. Moreover, the variable t references a cell
with the field s pointing to the location of the end of the list segment starting from Y1. The
only explicit non-aliasing constraint on program variables is x �= z.

The formula ψ2 specifies a heap with a nested list segment between locations x and y
where all nested list segments end in z (atom nll(x, y, z)) and a skip list segment between
locations y and t . It also requires y and t be not aliased.

4 Normalisation

Given a formula ϕ, the normalisation procedure norm computes a new formula ϕ′ that con-
tains all (dis-)equalities among the variables of ϕ that are implied by the existing ones in
ϕ and the semantics of separating conjunction. This process may discover that ϕ contains
contradictory constraints, i.e., it is unsatisfiable. To infer the implicit (dis-)equalities in a for-
mula, we adapt the Boolean abstraction proposed in [11] for the fragment considered in this
paper.

2 Points-to edges are depicted as simple lines, predicate edges as double lines, and disequality edges as dotted
lines. For readability, we omit some of the labelling with existentially-quantified variables and some of the
disequality edges in the normalised graphs.

123

Form Methods Syst Des

Fig. 6 Definition of the components of BoolAbs[ϕ] with ⊕ denoting xor

Definition 3 (Boolean abstraction)Given a formulaϕ � ∃ #‰

X : Π∧Σ , we define theBoolean
formulaBoolAbs[ϕ] ::=FΠ∧FΣ∧F=∧F∗ where the components ofBoolAbs[ϕ] are defined
in Fig. 6. The set BV (ϕ) of Boolean variables occurring in BV(ϕ) is defined as:

– [E = F] ∈ BV(ϕ) for every two variables E and F occurring in ϕ,
– [E, a] ∈ BV(ϕ) for every variable E and a spatial atom of the form a = E �→ {ρ} or

a = P(E, F,
#‰

B) in ϕ.

Intuitively, the variable [E = F] denotes the equality between E and F , while [E, a] denotes
the fact that the atoma describes a heapwhere E is allocated.The components ofBoolAbs[ϕ],
defined in Fig. 6, have the following meaning: FΠ and FΣ encode the atoms of ϕ, F=
encodes reflexivity, symmetry, and transitivity of equality, and F∗ encodes the semantics of
the separating conjunction.

Proposition 1 Let ϕ be a formula. Then, BoolAbs[ϕ] is equisatisfiable with ϕ, and, for any
variables E and F of ϕ, BoolAbs[ϕ] ⇒ [E = F] (resp. BoolAbs[ϕ] ⇒ ¬[E = F]) iff
ϕ ⇒ E = F (resp. ϕ ⇒ E �= F).

For the formula ψ1 in our running example, i.e., Eq. (6), BoolAbs[ψ1] is a conjunction
of several formulas including:

1. [y,skl2(y, Y3)] ⊕ [y = Y3], which encodes the atom skl2(y, Y3),
2. [Y3, Y3 �→ {(f2, t), (f1, Y4)}] and [t, t �→ {(s, Y2)}], encoding points-to atoms of ψ1,
3.

([t = y] ∧ [t, t �→ {(s, Y2)}]
) ⇒ ¬[y,skl2(y, Y3)], which encodes the separating

conjunction between t �→ {(s, Y2)} and skl2(y, Y3),
4.

([t = Y3] ∧ [t, t �→ {(s, Y2)}]
) ⇒ ¬[Y3, Y3 �→ {(f2, t), (f1, Y4)}], which encodes the

separating conjunction between t �→ {(s, Y2)} and Y3 �→ {(f2, t), (f1, Y4)}.
If BoolAbs[ϕ] is unsatisfiable, norm(ϕ) returns false. Otherwise, the output of norm(ϕ)

is the formula ϕ′ obtained from ϕ by (1) adding all (dis-)equalities E = F (resp. E �= F) such
that [E = F] (resp. ¬[E = F]) is implied by BoolAbs[ϕ] and (2) removing all predicate
atoms P(E, F,

#‰

B) s.t. E = F occurs in the pure part.
For example, the normalisations of ψ1 and ψ2 are given in Fig. 5c, b. Note that the ls

atoms reachable from y are removed becauseBoolAbs[ψ1] implies thatY1 andY2 are aliasing
y (from heap determinism and the non-emptiness of the sub-heap at location Y3), and thus
the list segments between y, Y1, and Y2 are empty. Moreover, BoolAbs[ψ1] implies that y
is different from t and z. BoolAbs[ψ2] does not imply additional (dis-)equalities, so ψ2 is
unchanged after normalisation.

The following result is important for the completeness of the select procedure.

123

Form Methods Syst Des

Proposition 2 Let norm(ϕ) be the result of the normalisation of a formula ϕ. For any two
distinct nodes n and n′ in the SL graph of norm(ϕ), there cannot exist two disjoint sets of
atoms A and A′ in norm(ϕ) such that both A and A′ form paths between n and n′.

Proof Suppose thatnorm(ϕ) contains two such sets of atoms between nodes n and n′ labelled
by variables E and F respectively. By the semantics of the separating conjunction, it holds
that one of the paths is empty, so that ϕ ⇒ E = F . Therefore, norm(ϕ) does not include all
ϕ-implied equalities, contradicting its construction. ��

5 Selection of spatial atoms

After normalisation and testing entailment of pure parts of the checked formulas, the algo-
rithm starts matching every spatial atom from ϕn

2 to a set of atoms of ϕn
1 . For this, it uses the

select procedure described in this section.

Points-to atoms. Let ϕ1 ::=∃ #‰

X : Π1 ∧ Σ1 be a normalised formula. The procedure
select(ϕ1, E2 �→ {ρ2}) outputs either the sub-formula ∃ #‰

X : E1 = E2 ∧ E1 �→ {ρ1}
if E1 = E2 occurs in Π1, or the sub-formula emp otherwise. The procedure select is
called only if ϕ1 is satisfiable. Consequently, because of the semantics of the separating
conjunction, ϕ1 cannot contain two different atoms E1 �→ {ρ1} and E ′

1 �→ {ρ′
1} such that

E1 = E ′
1 = E2. Also, if there exists no such points-to atom, then ϕ1 ⇒ ϕ2 is not valid.

Indeed, since ϕ2 does not contain existentially quantified variables, a points-to atom in ϕ2

could be entailed only by a points-to atom in ϕ1.
In the running example,select(ψn

1 , t �→ {(s, y)}) = ∃Y2 : y = Y2∧. . .∧t �→ {(s, Y2)}.
For readability, we have omitted some existential variables and pure atoms.

Predicate atoms. Given an atom a2 = P2(E2, F2,
‰

B2), the call to select(ϕ1, a2) first
builds a sub-graph G ′ of G[ϕ1], which is a candidate for representing a partial unfolding
of a2 in ϕ1, and then it checks whether the sub-heaps described byG ′ are well-formed wrt a2.
If this is not true or if G ′ is empty, then select(ϕ1, a2) outputs emp. Otherwise, it outputs
the formula ∃ #‰

X : Π ′
1 ∧ Σ ′ where Σ ′ consists of all atoms represented by edges of the

sub-graph G ′, and Π ′
1 contains all equalities E1 = E2 of Π1 where either E1 or E2 occur

in G ′.
We now have a look at the construction of G ′ in more detail. It is based on Constraint 4.

Let Dangling[a2] = Node(F2) ∪ {Node(B) | B ∈ # ‰

B2}. Notice that {F2} ∪ # ‰

B2 are also
free variables of ϕ1. The sub-graph G ′ is defined as the union of all paths of G[ϕ1] that
(1) start in the node labelled by E2, (2) consist of edges labelled by fields in F

∗�→(P2)
or predicates Q with P2 ≺∗

P
Q, and (3) end either in a node from Dangling[a2] or

in a cycle, in both cases not traversing through nodes in Dangling[a2]. Therefore, G ′
does not contain edges that start in a node from Dangling[a2], but shall contain a path
from Node(E2) to each node in Dangling[a2]. In the running example, the subgraphs
returned by select(ψn

1 ,nll(x, y, z)) and select(ψn
1 ,skl2(y, t)) are highlighted in

Fig. 5c.
If the construction of G ′ succeeds, the procedure select checks that, in every model

(S1, H1) of ϕ1, the sub-heap (S1, H ′
1) described by G ′ is well-formed wrt a2, i.e., nodes

of Dangling[a2] are not interpreted by S1 in ldom(H ′
1), the set of allocated locations

in H ′
1. For our running example, for any model of ψ1, in the sub-heap modelled by the

graph select(ψn
1 ,skl2(y, t)) in Fig. 5c, the variable t should not be (1) interpreted as an

123

Form Methods Syst Des

allocated location in the list segment skl2(y, Y3) or (2) aliased to one of the nodes labelled
by Y3 and Y4. The well-formedness test is performed using the below proposition.

Proposition 3 [Well-formedness test] Let a graph G ′ represent a sub-formula of ϕ1 and
a2 = P2(E2, F2,

‰

B2) be a predicate atom such that free(G ′) ⊇ free(a2). G ′ is well-formed
wrt a2 iff the following conditions hold for each variable V ∈ {F2} ∪ # ‰

B2:

1. For every variable V ′ labelling the source of a points-to edge of G ′, it holds that ϕ1 ⇒
V �= V ′.

2. For every predicate edge e included in G ′ that does not end in Node(V), V is allocated
in all models of E �= F ∧ (ϕ1\G ′) where E and F are variables labelling the source and
the destination of e, respectively, and ϕ1\G ′ is a formula obtained from ϕ1 by deleting
all spatial atoms represented by edges of G ′.

Proof (⇒) If G ′ is well-formed, then condition (1) is trivially satisfied. Notice that, if G ′
contains only one predicate edge e, it shall end in Dangling[a2] (by construction of G ′), so
condition (2) is trivially true.Otherwise, letV ∈ {F2}∪ # ‰

B2 and e be a predicate edge ofG ′ such
thatNode(V) �∈ Dangling[e] as in condition (2). Let (S1, H1) be amodel of ϕ1 s.t. the sub-
heap described by e is not empty. From Constraint 1, it follows that (S1, H1) is also a model
of E �= F ∧ ϕ1, where E and F are the destination and target parameters of e respectively.
The hypothesis implies that, for the sub-heap H ′

1 described by G
′, S1(V) �∈ ldom(H ′

1). From
the semantics of separating conjunction, ldom(H1) = ldom(H ′

1) � ldom(H ′′
1), where H ′′

1 is
the sub-heap described by ϕ1\G ′. Thus, S(V) shall belong to ldom(H ′′

1) because it is the
only set disjoint from ldom(H ′

1) in the model (S1, H1) of ϕ1.
(⇐) Condition (1) guarantees that V is different from all allocated locations represented by
sources of points-to edges in G ′. Condition (2) guarantees that V is not interpreted as an
allocated location in a list segment described by a predicate edge of G ′ (this trivially holds
for predicate edges ending in Node(V)). If V were not allocated in some model (S1, H ′′

1)

of E �= F ∧ (ϕ1\G ′), then one could construct a model (S1, H ′
1) of G

′ where e would be
interpreted to a non-empty list and S(V) would equal an allocated location inside this list.
Therefore, there would exist a model of ϕ1, defined as the union of (S1, H ′

1) and (S1, H ′′
1),

in which the heap region described by G ′ would not be well-formed wrt a2. ��
The following proposition provides a test for checking that variables are allocated based
on checking unsatisfiability of SL formulas. Note that, by Proposition 1, unsatisfiability of
formulas can be decided using the Boolean abstraction BoolAbs.

Proposition 4 Let ϕ ::=∃ #‰

X : Π ∧ Σ be a formula and V a program variable such that
V ∈ pv(ϕ). Let V1 and f1 be symbols not occurring in ϕ. V is allocated in every model of ϕ
iff ∃ #‰

X : Π ∧ Σ∗V �→ {(f1, V1)} is unsatisfiable.

6 Representing SL graphs as trees

We define a canonical representation of SL graphs in the form of trees, which we use for
checking ⇒sh. In this representation, disequality edges are ignored because they have been
dealt with previously when checking entailment of pure parts.

Example We start by explaining the main concepts of the tree encoding using the labelled
graphG in Fig. 7a, which is well-formedwrt some predicate atom P(E, F)where P specifies

123

Form Methods Syst Des

a b
Fig. 7 An example of encoding an SL graph into a tree. a An SL graph G. b The tree encoding T [G] of G

some special kind of list segments with nested circular lists (chosen to completely illustrate
all the relevant issues). We assume that all nodes in G are reachable from the node labelled
by E , which is guaranteed for the graphs constructed by select because of Property 1.

To construct a tree representation of G, we start with its spanning tree (highlighted using
bold edges) built using minimal paths as in Property 6. Then, any node with at least two
incoming edges, called a join node, is split into several copies, one for each incoming edge
not contained in the spanning tree. The obtained tree is given in Fig. 7b. In order not to lose
any information, the copies of nodes are labelled with the identity of the original node, which
is kept in the spanning tree. If the original node is labelled by a program variable, say x ,
the original node and its copies are labelled by alias [x]. Otherwise, since the representation
does not use node identities, we assign to every copy of the node a “routing” label describing
how the copy can reach the original node using paths in the spanning tree.

For example, if a node n has the label alias↑[f2], this means that n is a copy of some join
node m, where m is the first ancestor of n with an incoming edge labelled by f2. Further,
n labelled by alias↑↓[f2] means that the original nodem can be reached from n by going up
in the tree until the first node with an outgoing edge labelled by f2, and then down via the f2-
labelled edge. The exact definition of these labels can be found later in this section. Intuitively,
a label of the form alias↑[f] will be used when breaking loops, while a label of the form
alias↑↓[f]will be used when breaking parallel paths between nodes. Due to Property 5, this
set of routing labels is enough to convert an SL graph into a canonical tree representation
that can entail a spatial atom from the considered fragment; for arbitrary graphs, this is not
the case.

Let G be an SL graph well-formed wrt the predicate atom P(E, F,
#‰

B) such that all
nodes of G are reachable from the node Root labelled by E . An f -edge of an SL graph
is a points-to edge labelled by f or a predicate edge labelled by Q(

#‰

Y) such that the min-
imum field in F �→(Q) wrt ≺F is f . The tree encoding of G is computed by the procedure
toTree(G, P(E, F,

#‰

B)) that consists of four consecutive steps that are presented below.

Node marking. First, toTree computes a mappingM, called node marking, that maps each
node n to a field in F as follows:

M(n) ::=
{
min ≺F

(F �→(P)) if n = Root,
min ≺F

{ f | f -edge enters n} otherwise.
(7)

Thismeans thatM(n) is theminimumfieldwrt≺F∗ among thefields of (points-to or predicate)
edges entering node n. For technical reasons, we add the minimum field (wrt ≺F) in F �→(P)

as the marking of node Root.

123

Form Methods Syst Des

For any join node n not labelled by a variable in {E, F} ∪ #‰

B , the spanning tree edge is
the f -edge (m, n) such that M(n) = f ; for Root, no incoming edge is in the spanning tree.
The soundness of this construction is obtained due to Property 6, which ensures that in any
model of P(E, F,

#‰

B), all allocated nodes are reachable via paths built using only minimum
fields.

Splitting join nodes. The way join nodes are split depends on whether they are labelled by
variables in {E, F} ∪ #‰

B or not. First, a graph G ′ is obtained from G by replacing any edge
(m, n) with n labelled by some V ∈ {E, F} ∪ #‰

B by an edge (m, n′) with the same label,
where n′ is a fresh copy of n labelled by alias [V]. In our example, the node labelled with F
in Fig. 7a is split, and we obtain three nodes labelled by alias [F] in Fig. 7b.

Subsequently,G ′ is transformed into a tree by splitting the remaining join nodes as follows.
Let n be a join node and (m, n) an edge not in the spanning tree of G ′ (and G). The edge
(m, n) is replaced in the tree by an edge (m, n′) with the same edge label, where n′ is a fresh
copy of n labelled by:

– alias↑[M(n)] if m is reachable from n in G ′ and n is the first predecessor of n′ marked
with M(n). In Fig. 7a, this labelling is used on cutting the edge from Z ′

2 to Z2, and
substituting it by an edge to a node labelled alias↑[f2] in Fig. 7b.

– alias↑↓[M(n)] if there is a node p that is the first predecessor of n′ with a (non-null)
successor over edge M(n), and the successor is n. In Fig. 7a, this labelling is illustrated
on cutting the edge from Z1 to Z2, and substituting it by an edge to a node labelled
alias↑↓[f2] in Fig. 7b.

If the relation between n and n′ does not satisfy the constraints mentioned above, i.e., the
formula does not belong to the considered fragment, the result of this step is an error rep-
resented by the ⊥ tree. Also note that in the example in Fig. 7, edges over ff were split in
two ways, depending on whether the target node is labelled by a variable or not. This will
later be important in the construction of the TA recognising unfoldings of predicates. We
denote the set of all aliasings over variables Vars∪LVars and fields F with ALIAS, formally,
ALIAS = {alias [X] | X ∈ Vars ∪ LVars} ∪ {alias↑[f],alias↑↓[f] | f ∈ F}.

At the end of these steps, we obtain a tree with labels on edges (using fields f ∈ F or
predicates Q(

#‰

B)) and labels on nodes of the form alias [. . .]; the root of the tree is labelled
by E .

Updating the labels. In the last step, two transformations are done on the tree. First, the labels
of predicate edges are changed in order to replace each argument X from the set {F} ∪ #‰

B
by alias [X], and the rest of the arguments by alias↑[M(n)] or alias↑↓[M(n)], depending
on the position of the node n labelled by X wrt the source node of the predicate edge. In the
case this is not possible, the algorithm returns ⊥.

Second, as the generated trees will be tested for membership in the language of a TA
that accepts node-labelled trees only, the labels of edges are moved to the labels of their
source nodes and concatenated in the order given by ≺F (predicates in the labels are ordered
according to the minimum field in their matrix).

We now formally define the structure of the output of the algorithm. Let L denote the set
of possible node labels obtained in the previous transformation, i.e., elements of F∗ (ordered
wrt ≺F), elements of ALIAS, and predicates P(

#‰

B) for all P ∈ P and
#‰

B ∈ ALIAS∗. Then the
output of toTree(G, P(E, F,

#‰

B)) is a tree over labels of the tree encoding, i.e., a mapping
t : N∗ → L such that dom(t) is prefix-closed with the following conditions. Let chlds(n) be
the set {i | ni ∈ dom(t)}. Then,

123

Form Methods Syst Des

– if t (n) = f1 · · · fk ∈ F
∗, then chlds(n) = {1, . . . , k},

– if t (n) = P(
#‰

B) for some P ∈ P and
#‰

B ∈ ALIAS∗, then chlds(n) = {1}, and
– if t (n) ∈ ALIAS, then chlds(n) = ∅.

The following property ensures the completeness of the entailment procedure:

Proposition 5 Let P(E, F,
#‰

B) be a predicate atom and G an SL graph. If the procedure
toTree(G, P(E, F,

#‰

B)) returns ⊥, then G �⇒sh P(E, F,
#‰

B).

Proof It follows from Properties 5 and 6 that a model of a predicate in our fragment can
be translated into a tree using the considered aliasing relations. Therefore, if the procedure
toTree(G, P(E, F,

#‰

B)) returns ⊥, then G can only correspond to a model of a predicate
not in the considered fragment. ��

7 Tree automata recognising tree encodings of SL graphs

Next, we proceed to the construction of tree automataA[P] that recognise tree encodings of
SL graphs that entail atoms of the form P(E, F,

#‰

B). After defining TAs, we continue with an
intuitive description on a typical example, and give a full description of the TA construction
later.

Definition 4 (Tree automata) A (nondeterministic) tree automaton (TA) recognising tree
encodings of SL graphs is a tuple A = (Q, q0,Δ) where Q is a finite set of states, q0 ∈ Q
is the initial state, and Δ is a finite set of transitions of the form (q, a1 · · · an, q1 · · · qn) or
(q, a, ε), where n > 0, q, q1, . . . , qn ∈ Q, ai is an SL graph edge label (we assume them to
be ordered wrt the same ordering of fields≺F as for tree encodings), and a ∈ ALIAS. We use
q ↪→ a1(q1), . . . , an(qn) to denote (q, a1 · · · an, q1 · · · qn) and q ↪→ a to denote (q, a, ε).

A tree encoding t : N∗ → L is accepted by A if there exists a mapping ρ : dom(t) → Q
such that:

(i) ρ(ε) = q0, and
(ii) for all n ∈ dom(t), if chlds(n) = {1, . . . , k}, then (ρ(n), t (n), ρ(n · 1) · · · ρ(n · k)) ∈ Δ.

The set of trees L(A) accepted by A is called the language of A.

7.1 Overview of the construction

The tree automatonA[P] is constructed by a procedure starting from the inductive definition
of P . If P does not call other predicates, the TA simply recognises the tree encodings of the SL
graphs that are obtained by “concatenating” a sequence of either Gaifman graphs represent-
ing the matrix of P , Σ(E, Xtl,

#‰

B), or predicate edges P(E, Xtl,
#‰

B). In these sequences,
occurrences of both types can bemixed in an arbitrary order and in an arbitrary number due to
Property 4 (compositional list segments) of inductive definitions in our fragment. Intuitively,
this corresponds to a partial unfolding of the predicate P in which there appear concrete
segments described by points-to edges as well as (possibly multiple) segments described by
predicate edges. Concatenating two Gaifman graphs means that the node labelled by Xtl in
the first graph is merged with the node labelled by E in the other graph. We first illustrate
this on a simplified example.

Consider a predicate P1(E, F, B) that does not invoke any other predicates and whose
matrix is Σ1 ::=E �→ {(f1, Xtl), (f2, Xtl), (f3, B)}. The tree automaton A[P1] for

123

Form Methods Syst Des

Fig. 8 Automaton A[P1]

P1(E, F, B) has transitions given in Fig. 8. Transitions 1–3 recognise the tree encoding of the
Gaifman graph ofΣ1, assuming the following total order on the fields: f1 ≺F f2 ≺F f3. Tran-
sition 4 is used to distinguish the “last” instance of this tree encoding, which ends in the node
labelled byalias [F] accepted byTransition 5. Finally, Transitions 6 and 7 recognise predicate
edges labelled by P1(B). As in the previous case, we distinguish the predicate edge that ends
in the node labelled byalias [F]. Note that the TAgiven above exhibits the simple and generic
skeleton of TAs accepting tree encodings of list segments of our SL fragment: The initial state
q0 is used in a loop to traverse over an arbitrary number of folded (Transition 6) and unfolded
(Transition 1) occurrences of list segments, and the state q1 is used to recognise the end of the
backbone (Transition 5). The other states (here, q2 and q3) are used to accept alias labels only.

When P invokes other predicates, the automaton recognises tree encodings of concate-
nations of more general SL graphs, obtained from Gf [mat(P)] by replacing predicate edges
with unfoldings of these predicates. On the level of TAs, this operation corresponds to a sub-
stitution of transitions labelled by predicates with TAs for the nested predicates. During this
substitution, alias [. . .] labels occurring in the TA for the nested predicate need to be mod-
ified, in particular, labels of the form alias [V] are substituted by the marking of Node(V)

wrt the higher-level matrix.

7.2 Basic algorithm for non-empty list segments

We present our algorithm for translating a predicate into a TA in two steps. In this section,
we start with the basic algorithm for a predicate that for each nested predicate allows at least
one unfolding, and in the next section, we extend the construction to allow empty nested
predicates.

Consider the definition of the matrix of a predicate P(E, F,
#‰

B) as given in Eqs. (1) and (2)
in Sect. 2.3. The construction of the automaton A[P] is described in the following. To ease
its presentation, let us suppose that the matrix of P is of the form Σ(E, Xtl,

#‰

B) ::=∃ #‰

Z :

123

Form Methods Syst Des

E �→ {(f1, Z1 = Xtl), . . . , (fn, Zn)}∗Σ ′. Wlog, we further assume that f1 ≺F · · · ≺F fn ,
i.e., f1 is the minimum field in F �→(P).

The construction uses the SL graph of the formula that represents two unfoldings of the
recursive definition of the predicate3:

∃Xtl : Σ(E, Xtl,
#‰

B)∗Σ(Xtl, F,
#‰

B). (8)

The unfolding is done twice in order to capture all markings that may appear in tree encodings
that shall be recognised by A[P], including the ones of the nodes allocated inside the list
segment. (Note that in the example in Fig. 7, a single unfolding of the predicate P would not
create the marking alias↑↓[ff]; the corresponding node would be marked with alias [F]. On
the other hand, any more unfoldings of P do not create any new marking.) We obtain a graph
GP by transforming the formula in Eq. (8) to its SL graph [macros of the form �1+Q[Z ,

#‰

Y]
are first expanded according to Eq. (3)]. In the following, we use variables Z1, . . . , Zn to
denote existentially quantified variables from the first unfolding Σ(E, Xtl,

#‰

B) and vari-
ables Z ′

1, . . . , Z
′
n to denote existentially quantified variables from the second unfolding

Σ(Xtl, F,
#‰

B).
In the following step, we get T [GP], the tree encoding of GP , and check that it is not

equal to ⊥, otherwise we abort the procedure. Notice that the variable Xtl is existentially
quantified in the formula, so T [GP] does not use the aliasing relation alias [Xtl]. Instead,
a node that is a copy of the node labelled with Xtl in G needs to use either the relation
alias↑[f1] or the relation alias↑↓[f1], because the marking of Node(Xtl) is f1. Recall
also that the nodes of G labelled by parameters or existentially quantified variables are kept
in the structure of T [GP] (the tree encoding only cuts some edges and adds new nodes).
Therefore, we overload the notation Node(Z) in the following to denote the (non-alias)
node of T [GP] obtained from the node of GP labelled by Z .

The construction starts with an empty automaton A[P]. It calls the procedure buildTA
(P, σ, q0, q1,m0), which adds states and transitions to A[P] to recognise tree encodings
of unfoldings of the atom P(E, F,

#‰

B). This procedure is recursive, because it is called for
all atoms Q(U, V,

‰

W) inside the formula in Eq. (8). The arguments of buildTA are the
following: P is the predicate called,σ is themapping of the formal parameters of the predicate
to an aliasing relation, q0 and q1 are the states to be used for the source resp. the continuation
of the construction, and m0 is the marking of the state q0. The state q0 is chosen as the initial
state of A[P].

Let σ = {E �→ alias [E], F �→ alias [F], # ‰

B �→ alias [B]} where
‰

B �→ alias [B]
denotes the set of mappings {B �→ alias [B] | B ∈ #‰

B}. The procedure buildTA(P, σ, q0,
q1, f1) consists of the following four steps.

I. Importing the tree encoding T [GP]. In the first step, we construct the skeleton of A[P]
by taking T [GP] and transforming it in the following way:

(a) For each node u of T [GP], we create a unique state q(u) in A[P], except for the nodes
Node(E) and Node(F), for which we use the states q0 and q1 respectively.

(b) If the node u is labelled in T [GP] with an aliasing relation r ∈ ALIAS, we add the
transition q(u) ↪→ σ(r) if r is of the form alias [B] for any B ∈ #‰

B and q(u) ↪→ r if
r is a relation alias�[m] for � ∈ {↑,↑↓}.

3 Note that in the example in Fig. 8, we performed some manual minimisation of the result.

123

Form Methods Syst Des

(c) If there is a predicate edge from u to v labelled with Q(
#‰

Y), we add the transition
q(u) ↪→ Q(β ′(#‰

Y , σ))(q(v)) where β ′(#‰

Y , σ) changes every Y in
#‰

Y according to the
following rules:

– If Y is an argument of buildTA, it is changed to σ(Y);
– if Y is an existentially quantified variable in the formula in Eq. (8), m is the marking

of Node(Y), and the relation between u and Node(Y) is alias�[m] for� ∈ {↑,↑↓},
we change Y to alias�[m];

– otherwise, we abort the procedure.

(d) If the node u is the source of points-to edges e1, . . . , ek labelledwith the fields h1, . . . , hk
respectively, assuming that h1 ≺F · · · ≺F hk , and entering nodes v1, . . . , vk in this order,
we add the transition q(u) ↪→ h1(q(v1)), . . . , hk(q(vk)). Note that this rule also creates
the backbone transitions

q0 ↪→ f1(q(Node(Xtl))), f2(q(Node(Z2))), . . . , fn(q(Node(Zn))),

(9)

q(Node(Xtl)) ↪→ f1(q1), f2(q(Node(Z ′
2))), . . . , fn(q(Node(Z ′

n))). (10)

(e) If the call to buildTA is not nested, we also add the transition q1 ↪→ σ(F).

Observe that the created skeleton is able to accept precisely two unfoldings of the predicate
P between E and F such that nested predicates are not unfolded.

II. Accepting non-empty list segments. Next, we make A[P] accept an arbitrary number of
these unfoldings along the minimum field, i.e., f1, of the predicate P . To do this, we add in
state q0 the following transitions:

(a) a transition that accepts exactly one unfolding:
q0 ↪→ f1(q1), f2(q(Node(Z ′

2))), . . . , fn(q(Node(Z ′
n))),

(b) a looping transition that allows to insert arbitrarily many unfoldings:
q0 ↪→ f1(q0), f2(q(Node(Z2))), . . . , fn(q(Node(Zn))).

III. Interleave with predicate edges. We add transitions allowing an arbitrary interleaving of
folded and unfolded occurrences of the predicate P:

q0 ↪→ P(σ (
#‰

B))(q0) (11)

q0 ↪→ P(σ (
#‰

B))(q(Node(Xtl))) (12)

q(Node(Xtl)) ↪→P(σ (
#‰

B))(q1). (13)

Moreover, if the call to buildTA is not nested, we also add the transition

q0 ↪→P(σ (
#‰

B))(q1) (14)

to accept exactly one instance of predicate P .

IV. Inserting tree automata of nested predicate edges. For each transition inserted inA[P] of
the form:q(Node(R)) ↪→ Q(

#‰

Y)(q(Node(S))),with Q �= P representing a nested predicate
atom Q(R, S,

#‰

Y), we recursively call buildTA(Q, σ ′, q(Node(R)), q(Node(S)),mR)

where σ ′ = {E �→ rR, F �→ rS,
‰

B �→ rY } (note that the definition of Q uses E, F, and
#‰

B)
such that for any Z ∈ {R, S} ∪ #‰

Y :

123

Form Methods Syst Des

x1 x2 x3 x4 x5 x6
f1 f1

f2

f3

f2

f1 f1

f3

f2

f1

a

x1 x2

alias [f2]

x3

alias [f3] alias [f3]

x4

alias [f3]

x5

alias [f3]

x6
f1

f1

f2

f3

f1 f2

f1

f3

f2 f1

b
Fig. 9 Illustration of the issue with possibly empty nested list segments on skl3. The label of the node
accessible from x5 over f1 (labelled with alias↑↓[f3]) reflects the fact that the second-level skip list from the
node x4 to the node x6 is empty. a The SL graph of a 3-level skip list. b The tree encoding of the graph in a

– if Z ∈ {E, F} ∪ #‰

B then rZ is σ(Z),
– if Z ∈ #‰

Z (the set of existentially quantified variables in P) then rZ is the aliasing relation
between Node(R) and Node(Z) in T [GP],
Note that the size of A[P] (number of states and transitions) is polynomial in the size

of the inductive definition (number of variables and atoms) of P and of Q with P ≺∗
P
Q.

The procedure itself is also polynomial, and the membership problem for tree automata is
solvable in polynomial time (wrt the size of the input). As a consequence, we conclude that
the entailment decision procedure described in this section is polynomial in the size of the
input.

The following result states the correctness of the tree automata construction.

Theorem 1 For any predicate atom P(E, F,
#‰

B) and any SL graph G, if the tree generated
by toTree(G, P(E, F,

#‰

B)) is accepted by A[P], then G ⇒sh P(E, F,
#‰

B).

Proof Follows from the fact that A[P] accepts trees corresponding to two unfoldings of P
(using transitions created in Step I), one unfolding (Step II(a)), and more than two unfoldings
(Step II(b)). Moreover, partial unfoldings of P (any interleaving of occurrences of unfoldings
of P and P itself along the backbone) are accepted using transitions created in Step III.
Transitions that accept all possible (non-empty) unfoldings for nested predicates are inserted
in Step IV. ��

7.3 Extending the basic algorithm to possibly empty nested list segments

We nowmodify the above algorithm to generate TAs accepting unfoldings of P with not only
non-empty occurrences of nested predicates, but also empty ones. To show the difficulties of
this construction, we consider the SL graph in Fig. 9a, which is an unfolding of the predicate
atom skl3(x1, x6). The skip list segment between nodes x1 and x4 contains a non-empty
level-2 skip list, while the level-2 skip list between x4 and x6 is empty. The emptiness of the

123

Form Methods Syst Des

second segment causes that the tree for the graph uses the alias relation alias↑↓[f3] for the
node reachable from x5 over f1 instead of alias↑↓[f2] (used, e.g., in the node reachable from
x2 over f1). Such trees are, however, rejected by the TA built by the procedure buildTA
presented previously.

To fix this problem, apart from allowing empty occurrences of nested predicates in
the TA returned by buildTA, we also need to extend the occurrences of aliasing rela-
tions alias↑↓[. . .] to consider all combinations of empty/non-empty occurrences of nested
predicates. Indeed, such aliasing relations are used to address the target node of nested predi-
cate atoms in the tree encoding of the matrix of a predicate. The aliasing relations of the form
alias↑[. . .] are not considered because they are used to encode the �1+ Q[Z ,

#‰

Y] macro,
which describes a non-empty list segment. In [9], we created an exponentially large TA that
encodes all possible combinations of empty/non-empty occurrences of nested predicates.
Here, we improve the algorithm and construct a TA of a polynomial size that accepts trees
that have the right structure but may have somewrong alias labels. An additional polynomial-
time check on the result of themembership test determineswhether the alias labelling is valid.

Intuitively, the new procedure has the following steps:

1. The tree encoding of G, T [G], is computed using toTree(G, P(E, F,
#‰

B)), and the TA
A[P] is obtained using buildTA as in the previous section.

2. Further, A[P] is modified in such a way that for every predicate-labelled transition, an
ε-transition with the same source and destination nodes is added. After we remove the
ε-transitions using a standard algorithm for ε-transition elimination, we obtain A•. The
automatonA• accepts the same trees asA[P], but also trees obtained by removing some
of the predicate-labelled edges (and for every such a removed edge, merging the source
and target nodes together). The aliasing relations in the leaves of these treesmay, however,
be wrong. For example,A• obtained for skl3 would reject trees with alias↑↓[f3] in the
nodes accessible from x5 and x3 through f1 in Fig. 9b; it would only consider the label
alias↑↓[f2].

3. A saturation algorithm is applied onA• to obtainA′[P], where more aliasing transitions
are introduced. Some of these added transitions do not, however, correspond to aliasings
generated by the presence of empty predicate atoms.

4. For this reason, a modified membership algorithm is applied to T [G] and A′[P]. It
consists of first testing T [G] ∈ A′[P] using a standard algorithm; if it answers false,
the procedure returns false. Otherwise, the procedure checks that the aliasing transitions
of A′[P] used in the standard membership test correspond to empty occurrences of
predicates in T [G]. If this check succeeds, the final result is true; otherwise the procedure
returns false.

The above procedure, further called isIn(G, P(E, F,
#‰

B)), runs in the time polynomial to the
size of G and of the inductive definitions in P. It improves the procedure in [9], where the TA
A′[P] is built by pumping all (exponentially many) legal combinations of empty predicate
atoms and membership is tested in the standard way.

We now formalise steps 3–5 of isIn(G, P(E, F,
#‰

B)). In step 3, we first create the TA
Aε = (Q, q0,Δε) from A[P] in such a way, that for every transition of A[P] of the form
q ↪→ P ′(#‰

B)(p) representing a predicate atom P ′(. . .) in the matrix of P , we add an ε-
transition of the form q ↪→ ε(p). Then, A• = (Q, q0,Δ•) is the TA obtained by applying a
standard algorithm for removing epsilon transitions on Aε .

In step 4, a saturation procedure first computes the mapping ω : Q → (F∪ #‰

B)∗ such that
ω(q) is the sequence of aliases that the node labelled by q in the run of A• on T [G] can
(possibly via other aliases) refer to. More precisely, let q ∈ Q be a state such thatΔ• contains

123

Form Methods Syst Des

a transition q ↪→ alias↑↓[f]with f ∈ F; due to our construction ofA[P] andA•, there is at
most one such transition from q . Let r ↪→ g1(s1) · · · gn(sn) be the first transition obtained by
traversing the graph ofA• backwards from q to q0 satisfying the following constraints: (i) its
right-hand side contains a term gi (si) with gi = f , and (ii) Δ• contains a transition starting
in si and expressing an aliasing relation, i.e., it has one of the forms si ↪→ alias↑↓[f ′] for
f ′ ∈ F or si ↪→ alias [X] for X ∈ #‰

B\{null} (there is at most one such transition from
si , by the construction of A•). Then, we define ω(q) = f · ω(si). If there is no transition
from si satisfying the above constraints but Δ• contains si ↪→ alias [null] (if null ∈ #‰

B),
then we define ω(q) = f · null. (We treat null in a special way in order to match the
definition of alias↑↓[. . .].) For any state q ∈ Q that does not satisfy the above constraints,
ω(q) = ε. Notice that if ω(q) = f1 · · · fn , then f1 is the marking used in the alias transition
from q; if fi ∈ #‰

B , then i = n, i.e., variables can only occur at the end of the sequence.
The saturation returns the TA A′[P] = (Q, q0,Δ′) such that Δ′ = Δ• ∪ ⋃

q∈Q C(q)

where C(q) contains all leaf transitions accepting aliases with markings in ω(q), formally,
C(q) = {q ↪→ alias↑↓[fi] | fi ∈ ω(q) ∩ F} ∪ {q ↪→ alias [X] | X ∈ ω(q) ∩ #‰

B}.
In step 5, the modified tree membership checking algorithm creates a partial mapping

μ : T [G] ⇀ (F ∪ #‰

B)∗ that is defined for some leaves of T [G]. Intuitively, μ is used to
determine which nested lists of P are assumed to have empty occurrences in T [G]. Formally,
let u ∈ dom(T [G]) be a leaf labelled by alias↑↓[fi] (for a field fi ∈ F) or alias [fi] (for
a variable fi ∈ #‰

B). If u is labelled by q in the accepting run of A′[P] on T [G], then
μ(u) = f1 · · · fi if ω(q) = f1 · · · fn for i ≤ n. Then, for all labelled leaves u of T [G], the
modified membership test performs the following checks. Suppose μ(u) = f1 · · · fi . Then,
for all 1 ≤ j < i , we test that the node v accessible from u via alias↑↓[f j] references the
same node as u, i.e., T [G](v) = T [G](u). Intuitively, this validates that if an alias relation
assumes that there is an empty list segment in T [G], there really is one. Moreover, if fi ∈ F,
we also test that the node accessible via alias↑↓[fi] is not an alias node. If any of the above
checks fails, the procedure isIn(G, P(E, F,

#‰

B)) returns false, otherwise it returns true.

Theorem 2 For any predicate atom P(E, F,
#‰

B) and any SL graph G, the result of
isIn(G, P(E, F,

#‰

B)) is true iff G ⇒sh P(E, F,
#‰

B).

Proof (Idea) From the idea of the proof of Theorem 1, we know that the TAA[P] accepts tree
encodings of all models of P with no empty predicate occurrences. The new construction of
A′[P] ensures thatA′[P] will also accept any tree T obtained from a tree accepted byA[P]
by allowing any predicate that occurs in it to be empty. This shows completeness of the
method. On the other hand, the construction ofA′[P] accepts trees that do not correspond to
any model of P , since some nested list may jump out of the list in which it should be nested.
The modified membership test ensures that such trees are rejected, re-establishing soundness
of the procedure. ��

8 Extension to doubly linked lists

The procedure presented above can be extended to check validity of entailments between
formulas using more general inductively defined predicates. In this section, we sketch the
main idea for the extension to list segments that are finite nestings of both singly linked and
doubly linked lists.

123

Form Methods Syst Des

Fig. 10 Tree encodings for lists of nested cyclic doubly linked lists: (left) an SL graph that entails
nlcdl(E, F), (right) the tree encoding of the graph from the left

To describe doubly linked list segments, we extend the class of inductive definitions
allowed by Constraint 1 (page 1) by including the following rules:

Rdl(E, F, P, L ,
#‰

B) ::=E = F ∧ P = L ∧ emp (15)

Rdl(E, F, P, L ,
#‰

B) ::=∃Xtl,
#‰

Z : E �= {F} ∪ #‰

B ∧ P �= L ∧
E �→ {ρ({Xtl, P} ∪ #‰

V)}∗Σ ′
︸ ︷︷ ︸

mat(Rdl(E,Xtl,P,
#‰
B))

∗Rdl(Xtl, F, E, L ,
#‰

B) (16)

where
#‰

V ⊆ #‰

Z ∪ #‰

B and Σ ′ from Constraint 3 is changed to

Σ ′ :: = Q(Z ,U,
#‰

Y) | Qdl(Z ,U, Z p, Zl ,
#‰

Y) | �1+ Q[Z ,
#‰

Y] |
�1+ Qdl[Z ,

#‰

Y] | Σ ′ ∗ Σ ′ | emp
for Z , Z p, Zl ∈ #‰

Z ; U ∈ #‰

Z ∪ #‰

B ∪ {E, Xtl, P}; #‰

Y ⊆ #‰

B ∪ {E, Xtl, P}; and
�1+Q[Z ,

#‰

Y] ≡ ∃Z ′ : mat(Q)(Z , Z ′, #‰

Y)∗Q(Z ′, Z ,
#‰

Y),

�1+Qdl[Z ,
#‰

Y] ≡ ∃Z ′, Z p : mat(Qdl)(Z , Z ′, Z p,
#‰

Y)∗Qdl(Z
′, Z , Z , Z p,

#‰

Y).

In Eq. (15), variable P corresponds to the predecessor of E and variable L corresponds
to the predecessor of F , i.e., the last element of the list segment. Notice that the above
constraints extend the definition used for DLL segments introduced in SL by, e.g., [1]. For
instance, to describe DLL segments starting in E , ending in L , and going to F , one can
use the following inductive rule: dll(E, F, P, L) ::= ∃Xtl : E �= F ∧ P �= L ∧ E �→
{(f, Xtl), (b, P)} ∗dll(Xtl, F, E, L). To describe a singly linked list of cyclic doubly
linked lists, one may use the following inductive rule: nlcdl(E, F) ::= ∃Xtl, Z : E �=
F ∧ E �→ {(s, Xtl), (h, Z)}∗ �1+ dll[Z] ∗nlcdl(Xtl, F). (In both cases, we omitted
the base rule.)

To deal with the above introduced class of inductive definitions, the main modification
of our decision procedure concerns the conversion of SL graphs to trees, i.e., the toTree
procedure described in Sect. 6. More precisely, we have to extend the splitting of join nodes
used by this procedure as follows. Recall that, given a join node n in an SL graph G and an
edge (m, n) that is not in the spanning tree of G, the splitting operation replaces (m, n) by
an edge (m, n′) with the same edge label and n′ being a fresh copy of n. For the new class

123

Form Methods Syst Des

of inductive definitions, we have to introduce two additional aliasing labels to describe the
path from n′ to n:

– alias↑2[M(n)]will be used ifm is reachable from n inG ′ and n is the second predecessor
of n′ marked withM(n). Intuitively, this label is needed to handle inner nodes of doubly
linked lists, which have two incoming edges: one from their successor and one from their
predecessor (see Fig. 10).

– alias↑↓last[M(n)] will be used if there is a node p that is the first predecessor of n′
marked with M(n), n is reachable from p by going only via M(n) edges, and n has no
non-alias successors with the markingM(n). Intuitively, the label is needed for a doubly
linked cyclic list to allow referring to the predecessor of the head node of the list (see
Fig. 10).

The construction ofTAs fromSect. 7 has to be adapted too since it is based on the tree encoding
of SL graphs obtained by unfolding the inductive definition of predicates to be represented.
In order to generate all the aliasing relations, it turns out that we have to consider three
unfoldings (instead of two) for these predicates. (Note that in the example in Fig. 10, the two
unfoldings of the nested DLL do not create the marking alias↑2[M(f)]—three unfoldings
are necessary. On the other hand, four or more unfoldings do not yield any new marking.)
Step I (importing tree encodings) of the algorithm from Sect. 7.2 can be extended in a trivial
way for the new aliasing relations. Step IV (inserting tree automata of nested predicate edges)
is adapted in a similar way to the tree encoding of SL graphs. The other steps are not modified
because they are independent of the set of aliasing relations.

9 Soundness, completeness, and complexity

We can now finally state that Algorithm 1 is a decision procedure for our SL fragment.

Theorem 3 Let ϕ1 and ϕ2 be a pair of formulas such that ϕ2 is quantifier-free. Then, Algo-
rithm 1 returns true iff ϕ1 ⇒ ϕ2.

Proof The first part of Algorithm 1 (until line 6) saturates the input formulas with all
(non-)aliasing relations between logic variables. It follows from Proposition 1 that this trans-
formation preserves the models of the input formulas. Thus the soundness and completeness
of the algorithm is proved for the normalised formulas ϕn

1 and ϕn
2 .

Soundness, i.e., the fact that if Algorithm 1 returns true, then ϕ1 ⇒ ϕ2. The procedure may
return true either at line 3 or line 15. At line 3, the test of unsatisfiability for ϕn

1 is sound
(by Proposition 1) and by the semantics of entailment, false ⇒ ϕ2. At line 15, the result
is true if (1) the normalised formulas ϕn

1 and ϕn
2 are satisfiable, (2) their pure parts satisfy

pure(ϕn
1) ⇒ pure(ϕn

2), (3) there is a mapping σ that associates to each spatial atom a2 of ϕn
2

a sub-formula σ(a2) of ϕn
1 entailing a2, and (4) all atoms of ϕn

1 are used at most once in the
image of σ (i.e., are marked once). Let M = (S, H) be a model of ϕn

1 . From Point (2), it
follows that M | pure(ϕn

2). Let a12, . . . , a
k
2 be the spatial atoms of ϕn

2 . From the semantics of
spatial formulas and Points (3) and (4), the heap H may be partitioned into domain-disjoint
heaps H1, . . . , Hk such that they are well-formed models of sub-formulas of ϕn

1 in the image
of σ , i.e., for any 1 ≤ i ≤ k, (S, Hi) is well-formed wrt ai and (S, Hi) | σ(ai). From the
soundness of selection and Proposition 5, we obtain that (S, Hi) | ai . Thus, (S, H) is a
model of ϕn

2 .

123

Form Methods Syst Des

Completeness, meaning that if Algorithm 1 returns false, then ϕ1 �⇒ ϕ2. At line 4, the pro-
cedure return false when ϕn

1 is satisfiable and ϕn
2 is not. By the soundness of the satisfiability

checking, then trivially ϕ1 �⇒ ϕ2. The next result false is obtained at line 5 when the test
of the entailment of pure parts fails. This trivially implies ϕ1 �⇒ ϕ2. In the first for loop
(line 6), the result false is returned when a points-to atom E2 �→ ρ2 of ϕn

2 cannot be mapped
to an unmarked points-to atom a1 of ϕn

1 such that pure(ϕn
1) ∧ a1 ⇒ pure(ϕn

2) ∧ a2. Notice
that, because ϕn

1 is satisfiable, it cannot contain two different points-to atoms from the node
labelled by E2 in G(ϕn

1). So if there is such an atom but it is already marked, i.e., used
for another atom of ϕn

2 , the semantics of separating conjunction implies that ϕ1 �⇒ ϕ2. If
E2 is not allocated in ϕn

1 , i.e., there is no spatial atom in G(ϕn
1) having E2 as origin, then

the entailment is also invalid because E2 is allocated in ϕn
2 . If the node labelled by E2 in

G(ϕn
1) is the origin of a predicate atom, the entailment is also invalid because the logic cannot

constraint the length of list segments to be one. In the second for loop (line 10), the false
result is returned when the select procedure fails to build the sub-formula ϕn

1 [a2] with
unmarked atoms of ϕn

1 such that it is well-formed wrt a2. From Proposition 2, ϕn
1 cannot

contain two disjoint sets of atoms that could correspond to the sub-formula ϕn
1 [a2]. If such a

set of atoms exists, but includes marked atoms, it follows that some of the atoms are shared
with the selection for another atom a′

2 of ϕn
2 ; this is excluded by the semantics of separating

conjunction, so the entailment is invalid. If such a set does not exist, no model of ϕn
1 can

include a model of a2, and Property 1 implies that it cannot be a model of the predicate
atom a2. If select returns emp because the well-formedness test failed on the selected set
of atoms, then due to the completeness of the test (Proposition 3), no well-formed model
of a2 exists in ϕ1. If the selection succeeds but the algorithm proposed for ϕn

1 [a2] ⇒sh a2
returns false, then (Theorem 2) there are well-formedmodels of ϕn

1 [a2] that are not models of
a2, so the initial entailment is invalid. Finally, if there are unmarked atoms of ϕn

1 , the precise
semantics of our logic implies that the models of ϕn

1 contain more allocated locations than
the models of ϕn

2 , meaning the entailment is invalid. ��

The overall complexity of the decision procedure is dominated by the complexity of (a)
the Boolean satisfiability and unsatisfiability checking used in the normalisation and well-
formedness tests (in select), which are NP and co-NP complete respectively, and (b) the
algorithms presented in Sect. 7.3 to build tree automata and check tree automaton member-
ship, which are both polynomial-time.

In conclusion, the overall complexity of the algorithm is polynomial wrt the sizes of the
formulas ϕ1 and ϕ2 modulo an oracle for deciding (un-)satisfiability of a Boolean formula.

10 Implementation and experimental results

We implemented our decision procedure in a solver called Spen (SeParation logic ENtail-
ment). The tool takes as the input an entailment problem ϕ1 ⇒ ϕ2 (including the definition
of the predicates used) encoded in the SmtLib2 format. For non-valid entailments, Spen
prints the atom of ϕ2 which is not entailed by a sub-formula of ϕ1. The tool is based on the
MiniSat solver for deciding unsatisfiability of Boolean formulas and the Vata library [19]
as the tree automata backend.

We applied Spen to entailment problems that use various recursive predicates. First, we
considered the benchmark provided in [20], which uses only the ls predicate. It consists
of two classes of entailment problems: the first class contains 110 problems each (split into
11 groups) generated randomly according to the rules specified in [20], whereas the second

123

Form Methods Syst Des

Table 1 Running Spen on entailments between well-formed formulas and atoms

ϕ2 ϕ1 Time Status A[ϕ2] T (ϕ1)

tc1 344 Valid 7/7

nll tc2 335 Valid 6/17 7/7

tc3 319 Invalid 6/7

tc1 318 Valid 10/9

nlcl tc2 316 Valid 6/15 7/7

tc3 317 Invalid 6/6

tc1 334 Valid 7/7

skl3 tc2 349 Valid 80/193 8/8

tc3 326 Invalid 6/6

tc1 358 Valid 7/7

dll tc2 324 Valid 9/16 7/7

tc3 322 Invalid 5/5

Time is given in ms. The column forA[ϕ2] gives the numbers of states/transitions and for T (ϕ1) the numbers
of nodes/edges

Table 2 Results of SL-COMP’14

Solver ✗ ✓ ? Time [s]

FDB_entl

Spen 0 43 0 0.61

Cyclist-SL [5] 0 19 24 141.78

Slide [16] 0 0 43 0.00

Sleek-06 [7] 1 31 11 43.65

sll0a_entl

Asterix [21] 0 292 0 2.98

Spen 0 292 0 7.58

Sleek-06 [7] 0 292 0 14.13

Cyclist-SL [5] 0 55 237 11.78

sll0a_sat

Asterix [21] 0 110 0 1.06

Spen 0 110 0 3.27

Sleek-06 [7] 0 110 0 4.99

Cyclist-SL [5] 55 55 0 0.55

The ✗/✓/? columns give the numbers of wrong (✗), correct (✓), and unknown (?) answers

class contains 100 problems (split into 10 groups) obtained from the verification conditions
generated by the tool Smallfoot [3]. In all experiments,4 Spen finished in less than 1 s with
the deviation of running times ±100ms wrt the ones reported for Asterix [21], the most
efficient tool for deciding entailments of SL formulas with singly linked lists we are aware
of.

4 Our experiments were performed on a PC with an Intel Core 2 Duo @2.53GHz processor and 4GiB DDR3
@1067MHz running a virtual machine with Fedora 20 (64-bit).

123

Form Methods Syst Des

The TA for the predicate ls is quite small, and so the above experiments did not eval-
uate much the performance of our procedure for checking entailments between formulas
and atoms. For a more thorough evaluation, we further considered the experiments listed in
Table 1 (among which, skl3 required the extension discussed in Sect. 7.3). The full bench-
mark is available with our tool [10]. The entailment problems are extracted from verification
conditions of operations like adding or deleting an element in various positions of list seg-
ments. Table 1 gives for each example the running time, whether the entailment is valid or
invalid, and the size of the tree encoding and TA for ϕ1 and ϕ2, respectively. We find the
resulting times quite encouraging.

Moreover, Spen participated in three divisions of the first competition of separation
logic solvers SL-COMP’14 [26]: division FDB_entl containing entailment problems with
extended acyclic lists, such as doubly linked lists, nested lists, or skip lists, and divisions
sll0a_entl and sll0a_sat containing entailment respectively satisfiability problems
with singly linked lists. The procedure for satisfiability checking computes the Boolean
abstraction of the input formula and checks its satisfiability using SAT solvers; its correct-
ness is implied by Proposition 1 and the well-formedness of the inductive definition used (cf.
the ls predicate in Fig. 3). Spen won division FDB_entl by a huge margin, solving the
set containing all problems in less than a minute; further, note that Spen is the only tool that
correctly answered all problems in this division. In addition to this, Spen was also placed
second in both divisions with singly linked lists, where the first place was won by Asterix.
Detailed results of this competition are in Table 2 (cf. [26] for the complete description).

11 Conclusion

This article presents a novel decision procedure for a fragment of SLwith inductive predicates
describing various forms of lists (singly or doubly linked, nested, circular, with skip links,
etc.). The procedure is compositional in that it reduces the given entailment query to a set
of simpler queries between a formula and an atom. For solving them, we proposed a novel
reduction to testing membership of a tree derived from the formula in the language of a TA
derived from a predicate. We implemented the procedure, and our experiments show that
it has not only a favourable theoretical complexity, but also efficiently handles practical
verification conditions. Moreover, when compared with other tools which competed in the
first competition of separation logic solvers SL-COMP’14 [26], Spen won the first place
in one division (being by several orders of magnitude faster and even more successful in
correctly deciding some problems), and the second place in two divisions.

In the future, we plan to investigate extensions of our approach to formulas with a more
general Boolean structure or using more general inductive definitions. We intend to combine
our procedure with some proof search techniques to support formulas with existentially
quantified variables or to dealmore preciselywith disjunctions. Concerning general inductive
definitions, we plan to investigate whether some ideas from [16] could be used to extend our
decision procedure for entailments between formulas and atoms. From a practical point of
view, apart from improving the implementation of our procedure, we plan to integrate it into
a complete program analysis framework. In this context, the diagnosis provided by the TA
library for a failing membership test may be exploited to provide support for frame inference.

Acknowledgements This work was supported by the French ANR project Vecolib, the Czech Science Foun-
dation (Projects 14-11384S and 16-175385), the EU/Czech IT4Innovations Excellence in Science Project

123

Form Methods Syst Des

LQ1602, and by the European Research Council (ERC) under the European Unions Horizon 2020 research
and innovation programme (Grant Agreement No. 678177).

References

1. Berdine J, Calcagno C, Cook B, Distefano D, O’Hearn PW, Wies T, Yang H (2007) Shape analysis for
composite data structures. In: Proceedings of CAV’07, volume 4590 of LNCS, pp 178–192. Springer

2. Berdine J, Calcagno C, O’Hearn PW (2005) A decidable fragment of separation logic. In: Proceedings
of FSTTCS’04, volume 3328 of LNCS, pp 97–109. Springer

3. Berdine J, Calcagno C, O’Hearn PW (2006) Smallfoot: modular automatic assertion checking with
separation logic. In: Proceedings of FMCO’05, volume 4111 of LNCS, pp 115–137. Springer

4. Brotherston J, FuhsC,GorogiannisN, Pérez JN (2014)Adecision procedure for satisfiability in separation
logic with inductive predicates. In: Proceedings of CSL-LICS’14, pp 25:1–25:10. ACM

5. Brotherston J, Gorogiannis N, Petersen RL (2012) A generic cyclic theorem prover. In: Proceedings of
APLAS’12, volume 7705 of LNCS, pp 350–367. Springer

6. Calcagno C, Yang H, O’Hearn PW (2001) Computability and complexity results for a spatial assertion
language for data structures. In: Proceedings of FSTTCS’01, volume 2245 of LNCS, pp 108–119. Springer

7. Chin W-N, David C, Huu HN, Shengchao Q (2012) Automated verification of shape, size and bag
properties via user-defined predicates in separation logic. Sci Comput Program 77(9):1006–1036

8. Cook B, Haase C, Ouaknine J, Parkinson MJ, Worrell J (2011) Tractable reasoning in a fragment of
separation logic. In: Proceedings of CONCUR’11, volume 6901 of LNCS, pp 235–249. Springer

9. Enea C, Lengál O, Sighireanu M, Vojnar T (2014) Compositional entailment checking for a fragment of
separation logic. In: Proceedings of APLAS’14, volume 8858 of LNCS, pp 314–333. Springer

10. Enea C, Lengál O, Sighireanu M, Vojnar T (2014) Spen. https://www.irif.fr/~sighirea/spen
11. Enea C, Saveluc V, SighireanuM (2013) Compositional invariant checking for overlaid and nested linked

lists. In: Proceedings of ESOP’13, volume 7792 of LNCS, pp 129–148. Springer
12. Enea C, Sighireanu M, Wu Z (2015) On automated lemma generation for separation logic with inductive

definitions. In: ATVA’15, volume 9364 of LNCS, pp 80–96. Springer
13. Gaifman H (1982) On local and non-local properties. Stud Logic Found Math 107:105–135
14. Gu X, Chen T, Wu Z (2016) A complete decision procedure for linearly compositional separation logic

with data constraints. In: Proceedings of IJCAR’16, volume 9706 of LNCS, pp 532–549. Springer
15. Iosif R, Rogalewicz A, Šimáček J (2013) The tree width of separation logic with recursive definitions.

In: Proceedings of CADE’13, volume 7898 of LNCS, pp 21–38. Springer
16. Iosif R, Rogalewicz A, Vojnar T (2014) Deciding entailments in inductive separation logic with tree

automata. In: Proceedings of ATVA’14, volume 8837 of LNCS, pp 201–218. Springer
17. Ishtiaq S, O’Hearn PW (2001) BI as an assertion language for mutable data structures. In: Proceedings

of POPL’01, pp 14–26. ACM
18. Le QL, Sun J, Chin W-N (2016) Satisfiability modulo heap-based programs. In: Proceedings of CAV’16,

volume 9779 of LNCS, pp 382–404. Springer
19. Lengál O, Šimáček J, Vojnar T (2012) Vata: a library for efficient manipulation of non-deterministic

tree automata. In: Proceedings of TACAS’12, volume 7214 of LNCS, pp 79–94. Springer
20. Pérez JN, Rybalchenko A (2011) Separation logic + superposition calculus = heap theorem prover. In:

Proceedings of PLDI’11, pp 556–566. ACM
21. Pérez JN,RybalchenkoA (2013) Separation logicmodulo theories. In: Proceedings ofAPLAS’13, volume

8301 of LNCS, pp 90–106. Springer
22. Piskac R,Wies T, Zufferey D (2013) Automating separation logic using SMT. In: Proceedings of CAV’13,

volume 8044 of LNCS, pp 773–789. Springer
23. Piskac R, Wies T, Zufferey D (2014) Automating separation logic with trees and data. In: Proceedings of

CAV’14, volume 8559 of LNCS, pp 711–728. Springer
24. Qiu X, Garg P, Stefanescu A, Madhusudan P (2013) Natural proofs for structure, data, and separation.

In: Proceedings of PLDI’13, pp 231–242. ACM
25. Reynolds JC (2002) Separation logic: a logic for shared mutable data structures. In: Proceedings of

LICS’02, pp 55–74. IEEE
26. Sighireanu M, Cok D (2014) Report on SL-COMP’14. JSAT 1. http://smtcomp.sourceforge.net/2014/

results-SLCOMP2.shtml

123

https://www.irif.fr/~sighirea/spen
http://smtcomp.sourceforge.net/2014/results-SLCOMP2.shtml
http://smtcomp.sourceforge.net/2014/results-SLCOMP2.shtml

	Compositional entailment checking for a fragment of separation logic
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Contribution

	2 Separation logic fragment
	2.1 Syntax
	2.2 Semantics
	2.3 Inductive definitions for nested lists
	2.4 Properties of models for predicate atoms

	3 Compositional entailment checking
	4 Normalisation
	5 Selection of spatial atoms
	6 Representing SL graphs as trees
	7 Tree automata recognising tree encodings of SL graphs
	7.1 Overview of the construction
	7.2 Basic algorithm for non-empty list segments
	7.3 Extending the basic algorithm to possibly empty nested list segments

	8 Extension to doubly linked lists
	9 Soundness, completeness, and complexity
	10 Implementation and experimental results
	11 Conclusion
	Acknowledgements
	References

