

Compositional entailment checking for a fragment of separation logic

Constantin Enea¹ · Ondřej Lengál² · Mihaela Sighireanu¹ · Tomáš Vojnar²

© Springer Science+Business Media, LLC 2017

Abstract We present a decision procedure for checking entailment between separation logic formulas with inductive predicates specifying complex data structures corresponding to finite nesting of various kinds of singly linked lists: acyclic or cyclic, nested lists, skip lists, etc. The decision procedure is compositional in the sense that it reduces the problem of checking entailment between two arbitrary formulas to the problem of checking entailment between a formula and an atom. Subsequently, in case the atom is a predicate, we reduce the entailment to testing membership of a tree derived from the formula in the language of a tree automaton derived from the predicate. The procedure is later also extended to doubly linked lists. We implemented this decision procedure and tested it successfully on verification conditions obtained from programs using both singly and doubly linked nested lists as well as skip lists.

Keywords Program analysis · Separation logic · Decision procedure · Tree automata

1 Introduction

Automatic verification of programs manipulating dynamic data structures is challenging because it requires reasoning about complex program configurations having the form of

☑ Ondřej Lengál lengal@fit.vutbr.cz

> Constantin Enea cenea@irif.fr

Mihaela Sighireanu sighirea@irif.fr

Tomáš Vojnar vojnar@fit.vutbr.cz

¹ IRIF, University Paris Diderot and CNRS, 8 place Aurélie Nemours, 75013 Paris, France

² FIT, IT4I Centre of Excellence, Brno University of Technology, Božetěchova 2, 61266 Brno, Czech Republic

graphs of an unbounded size. One needs expressive formalisms to represent such configurations that are also efficient when used for checking or synthesising inductive invariants. *Separation logic* (SL) [17,25] has emerged as one of the most promising formalisms, offering both high expressiveness and scalability. The latter is due to its support of *compositional reasoning* based on the separating conjunction * and the frame rule, which states that if a Hoare triple $\{\phi\}P\{\psi\}$ holds and P does not alter free variables in σ , then $\{\phi * \sigma\}P\{\psi * \sigma\}$ also holds. Therefore, when reasoning about P, one has to manipulate only specifications for the heap region altered by P.

SL is usually combined with higher-order *inductive definitions* describing the data structures manipulated. Since general inductive definitions entail undecidability [6], various decidable fragments of SL have been defined in the literature [2,4,15,22] by restricting the syntax of inductive definitions and the Boolean structure of formulas.

In this work, we focus on a fragment of SL with inductive definitions expressive enough to describe program configurations (heaps) containing finite nestings of various kinds of singly linked lists (acyclic, cyclic, skip lists, etc.) that are common in practice (Sect. 8 defines an extension to doubly linked lists). Moreover, if we abstract arrays into lists, this fragment can be used to specify chaining hash tables or data structures used in device drivers [1]. The formulas in this fragment are of the form $\exists \vec{X} : \Pi \land \Sigma$ where \vec{X} is a set of variables, Π is a conjunction of (dis)equalities, and Σ is a set of *spatial atoms* connected by the separating conjunction. Spatial atoms can be *points-to atoms*, describing values of pointer fields of a given heap location, or *inductively defined predicates*, describing data structures of an unbounded size.

We propose a decision procedure for checking the validity of entailments of the form $\varphi \Rightarrow \psi$ where φ is existentially quantified and ψ is a quantifier-free formula. In addition, this procedure includes a sub-procedure for satisfiability checking of existentially quantified formulas. The decision procedure for entailment can be used in Hoare-style reasoning to check inductive invariants, but also in program analysis frameworks to decide termination of fixpoint computations. As usual, checking entailments of the form $\bigvee_i \varphi_i \Rightarrow \bigvee_j \psi_j$ can be soundly approximated by checking that for each *i* there exists *j* such that $\varphi_i \Rightarrow \psi_j$.

The key idea for deciding $\varphi \Rightarrow \psi$ is to partition the spatial part of φ into several subformulas, each sub-formula corresponding to one spatial atom of ψ . The semantics of the separating conjunction implies that there must exist a partition such that each sub-formula of φ implies a different atom of ψ . In this way, we reduce the original entailment problem to the problem of checking a set of simpler entailments $\varphi_P \Rightarrow P(\ldots)$, where φ_P is a sub-formula of φ and $P(\ldots)$ is an inductive predicate from ψ . This reduction shows that the compositionality principle holds not only for deciding the validity of Hoare triples, but also for deciding the validity of entailments. Identifying a suitable partition of φ requires being able to infer all (dis)equalities implied by the spatial atoms. The inference step is performed by translating φ into an equisatisfiable Boolean formula and checking whether Boolean formulas denoting individual (dis)equalities are consistent with it.

Checking simple entailments $\varphi_P \Rightarrow P(...)$ relies on representing all possible unfoldings of an inductive predicate using a tree automaton (TA). The validity of $\varphi_P \Rightarrow P(...)$ is reduced to testing membership of a tree derived from φ_P in the language of a TA $\mathcal{A}[P]$ derived from P(...). The tree encoding of φ_P preserves certain edges of its Gaifman graph (cf. [13]), called *backbone edges*, and re-directs other edges to new nodes, related to the original destination by special symbols. Roughly, such a symbol may be a variable labelling the original destination, or it may show how to reach the original destination using backbone edges only. The presented decision procedure is sound and complete for the fragment (defined in Sect. 2), and it is polynomial-time modulo an oracle for deciding unsatisfiability of Boolean formulas. Practically, we have applied it successfully on verification conditions obtained from programs using singly/doubly linked nested lists and skip lists. The results show that our procedure does not only have a theoretically favorable complexity, but also behaves nicely in practice (our implementation in the tool SPEN won one gold and two silver medals in the competition of SL solvers SL-COMP'14 [26]). The procedure also offers the benefit of compositionality, which can be exploited within larger verification frameworks by caching simple entailment queries.

1.1 Related work

Several decision procedures for fragments of SL have been introduced, e.g., [2,5,6,8,11,14– 16,20,22,23]. Some of these works [2,6,8,20] consider the restriction of our SL fragment to a single inductive predicate describing singly linked lists. In particular, Cook et al. [8] prove that the satisfiability/entailment problem can be solved in polynomial time. Piskac et al. [22] show that the Boolean closure of the fragment in [8] can be translated to a decidable fragment of first-order logic, which implies that the satisfiability/entailment problem can be decided in NP/co-NP. A similar idea has been used in [23] to deal with an SL fragment able to describe tree-shaped data structures. A fragment of SL covering overlaid nested lists has been introduced in Enea et al. [11]. This fragment is incomparable to the one proposed in this paper, e.g., it cannot describe nestings of cyclic or doubly linked lists while it is able to deal with data structures sharing the same set of objects. Iosif et al. [15,16] consider more expressive SL fragments (able to describe, for instance, trees with parent pointers or trees with linked leaves), for which the complexity of the entailment problem is much higher compared to the decision procedure proposed in this paper. In particular, [16] reduces the validity of an entailment $\varphi \Rightarrow \psi$ to *language inclusion* on TAs recognising models of φ and ψ respectively (which is **EXPTIME**-complete in general). In contrast, our decision procedure deals with the Boolean structure of the SL formulas using SAT solvers and reduces the validity of the simple entailments $\varphi_P \Rightarrow P(\ldots)$ to the *membership problem* for TAs (which is in **PTIME**). Moreover, [16] can also deal with various forms of trees, but it cannot deal with structures of zero length and with some forms of structure concatenation (such as concatenation of two DLL segments), which we can handle.

Several decision procedures for extensions of SL with data constraints have been proposed. The decision procedure [22,23] discussed above allows to include data constraints over list and tree shape predicates, but fails to encode size and multiset constraints. The fragment introduced in [14] captures Presburger constraints over data and sizes of linear data structures, mainly singly and doubly liked lists and lists with tail pointers. The authors show that satisfiability and entailment is decidable for this fragment. The procedure for satisfiability checking extends our Boolean abstraction to an abstraction that uses quantifier free Presburger formulas, which leads to a complexity in NP. The entailment checking is based on graph homomorphism and shown to be in Π_3^P mainly due to checking entailment over size and data constraints. The authors say that they believe that an extension to more complex shapes, including nested data structures, is possible, but leave this question open. For a general fragment with inductive definitions and data constraints (including size and multiset), [24] designs incomplete proof search techniques based on user-provided lemmas and translation to SMT. For the sub-fragment dealing only with trees and nested lists with data, size, and multiset constraints, Enea et al. [12] propose an incomplete entailment checking procedure based on proof search, which applies lemmas generated automatically from the inductive definitions. In comparison, our work does not consider data constraints, but allows more general nested list shapes, such as circular nested lists.

Brotherston et al. [5] define a generic automated theorem prover relying on the notion of cyclic proofs and instantiate it to prove entailments in a fragment of SL with inductive definitions and disjunctions more general than what we consider. Their entailment checking procedure is, however, incomplete in general. Brotherston et al. [4] define a decision procedure for *satisfiability checking* in a more expressive fragment of SL, which is **EXPTIME**-complete in general and in **NP** when restricted to our fragment. As discussed above, our procedure also tests satisfiability by means of a reduction to Boolean satisfiability, which is also used to infer (dis)equalities implied by the spatial atoms of an SL formula. Satisfiability checking for fragments of SL with data constraints are considered in [14, 18]. Le et al. [18] present a semidecision procedure for satisfiability based on unfolding of inductive definitions combined with over-approximation of SL formulas by first-order logic formulas using SMT solvers.

This work is an extension of [9]. We consider a slightly smaller class of inductive definitions with an additional restriction on the nesting of lists (see Constraint 2 in Sect. 2.3). This simplification allows a simpler presentation and, to the best of our knowledge, does not remove any inductive definition of practical interest. Thanks to new insights, we improved the construction in Sect. 7.3, decreasing the complexity of the complete decision procedure from exponential to polynomial. We also optimise the implementation of the decision procedure and provide an updated evaluation.

1.2 Contribution

Overall, the contribution of this work is a novel decision procedure for a rich class of verification conditions with singly (or doubly) linked lists, nested lists, and skip lists. As discussed in more detail in the previous paragraphs, decision procedures for expressive fragments of SL are still rare. Indeed, we are not aware of any techniques that could decide the class of verification conditions considered in this work at the same level of efficiency. In particular, compared to other approaches using TAs [16], our procedure is (i) compositional as it uses TAs recognising formulas entailing one predicate atom, not arbitrary formulas, and (ii) based on the (**PTIME**) membership problem for TAs compared to their (**EXPTIME**) inclusion problem.

2 Separation logic fragment

Our logic is a fragment of the *symbolic heaps fragment* [2] of Separation Logic [25]. The fragment specifies sets of configurations of programs manipulating the heap. A program configuration is given by the state of its stack and of its heap. We consider a memory model where the heap is abstracted by a collection of disjoint memory regions, called *records*. We denote by *Locs* the set of locations at which heap records are stored. Records are sets of *fields*, each field storing a reference to a record location. The record types are fixed by type definitions that also define \mathbb{F} , the set of *field names*. Wlog, we assume that different record types declare pairwise disjoint sets of field names. A program manipulates the heap by creating records, setting and accessing their fields, and freeing them. For this, it uses a set of of *program variables Vars* stored on the program stack. We assume that *Vars* contains the null constant.

$x, y \in Vars$	program variables	$f \in \mathbb{F}$	fields
$X, Y \in LVars$	logical variables	$P\in \mathbb{P}$	predicates
$\vec{F} \in (Vars \cup LVars)^*$	vectors of variables	$E,F ::= x \mid X$	
		$\rho ::= (f, E) \mid \rho, \rho$	records
$\Pi ::= E = F$	$\Gamma \mid E \neq F \mid \Pi \wedge \Pi$	pure formulas	
$\varSigma ::= emp \mid$	$E \mapsto \{\rho\} \mid P(E, \vec{F}) \mid \Sigma * \Sigma$	spatial formulas	
$\varphi::=\exists \overrightarrow{X}:I$	$T \wedge \Sigma$	formulas	

Fig. 1 The syntax of the considered separation logic fragment

2.1 Syntax

The syntax of the Separation Logic fragment we consider is given in Fig. 1. Record locations that are not stored in program variables are addressed using a set of *logical variables LVars* disjoint from *Vars*.

An SL formula is an existentially quantified conjunction of a pure formula Π and a spatial formula Σ . Wlog, we assume that existentially quantified logical variables have unique names. The set of program variables used in a formula φ is denoted by $pv(\varphi)$. By $\varphi(\vec{E})$ (resp. $\rho(\vec{E})$), we denote a formula (resp. a set of field-variable pairs) whose set of free variables is \vec{E} , and we use $free(\varphi(\vec{E}))$ and $free(\rho(\vec{E}))$ to denote \vec{E} .

Pure formulas characterise the stack of the program using (dis)equalities between location variables. Given a formula φ , $pure(\varphi)$ denotes its pure part Π . We allow set operations to be applied on vectors, i.e., vectors can be treated as sets of their elements. Moreover, $E \neq \vec{F}$ is a shorthand for $\bigwedge_{F_i \in \vec{F}} E \neq F_i$.

The atomic spatial formula *emp* denotes an empty heap. The *points-to atom* $E \mapsto \{(f_i, F_i)\}_{i \in \mathcal{I}}$ denotes a heap containing a record at the location labelled by E whose field f_i points to F_i , for all i. Wlog, we assume that each field f_i appears at most once in the set of pairs $\{(f_i, F_i)\}_{i \in \mathcal{I}}$. The *separating conjunction* * specifies the union of two disjoint heaps. The *predicate atom* $P(E, \vec{F})$ specifies a heap fragment described by the predicate P and delimited by its arguments, i.e., all locations it represents are reachable from E and allocated on the heap, except the locations in \vec{F} .

The fragment is parameterised by a set \mathbb{P} of *inductively defined predicates*. An *inductive definition* of $P \in \mathbb{P}$ is a finite set of rules of the form $P(X, \vec{Y}) ::= \exists \vec{Z} : \Pi \land \Sigma$. In this work, we consider only inductive definitions for possibly empty *nested list segments*, defined formally in Sect. 2.3.

2.2 Semantics

Formulas of our SL fragment are interpreted over pairs (S, H) where S models the program stack and H the program heap. The stack $S : Vars \cup LVars \rightarrow Locs$ maps variables to locations. The heap $H : Locs \times \mathbb{F} \rightarrow Locs$ is a partial function that defines values of fields for some of the locations in *Locs*. The domain of H is denoted by dom(H), and the set of locations in the domain of H is denoted by ldom(H). We say that a location ℓ is allocated in (S, H) or that (S, H) allocates ℓ iff ℓ belongs to ldom(H), and we say that a variable E is allocated iff the location S(E) is allocated. A location (resp. variable) which is not allocated is called *dangling*. A *sub-model* of (S, H) is a pair (S', H') such that $S \subseteq S', H \subseteq H'$, and for any $\ell \in ldom(H')$ and $f \in \mathbb{F}$, it holds that $H'(\ell, f) = H(\ell, f)$, i.e., a location in the domain of a sub-model is included with all its fields defined in the model.

$(S,H) \models E = F$	iff	S(E) = S(F)
$(S,H) \models E \neq F$	iff	$S(E) \neq S(F)$
$(S,H)\models\varphi\wedge\psi$	iff	$(S,H)\models \varphi \text{ and } (S,H)\models \psi$
$(S,H)\models emp$	iff	$dom(H) = \emptyset$
$(S,H)\models E\mapsto\{\rho\}$	iff	$dom(H) = \{ (S(E), f_i) \mid (f_i, E_i) \in \{\rho\} \}$ and
		for every pair $(f_i, E_i) \in \{\rho\}$, it holds that
		$H(S(E), f_i) = S(E_i)$
$(S,H) \models \Sigma_1 * \Sigma_2$	iff	there exist H_1 and H_2 s.t.
		$ldom(H) = ldom(H_1) \uplus ldom(H_2),$
		$(S, H_1) \models \Sigma_1$, and $(S, H_2) \models \Sigma_2$
$(S,H) \models P(E,\vec{F})$	iff	there exists a rule $(P(X, \vec{Y}) ::= \exists \vec{Z} : \Pi \land \Sigma) \in \mathbb{P}$ s.t.
		$(S,H) \models \exists \vec{Z} : (\Pi \land \Sigma)[E/X, \vec{F}/\vec{Y}]$ and
		$ldom(H) \cap \{S(F) \mid F \in \vec{F}\} = \emptyset$
$(S,H) \models \exists X : \varphi$	iff	$\exists \ell \in Locs \text{ s.t. } (S[X \leftarrow \ell], H) \models \varphi$

Fig. 2 The \models relation (\uplus denotes the disjoint union of sets, \mathbb{P} is the set of inductively defined predicates, [X/Y] denotes a substitution of Y by X, and $S[X \leftarrow \ell]$ denotes the function S' such that $S'(X) = \ell$ and S'(Y) = S(Y) for any $Y \neq X$)

The set of models satisfying a formula φ is given by the relation $(S, H) \models \varphi$ defined in Fig. 2. The semantic rules are standard except the predicate atom where the model satisfying a predicate $P(E, \vec{F})$ cannot allocate any variable in \vec{F} as these variables are considered not to be in its domain (which differs, e.g., from the semantics in [2]). A model satisfying this property is called *well-formed wrt the atom* $P(E, \vec{F})$.

The set of models of a formula φ is denoted by $\llbracket \varphi \rrbracket$. Given two formulas φ_1 and φ_2 , we say that φ_1 entails φ_2 , denoted by $\varphi_1 \Rightarrow \varphi_2$, iff $\llbracket \varphi_1 \rrbracket \subseteq \llbracket \varphi_2 \rrbracket$. By an abuse of notation, $\varphi \Rightarrow E = F$ (resp. $\varphi \Rightarrow E \neq F$) denotes the fact that *E* and *F* are interpreted to the same location (resp. different locations) in all models of φ .

2.3 Inductive definitions for nested lists

We consider a class of restricted inductive definitions that are expressive enough to deal with intricate singly linked lists (including simple lists, lists of circular lists, skip lists of fixed depth, etc.) while also enabling efficient entailment checking (we also extend our fragment to doubly linked lists in Sect. 8). We define this class by requiring the following restrictions on the general inductive definitions. Examples of inductive predicates conforming to our restrictions are in Fig. 3.

Constraint 1 (*Linearity*) Each predicate $P \in \mathbb{P}$ has at least two formal parameters and exactly two rules: (i) an empty base rule of the form $P(E, F, \vec{B}) ::= E = F \land emp$ specifying an empty list segment, and (ii) an inductive rule with the following syntax, where Σ' does not contain occurrences of the atom P:

$$P(E, F, \vec{B}) ::= \exists X_{tl}, \vec{Z} : E \neq \{F\} \cup \vec{B} \land \underbrace{E \mapsto \{\rho\} * \Sigma'}_{mat(P)} * P(X_{tl}, F, \vec{B})$$
(1)

The parameters are divided into three categories: the *source* (or *root*) parameter E, the *target* parameter F, and the vector of *border* parameters \vec{B} . The formula $E \mapsto \{\rho\} * \Sigma'$ is called *the matrix of* P and denoted by *mat*(P).

singly linked lists:

$$ls(E,F) ::= \exists X_{tl} : E \neq F \land E \mapsto \{(f, X_{tl})\} * ls(X_{tl},F)$$

lists of acyclic lists:

$$nll(E, F, B) ::= \exists X_{tl}, Z : E \neq \{F, B\} \land E \mapsto \{(s, X_{tl}), (h, Z)\} * ls(Z, B) * nll(X_{tl}, F, B)$$

lists of cyclic lists:

$$\operatorname{nlcl}(E,F) ::= \exists X_{tl}, Z : E \neq F \land E \mapsto \{(s, X_{tl}), (h, Z)\} * \bigcirc^{1+} \operatorname{ls}[Z] * \operatorname{nlcl}(X_{tl}, F)$$

skip lists with three levels:

 $\mathsf{skl}_1(E,F) ::= \exists X_{\texttt{tl}} : E \neq F \land E \mapsto \{(f_3,\texttt{null}), (f_2,\texttt{null}), (f_1, X_{\texttt{tl}})\} * \mathsf{skl}_1(X_{\texttt{tl}}, F)$

Fig. 3 Examples of inductive definitions used throughout this paper (we omit all base rules $P(E, F, \vec{B}) ::= E = F \land emp$ for all predicates P)

We use the constraint $E \neq \{F\} \cup \vec{B}$ to syntactically denote the semantic constraint that locations for target and border parameters are not allocated in a non-empty heap specified by the predicate (see Fig. 2). Intuitively, the inductive rule of *P* defines a heap composed of a sequence of sub-heaps specified by the matrix of *P* between the locations given by the actual source and target parameters.

The linear form of inductive definition is essential for our decision procedure in (i) computing the Boolean abstraction and (ii) obtaining an elegant translation of Gaifman graphs of formulas into trees. Relaxing this constraint by allowing non-linear rules (e.g., trees) or several linear rules (e.g., a list with different next fields) causes awkward form of labels for the tree and tree automata obtained from the rules.

Constraint 2 (*Root atom*) For each predicate $P \in \mathbb{P}$, the formula Σ' does not contain points-to atoms. The atom $E \mapsto \{\rho\}$ is called the *root atom*, and it is denoted by root(P). Furthermore, the free variables of ρ contain all existentially quantified variables of the inductive rule, and they can only also contain border parameters, i.e., $\{X_{t1}\} \cup \vec{Z} \subseteq free(\rho) \subseteq \{X_{t1}\} \cup \vec{Z} \cup \vec{B}$.

Intuitively, this constraint requires that the occurrence of mat(P) in the next unfolding of P, which has X_{tl} as the root, is pointed to by at least one field from E. This condition is satisfied by all inductive definitions in Fig. 3, but forbids the following inductive definition of list segments of even length (we often omit the base rule):

$$\begin{aligned} \text{evenls}(E,F) &::= \exists X_1, X_{\texttt{tl}} : E \neq F \land E \mapsto \{(f,X_1)\} * \\ X_1 \mapsto \{(f,X_{\texttt{tl}})\} * \text{evenls}(X_{\texttt{tl}},F). \end{aligned}$$

Also, this restriction forbids inductive definitions that are not compositional (see Property 4, pg. 11), such as list segments with fast-forward pointers to the end node:

$$lstf(E, F) ::= \exists X_{tl} : E \neq F \land E \mapsto \{(f, X_{tl}), (g, F)\} * lstf(X_{tl}, F).$$

Deringer

Note that this is not at a loss of expressiveness because such list segments may be obtained using the inductive definition below that defines list segments with all elements pointing to some border location B:

$$\mathsf{lsb}(E, F, B) ::= \exists X_{t1} : E \neq \{F, B\} \land E \mapsto \{(f, X_{t1}), (g, B)\} * \mathsf{lsb}(X_{t1}, F, B).$$

Then, lsb(E, F, F) specifies list segments with pointers to the end node of the list.

Moreover, the constraint forbids inductive definitions where the matrix uses an existentially quantified variable Z not pointed to by the root atom,¹ such as, e.g.,:

$$\begin{split} \texttt{nfls}(E, F, B) &::= \exists X_{\texttt{tl}}, Y, Z : E \neq \{F, B\} \land E \mapsto \{(f, X_{\texttt{tl}}), (g, Y), (h, B)\} \\ &* \texttt{ls}(Y, Z) * \texttt{nfls}(X_{\texttt{tl}}, F, B). \end{split}$$

To sum up, the second constraint discharges our decision procedure from manipulation of arithmetic constraints on the length of list segments or enumeration of aliasings between the existentially quantified variables \vec{Z} used by a rule. Lifting this constraint increases the overall complexity.

Constraint 3 (*Nested list segments*) For each $P \in \mathbb{P}$, the matrix of P contains the root atom *-connected with formulas of the following form (for $Q \neq P$):

$$\Sigma' ::= Q(Z, U, \vec{Y}) | \bigcirc^{1+} Q[Z, \vec{Y}] | \Sigma' * \Sigma' | emp$$

for $Z \in \vec{Z}, U \in \vec{Z} \cup \vec{B} \cup \{E, X_{t1}\}, \vec{Y} \subseteq \vec{B} \cup \{E, X_{t1}\}$ (2)

$$\bigcirc^{1+}Q[Z,\vec{Y}] \equiv \exists Z': mat(Q)(Z,Z',\vec{Y}) * Q(Z',Z,\vec{Y})$$
(3)

Notice that *F* does not appear in the matrix of *P*. The macro $\bigcirc^{1+}Q[Z, \vec{Y}]$ is used to represent a *non-empty* cyclic (nested) list segment on *Z* whose shape is described by the predicate *Q*. We call predicate atoms $Q(Z, U, \vec{Y})$ and macros $\bigcirc^{1+}Q[Z, \vec{Y}]$ extended predicate atoms.

Intuitively, this constraint requires nested lists to have their sources in \vec{Z} , i.e., in a variable referenced by a field from the location of E (due to the previous constraint). Except for X_{t1} , the target of these nested list segments is either a location pointed to by the fields of E (e.g., sk1₃ in Fig. 3), a border location in \vec{B} (e.g., n11), or E. The $\bigcirc^{1+} Q[Z, \vec{Y}]$ macro is needed to define nested (non-empty) circular lists; defining them as $Q(Z, Z, \vec{Y})$ would make them empty (the only rule allowed for instances of predicates with matching source and target parameter is the empty base rule).

The next constraint on the matrix of *P* is defined using its Gaifman graph [13]. Let Σ be the matrix of some inductive definition $P \in \mathbb{P}$. The *Gaifman graph* of Σ , denoted $Gf[\Sigma]$, is a labelled graph where:

- The set of vertices is given by the set of free and existentially quantified variables in Σ , i.e., $\{E, X_{t1}\} \cup \vec{B} \cup \vec{Z}$.
- Edges represent spatial atoms as follows: let $E \mapsto \{\rho\}$ be the root atom of Σ , then for every (f, X) in $\{\rho\}$, $Gf[\Sigma]$ contains an edge from E to X labelled by f; for every $Q(Z, U, \vec{Y})$, $Gf[\Sigma]$ contains an edge from Z to U labelled by Q; and for every macro $\bigcirc^{1+} Q[Z, \vec{Y}]$, $Gf[\Sigma]$ contains a self-loop on Z labelled by Q.

See Fig. 4 for an example of a Gaifman graph for the matrix of nlcl.

¹ Our former work [9] does not include this constraint, thus the procedure proposed was incomplete.

Fig. 4 $Gf[\Sigma_{nlcl}]$

Constraint 4 (*Matrix connectedness*) Let Σ be the matrix of $P \in \mathbb{P}$. Then all *infinite* paths of $Gf[\Sigma]$ either form a cycle going through E or start in E and end in a self-loop built from some macro $\bigcirc^{1+} Q[Z, \vec{Y}]$, and all maximal *finite* paths start in E and end in a node from $\vec{B} \cup \{X_{t1}\}$. Moreover, we require that every vertex of $Gf[\Sigma]$ has at most one outgoing edge labelled by a predicate.

Intuitively, the constraint requires that every existential variable in an inductive rule appears as the source parameter of exactly one extended predicate atom. This ensures that every existential variable Z is either allocated in the matrix (when the list segment from Z is nonempty or ends in E) or it aliases the target or a border parameter. The inductive definitions given in Fig. 3 satisfy the above constraint. The following inductive definition is, however, forbidden because it contains a dangling variable Z:

$$npls(E, F, B) ::= \exists X_{tl}, Y, Z : E \neq \{F, B\} \land E \mapsto \{(f, X_{tl}), (g, Y), (h, Z)\} \\ * ls(Y, B) * npls(X_{tl}, F, B).$$

The constraint also forbids the following inductive definition:

$$nls2(E, F, B) ::= \exists X_{tl}, Y, Z : E \neq \{F, B\} \land E \mapsto \{(f, X_{tl}), (f_1, Y), (f_2, Z)\} \\ * ls(Y, Z) * ls(Z, Y) * nls2(X_{tl}, F, B).$$

This is because the Gaifman graph of its matrix contains a loop which is not a self-loop it traverses the inner vertices represented by variables Y and Z. Such loops are forbidden because they may produce dangling variables when the list segments composing the loop are all empty. Dangling variables are problematic because they may be aliased with any variable occurring outside the occurrence of a predicate, which is difficult to encode in our procedure. The following inductive definition satisfies the matrix constraint because the list segment from Z is a self-loop:

$$\begin{aligned} \texttt{nlls}(E, F, B) &::= \exists X_{\texttt{tl}}, Y, Z : E \neq \{F, B\} \land E \mapsto \{(f, X_{\texttt{tl}}), (f_1, Y), (f_2, Z)\} \\ &* \texttt{ls}(Y, Z) * \circlearrowleft^{1+} \texttt{ls}[Z] * \texttt{nlls}(X_{\texttt{tl}}, F, B). \end{aligned}$$

Finally, the following restrictions limit the use of predicate atoms and fields in inductive definitions of \mathbb{P} . For this, we define the relation $\prec_{\mathbb{P}}$ on \mathbb{P} by $P_1 \prec_{\mathbb{P}} P_2$ iff P_2 appears in the matrix of P_1 ; we denote by $\prec_{\mathbb{P}}^*$ the reflexive and transitive closure of $\prec_{\mathbb{P}}$. For example, if $\mathbb{P} = \{ \text{skl}_1, \text{skl}_2, \text{skl}_3 \}$ (cf. Fig. 3), then $\text{skl}_3 \prec_{\mathbb{P}} \text{skl}_2 \prec_{\mathbb{P}} \text{skl}_1$ and $\text{skl}_3 \prec_{\mathbb{P}}^* \text{skl}_1$.

Constraint 5 (*No mutual recursion*) Given a set of inductive definitions \mathbb{P} , $\prec_{\mathbb{P}}^*$ is a partial order.

Let $\mathbb{F}_{\mapsto}(P)$ denote the set of fields occurring in root(P). For example, in the inductive definitions in Fig. 3, it holds that $\mathbb{F}_{\mapsto}(nll) = \{s, h\}$ and $\mathbb{F}_{\mapsto}(skl_3) = \mathbb{F}_{\mapsto}(skl_1) = \{f_3, f_2, f_1\}$. Also, let $\mathbb{F}^*_{\mapsto}(P)$ denote the union of $\mathbb{F}_{\mapsto}(P')$ for all $P \prec_{\mathbb{P}}^* P'$. For example, $\mathbb{F}^*_{\mapsto}(nll) = \{s, h, f\}$.

Constraint 6 (*No shared fields*) For any two predicates P_1 and P_2 that are incomparable wrt $\prec_{\mathbb{P}}^*$, it holds that $\mathbb{F}_{\mapsto}(P_1) \cap \mathbb{F}_{\mapsto}(P_2) = \emptyset$.

Therefore, we forbid predicates named differently but having exactly the same set of models. The last two constraints ensure the soundness of our compositional approach for entailment checking, which selects predicates atoms in the order given by $\prec_{\mathbb{P}}$.

Moreover, to obtain a unique tree from a formula in our procedure, we require the existence of a total ordering on fields, denoted $\prec_{\mathbb{F}}$, that complies with the inductive definition of predicates in \mathbb{P} . Intuitively, $\prec_{\mathbb{F}}$ shall reflect the order in which the inductive definition of P is unfolded. Therefore, fields used in the root atom $E \mapsto \{\rho\}$ of the matrix of P are ordered before fields of any other predicate called by P. Fields appearing in ρ and going "one-step forward" (i.e., occurring in a pair (f, X_{t1})) are ordered before fields leading to "inner" locations (i.e., occurring in a pair (f, Z) with $Z \in \vec{Z}$), which are ordered before fields going to the border parameters (i.e., occurring in a pair (f, B) with $B \in \vec{B}$). We consider null a constant, not a border variable.

Formally, for a predicate P defined by an inductive rule as in Eq. (1) (pg. 6), we partition $\mathbb{F}_{\mapsto}(P)$ into four sub-sets: (a) $\mathbb{F}_{\mapsto X_{t1}}(P)$ is the set of fields f occurring in a pair (f, X_{t1}) of ρ , (b) $\mathbb{F}_{\mapsto Z}(P)$ is the set of fields f occurring in a pair (f, Z) with $Z \in \vec{Z}$, (c) $\mathbb{F}_{\mapsto B}(P)$ is the set of fields f occurring in a pair (f, X) with $X \in \vec{B} \setminus \{\text{null}\}$, and (d) $\mathbb{F}_{\mapsto \text{null}}(P)$ is the set of fields f occurring in a pair (f, null).

Constraint 7 (*Totally ordered fields*) There exists a total order $\prec_{\mathbb{F}}$ on \mathbb{F} such that for all P, P_1 , and P_2 in \mathbb{P} :

$$\forall f_1 \in \mathbb{F}_{\mapsto X_{t1}}(P), \ \forall f_2 \in \mathbb{F}_{\mapsto \mathbf{Z}}(P), \ \forall f_3 \in \mathbb{F}_{\mapsto \mathbf{B}}(P) : f_1 \prec_{\mathbb{F}} f_2 \prec_{\mathbb{F}} f_3 \text{ and}$$
(4)

$$(f_1 \in \mathbb{F}_{\mapsto}(P_1) \land f_2 \in \mathbb{F}_{\mapsto}(P_2) \land f_1 \neq f_2 \land P_1 \prec_{\mathbb{P}} P_2) \Rightarrow f_1 \prec_{\mathbb{F}} f_2.$$
(5)

For instance, if $\mathbb{P} = \{nll, ls\}$ or $\mathbb{P} = \{nlcl, ls\}$, then $s \prec_{\mathbb{F}} h \prec_{\mathbb{F}} f$ satisfies the constraints above. Also, if $\mathbb{P} = \{skl_2, skl_1\}$, then both $f_2 \prec_{\mathbb{F}} f_1 \prec_{\mathbb{F}} f_3$ and $f_3 \prec_{\mathbb{F}} f_2 \prec_{\mathbb{F}} f_1$ are correct total orderings of fields. Only the last one, however, complies with the constraint above for $\mathbb{P} = \{skl_3, skl_2, skl_1\}$. So, fields in $\mathbb{F}_{\mapsto null}(P)$ shared with another predicate Q are ordered to agree with the ordering of fields in Q; in absence of any ordering constraint, they may be ordered by $\prec_{\mathbb{F}}$ in any possible way.

2.4 Properties of models for predicate atoms

The constraints on the inductive definitions, together with the basic syntax and semantics of the introduced SL fragment, including the restriction to well-formed models, induce some properties of the considered models of predicate atoms that are important for the soundness of our procedure. These properties are given in this section.

Some of the properties on well-formed models (S, H) of a predicate atom $P(E, F, \vec{B})$ are expressed using their representation as labelled directed graphs. The *heap graph* of a model (S, H) has as vertices the locations in $ldom(H) \cup img(H)$; these locations are labelled by sets of program and logic variables using S^{-1} . The heap graph edges are labelled by fields such that (ℓ, f, ℓ') is an edge iff $H(\ell, f) = \ell'$. (Notice that, for certain satisfiable formulas that use only points-to atoms, the Gaifman graph and the heap graph of its model are the same.)

Property 1 (*Reachability from root*) Any location ℓ in (S, H) is reachable from the location S(E).

Proof Constraints 1 and 2 ensure there is a path from the source to the target of a predicate edge and Constraint 4 ensures connectedness of the predicate's matrix. п

Property 2 (No inner dangling) Any maximal path of (S, H) starting in S(E) is either cyclic or ends in a location labelled by a variable in $\{F\} \cup B$. Therefore, only locations labelled by $\{F\} \cup \vec{B}$ are dangling.

Proof Follows from Property 1 and Constraint 4.

The next property is a consequence of the semantics of formulas—in particular, the restriction to well-formed models of predicate atoms.

Property 3 (*Precise assertions*) For any model (S, H) of a formula φ including some predicate atom $P(E, F, \vec{B})$, there exists at most one well-formed sub-model (S', H') of (S, H)such that $(S', H') \models P(E, F, \vec{B})$.

Proof By contradiction. Suppose (S', H') is the smallest well-formed sub-model (there is at most one due to determinism of heaps) of (S, H) such that $(S', H') \models P(E, F, \vec{B})$ and that there exists another well-formed sub-model (S'', H'') such that $(S'', H'') \models P(E, F, \vec{B})$ and (S', H') is a proper sub-model of (S'', H''). It follows that (S'', H'') contains an allocated location ℓ that is not in (S', H'). From Property 1, it follows that ℓ is reachable from S(E), and from the fact that heaps are deterministic, we know that there is an allocated location ℓ' in (S'', H'') such that it is a dangling node of (S', H'), and ℓ is reachable from ℓ' . From Property 2, it follows that $\ell' \in S^{-1}(\{F\} \cup \vec{B})$. Therefore, (S'', H'') allocates a node from $\{F\} \cup \vec{B}$, so it is not a well-formed model of $P(E, F, \vec{B})$, which is a contradiction.

Constraints 2-4 imply that inductive definitions are *compositional*:

Property 4 (*Compositional list segments*) For any $P \in \mathbb{P}$ and any well-formed model (S, H)such that $(S, H) \models P(E, F, \vec{B}) * P(F, G, \vec{B})$ and G is not allocated in (S, H), it holds that $(S, H) \models P(E, G, \vec{B}).$

Proof By induction on the length of left-hand side occurrence of P. For the base rule E = F, a model $(S_1, H_1) \models E = F \land emp * P(F, G, \vec{B})$ also models $P(E, G, \vec{B})$. For the inductive rule, assume that if $(S_2, H_2) \models P(X_{\pm 1}, F, \vec{B}) * P(F, G, \vec{B})$ and (S_2, H_2) does not allocate G, then it holds that $(S_2, H_2) \models P(X_{t,1}, G, \vec{B})$. Let us consider $P(E, F, \vec{B}) * P(F, G, \vec{B})$ such that if we once unfold $P(E, F, \vec{B})$, we get $\psi ::= \exists X_{\pm 1}, \vec{Z} \cdot E \neq \{F\} \cup \vec{B} \wedge$ $mat(P) * P(X_{t1}, F, \vec{B}) * P(F, G, \vec{B})$. Suppose (S, H) is a model of ψ that does not allocate G. By the induction hypothesis, we infer that $(S, H) \models \exists X_{\pm 1}, \vec{Z} \cdot E \neq \{G\} \cup \vec{B} \land$ $mat(P) * P(X_{t,1}, G, \vec{B})$. From the inductive rule of P, it follows that $(S, H) \models P(E, G, \vec{B})$.

The key for the encoding of SL formulas entailing predicate atoms $P(E, F, \vec{B})$ as trees (see Sect. 6) is given by the following properties. We call a path simple if it does not pass through the same node repeatedly.

Property 5 (*Joining paths*) Let (S, H) be a well-formed model of $P(E, F, \vec{B})$ and ℓ be an allocated location in (S, H) with multiple incoming edges such that $\ell \neq S(E)$. Then there is a unique edge $\ell' \xrightarrow{f} \ell$ with f minimal wrt $\prec_{\mathbb{F}}$. Moreover, the other incoming edges are last edges of simple paths starting from ℓ' or ℓ .

Proof Constraints 1 and 3 imply that there are two cases: (a) ℓ corresponds to the first node of a predicate atom $R(\ldots)$ (resp. a macro $\bigcirc^{1+}R[\ldots]$) s.t. $P \prec_{\mathbb{P}}^* R$, or (b) ℓ is an internal (i.e., not the first) node of $R(\ldots)$ (resp. $\bigcirc^{1+}R[\ldots]$) or $P(E, F, \vec{B})$.

Case (a): From Constraint 1, ℓ corresponds to some variable $Z \in \overline{Z}$ from the non-empty rule of a predicate T s.t. $P \prec_{\mathbb{P}}^* T \prec_{\mathbb{P}} R$. Then, from Constraint 2, the root atom root(T) contains a pair (f, Z) s.t. f is, by Constraint 7, the least label of edges entering ℓ (wrt $\prec_{\mathbb{F}}$). Moreover, also by Constraint 7, there are no more f-edges entering ℓ . Hence, the source of root(T) plays the role of ℓ' .

Case (b): From Constraints 2 and 7, there is a pair (f, X_{tl}) in root(R) or root(P), respectively, such that f is smaller (wrt $\prec_{\mathbb{F}}$) than any other edge entering ℓ (which may be, e.g., edges in nested list segments from some \vec{Z} variables). Hence, ℓ' is the predecessor of ℓ according to f.

The last sentence of the property follows from Constraints 3 and 4, in particular from requirements on the use of inductive predicates and the macro $\bigcirc^{1+}Q[Z, \vec{Y}]$, respectively, in the matrix of an inductive rule.

A corollary of the previous property is that for any allocated location ℓ with several incoming edges, there exist paths σ , σ' , a location ℓ' that is not an internal location of σ' , and an edge label f such that the following holds: $S(E) \xrightarrow{\sigma} \ell' \xrightarrow{f} \ell$ and either

(i)
$$S(E) \stackrel{\sigma}{\leadsto} \ell' \stackrel{\sigma'}{\leadsto} \ell$$
, or

(i) $S(E) \xrightarrow{\sigma}{\leadsto} \ell' \xrightarrow{f}{\to} \ell \xrightarrow{\sigma'}{\leadsto} \ell$.

Then, given $\sigma\sigma'$ (resp. $\sigma f\sigma'$) and f, we can unambiguously determine σf . In particular, for (i), we can obtain σf by traversing (S, H) from ℓ backwards along $\sigma\sigma'$ up to the first node (in fact, ℓ') that defines an f edge to a non-null location. Similarly for (ii). This property is important for the selection of aliasing relations in encoding graphs as trees in Sect. 6.

Property 6 (*Minimal path*) For any allocated location ℓ in (S, H), there is a path σ_{min} in its heap graph from S(E) to ℓ such that for any edge $\ell_i \xrightarrow{f_i} \ell_{i+1}$ in σ_{min} , the label f_i is the least (wrt $\prec_{\mathbb{F}}$) label among labels of edges entering ℓ_{i+1} .

Proof Follows from the requirement of well-formedness of models of predicate atoms and Properties 1 and 5.

Due to this property, removing edges entering a node that are not labelled by the minimal field keeps the model connected, so we can represent it using a tree.

3 Compositional entailment checking

We now provide our procedure for reducing the problem of checking validity of entailment between a pair of formulas to the problem of checking validity of entailment between a formula and an atom. In particular, we consider the problem of deciding validity of entailments $\varphi_1 \Rightarrow \varphi_2$ where φ_2 is free of quantifiers and $free(\varphi_2) \subseteq free(\varphi_1)$, which usually suffices for checking verification conditions in practice. We assume $pv(\varphi_2) \subseteq pv(\varphi_1)$; otherwise, the entailment is trivially invalid. **Algorithm 1:** Compositional entailment checking of $\varphi_1 \Rightarrow \varphi_2$ for \prec being any total order compatible with $\prec_{\mathbb{P}}^*$

 $1 \varphi_1^n \leftarrow \operatorname{norm}(\varphi_1);$ // normalisation 2 $\varphi_2^n \leftarrow \operatorname{norm}(\varphi_2);$ 3 if $\varphi_1^n = false$ then return true if $\varphi_2^n = false$ then return false // pure parts 4 if $pure(\varphi_1^n) \Rightarrow pure(\varphi_2^n)$ then return false // points-to atoms **5 foreach** points-to atom a_2 in φ_2^n **do** $\varphi_1^n[a_2] \leftarrow \texttt{select}(\varphi_1^n, a_2);$ 6 if $\varphi_1^n[a_2] \not\Rightarrow a_2$ then return false mark($\varphi_1^n[a_2]$); 7 // predicate atoms s for $P_2 \leftarrow \max_{\prec}(\mathbb{P})$ downto $\min_{\prec}(\mathbb{P})$ do foreach $a_2 = P_2(E, F, \vec{B})$ in φ_2^n s.t. $pure(\varphi_1^n) \not\Rightarrow E = F$ do 9 $\varphi_1^n[a_2] \leftarrow \texttt{select}(\varphi_1^n, a_2);$ 10 if $\varphi_1^n[a_2] \not\Rightarrow_{sh} a_2$ then return false mark($\varphi_1^n[a_2]$); 11 12 **return** isMarked(φ_1^n);

The reduction is described in Algorithm 1. The reduction starts by normalisation (described in Sect. 4), which adds to both formulas all (dis-)equalities implied by their spatial sub-formulas and removes all atoms $P(E, F, \vec{B})$ representing *empty* list segments, i.e., those where E = F occurs in the pure part. The normalisation of a formula returns *false* iff the formula is unsatisfiable.

The second step tests entailment between the pure parts of the normalised formulas. This can be done using any decision procedure for quantifier-free formulas in the first-order theory of equality.

Next, for the spatial parts, the procedure uses the function select, described in Sect. 5, to build a mapping from spatial atoms of φ_2^n to sub-formulas of φ_1^n . The sub-formula of φ_1^n to which an atom a_2 of φ_2^n is mapped in this way is denoted as $\varphi_1^n[a_2]$. The mapping is built by first enumerating the points-to atoms of φ_2^n and only then by enumerating its predicate atoms, in a decreasing order wrt $\prec_{\mathbb{P}}^*$. The decreasing order is important for the completeness of the procedure (see Sect. 9). Intuitively, the formula $\varphi_1^n[a_2]$ associated with an atom a_2 of φ_2^n describes the region of a heap modelled by φ_1^n that should satisfy a_2 . The construction of $\varphi_1^n[a_2]$ may fail, implying that the entailment $\varphi_1 \Rightarrow \varphi_2$ is not valid. In such a case, select returns *emp*, causing the algorithm to return false.

For predicate atoms $a_2 = P_2(E, F, B)$, handled in the second loop of the algorithm, select is called only if there exists a model of φ_1^n where the heap region that should satisfy a_2 is non-empty, i.e., E = F does not occur in φ_1^n . In this case, select also checks that for any model of φ_1^n , the sub-heap corresponding to the atoms in $\varphi_1^n[a_2]$ is wellformed wrt a_2 . This check is needed since all heaps described by a_2 are well-formed (see Sect. 2.2).

Note that in the well-formedness check above, one cannot speak about $\varphi_1^n[a_2]$ alone. Indeed, without the rest of φ_1^n , the formula $\varphi_1^n[a_2]$ may have models that are not well-formed wrt a_2 even if the sub-heap corresponding to $\varphi_1^n[a_2]$ is well-formed for any model of φ_1^n . For example, let $\varphi_1^n = ls(x, y)*ls(y, z)*z \mapsto \{(f, t)\}, a_2 = ls(x, z), \text{ and } \varphi_1^n[a_2] = ls(x, y)*ls(y, z)$. If we take models of φ_1^n only, the sub-heaps corresponding to $\varphi_1^n[a_2]$ are all well-formed wrt a_2 , i.e., they do not allocate the location bound to z. The formula $\varphi_1^n[a_2]$ alone has, however, lasso-shaped models where the location bound to z is allocated on the path between x and y. Once $\varphi_1^n[a_2]$ is obtained, one needs to check that all sub-heaps modelled by $\varphi_1^n[a_2]$ are also models of a_2 . For points-to atoms a_2 , this boils down to a syntactic identity (modulo some renaming given by the equalities in the pure part of φ_1^n). For predicate atoms a_2 , a special entailment operator \Rightarrow_{sh} is used. We cannot use the usual entailment \Rightarrow since $\varphi_1^n[a_2]$ may have models that are not sub-heaps of models of φ_1^n (as we have seen in the example above).

Definition 1 $\varphi_1^n[a_2] \Rightarrow_{sh} a_2$ iff all models of $\varphi_1^n[a_2]$ that are well-formed wrt a_2 are also models of a_2 .

Given a formula φ and an atom $P(E, F, \vec{B})$, the entailment $\varphi \Rightarrow_{sh} P(E, F, \vec{B})$ is checked as follows: (1) $G[\varphi]$ is transformed into a *tree* $\mathcal{T}[\varphi]$ by splitting nodes that have multiple incoming edges, (2) the inductive definition of $P(E, F, \vec{B})$ is used to construct a TA $\mathcal{A}[P]$ such that $\mathcal{T}[\varphi]$ belongs to the language of $\mathcal{A}[P]$ only if $\varphi \Rightarrow_{sh} P(E, F, \vec{B})$. The transformation of graphs $G[\varphi]$ into trees $\mathcal{T}[\varphi]$ is presented in Sect. 6 while the construction of the TA $\mathcal{A}[P]$ is introduced in Sect. 7.

If there exists an atom a_2 of φ_2^n that is not entailed by the associated sub-formula, then $\varphi_1 \Rightarrow \varphi_2$ is not valid. By the semantics of the separating conjunction, the sub-formulas of φ_1^n associated with two different atoms of φ_2^n must not share spatial atoms. In order to avoid such a scenario, the spatial atoms obtained from each application of select are marked by the algorithm and cannot be reused in the future. If all entailments between formulas and atoms are valid, then $\varphi_1 \Rightarrow \varphi_2$ holds provided that all spatial atoms of φ_1^n are marked (which is tested by isMarked).

Graph representations. Some of the sub-procedures mentioned above work on a graph representation of the input formulas, called *SL graphs* (which are different from the Gaifman graphs of matrices of inductive definitions).

Definition 2 (*SL graph*) Given a formula φ , its SL graph, denoted by $G[\varphi]$, is a directed labelled graph where:

- Each node *n* represents an equivalence class over the set of variables, i.e., it represents a maximal set of variables equal wrt the pure part of φ , and it is labelled by the set of variables Var(n) it represents. For every variable *E*, we then use Node(E) to denote the node *n* such that $E \in Var(n)$.
- The following edges can appear: (1) Undirected *disequality edges* from Node(*E*) to Node(*F*) encoding disequalities $E \neq F$. (2) Directed *points-to edges* from Node(*E*) to Node(*E_i*) labelled by f_i that encode spatial atoms $E \mapsto \{(f_1, E_1), \ldots, (f_n, E_n)\}$, for $1 \leq i \leq n$. (3) Directed *predicate edges* from Node(*E*) to Node(*F*) labelled by $P(\vec{B})$ encoding spatial atoms $P(E, F, \vec{B})$.

For simplicity, we identify a formula φ with its graph representation $G[\varphi]$. This representation generalises the one proposed in [8] mainly by labelling directed edges with fields and predicates.

Running example. Below, we use as a running example the entailment $\psi_1 \Rightarrow \psi_2$ between the following formulas:

Fig. 5 A running example of an entailment test $\psi_1 \implies \psi_2$. **a** Formula ψ_1 . **b** Formula $\psi_2 = \psi_2^n$. **c** Normalised formula ψ_1^n

$$\psi_{1} \equiv \exists Y_{1}, Y_{2}, Y_{3}, Y_{4}, Z_{1}, Z_{2}, Z_{3} : x \neq z \land Z_{2} \neq z \land x \mapsto \{(s, Z_{2}), (h, Z_{1})\} *$$

$$Z_{2} \mapsto \{(s, y), (h, Z_{3})\} * ls(Z_{1}, z) * ls(Z_{3}, z) * ls(y, Y_{1}) *$$

$$skl_{2}(y, Y_{3}) * ls(Y_{1}, Y_{2}) * Y_{3} \mapsto \{(f_{2}, t), (f_{1}, Y_{4})\} * t \mapsto \{(s, Y_{2})\} *$$

$$Y_{4} \mapsto \{(f_{2}, null), (f_{1}, t)\}$$

$$\psi_{2} \equiv y \neq t \land nll(x, y, z) * skl_{2}(y, t) * t \mapsto \{(s, y)\}$$
(6)

The graph representations of these formulas are shown in Fig. 5a, b.²

The formula ψ_1 specifies a heap including a cell whose location is referenced by the (program) variable x and whose fields s and h point to locations Z_2 and Z_1 (atom $x \mapsto \{(s, Z_2), (h, Z_1)\}$). The list cell at location Z_2 contains a field s referencing the location stored in the program variable y, and a field h referencing the location of Z_3 . The nodes Z_1 and Z_3 are initial nodes of two disjoint singly linked list segments ending in the location z (atoms $ls(Z_1, z)$ and $ls(Z_3, z)$). The node y is the beginning of a singly linked list segment ending in the location of Y_1 (atom $ls(y, Y_1)$) and a skip list segment ending in the location of Y_3 (atom $skl_2(y, Y_3)$). The heap between Y_3 and t is a fragment of a two-level skip list with a single element on the ground level. Moreover, the variable t references a cell with the field s pointing to the location of the end of the list segment starting from Y_1 . The only explicit non-aliasing constraint on program variables is $x \neq z$.

The formula ψ_2 specifies a heap with a nested list segment between locations x and y where all nested list segments end in z (atom nll(x, y, z)) and a skip list segment between locations y and t. It also requires y and t be not aliased.

4 Normalisation

Given a formula φ , the normalisation procedure norm computes a new formula φ' that contains all (dis-)equalities among the variables of φ that are implied by the existing ones in φ and the semantics of separating conjunction. This process may discover that φ contains contradictory constraints, i.e., it is unsatisfiable. To infer the implicit (dis-)equalities in a formula, we adapt the Boolean abstraction proposed in [11] for the fragment considered in this paper.

 $^{^2}$ Points-to edges are depicted as simple lines, predicate edges as double lines, and disequality edges as dotted lines. For readability, we omit some of the labelling with existentially-quantified variables and some of the disequality edges in the normalised graphs.

$$F_{\varPi} ::= \bigwedge_{E=F \in \varPi} [E=F] \wedge \bigwedge_{E \neq F \in \varPi} \neg [E=F] \qquad \qquad F_* ::= \bigwedge_{E,F \text{ variables in } \varphi, \ a \neq a' \text{ atoms in } \Sigma} \left([E=F] \wedge [E,a] \right) \Rightarrow \neg [F,a']$$

$$F_{\varSigma} ::= \bigwedge_{a = E \mapsto \{\rho\} \in \varSigma} [E, a] \quad \land \bigwedge_{a = P(E, F, \vec{B}) \in \varSigma} ([E, a] \oplus [E = F]) \land \ ([E, a] \Rightarrow \bigwedge_{B \in \vec{B}} \neg [E = B])$$

$$F_{=} ::= \bigwedge_{E_{1}, E_{2}, E_{3}} \left(\left[E_{1} = E_{1} \right] \land \left(\left[E_{1} = E_{2} \right] \Leftrightarrow \left[E_{2} = E_{1} \right] \right) \land \left(\left[E_{1} = E_{2} \right] \land \left[E_{2} = E_{3} \right] \right) \Rightarrow \left[E_{1} = E_{3} \right] \right)$$

Fig. 6 Definition of the components of $\mathsf{BoolAbs}[\varphi]$ with \oplus denoting xor

Definition 3 (Boolean abstraction) Given a formula $\varphi \triangleq \exists \vec{X} : \Pi \land \Sigma$, we define the Boolean formula BoolAbs $[\varphi] ::= F_{\Pi} \land F_{\Sigma} \land F_{=} \land F_{*}$ where the components of BoolAbs $[\varphi]$ are defined in Fig. 6. The set $BV(\varphi)$ of Boolean variables occurring in $BV(\varphi)$ is defined as:

- $[E = F] \in BV(\varphi)$ for every two variables E and F occurring in φ ,
- $[E, a] \in BV(\varphi)$ for every variable E and a spatial atom of the form $a = E \mapsto \{\rho\}$ or $a = P(E, F, \vec{B})$ in φ .

Intuitively, the variable [E = F] denotes the equality between E and F, while [E, a] denotes the fact that the atom a describes a heap where E is allocated. The components of BoolAbs $[\varphi]$, defined in Fig. 6, have the following meaning: F_{Π} and F_{Σ} encode the atoms of φ , $F_{=}$ encodes reflexivity, symmetry, and transitivity of equality, and F_* encodes the semantics of the separating conjunction.

Proposition 1 Let φ be a formula. Then, BoolAbs $[\varphi]$ is equisatisfiable with φ , and, for any variables E and F of φ , BoolAbs $[\varphi] \Rightarrow [E = F]$ (resp. BoolAbs $[\varphi] \Rightarrow \neg [E = F]$) iff $\varphi \Rightarrow E = F$ (resp. $\varphi \Rightarrow E \neq F$).

For the formula ψ_1 in our running example, i.e., Eq. (6), BoolAbs[ψ_1] is a conjunction of several formulas including:

- 1. $[y, \text{skl}_2(y, Y_3)] \oplus [y = Y_3]$, which encodes the atom $\text{skl}_2(y, Y_3)$,
- 2. $[Y_3, Y_3 \mapsto \{(f_2, t), (f_1, Y_4)\}]$ and $[t, t \mapsto \{(s, Y_2)\}]$, encoding points-to atoms of ψ_1 ,
- 3. $([t = y] \land [t, t \mapsto \{(s, Y_2)\}]) \Rightarrow \neg [y, skl_2(y, Y_3)]$, which encodes the separating conjunction between $t \mapsto \{(s, Y_2)\}$ and skl_2 (y, Y_3) ,
- 4. $([t = Y_3] \land [t, t \mapsto \{(s, Y_2)\}]) \Rightarrow \neg [Y_3, Y_3 \mapsto \{(f_2, t), (f_1, Y_4)\}]$, which encodes the separating conjunction between $t \mapsto \{(s, Y_2)\}$ and $Y_3 \mapsto \{(f_2, t), (f_1, Y_4)\}$.

If BoolAbs $[\varphi]$ is unsatisfiable, norm (φ) returns *false*. Otherwise, the output of norm (φ) is the formula φ' obtained from φ by (1) adding all (dis-)equalities E = F (resp. $E \neq F$) such that [E = F] (resp. $\neg [E = F]$) is implied by BoolAbs $[\varphi]$ and (2) removing all predicate atoms $P(E, F, \vec{B})$ s.t. E = F occurs in the pure part.

For example, the normalisations of ψ_1 and ψ_2 are given in Fig. 5c, b. Note that the 1s atoms reachable from *y* are removed because BoolAbs[ψ_1] implies that Y_1 and Y_2 are aliasing *y* (from heap determinism and the non-emptiness of the sub-heap at location Y_3), and thus the list segments between *y*, Y_1 , and Y_2 are empty. Moreover, BoolAbs[ψ_1] implies that *y* is different from *t* and *z*. BoolAbs[ψ_2] does not imply additional (dis-)equalities, so ψ_2 is unchanged after normalisation.

The following result is important for the completeness of the select procedure.

Proposition 2 Let $norm(\varphi)$ be the result of the normalisation of a formula φ . For any two distinct nodes *n* and *n'* in the SL graph of $norm(\varphi)$, there cannot exist two disjoint sets of atoms *A* and *A'* in $norm(\varphi)$ such that both *A* and *A'* form paths between *n* and *n'*.

Proof Suppose that $norm(\varphi)$ contains two such sets of atoms between nodes n and n' labelled by variables E and F respectively. By the semantics of the separating conjunction, it holds that one of the paths is empty, so that $\varphi \Rightarrow E = F$. Therefore, $norm(\varphi)$ does not include all φ -implied equalities, contradicting its construction.

5 Selection of spatial atoms

After normalisation and testing entailment of pure parts of the checked formulas, the algorithm starts matching every spatial atom from φ_2^n to a set of atoms of φ_1^n . For this, it uses the select procedure described in this section.

Points-to atoms. Let $\varphi_1 ::= \exists \vec{X} : \Pi_1 \land \Sigma_1$ be a normalised formula. The procedure $\texttt{select}(\varphi_1, E_2 \mapsto \{\rho_2\})$ outputs either the sub-formula $\exists \vec{X} : E_1 = E_2 \land E_1 \mapsto \{\rho_1\}$ if $E_1 = E_2$ occurs in Π_1 , or the sub-formula *emp* otherwise. The procedure select is called only if φ_1 is satisfiable. Consequently, because of the semantics of the separating conjunction, φ_1 cannot contain two different atoms $E_1 \mapsto \{\rho_1\}$ and $E'_1 \mapsto \{\rho'_1\}$ such that $E_1 = E'_1 = E_2$. Also, if there exists no such points-to atom, then $\varphi_1 \Rightarrow \varphi_2$ is not valid. Indeed, since φ_2 does not contain existentially quantified variables, a points-to atom in φ_2 could be entailed only by a points-to atom in φ_1 .

In the running example, $select(\psi_1^n, t \mapsto \{(s, y)\}) = \exists Y_2 : y = Y_2 \land ... \land t \mapsto \{(s, Y_2)\}.$ For readability, we have omitted some existential variables and pure atoms.

Predicate atoms. Given an atom $a_2 = P_2(E_2, F_2, \vec{B_2})$, the call to $\texttt{select}(\varphi_1, a_2)$ first builds a sub-graph G' of $G[\varphi_1]$, which is a candidate for representing a *partial* unfolding of a_2 in φ_1 , and then it checks whether the sub-heaps described by G' are well-formed wrt a_2 . If this is not true or if G' is empty, then $\texttt{select}(\varphi_1, a_2)$ outputs *emp*. Otherwise, it outputs the formula $\exists \vec{X} : \Pi'_1 \land \Sigma'$ where Σ' consists of all atoms represented by edges of the sub-graph G', and Π'_1 contains all equalities $E_1 = E_2$ of Π_1 where either E_1 or E_2 occur in G'.

We now have a look at the construction of G' in more detail. It is based on Constraint 4. Let $\text{Dangling}[a_2] = \text{Node}(F_2) \cup \{\text{Node}(B) \mid B \in \vec{B_2}\}$. Notice that $\{F_2\} \cup \vec{B_2}$ are also free variables of φ_1 . The sub-graph G' is defined as the union of all paths of $G[\varphi_1]$ that (1) start in the node labelled by E_2 , (2) consist of edges labelled by fields in $\mathbb{F}_{\mapsto}^*(P_2)$ or predicates Q with $P_2 \prec_{\mathbb{P}}^* Q$, and (3) end either in a node from $\text{Dangling}[a_2]$. Therefore, G' does not contain edges that start in a node from $\text{Dangling}[a_2]$, but shall contain a path from $\text{Node}(E_2)$ to each node in $\text{Dangling}[a_2]$. In the running example, the subgraphs returned by $\text{select}(\psi_1^n, \text{nll}(x, y, z))$ and $\text{select}(\psi_1^n, \text{skl}_2(y, t))$ are highlighted in Fig. 5c.

If the construction of G' succeeds, the procedure select checks that, in every model (S_1, H_1) of φ_1 , the sub-heap (S_1, H'_1) described by G' is well-formed wrt a_2 , i.e., nodes of Dangling $[a_2]$ are not interpreted by S_1 in $ldom(H'_1)$, the set of allocated locations in H'_1 . For our running example, for any model of ψ_1 , in the sub-heap modelled by the graph select(ψ_1^n , skl₂(y, t)) in Fig. 5c, the variable t should not be (1) interpreted as an

allocated location in the list segment $skl_2(y, Y_3)$ or (2) aliased to one of the nodes labelled by Y_3 and Y_4 . The well-formedness test is performed using the below proposition.

Proposition 3 [Well-formedness test] Let a graph G' represent a sub-formula of φ_1 and $a_2 = P_2(E_2, F_2, \vec{B_2})$ be a predicate atom such that $free(G') \supseteq free(a_2)$. G' is well-formed wrt a_2 iff the following conditions hold for each variable $V \in \{F_2\} \cup \vec{B_2}$:

- 1. For every variable V' labelling the source of a points-to edge of G', it holds that $\varphi_1 \Rightarrow V \neq V'$.
- 2. For every predicate edge e included in G' that does not end in Node(V), V is allocated in all models of $E \neq F \land (\varphi_1 \backslash G')$ where E and F are variables labelling the source and the destination of e, respectively, and $\varphi_1 \backslash G'$ is a formula obtained from φ_1 by deleting all spatial atoms represented by edges of G'.

Proof (⇒) If *G'* is well-formed, then condition (1) is trivially satisfied. Notice that, if *G'* contains only one predicate edge *e*, it shall end in Dangling[*a*₂] (by construction of *G'*), so condition (2) is trivially true. Otherwise, let $V \in \{F_2\} \cup \vec{B_2}$ and *e* be a predicate edge of *G'* such that Node(*V*) ∉ Dangling[*e*] as in condition (2). Let (*S*₁, *H*₁) be a model of φ_1 s.t. the subheap described by *e* is not empty. From Constraint 1, it follows that (*S*₁, *H*₁) is also a model of $E \neq F \land \varphi_1$, where *E* and *F* are the destination and target parameters of *e* respectively. The hypothesis implies that, for the sub-heap *H'*₁ described by *G'*, *S*₁(*V*) ∉ *ldom*(*H'*₁). From the semantics of separating conjunction, *ldom*(*H*₁) = *ldom*(*H'*₁) ⊎ *ldom*(*H''*₁), where *H''*₁ is the sub-heap described by $\varphi_1 \backslash G'$. Thus, *S*(*V*) shall belong to *ldom*(*H''*₁) because it is the only set disjoint from *ldom*(*H'*₁) in the model (*S*₁, *H*₁) of φ_1 .

(\Leftarrow) Condition (1) guarantees that *V* is different from all allocated locations represented by sources of points-to edges in *G'*. Condition (2) guarantees that *V* is not interpreted as an allocated location in a list segment described by a predicate edge of *G'* (this trivially holds for predicate edges ending in Node(*V*)). If *V* were not allocated in some model (S_1, H_1'') of $E \neq F \land (\varphi_1 \backslash G')$, then one could construct a model (S_1, H_1') of *G'* where *e* would be interpreted to a non-empty list and *S*(*V*) would equal an allocated location inside this list. Therefore, there would exist a model of φ_1 , defined as the union of (S_1, H_1') and (S_1, H_1''), in which the heap region described by *G'* would not be well-formed wrt a_2 .

The following proposition provides a test for checking that variables are allocated based on checking unsatisfiability of SL formulas. Note that, by Proposition 1, unsatisfiability of formulas can be decided using the Boolean abstraction BoolAbs.

Proposition 4 Let $\varphi ::= \exists \vec{X} : \Pi \land \Sigma$ be a formula and V a program variable such that $V \in pv(\varphi)$. Let V_1 and f_1 be symbols not occurring in φ . V is allocated in every model of φ iff $\exists \vec{X} : \Pi \land \Sigma * V \mapsto \{(f_1, V_1)\}$ is unsatisfiable.

6 Representing SL graphs as trees

We define a canonical representation of SL graphs in the form of trees, which we use for checking \Rightarrow_{sh} . In this representation, disequality edges are ignored because they have been dealt with previously when checking entailment of pure parts.

Example We start by explaining the main concepts of the tree encoding using the labelled graph G in Fig. 7a, which is well-formed wrt some predicate atom P(E, F) where P specifies

Fig. 7 An example of encoding an SL graph into a tree. **a** An SL graph G. **b** The tree encoding $\mathcal{T}[G]$ of G

some special kind of list segments with nested circular lists (chosen to completely illustrate all the relevant issues). We assume that all nodes in G are reachable from the node labelled by E, which is guaranteed for the graphs constructed by select because of Property 1.

To construct a tree representation of G, we start with its spanning tree (highlighted using bold edges) built using minimal paths as in Property 6. Then, any node with at least two incoming edges, called a *join node*, is split into several copies, one for each incoming edge not contained in the spanning tree. The obtained tree is given in Fig. 7b. In order not to lose any information, the copies of nodes are labelled with the identity of the original node, which is kept in the spanning tree. If the original node is labelled by a program variable, say x, the original node and its copies are labelled by alias [x]. Otherwise, since the representation does not use node identities, we assign to every copy of the node a "routing" label describing how the copy can reach the original node using paths in the spanning tree.

For example, if a node *n* has the label alias $\uparrow[f_2]$, this means that *n* is a copy of some join node *m*, where *m* is the first ancestor of *n* with an incoming edge labelled by f_2 . Further, *n* labelled by alias $\uparrow\downarrow[f_2]$ means that the original node *m* can be reached from *n* by going up in the tree until the first node with an outgoing edge labelled by f_2 , and then down via the f_2 labelled edge. The exact definition of these labels can be found later in this section. Intuitively, a label of the form alias $\uparrow[f]$ will be used when breaking loops, while a label of the form alias $\uparrow\downarrow[f]$ will be used when breaking parallel paths between nodes. Due to Property 5, this set of routing labels is enough to convert an SL graph into a canonical tree representation that can entail a spatial atom from the considered fragment; for arbitrary graphs, this is not the case.

Let G be an SL graph well-formed wrt the predicate atom $P(E, F, \vec{B})$ such that all nodes of G are reachable from the node *Root* labelled by E. An *f*-edge of an SL graph is a points-to edge labelled by f or a predicate edge labelled by $Q(\vec{Y})$ such that the minimum field in $\mathbb{F}_{\mapsto}(Q)$ wrt $\prec_{\mathbb{F}}$ is f. The tree encoding of G is computed by the procedure toTree(G, $P(E, F, \vec{B})$) that consists of four consecutive steps that are presented below.

Node marking. First, to Tree computes a mapping \mathbb{M} , called *node marking*, that maps each node *n* to a field in \mathbb{F} as follows:

$$\mathbb{M}(n) ::= \begin{cases} \min_{\prec_{\mathbb{F}}} (\mathbb{F}_{\mapsto}(P)) & \text{if } n = Root, \\ \min_{\prec_{\mathbb{F}}} \{f \mid f \text{-edge enters } n\} & \text{otherwise.} \end{cases}$$
(7)

This means that $\mathbb{M}(n)$ is the minimum field wrt $\prec_{\mathbb{F}^*}$ among the fields of (points-to or predicate) edges entering node *n*. For technical reasons, we add the minimum field (wrt $\prec_{\mathbb{F}}$) in $\mathbb{F}_{\mapsto}(P)$ as the marking of node *Root*.

For any join node *n* not labelled by a variable in $\{E, F\} \cup \vec{B}$, the spanning tree edge is the *f*-edge (m, n) such that $\mathbb{M}(n) = f$; for *Root*, no incoming edge is in the spanning tree. The soundness of this construction is obtained due to Property 6, which ensures that in any model of $P(E, F, \vec{B})$, all allocated nodes are reachable via paths built using only minimum fields.

Splitting join nodes. The way join nodes are split depends on whether they are labelled by variables in $\{E, F\} \cup \vec{B}$ or not. First, a graph G' is obtained from G by replacing any edge (m, n) with n labelled by some $V \in \{E, F\} \cup \vec{B}$ by an edge (m, n') with the same label, where n' is a fresh copy of n labelled by alias [V]. In our example, the node labelled with F in Fig. 7a is split, and we obtain three nodes labelled by alias [F] in Fig. 7b.

Subsequently, G' is transformed into a tree by splitting the remaining join nodes as follows. Let *n* be a join node and (m, n) an edge not in the spanning tree of G' (and G). The edge (m, n) is replaced in the tree by an edge (m, n') with the same edge label, where n' is a fresh copy of *n* labelled by:

- alias $\uparrow [\mathbb{M}(n)]$ if *m* is reachable from *n* in *G'* and *n* is the first predecessor of *n'* marked with $\mathbb{M}(n)$. In Fig. 7a, this labelling is used on cutting the edge from Z'_2 to Z_2 , and substituting it by an edge to a node labelled alias $\uparrow [f_2]$ in Fig. 7b.
- alias $\uparrow\downarrow[\mathbb{M}(n)]$ if there is a node *p* that is the first predecessor of *n'* with a (non-null) successor over edge $\mathbb{M}(n)$, and the successor is *n*. In Fig. 7a, this labelling is illustrated on cutting the edge from Z_1 to Z_2 , and substituting it by an edge to a node labelled alias $\uparrow\downarrow[f_2]$ in Fig. 7b.

If the relation between *n* and *n'* does not satisfy the constraints mentioned above, i.e., the formula does not belong to the considered fragment, the result of this step is an error represented by the \perp tree. Also note that in the example in Fig. 7, edges over *ff* were split in two ways, depending on whether the target node is labelled by a variable or not. This will later be important in the construction of the TA recognising unfoldings of predicates. We denote the set of all aliasings over variables *Vars* \cup *LVars* and fields \mathbb{F} with ALIAS, formally, ALIAS = {alias $[X] \mid X \in Vars \cup LVars} \cup {alias \uparrow [f], alias \uparrow [f] \mid f \in \mathbb{F}}.$

At the end of these steps, we obtain a tree with labels on edges (using fields $f \in \mathbb{F}$ or predicates $Q(\vec{B})$) and labels on nodes of the form alias [...]; the root of the tree is labelled by E.

Updating the labels. In the last step, two transformations are done on the tree. First, the labels of predicate edges are changed in order to replace each argument X from the set $\{F\} \cup \vec{B}$ by alias [X], and the rest of the arguments by alias $\uparrow [\mathbb{M}(n)]$ or alias $\uparrow \downarrow [\mathbb{M}(n)]$, depending on the position of the node *n* labelled by X wrt the source node of the predicate edge. In the case this is not possible, the algorithm returns \bot .

Second, as the generated trees will be tested for membership in the language of a TA that accepts node-labelled trees only, the labels of edges are moved to the labels of their source nodes and concatenated in the order given by $\prec_{\mathbb{F}}$ (predicates in the labels are ordered according to the minimum field in their matrix).

We now formally define the structure of the output of the algorithm. Let \mathbb{L} denote the set of possible node labels obtained in the previous transformation, i.e., elements of \mathbb{F}^* (ordered wrt $\prec_{\mathbb{F}}$), elements of ALIAS, and predicates $P(\vec{B})$ for all $P \in \mathbb{P}$ and $\vec{B} \in ALIAS^*$. Then the output of toTree($G, P(E, F, \vec{B})$) is a tree over labels of the tree encoding, i.e., a mapping $t : \mathbb{N}^* \to \mathbb{L}$ such that dom(t) is prefix-closed with the following conditions. Let chlds(n) be the set $\{i \mid ni \in dom(t)\}$. Then, - if $t(n) = f_1 \cdots f_k \in \mathbb{F}^*$, then $chlds(n) = \{1, \dots, k\}$,

- if
$$t(n) = P(\vec{B})$$
 for some $P \in \mathbb{P}$ and $\vec{B} \in ALIAS^*$, then $chlds(n) = \{1\}$, and

- if $t(n) \in ALIAS$, then $chlds(n) = \emptyset$.

The following property ensures the completeness of the entailment procedure:

Proposition 5 Let $P(E, F, \vec{B})$ be a predicate atom and G an SL graph. If the procedure toTree(G, $P(E, F, \vec{B})$) returns \bot , then $G \Rightarrow_{sh} P(E, F, \vec{B})$.

Proof It follows from Properties 5 and 6 that a model of a predicate in our fragment can be translated into a tree using the considered aliasing relations. Therefore, if the procedure $toTree(G, P(E, F, \vec{B}))$ returns \bot , then G can only correspond to a model of a predicate not in the considered fragment.

7 Tree automata recognising tree encodings of SL graphs

Next, we proceed to the construction of tree automata $\mathcal{A}[P]$ that recognise tree encodings of SL graphs that entail atoms of the form $P(E, F, \vec{B})$. After defining TAs, we continue with an intuitive description on a typical example, and give a full description of the TA construction later.

Definition 4 (*Tree automata*) A (nondeterministic) *tree automaton* (TA) recognising tree encodings of SL graphs is a tuple $\mathcal{A} = (Q, q_0, \Delta)$ where Q is a finite set of states, $q_0 \in Q$ is the initial state, and Δ is a finite set of transitions of the form $(q, a_1 \cdots a_n, q_1 \cdots q_n)$ or (q, a, ϵ) , where $n > 0, q, q_1, \ldots, q_n \in Q, a_i$ is an SL graph edge label (we assume them to be ordered wrt the same ordering of fields $\prec_{\mathbb{F}}$ as for tree encodings), and $a \in ALIAS$. We use $q \hookrightarrow a_1(q_1), \ldots, a_n(q_n)$ to denote $(q, a_1 \cdots a_n, q_1 \cdots q_n)$ and $q \hookrightarrow a$ to denote (q, a, ϵ) .

A tree encoding $t : \mathbb{N}^* \to \mathbb{L}$ is accepted by \mathcal{A} if there exists a mapping $\rho : dom(t) \to Q$ such that:

(i) $\rho(\epsilon) = q_0$, and

(ii) for all $n \in dom(t)$, if $chlds(n) = \{1, \dots, k\}$, then $(\rho(n), t(n), \rho(n \cdot 1) \cdots \rho(n \cdot k)) \in \Delta$.

The set of trees L(A) accepted by A is called the *language* of A.

7.1 Overview of the construction

The tree automaton $\mathcal{A}[P]$ is constructed by a procedure starting from the inductive definition of *P*. If *P* does not call other predicates, the TA simply recognises the tree encodings of the SL graphs that are obtained by "concatenating" a sequence of either Gaifman graphs representing the matrix of *P*, $\Sigma(E, X_{t1}, \vec{B})$, or predicate edges $P(E, X_{t1}, \vec{B})$. In these sequences, occurrences of both types can be mixed in an arbitrary order and in an arbitrary number due to Property 4 (compositional list segments) of inductive definitions in our fragment. Intuitively, this corresponds to a partial unfolding of the predicate *P* in which there appear concrete segments described by points-to edges as well as (possibly multiple) segments described by predicate edges. Concatenating two Gaifman graphs means that the node labelled by X_{t1} in the first graph is merged with the node labelled by *E* in the other graph. We first illustrate this on a simplified example.

Consider a predicate $P_1(E, F, B)$ that does not invoke any other predicates and whose matrix is $\Sigma_1 ::= E \mapsto \{(f_1, X_{\pm 1}), (f_2, X_{\pm 1}), (f_3, B)\}$. The tree automaton $\mathcal{A}[P_1]$ for

Fig. 8 Automaton $\mathcal{A}[P_1]$

 $P_1(E, F, B)$ has transitions given in Fig. 8. Transitions 1–3 recognise the tree encoding of the Gaifman graph of Σ_1 , assuming the following total order on the fields: $f_1 \prec_{\mathbb{F}} f_2 \prec_{\mathbb{F}} f_3$. Transition 4 is used to distinguish the "last" instance of this tree encoding, which ends in the node labelled by alias [F] accepted by Transition 5. Finally, Transitions 6 and 7 recognise predicate edges labelled by $P_1(B)$. As in the previous case, we distinguish the predicate edge that ends in the node labelled by alias [F]. Note that the TA given above exhibits the simple and generic skeleton of TAs accepting tree encodings of list segments of our SL fragment: The initial state q_0 is used in a loop to traverse over an arbitrary number of folded (Transition 6) and unfolded (Transition 1) occurrences of list segments, and the state q_1 is used to recognise the end of the backbone (Transition 5). The other states (here, q_2 and q_3) are used to accept alias labels only.

When *P* invokes other predicates, the automaton recognises tree encodings of concatenations of more general SL graphs, obtained from Gf[mat(P)] by replacing predicate edges with unfoldings of these predicates. On the level of TAs, this operation corresponds to a substitution of transitions labelled by predicates with TAs for the nested predicates. During this substitution, alias [...] labels occurring in the TA for the nested predicate need to be modified, in particular, labels of the form alias [V] are substituted by the marking of Node(V)wrt the higher-level matrix.

7.2 Basic algorithm for non-empty list segments

We present our algorithm for translating a predicate into a TA in two steps. In this section, we start with the basic algorithm for a predicate that for each nested predicate allows *at least one* unfolding, and in the next section, we extend the construction to allow *empty* nested predicates.

Consider the definition of the matrix of a predicate $P(E, F, \vec{B})$ as given in Eqs. (1) and (2) in Sect. 2.3. The construction of the automaton $\mathcal{A}[P]$ is described in the following. To ease its presentation, let us suppose that the matrix of P is of the form $\Sigma(E, X_{t1}, \vec{B}) ::= \exists \vec{Z}$:

 $E \mapsto \{(f_1, Z_1 = X_{t1}), \dots, (f_n, Z_n)\} * \Sigma'$. Wlog, we further assume that $f_1 \prec_{\mathbb{F}} \cdots \prec_{\mathbb{F}} f_n$, i.e., f_1 is the minimum field in $\mathbb{F}_{\mapsto}(P)$.

The construction uses the SL graph of the formula that represents two unfoldings of the recursive definition of the predicate³:

$$\exists X_{tl} : \Sigma(E, X_{tl}, \vec{B}) * \Sigma(X_{tl}, F, \vec{B}).$$
(8)

The unfolding is done twice in order to capture all markings that may appear in tree encodings that shall be recognised by $\mathcal{A}[P]$, including the ones of the nodes allocated inside the list segment. (Note that in the example in Fig. 7, a single unfolding of the predicate P would not create the marking alias $\uparrow \downarrow [ff]$; the corresponding node would be marked with alias [F]. On the other hand, any more unfoldings of P do not create any new marking.) We obtain a graph G_P by transforming the formula in Eq. (8) to its SL graph [macros of the form $\circlearrowright^{1+}\mathcal{Q}[Z, \vec{Y}]$ are first expanded according to Eq. (3)]. In the following, we use variables Z_1, \ldots, Z_n to denote existentially quantified variables from the first unfolding $\Sigma(E, X_{t1}, \vec{B})$ and variables Z'_1, \ldots, Z'_n to denote existentially quantified variables from the second unfolding $\Sigma(X_{t1}, F, \vec{B})$.

In the following step, we get $\mathcal{T}[G_P]$, the tree encoding of G_P , and check that it is not equal to \bot , otherwise we abort the procedure. Notice that the variable X_{t1} is existentially quantified in the formula, so $\mathcal{T}[G_P]$ does not use the aliasing relation alias $[X_{t1}]$. Instead, a node that is a copy of the node labelled with X_{t1} in G needs to use either the relation alias $\uparrow [f_1]$ or the relation alias $\uparrow \downarrow [f_1]$, because the marking of $Node(X_{t1})$ is f_1 . Recall also that the nodes of G labelled by parameters or existentially quantified variables are kept in the structure of $\mathcal{T}[G_P]$ (the tree encoding only cuts some edges and adds new nodes). Therefore, we overload the notation Node(Z) in the following to denote the (non-alias) node of $\mathcal{T}[G_P]$ obtained from the node of G_P labelled by Z.

The construction starts with an empty automaton $\mathcal{A}[P]$. It calls the procedure buildTA $(P, \sigma, q_0, q_1, m_0)$, which adds states and transitions to $\mathcal{A}[P]$ to recognise tree encodings of unfoldings of the atom $P(E, F, \vec{B})$. This procedure is recursive, because it is called for all atoms $Q(U, V, \vec{W})$ inside the formula in Eq. (8). The arguments of buildTA are the following: P is the predicate called, σ is the mapping of the formal parameters of the predicate to an aliasing relation, q_0 and q_1 are the states to be used for the source resp. the continuation of the construction, and m_0 is the marking of the state q_0 . The state q_0 is chosen as the initial state of $\mathcal{A}[P]$.

Let $\sigma = \{E \mapsto \text{alias}[E], F \mapsto \text{alias}[F], \overline{B \mapsto \text{alias}[B]}\}$ where $\overline{B \mapsto \text{alias}[B]}$ denotes the set of mappings $\{B \mapsto \text{alias}[B] \mid B \in \vec{B}\}$. The procedure buildTA(P, σ, q_0, q_1, f_1) consists of the following four steps.

I. Importing the tree encoding $\mathcal{T}[G_P]$. In the first step, we construct the *skeleton* of $\mathcal{A}[P]$ by taking $\mathcal{T}[G_P]$ and transforming it in the following way:

- (a) For each node u of $\mathcal{T}[G_P]$, we create a unique state q(u) in $\mathcal{A}[P]$, except for the nodes Node(E) and Node(F), for which we use the states q_0 and q_1 respectively.
- (b) If the node u is labelled in T[G_P] with an aliasing relation r ∈ ALIAS, we add the transition q(u) → σ(r) if r is of the form alias [B] for any B ∈ B and q(u) → r if r is a relation alias ∇[m] for ∇ ∈ {↑, ↑↓}.

³ Note that in the example in Fig. 8, we performed some manual minimisation of the result.

- (c) If there is a predicate edge from u to v labelled with $Q(\vec{Y})$, we add the transition $q(u) \hookrightarrow Q(\beta'(\vec{Y}, \sigma))(q(v))$ where $\beta'(\vec{Y}, \sigma)$ changes every Y in \vec{Y} according to the following rules:
 - If *Y* is an argument of buildTA, it is changed to $\sigma(Y)$;
 - if *Y* is an existentially quantified variable in the formula in Eq. (8), *m* is the marking of Node(*Y*), and the relation between *u* and Node(*Y*) is alias $\nabla[m]$ for $\nabla \in \{\uparrow, \uparrow\downarrow\}$, we change *Y* to alias $\nabla[m]$;
 - otherwise, we abort the procedure.
- (d) If the node *u* is the source of points-to edges e_1, \ldots, e_k labelled with the fields h_1, \ldots, h_k respectively, assuming that $h_1 \prec_{\mathbb{F}} \cdots \prec_{\mathbb{F}} h_k$, and entering nodes v_1, \ldots, v_k in this order, we add the transition $q(u) \hookrightarrow h_1(q(v_1)), \ldots, h_k(q(v_k))$. Note that this rule also creates the backbone transitions

$$q_0 \hookrightarrow f_1(q(\operatorname{Node}(X_{t1}))), f_2(q(\operatorname{Node}(Z_2))), \dots, f_n(q(\operatorname{Node}(Z_n))),$$
(9)

$$q(\operatorname{Node}(X_{tl})) \hookrightarrow f_1(q_1), f_2(q(\operatorname{Node}(Z'_2))), \dots, f_n(q(\operatorname{Node}(Z'_n))).$$
(10)

(e) If the call to buildTA is not nested, we also add the transition $q_1 \hookrightarrow \sigma(F)$.

Observe that the created skeleton is able to accept precisely two unfoldings of the predicate P between E and F such that nested predicates are not unfolded.

II. Accepting non-empty list segments. Next, we make $\mathcal{A}[P]$ accept an arbitrary number of these unfoldings along the minimum field, i.e., f_1 , of the predicate P. To do this, we add in state q_0 the following transitions:

- (a) a transition that accepts exactly one unfolding: $q_0 \hookrightarrow f_1(q_1), f_2(q(\operatorname{Node}(Z'_2))), \ldots, f_n(q(\operatorname{Node}(Z'_n))),$
- (b) a looping transition that allows to insert arbitrarily many unfoldings: $q_0 \hookrightarrow f_1(q_0), f_2(q(\operatorname{Node}(Z_2))), \ldots, f_n(q(\operatorname{Node}(Z_n))).$

III. Interleave with predicate edges. We add transitions allowing an arbitrary interleaving of folded and unfolded occurrences of the predicate *P*:

$$q_0 \hookrightarrow P(\sigma(\vec{B}))(q_0) \tag{11}$$

$$q_0 \hookrightarrow P(\sigma(\vec{B}))(q(\operatorname{Node}(X_{t1}))) \tag{12}$$

$$q(\operatorname{Node}(X_{t1})) \hookrightarrow P(\sigma(\overline{B}))(q_1).$$
(13)

Moreover, if the call to buildTA is not nested, we also add the transition

$$q_0 \hookrightarrow P(\sigma(\vec{B}))(q_1) \tag{14}$$

to accept exactly one instance of predicate P.

IV. Inserting tree automata of nested predicate edges. For each transition inserted in $\mathcal{A}[P]$ of the form: $q(\text{Node}(R)) \hookrightarrow Q(\vec{Y})(q(\text{Node}(S)))$, with $Q \neq P$ representing a nested predicate atom $Q(R, S, \vec{Y})$, we recursively call buildTA $(Q, \sigma', q(\text{Node}(R)), q(\text{Node}(S)), m_R)$ where $\sigma' = \{E \mapsto r_R, F \mapsto r_S, \vec{B} \mapsto r_Y\}$ (note that the definition of Q uses E, F, and \vec{B}) such that for any $Z \in \{R, S\} \cup \vec{Y}$:

Fig. 9 Illustration of the issue with possibly empty nested list segments on skl_3 . The label of the node accessible from x_5 over f_1 (labelled with alias $\uparrow \downarrow [f_3]$) reflects the fact that the second-level skip list from the node x_4 to the node x_6 is empty. **a** The SL graph of a 3-level skip list. **b** The tree encoding of the graph in **a**

- if $Z \in \{E, F\} \cup \vec{B}$ then r_Z is $\sigma(Z)$,
- if $Z \in \vec{Z}$ (the set of existentially quantified variables in P) then r_Z is the aliasing relation between Node(R) and Node(Z) in $\mathcal{T}[G_P]$,

Note that the size of $\mathcal{A}[P]$ (number of states and transitions) is polynomial in the size of the inductive definition (number of variables and atoms) of P and of Q with $P \prec_{\mathbb{P}}^* Q$. The procedure itself is also polynomial, and the membership problem for tree automata is solvable in polynomial time (wrt the size of the input). As a consequence, we conclude that the entailment decision procedure described in this section is polynomial in the size of the input.

The following result states the correctness of the tree automata construction.

Theorem 1 For any predicate atom $P(E, F, \vec{B})$ and any SL graph G, if the tree generated by toTree(G, $P(E, F, \vec{B})$) is accepted by $\mathcal{A}[P]$, then $G \Rightarrow_{sh} P(E, F, \vec{B})$.

Proof Follows from the fact that $\mathcal{A}[P]$ accepts trees corresponding to two unfoldings of P (using transitions created in Step I), one unfolding (Step II(a)), and more than two unfoldings (Step II(b)). Moreover, partial unfoldings of P (any interleaving of occurrences of unfoldings of P and P itself along the backbone) are accepted using transitions created in Step III. Transitions that accept all possible (non-empty) unfoldings for nested predicates are inserted in Step IV.

7.3 Extending the basic algorithm to possibly empty nested list segments

We now modify the above algorithm to generate TAs accepting unfoldings of *P* with not only *non-empty* occurrences of nested predicates, but also *empty* ones. To show the difficulties of this construction, we consider the SL graph in Fig. 9a, which is an unfolding of the predicate atom $skl_3(x_1, x_6)$. The skip list segment between nodes x_1 and x_4 contains a non-empty level-2 skip list, while the level-2 skip list between x_4 and x_6 is empty. The emptiness of the

second segment causes that the tree for the graph uses the alias relation alias $\uparrow \downarrow [f_3]$ for the node reachable from x_5 over f_1 instead of alias $\uparrow \downarrow [f_2]$ (used, e.g., in the node reachable from x_2 over f_1). Such trees are, however, rejected by the TA built by the procedure buildTA presented previously.

To fix this problem, apart from allowing empty occurrences of nested predicates in the TA returned by buildTA, we also need to extend the occurrences of aliasing relations alias $\uparrow\downarrow[\ldots]$ to consider all combinations of empty/non-empty occurrences of nested predicates. Indeed, such aliasing relations are used to address the target node of nested predicate atoms in the tree encoding of the matrix of a predicate. The aliasing relations of the form alias $\uparrow[\ldots]$ are not considered because they are used to encode the $\bigcirc^{1+}Q[Z, \vec{Y}]$ macro, which describes a non-empty list segment. In [9], we created an exponentially large TA that encodes all possible combinations of empty/non-empty occurrences of nested predicates. Here, we improve the algorithm and construct a TA of a polynomial size that accepts trees that have the right structure but may have some wrong alias labels. An additional polynomial-time check on the result of the membership test determines whether the alias labelling is valid.

Intuitively, the new procedure has the following steps:

- 1. The tree encoding of G, $\mathcal{T}[G]$, is computed using toTree $(G, P(E, F, \vec{B}))$, and the TA $\mathcal{A}[P]$ is obtained using buildTA as in the previous section.
- 2. Further, $\mathcal{A}[P]$ is modified in such a way that for every predicate-labelled transition, an ϵ -transition with the same source and destination nodes is added. After we remove the ϵ -transitions using a standard algorithm for ϵ -transition elimination, we obtain \mathcal{A}_{\bullet} . The automaton \mathcal{A}_{\bullet} accepts the same trees as $\mathcal{A}[P]$, but also trees obtained by removing some of the predicate-labelled edges (and for every such a removed edge, merging the source and target nodes together). The aliasing relations in the leaves of these trees may, however, be wrong. For example, \mathcal{A}_{\bullet} obtained for skl₃ would reject trees with alias $\uparrow \downarrow [f_3]$ in the nodes accessible from x_5 and x_3 through f_1 in Fig. 9b; it would only consider the label alias $\uparrow \downarrow [f_2]$.
- 3. A saturation algorithm is applied on \mathcal{A}_{\bullet} to obtain $\mathcal{A}'[P]$, where more aliasing transitions are introduced. Some of these added transitions do not, however, correspond to aliasings generated by the presence of empty predicate atoms.
- 4. For this reason, a modified membership algorithm is applied to $\mathcal{T}[G]$ and $\mathcal{A}'[P]$. It consists of first testing $\mathcal{T}[G] \in \mathcal{A}'[P]$ using a standard algorithm; if it answers *false*, the procedure returns *false*. Otherwise, the procedure checks that the aliasing transitions of $\mathcal{A}'[P]$ used in the standard membership test correspond to empty occurrences of predicates in $\mathcal{T}[G]$. If this check succeeds, the final result is *true*; otherwise the procedure returns *false*.

The above procedure, further called $isIn(G, P(E, F, \vec{B}))$, runs in the time polynomial to the size of G and of the inductive definitions in \mathbb{P} . It improves the procedure in [9], where the TA $\mathcal{A}'[P]$ is built by pumping all (exponentially many) *legal* combinations of empty predicate atoms and membership is tested in the standard way.

We now formalise steps 3–5 of $isIn(G, P(E, F, \vec{B}))$. In step 3, we first create the TA $\mathcal{A}_{\epsilon} = (Q, q_0, \Delta_{\epsilon})$ from $\mathcal{A}[P]$ in such a way, that for every transition of $\mathcal{A}[P]$ of the form $q \hookrightarrow P'(\vec{B})(p)$ representing a predicate atom $P'(\ldots)$ in the matrix of P, we add an ϵ -transition of the form $q \hookrightarrow \epsilon(p)$. Then, $\mathcal{A}_{\bullet} = (Q, q_0, \Delta_{\bullet})$ is the TA obtained by applying a standard algorithm for removing epsilon transitions on \mathcal{A}_{ϵ} .

In step 4, a saturation procedure first computes the mapping $\omega : Q \to (\mathbb{F} \cup \vec{B})^*$ such that $\omega(q)$ is the sequence of aliases that the node labelled by q in the run of \mathcal{A}_{\bullet} on $\mathcal{T}[G]$ can (possibly via other aliases) refer to. More precisely, let $q \in Q$ be a state such that Δ_{\bullet} contains

a transition $q \hookrightarrow \operatorname{alias} \[]{} [f]$ with $f \in \mathbb{F}$; due to our construction of $\mathcal{A}[P]$ and \mathcal{A}_{\bullet} , there is at most one such transition from q. Let $r \hookrightarrow g_1(s_1) \cdots g_n(s_n)$ be the first transition obtained by traversing the graph of \mathcal{A}_{\bullet} backwards from q to q_0 satisfying the following constraints: (i) its right-hand side contains a term $g_i(s_i)$ with $g_i = f$, and (ii) \mathcal{A}_{\bullet} contains a transition starting in s_i and expressing an aliasing relation, i.e., it has one of the forms $s_i \hookrightarrow \operatorname{alias} \[]{} [f']$ for $f' \in \mathbb{F}$ or $s_i \hookrightarrow \operatorname{alias}[X]$ for $X \in \vec{B} \setminus \{\text{null}\}$ (there is at most one such transition from s_i , by the construction of \mathcal{A}_{\bullet}). Then, we define $\omega(q) = f \cdot \omega(s_i)$. If there is no transition from s_i satisfying the above constraints but \mathcal{A}_{\bullet} contains $s_i \hookrightarrow \operatorname{alias}[\text{null}]$ (if $\text{null} \in \vec{B}$), then we define $\omega(q) = f \cdot \text{null}$. (We treat null in a special way in order to match the definition of $\operatorname{alias} \[]{} [\ldots]$.) For any state $q \in Q$ that does not satisfy the above constraints, $\omega(q) = \epsilon$. Notice that if $\omega(q) = f_1 \cdots f_n$, then f_1 is the marking used in the alias transition from q; if $f_i \in \vec{B}$, then i = n, i.e., variables can only occur at the end of the sequence. The saturation returns the TA $\mathcal{A}'[P] = (Q, q_0, \Delta')$ such that $\Delta' = \Delta_{\bullet} \cup \bigcup_{q \in Q} C(q)$ where C(q) contains all leaf transitions accepting aliases with markings in $\omega(q)$, formally, $C(q) = \{q \hookrightarrow \operatorname{alias} \uparrow \downarrow [f_i] \mid f_i \in \omega(q) \cap \mathbb{F}\} \cup \{q \hookrightarrow \operatorname{alias}[X] \mid X \in \omega(q) \cap \vec{B}\}$.

In step 5, the modified tree membership checking algorithm creates a partial mapping $\mu : \mathcal{T}[G] \rightarrow (\mathbb{F} \cup \vec{B})^*$ that is defined for some leaves of $\mathcal{T}[G]$. Intuitively, μ is used to determine which nested lists of P are assumed to have empty occurrences in $\mathcal{T}[G]$. Formally, let $u \in dom(\mathcal{T}[G])$ be a leaf labelled by alias $\uparrow \downarrow [f_i]$ (for a field $f_i \in \mathbb{F}$) or alias $[f_i]$ (for a variable $f_i \in \vec{B}$). If u is labelled by q in the accepting run of $\mathcal{A}'[P]$ on $\mathcal{T}[G]$, then $\mu(u) = f_1 \cdots f_i$ if $\omega(q) = f_1 \cdots f_n$ for $i \leq n$. Then, for all labelled leaves u of $\mathcal{T}[G]$, the modified membership test performs the following checks. Suppose $\mu(u) = f_1 \cdots f_i$. Then, for all $1 \leq j < i$, we test that the node v accessible from u via alias $\uparrow \downarrow [f_i]$ references the same node as u, i.e., $\mathcal{T}[G](v) = \mathcal{T}[G](u)$. Intuitively, this validates that if an alias relation assumes that there is an empty list segment in $\mathcal{T}[G]$, there really is one. Moreover, if $f_i \in \mathbb{F}$, we also test that the node accessible via alias $\uparrow \downarrow [f_i]$ is *not* an alias node. If any of the above checks fails, the procedure $isIn(G, P(E, F, \vec{B}))$ returns *false*, otherwise it returns *true*.

Theorem 2 For any predicate atom $P(E, F, \vec{B})$ and any SL graph G, the result of $isIn(G, P(E, F, \vec{B}))$ is true iff $G \Rightarrow_{sh} P(E, F, \vec{B})$.

Proof (Idea) From the idea of the proof of Theorem 1, we know that the TA $\mathcal{A}[P]$ accepts tree encodings of all models of P with no empty predicate occurrences. The new construction of $\mathcal{A}'[P]$ ensures that $\mathcal{A}'[P]$ will also accept any tree \mathcal{T} obtained from a tree accepted by $\mathcal{A}[P]$ by allowing any predicate that occurs in it to be empty. This shows completeness of the method. On the other hand, the construction of $\mathcal{A}'[P]$ accepts trees that do not correspond to any model of P, since some nested list may jump out of the list in which it should be nested. The modified membership test ensures that such trees are rejected, re-establishing soundness of the procedure.

8 Extension to doubly linked lists

The procedure presented above can be extended to check validity of entailments between formulas using more general inductively defined predicates. In this section, we sketch the main idea for the extension to list segments that are finite nestings of both singly linked and *doubly* linked lists.

Fig. 10 Tree encodings for lists of nested cyclic doubly linked lists: (*left*) an SL graph that entails nlcdl(E, F), (*right*) the tree encoding of the graph from the left

To describe doubly linked list segments, we extend the class of inductive definitions allowed by Constraint 1 (page 1) by including the following rules:

$$R_{dl}(E, F, P, L, B) ::= E = F \land P = L \land emp$$
(15)

$$R_{dl}(E, F, P, L, \vec{B}) ::= \exists X_{t1}, \vec{Z} : E \neq \{F\} \cup \vec{B} \land P \neq L \land$$

$$\underbrace{E \mapsto \{\rho(\{X_{t1}, P\} \cup \vec{V})\} * \Sigma'}_{mat(R_{dl}(E, X_{t1}, P, \vec{B}))} * R_{dl}(X_{t1}, F, E, L, \vec{B})$$
(16)

where $\vec{V} \subseteq \vec{Z} \cup \vec{B}$ and Σ' from Constraint 3 is changed to

$$\begin{split} \Sigma' &::= Q(Z, U, \vec{Y}) \mid Q_{dl}(Z, U, Z_p, Z_l, \vec{Y}) \mid \circlearrowright^{1+} Q[Z, \vec{Y}] \mid \\ &\circlearrowright^{1+} Q_{dl}[Z, \vec{Y}] \mid \Sigma' * \Sigma' \mid emp \end{split}$$

for $Z, Z_p, Z_l \in \vec{Z}; U \in \vec{Z} \cup \vec{B} \cup \{E, X_{tl}, P\}; \vec{Y} \subseteq \vec{B} \cup \{E, X_{tl}, P\}$; and

$$\bigcirc^{1+}Q[Z,\vec{Y}] \equiv \exists Z': mat(Q)(Z,Z',\vec{Y})*Q(Z',Z,\vec{Y}), \\ \bigcirc^{1+}Q_{dl}[Z,\vec{Y}] \equiv \exists Z', Z_p: mat(Q_{dl})(Z,Z',Z_p,\vec{Y})*Q_{dl}(Z',Z,Z,Z_p,\vec{Y}).$$

In Eq. (15), variable *P* corresponds to the predecessor of *E* and variable *L* corresponds to the predecessor of *F*, i.e., the last element of the list segment. Notice that the above constraints extend the definition used for DLL segments introduced in SL by, e.g., [1]. For instance, to describe DLL segments starting in *E*, ending in *L*, and going to *F*, one can use the following inductive rule: $dll(E, F, P, L) ::= \exists X_{tl} : E \neq F \land P \neq L \land E \mapsto \{(f, X_{tl}), (b, P)\} * dll(X_{tl}, F, E, L)$. To describe a singly linked list of cyclic doubly linked lists, one may use the following inductive rule: $nlcdl(E, F) ::= \exists X_{tl}, Z : E \neq F \land E \mapsto \{(s, X_{tl}), (h, Z)\} * \bigcirc^{1+} dll[Z] * nlcdl(X_{tl}, F)$. (In both cases, we omitted the base rule.)

To deal with the above introduced class of inductive definitions, the main modification of our decision procedure concerns the conversion of SL graphs to trees, i.e., the *toTree* procedure described in Sect. 6. More precisely, we have to extend the splitting of join nodes used by this procedure as follows. Recall that, given a join node n in an SL graph G and an edge (m, n) that is not in the spanning tree of G, the splitting operation replaces (m, n) by an edge (m, n') with the same edge label and n' being a fresh copy of n. For the new class of inductive definitions, we have to introduce two additional aliasing labels to describe the path from n' to n:

- alias $\uparrow^2[\mathbb{M}(n)]$ will be used if *m* is reachable from *n* in *G'* and *n* is the *second* predecessor of *n'* marked with $\mathbb{M}(n)$. Intuitively, this label is needed to handle inner nodes of doubly linked lists, which have two incoming edges: one from their successor and one from their predecessor (see Fig. 10).
- alias $\uparrow \downarrow_{last}[\mathbb{M}(n)]$ will be used if there is a node *p* that is the first predecessor of *n'* marked with $\mathbb{M}(n)$, *n* is reachable from *p* by going only via $\mathbb{M}(n)$ edges, and *n* has no non-alias successors with the marking $\mathbb{M}(n)$. Intuitively, the label is needed for a doubly linked cyclic list to allow referring to the predecessor of the head node of the list (see Fig. 10).

The construction of TAs from Sect. 7 has to be adapted too since it is based on the tree encoding of SL graphs obtained by unfolding the inductive definition of predicates to be represented. In order to generate all the aliasing relations, it turns out that we have to consider three unfoldings (instead of two) for these predicates. (Note that in the example in Fig. 10, the two unfoldings of the nested DLL do not create the marking alias $\uparrow^2[\mathbb{M}(f)]$ —three unfoldings are necessary. On the other hand, four or more unfoldings do not yield any new marking.) Step I (importing tree encodings) of the algorithm from Sect. 7.2 can be extended in a trivial way for the new aliasing relations. Step IV (inserting tree automata of nested predicate edges) is adapted in a similar way to the tree encoding of SL graphs. The other steps are not modified because they are independent of the set of aliasing relations.

9 Soundness, completeness, and complexity

We can now finally state that Algorithm 1 is a decision procedure for our SL fragment.

Theorem 3 Let φ_1 and φ_2 be a pair of formulas such that φ_2 is quantifier-free. Then, Algorithm 1 returns true iff $\varphi_1 \Rightarrow \varphi_2$.

Proof The first part of Algorithm 1 (until line 6) saturates the input formulas with all (non-)aliasing relations between logic variables. It follows from Proposition 1 that this transformation preserves the models of the input formulas. Thus the soundness and completeness of the algorithm is proved for the normalised formulas φ_1^n and φ_2^n .

Soundness, i.e., the fact that if Algorithm 1 returns *true*, then $\varphi_1 \Rightarrow \varphi_2$. The procedure may return *true* either at line 3 or line 15. At line 3, the test of unsatisfiability for φ_1^n is sound (by Proposition 1) and by the semantics of entailment, *false* $\Rightarrow \varphi_2$. At line 15, the result is *true* if (1) the normalised formulas φ_1^n and φ_2^n are satisfiable, (2) their pure parts satisfy $pure(\varphi_1^n) \Rightarrow pure(\varphi_2^n)$, (3) there is a mapping σ that associates to each spatial atom a_2 of φ_2^n a sub-formula $\sigma(a_2)$ of φ_1^n entailing a_2 , and (4) all atoms of φ_1^n are used at most once in the image of σ (i.e., are marked once). Let M = (S, H) be a model of φ_1^n . From Point (2), it follows that $M \models pure(\varphi_2^n)$. Let a_2^1, \ldots, a_2^k be the spatial atoms of φ_2^n . From the semantics of spatial formulas and Points (3) and (4), the heap H may be partitioned into domain-disjoint heaps H_1, \ldots, H_k such that they are well-formed models of sub-formulas of φ_1^n in the image of σ , i.e., for any $1 \le i \le k$, (S, H_i) is well-formed wrt a_i and $(S, H_i) \models \sigma(a_i)$. From the soundness of selection and Proposition 5, we obtain that $(S, H_i) \models a_i$. Thus, (S, H) is a model of φ_2^n .

Completeness, meaning that if Algorithm 1 returns *false*, then $\varphi_1 \neq \varphi_2$. At line 4, the procedure return *false* when φ_1^n is satisfiable and φ_2^n is not. By the soundness of the satisfiability checking, then trivially $\varphi_1 \not\Rightarrow \varphi_2$. The next result *false* is obtained at line 5 when the test of the entailment of pure parts fails. This trivially implies $\varphi_1 \neq \varphi_2$. In the first for loop (line 6), the result *false* is returned when a points-to atom $E_2 \mapsto \rho_2$ of φ_2^n cannot be mapped to an unmarked points-to atom a_1 of φ_1^n such that $pure(\varphi_1^n) \wedge a_1 \Rightarrow pure(\varphi_2^n) \wedge a_2$. Notice that, because φ_1^n is satisfiable, it cannot contain two different points-to atoms from the node labelled by E_2 in $G(\varphi_1^n)$. So if there is such an atom but it is already marked, i.e., used for another atom of φ_2^n , the semantics of separating conjunction implies that $\varphi_1 \not\Rightarrow \varphi_2$. If E_2 is not allocated in φ_1^n , i.e., there is no spatial atom in $G(\varphi_1^n)$ having E_2 as origin, then the entailment is also invalid because E_2 is allocated in φ_2^n . If the node labelled by E_2 in $G(\varphi_1^n)$ is the origin of a predicate atom, the entailment is also invalid because the logic cannot constraint the length of list segments to be one. In the second for loop (line 10), the *false* result is returned when the select procedure fails to build the sub-formula $\varphi_1^n[a_2]$ with unmarked atoms of φ_1^n such that it is well-formed wrt a_2 . From Proposition 2, φ_1^n cannot contain two disjoint sets of atoms that could correspond to the sub-formula $\varphi_1^n[a_2]$. If such a set of atoms exists, but includes marked atoms, it follows that some of the atoms are shared with the selection for another atom a'_2 of φ_2^n ; this is excluded by the semantics of separating conjunction, so the entailment is invalid. If such a set does not exist, no model of φ_1^n can include a model of a_2 , and Property 1 implies that it cannot be a model of the predicate atom a2. If select returns emp because the well-formedness test failed on the selected set of atoms, then due to the completeness of the test (Proposition 3), no well-formed model of a_2 exists in φ_1 . If the selection succeeds but the algorithm proposed for $\varphi_1^n[a_2] \Rightarrow_{sh} a_2$ returns *false*, then (Theorem 2) there are well-formed models of $\varphi_1^n[a_2]$ that are not models of a_2 , so the initial entailment is invalid. Finally, if there are unmarked atoms of φ_1^n , the precise semantics of our logic implies that the models of φ_1^n contain more allocated locations than the models of φ_2^n , meaning the entailment is invalid.

The overall complexity of the decision procedure is dominated by the complexity of (a) the Boolean satisfiability and unsatisfiability checking used in the normalisation and well-formedness tests (in *select*), which are **NP** and **co-NP** complete respectively, and (b) the algorithms presented in Sect. 7.3 to build tree automata and check tree automaton membership, which are both polynomial-time.

In conclusion, the overall complexity of the algorithm is polynomial wrt the sizes of the formulas φ_1 and φ_2 modulo an oracle for deciding (un-)satisfiability of a Boolean formula.

10 Implementation and experimental results

We implemented our decision procedure in a solver called SPEN (SeParation logic ENtailment). The tool takes as the input an entailment problem $\varphi_1 \Rightarrow \varphi_2$ (including the definition of the predicates used) encoded in the SMTLIB2 format. For non-valid entailments, SPEN prints the atom of φ_2 which is not entailed by a sub-formula of φ_1 . The tool is based on the MINISAT solver for deciding unsatisfiability of Boolean formulas and the VATA library [19] as the tree automata backend.

We applied SPEN to entailment problems that use various recursive predicates. First, we considered the benchmark provided in [20], which uses only the ls predicate. It consists of two classes of entailment problems: the first class contains 110 problems each (split into 11 groups) generated randomly according to the rules specified in [20], whereas the second

$\overline{\varphi_2}$	φ_1	Time	Status	$\mathcal{A}[\varphi_2]$	$T(\varphi_1)$
	tc1	344	Valid		7/7
nll	tc2	335	Valid	6/17	7/7
	tc3	319	Invalid		6/7
	tc1	318	Valid		10/9
nlcl	tc2	316	Valid	6/15	7/7
	tc3	317	Invalid		6/6
	tc1	334	Valid		7/7
skl3	tc2	349	Valid	80/193	8/8
	tc3	326	Invalid		6/6
	tc1	358	Valid		7/7
d11	tc2	324	Valid	9/16	7/7
	tc3	322	Invalid		5/5

Table 1 Running SPEN on entailments between well-formed formulas and atoms

Time is given in ms. The column for $\mathcal{A}[\varphi_2]$ gives the numbers of states/transitions and for $T(\varphi_1)$ the numbers of nodes/edges

Solver	×	1	?	Time [s]
		FDB_entl		
Spen	0	43	0	0.61
Cyclist-SL [5]	0	19	24	141.78
SLIDE [16]	0	0	43	0.00
Sleek-06 [7]	1	31	11	43.65
		sll0a_entl		
ASTERIX [21]	0	292	0	2.98
Spen	0	292	0	7.58
Sleek-06 [7]	0	292	0	14.13
Cyclist-SL [5]	0	55	237	11.78
		sll0a_sat		
ASTERIX [21]	0	110	0	1.06
Spen	0	110	0	3.27
Sleek-06 [7]	0	110	0	4.99
Cyclist-SL [5]	55	55	0	0.55

Table 2 Results of SL-COMP'14

The $X/\sqrt{2}$ columns give the numbers of wrong (X), correct $(\sqrt{2})$, and unknown (?) answers

class contains 100 problems (split into 10 groups) obtained from the verification conditions generated by the tool SMALLFOOT [3]. In all experiments,⁴ SPEN finished in less than 1 s with the deviation of running times ± 100 ms wrt the ones reported for ASTERIX [21], the most efficient tool for deciding entailments of SL formulas with singly linked lists we are aware of.

⁴ Our experiments were performed on a PC with an Intel Core 2 Duo @2.53 GHz processor and 4 GiB DDR3 @1067 MHz running a virtual machine with Fedora 20 (64-bit).

The TA for the predicate 1s is quite small, and so the above experiments did not evaluate much the performance of our procedure for checking entailments between formulas and atoms. For a more thorough evaluation, we further considered the experiments listed in Table 1 (among which, skl_3 required the extension discussed in Sect. 7.3). The full benchmark is available with our tool [10]. The entailment problems are extracted from verification conditions of operations like adding or deleting an element in various positions of list segments. Table 1 gives for each example the running time, whether the entailment is valid or invalid, and the size of the tree encoding and TA for φ_1 and φ_2 , respectively. We find the resulting times quite encouraging.

Moreover, SPEN participated in three divisions of the first competition of separation logic solvers SL-COMP'14 [26]: division FDB_entl containing entailment problems with extended acyclic lists, such as doubly linked lists, nested lists, or skip lists, and divisions sll0a_entl and sll0a_sat containing entailment respectively satisfiability problems with singly linked lists. The procedure for satisfiability checking computes the Boolean abstraction of the input formula and checks its satisfiability using SAT solvers; its correctness is implied by Proposition 1 and the well-formedness of the inductive definition used (cf. the ls predicate in Fig. 3). SPEN won division FDB_entl by a huge margin, solving the set containing all problems in less than a minute; further, note that SPEN is the only tool that correctly answered all problems in this division. In addition to this, SPEN was also placed second in both divisions with singly linked lists, where the first place was won by ASTERIX. Detailed results of this competition are in Table 2 (cf. [26] for the complete description).

11 Conclusion

This article presents a novel decision procedure for a fragment of SL with inductive predicates describing various forms of lists (singly or doubly linked, nested, circular, with skip links, etc.). The procedure is compositional in that it reduces the given entailment query to a set of simpler queries between a formula and an atom. For solving them, we proposed a novel reduction to testing membership of a tree derived from the formula in the language of a TA derived from a predicate. We implemented the procedure, and our experiments show that it has not only a favourable theoretical complexity, but also efficiently handles practical verification conditions. Moreover, when compared with other tools which competed in the first competition of separation logic solvers SL-COMP'14 [26], SPEN won the first place in one division (being by several orders of magnitude faster and even more successful in correctly deciding some problems), and the second place in two divisions.

In the future, we plan to investigate extensions of our approach to formulas with a more general Boolean structure or using more general inductive definitions. We intend to combine our procedure with some proof search techniques to support formulas with existentially quantified variables or to deal more precisely with disjunctions. Concerning general inductive definitions, we plan to investigate whether some ideas from [16] could be used to extend our decision procedure for entailments between formulas and atoms. From a practical point of view, apart from improving the implementation of our procedure, we plan to integrate it into a complete program analysis framework. In this context, the diagnosis provided by the TA library for a failing membership test may be exploited to provide support for frame inference.

Acknowledgements This work was supported by the French ANR project Vecolib, the Czech Science Foundation (Projects 14-11384S and 16-175385), the EU/Czech IT4Innovations Excellence in Science Project LQ1602, and by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 678177).

References

- Berdine J, Calcagno C, Cook B, Distefano D, O'Hearn PW, Wies T, Yang H (2007) Shape analysis for composite data structures. In: Proceedings of CAV'07, volume 4590 of LNCS, pp 178–192. Springer
- Berdine J, Calcagno C, O'Hearn PW (2005) A decidable fragment of separation logic. In: Proceedings of FSTTCS'04, volume 3328 of LNCS, pp 97–109. Springer
- Berdine J, Calcagno C, O'Hearn PW (2006) Smallfoot: modular automatic assertion checking with separation logic. In: Proceedings of FMCO'05, volume 4111 of LNCS, pp 115–137. Springer
- 4. Brotherston J, Fuhs C, Gorogiannis N, Pérez JN (2014) A decision procedure for satisfiability in separation logic with inductive predicates. In: Proceedings of CSL-LICS'14, pp 25:1–25:10. ACM
- Brotherston J, Gorogiannis N, Petersen RL (2012) A generic cyclic theorem prover. In: Proceedings of APLAS'12, volume 7705 of LNCS, pp 350–367. Springer
- Calcagno C, Yang H, O'Hearn PW (2001) Computability and complexity results for a spatial assertion language for data structures. In: Proceedings of FSTTCS'01, volume 2245 of LNCS, pp 108–119. Springer
- Chin W-N, David C, Huu HN, Shengchao Q (2012) Automated verification of shape, size and bag properties via user-defined predicates in separation logic. Sci Comput Program 77(9):1006–1036
- Cook B, Haase C, Ouaknine J, Parkinson MJ, Worrell J (2011) Tractable reasoning in a fragment of separation logic. In: Proceedings of CONCUR'11, volume 6901 of LNCS, pp 235–249. Springer
- Enea C, Lengál O, Sighireanu M, Vojnar T (2014) Compositional entailment checking for a fragment of separation logic. In: Proceedings of APLAS'14, volume 8858 of LNCS, pp 314–333. Springer
- 10. Enea C, Lengál O, Sighireanu M, Vojnar T (2014) SPEN. https://www.irif.fr/~sighirea/spen
- Enea C, Saveluc V, Sighireanu M (2013) Compositional invariant checking for overlaid and nested linked lists. In: Proceedings of ESOP'13, volume 7792 of LNCS, pp 129–148. Springer
- Enea C, Sighireanu M, Wu Z (2015) On automated lemma generation for separation logic with inductive definitions. In: ATVA'15, volume 9364 of LNCS, pp 80–96. Springer
- 13. Gaifman H (1982) On local and non-local properties. Stud Logic Found Math 107:105-135
- Gu X, Chen T, Wu Z (2016) A complete decision procedure for linearly compositional separation logic with data constraints. In: Proceedings of IJCAR'16, volume 9706 of LNCS, pp 532–549. Springer
- Iosif R, Rogalewicz A, Šimáček J (2013) The tree width of separation logic with recursive definitions. In: Proceedings of CADE'13, volume 7898 of LNCS, pp 21–38. Springer
- 16. Iosif R, Rogalewicz A, Vojnar T (2014) Deciding entailments in inductive separation logic with tree automata. In: Proceedings of ATVA'14, volume 8837 of LNCS, pp 201–218. Springer
- Ishtiaq S, O'Hearn PW (2001) BI as an assertion language for mutable data structures. In: Proceedings of POPL'01, pp 14–26. ACM
- Le QL, Sun J, Chin W-N (2016) Satisfiability modulo heap-based programs. In: Proceedings of CAV'16, volume 9779 of LNCS, pp 382–404. Springer
- Lengál O, Šimáček J, Vojnar T (2012) VATA: a library for efficient manipulation of non-deterministic tree automata. In: Proceedings of TACAS'12, volume 7214 of LNCS, pp 79–94. Springer
- Pérez JN, Rybalchenko A (2011) Separation logic + superposition calculus = heap theorem prover. In: Proceedings of PLDI'11, pp 556–566. ACM
- Pérez JN, Rybalchenko A (2013) Separation logic modulo theories. In: Proceedings of APLAS'13, volume 8301 of LNCS, pp 90–106. Springer
- 22. Piskac R, Wies T, Zufferey D (2013) Automating separation logic using SMT. In: Proceedings of CAV'13, volume 8044 of LNCS, pp 773–789. Springer
- Piskac R, Wies T, Zufferey D (2014) Automating separation logic with trees and data. In: Proceedings of CAV'14, volume 8559 of LNCS, pp 711–728. Springer
- Qiu X, Garg P, Stefanescu A, Madhusudan P (2013) Natural proofs for structure, data, and separation. In: Proceedings of PLDI'13, pp 231–242. ACM
- Reynolds JC (2002) Separation logic: a logic for shared mutable data structures. In: Proceedings of LICS'02, pp 55–74. IEEE
- Sighireanu M, Cok D (2014) Report on SL-COMP'14. JSAT 1. http://smtcomp.sourceforge.net/2014/ results-SLCOMP2.shtml