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Abstract

Some environments (e.g. space, aerospace or medi-
cal systems) require electronic systems to withstand an
increased occurrence of faults. Moreover, the failure
of these electronic systems can cause high economical
losses or endanger human health. Fault tolerance is one
of the techniques, the goal of which is to avoid such sit-
uations. This paper presents an approach to evaluate
the degree of importance of individual system partitions
when High-Level Synthesis (HLS) methodology is used.
The importance of individual partitions was evaluated
by the usage of our approach to fault-tolerant data-
paths design which is based on the HLS input specifi-
cation modification. The partitions are formed by sets
of variables and operations. A brief description of the
approach to fault tolerance in HLS is shown in the pa-
per as well. Our experiments are evaluated using an
SRAM-based FPGA evaluation platform which allows
us to analyze fault tolerance properties of the Design
Under Test (DUT). In the evaluation platform, func-
tional verification in combination with fault injection
is utilized.

1. Introduction

In our everyday lives we meet various types of elec-
tronic systems. Some of them are used just for en-
tertainment purposes, others help us to make our life
easier, but some of them are very important and safety
critical because they control processes the failure of
which can result in injury, heavy financial losses or can
endanger human health. Medical equipment, space and
aerospace control systems or automotive safety assis-
tants can serve as examples of safety critical systems.

It is very important to protect these systems against
faults and ensure their reliable operation in every sit-
uation.

The technique called fault tolerance [8] is one of
main approaches to increase electronic systems reliabil-
ity. Fault tolerance accepts the fact a fault can appear,
but the goal of this approach is to keep the system func-
tional even with the presence of faults. Fault tolerance
is a widely used technique which is usually based on
various types of redundancy. The most common are
area and time redundancy. Area redundancy usually
uses n-copies of the same functional unit and a com-
parator to guarantee the proper function. On the other
hand, time redundancy is based on repeated computa-
tion and the results from the independent runs are then
compared.

The main subject of our research in the field of fault
tolerant systems design and evaluation are SRAM-
based Field Programmable Gate Arrays (FPGAs). FP-
GAs are composed of reconfigurable blocks and an in-
terconnection network. The SRAM memory, in which
the configuration bitstream is saved, is sensitive to Sin-
gle Event Upsets (SEUs), which are caused by charged
particles [16]. The goal of the research presented in
this paper is to evaluate the importance of various
high level storage elements and associated operations
using their impact on reliability improvement. Know-
ing the importance of various partitions is essential in
ensuring the highest level of reliability in cases where
the remaining chip-area is limited. The fault tolerance
method is based on the modification of an input algo-
rithm before it is processed by HLS. For the evaluation,
the approach of SEU injections in combination with our
evaluation platform is used.

In this paper, the concept of HLS can be under-
stood as a set of methods transforming a high-level de-

978-1-5386-3299-4/17/$31.00 c©2017 IEEE

IEEE EWDTS, Novi Sad, Serbia, September 29 - October 2, 2017 359



scription to its implementation on the Register Trans-
fer Level (RTL). The description is made on a high
level of abstraction, usually in the form of an algo-
rithm described in one of the higher-level programming
languages (e.g. C++). The resulting RTL implemen-
tation is dependent on the configuration of the HLS.
The HLS tools usually incorporate an ability to effec-
tively explore the state space of all possible configura-
tions. There are various parallelization techniques in
HLS, although we only consider the most important
the loop acceleration techniques such as loop pipelining
and loop unrolling. These are usually fully exposed to
the designer. The HLS resulting RTL is usually com-
posed of the so-called control-path, which is usually in
the form of a Finite State Machine (FSM), and the so-
called data-path, which contains all the data processing
hardware such as Arithmetic Logic Units (ALUs).

These days a lot of effort in the research of fault
tolerance in HLS is dedicated to data-path harden-
ing. The authors of [5] present a heuristic algorithm
for searching an optimal assignment of operations to
data-paths while considering the maximal cycle length
of the transient fault. The authors of [14] show that
in most cases, 100% fault coverage is not necessary.
This fact allows them to implement a higher degree of
freedom into the phases of scheduling and binding and
save HW resources. The authors of [7] present a two-
phase resource binding heuristic algorithm with con-
siderable processor time and memory usage reduction
in the phase of system design. An approach to error
detection of arithmetic oriented data-paths is presented
in [1]. The authors of [13] show a method of detect-
ing multi-cycle transient faults while connecting the
higher-level synthesis with the lower (physical) level
and reducing the overhead. A new approach for the
fault-tolerant HLS controller is shown in [6]. The au-
thors of this method show that their approach requires
less overhead resources than using the TMR. All the
methods presented rely on a modification of the HLS
methodology, but in our approach we are trying to
strictly separate from the HLS tool itself while keeping
all the benefits of the HLS.

This paper is organized as follows. An overview of
our fault tolerance method based on data types mod-
ifications is proposed in Section 2. The experimental
system and evaluation platform are presented in Sec-
tion 3. The case study and experimental results are
summarized in Section 4. Section 5 contains the con-
clusion of the paper and presents our plans for future
research.

2. HLS-based Fault Tolerance Ap-
proach

In our approach we modify the input specification of
the HLS to achieve a fault-tolerant system at the out-
put of the HLS methodology. As this approach works
at the level of abstraction of the input specification, it
profits from all the benefits of the HLS. This idea was
already presented in our previous work [10], although
in this paper the method is used to evaluate the im-
portance of various partitions of the DUT.

In the C++ language code, three places to make
modifications can be distinguished: 1) data types;
2) arithmetic and logic operations; and 3) flow control
statements. This research is focused on the data types
(DTs) and operations modifications. The method of
creating new DTs, which we call the Redundant Data
Types (RDTs), will be shown on the well known princi-
ple of the Triple Modular Redundancy (TMR). RDTs
are using already existing (in the following text ref-
erenced as original) DTs, where each RDT expresses
one method of fault tolerance (e.g. the RDT triple ex-
presses TMR). This approach allowed us to modify the
semantics of corresponding DT operations and to im-
plement fault tolerance methods into these operations.
As a result, all the operations whose operands include
at least one RDT are modified according to the partic-
ular fault tolerance method of the RDT(s).

In the phase of a new RDT creation, three types of
operations considering their arity must be addressed:
1) unary ; 2) binary ; and 3) ternary. While in the
case of unary operations there is no need to consider
another DTs existence, in the case of ternary (condi-
tional) operations, however, an ability to cast the RDT
variable to the Boolean DT must be added to provide
the ternary operator with a Boolean value in order to
evaluate the conditional expression. In the case of bi-
nary operations, operands of multiple combinations of
DTs or RDTs may arise. These combinations include:
a) intra-data type operations – RDT vs. RDT of equiv-
alent redundancy types (e.g. TMR vs. TMR subsys-
tem); b) inter-data type operations – RDT vs. RDT
of different redundancy types – (e.g. TMR vs. du-
plex subsystem); and c) original-data type operations
– RDT vs. it’s original (unhardened) DT (e.g. TMR
vs. unhardened subsystem). Examples of the combina-
tions of RDT and DT operations are shown in Figure 1.
Each time a new RDT is added, all existing RDTs must
be updated to address all of the newly arisen inter-data
type operation combinations.

With our approach it is relatively easy to incorpo-
rate fault tolerance into systems already described, al-
though the decision on which RDT to apply to which
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Figure 1. Three types of cases that can be
distinguished when considering binary oper-
ations, intra-DT operation between two TMR
subsystems (a), inter-DT operation between
system with TMR and duplex hardening (b)
and original-DT operation between TMR and
unhardened subsystems (c).

variable might not be a trivial problem in cases where
the whole system contains hundreds or even thousands
of program variables. For such cases, our goal is to de-
velop an automated methodology that would contain
guides to calculate weights for algorithm operations
and thus corresponding variables to estimate the im-
pact of a particular modification of the input code. We
assume that when a limited amount of HW resources
is a concern, the selection of the amount of redundancy
for each component of the system should be in correla-
tion with its importance. To express the changes made
in DTs of the input algorithm, an extension of Ac-
tivity Diagram (AD) from Unified Modeling Language
(UML), which is described in its original form in [2],
could be used. For each action of the AD, the exten-
sion assigns a corresponding set of variable instance
names utilized, their original DTs and eventually the
RDTs replacing them. An example of the extended
AD is shown in Figure 2. The example contains one
action with two corresponding original variables and
their DTs. The corresponding RDT if applied is listed
for each variable on the right side of the vertical line.
In this example of an AD, each variable is hardened
with the triple RDT.

finish detect distance: int
size: unsigned char

triple<int>
triple<unsigned char>

Figure 2. An example of the extended UML AD,
to each action variable instances and corre-
sponding DTs are assigned; RDTs if applied
are listed on the right side of the line.

3. Experimental platform

The objective of our research comprehends not only
the development and improvement of fault tolerance
methodologies, but their evaluation as well. In our
previous papers (e.g. [12]) the evaluation platform for
checking the impact of faults was presented. Our eval-
uation platform uses functional verification [11] as a
tool for monitoring the impact of faults injected into
an electronic controller implemented into an FPGA.
The main task of the functional verification is to check
whether a verified circuit satisfies its specification. It
compares outputs of a verified circuit running in the
RTL simulator with a reference model. When fault in-
jection is required, the DUT must be implemented into
an FPGA. In this case the classical simulation-based
functional verification is not used.

The architecture of our evaluation platform is shown
in Figure 3. The two main parts are a computer and an
FPGA development board with the robot controller.
We use the ML506 board with the Virtex 5 FPGA,
which allows us to inject faults directly into the FPGA.
Another FPGA board (in the middle) serves as a bridge
between the Ethernet interface and the General Pur-
pose Input Output (GPIO) ports. The fault injector is
one of the components running on the computer. Our
fault injector [15] is based on the Partial Dynamic Re-
configuration (PDR) [17]. It reads part of the con-
figuration bitstream from the configuration memory
through the JTAG interface, then the requested num-
ber of specified bits of the bitstream is inverted and
the modified bitstream is configured back to the con-
figuration memory. The evaluation platform is able to
use an electro-mechanical application as an experimen-
tal system, which allows us to monitor the impact of
faults not only on the electronic controller, but also
on the controlled mechanical parts. It should be noted
that the simulation of the mechanical part is important
and also runs on the computer. The electronic con-
troller implemented into the FPGA is connected with
the simulation of the mechanical part through the Eth-
ernet interface. An evaluation of the impact of injected
faults, both on the electronic and mechanical parts, is
performed in the software of the verification environ-
ment, which runs on the computer.

We use a robot for the searching path through a
maze and its electronic controller as an experimental
electro-mechanical system. Our robot controller is im-
plemented in VHDL which can be synthesized and con-
figured in the FPGA. So, there are two possibilities
on how to evaluate the fault tolerance methodologies:
1) apply a fault tolerance methodology to the imple-
mented controller; or 2) create a new robot controller
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Figure 3. The architecture of our evaluation
platform.

according to the evaluated fault tolerance methodol-
ogy. The second approach is used in this work and we
have implemented a new HLS-based robot controller
using the HLS flow.

4. Case Study and Experimental Re-
sults

For the purpose of our approach evaluation, a robot
controller was implemented according to HLS method-
ology. The input specification is written in the C++
language and is based on the so-called left-hand algo-
rithm which in the case of a crossroad in a maze always
follows the wall on its left side. The Player/Stage [3]
simulation environment is used to simulate the robot
which has four sensors on its chassis, each facing one
of the sides of the World.

In this research we are trying to evaluate the impor-
tance of each particular component of the robot con-
troller unit and thus find out components that have
the greatest potential in adding SEU resiliency if made
fault tolerant. Our previous research was targeted to-
wards an evaluation of the robot controller design fully
hardened with our method when considering various
HLS settings, while in this paper, the HLS settings
remain constant and resilience against SEUs is always
evaluated for designs with only one particular partition
hardened.

An RDT named triple, which is based on the TMR
principle, was used. For the purpose of evaluation,
seven new robot controller unit versions were created
using the Catapult C University Version tool [4] and
synthesized with the Xilinx Integrated Synthesis Envi-
ronment (ISE) [18]. Each controller of these versions
has the proposed methodology applied to a different set
of variables. These seven sets of variables are mutually
disjoint. Since placing all of the seven extended ADs for
each of the robot controllers to this paper would be very

space-consuming, Figure 4 shows the extended AD of
the robot controller unit having each variable hardened.
The figure also highlights the seven variable sets with
their proposed modifications. It is important to note
that for each of the seven controller designs, only the
corresponding set of variables was hardened. That is,
for the controller unit version 1, only the set of variables
marked by 1 (i.e. the x goal and the y goal variable)
was hardened, while leaving the remaining variables un-
hardened for a particular design. Similarly, the other
six versions were created. The HLS setup used during
the synthesis is based on the pipeline1-area HLS set-
tings set from our previous research which was submit-
ted to [9]. The pipeline1-area settings comprehend the
whole design pipelined with an Initiation Interval (II)
of 1. As this HLS setup turned out to be the most
sensitive to our approach (i.e. with the best reliability
improvement gain when each variable used the triple
RDT from all of the setups tested), we decided to use
it in this research in order to achieve the best pos-
sible resolution when distinguishing among reliability
improvements of various versions.

set goal

buffer input
data

compute next step

   continue
or first move

get speed

comp. current
x and y coord.

   goal
reached
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Y

compute
next turn

zero
speed

move
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Figure 4. The extended UML AD of the robot
controller having each variable hardened by
the triple RDT with the variables divided into
seven sets.

For each version of this robot controller, 2 000 eval-
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uation runs were performed. The scenario of each run
was as follows:

1. the robot controller unit was reinstated into its
initial state, the maze map as well as its starting
and target positions remained constant for all of
the evaluation runs,

2. the Player/Stage simulation environment was
started, the robot was placed on the starting po-
sition,

3. one SEU was injected into a bit of the bitstream,
the bit was selected uniformly at random from
all bits utilized as LUTs contents, the bit re-
mained in a faulty state during the whole verifi-
cation run,

4. the ability of the robot to reach the target posi-
tion was monitored.

Table 1 shows the comparison of reliability gained
for each robot controller version with the correspond-
ing area overhead, which were calculated using the ref-
erence values of the unhardened version. The table
also shows the numbers of unary, binary and ternary
operations and numbers of inter-, intra- and original-
DT operations associated with the hardened part us-
ing the triple RDT. The reliability improvement and
the area overhead of each unit i were calculated using
Equation 1 and Equation 2, respectively. The reference
values of the unhardened version from our previous re-
search were used for the calculation.

reliab improvi =
failuresref − failuresi

failuresref
∗ 100 (1)

area overheadi =
slicesref − slicesi

slicesref
∗ 100 (2)

As can be seen in Table 1, the designs with the
higher overhead (numbers 2, 5 and 7) have achieved
a higher level of reliability. In the other cases, our
fault tolerant designs are even smaller than the refer-
ence unhardened design. In the cases of 1, 3 and 6, the
smaller designs perform still better than the reference
design. We believe this interesting behavior is caused
by various pipelined settings the HLS tool chooses (i.e.
various sizes of pipelined blocks the buffering registers
are inserted in between). Further research is needed to
find out the exact reason for this behavior, as it leads
to significant reliability improvement when considering
the chip-area consumed. It is important to note that

Table 1. The experimental evaluation of re-
sources overhead, operations hardened and
reliability gained in comparison with the un-
hardened reference values.

Robot Version Ref. 1 2 3 4 5 6 7

LUTs bits [–] 21952 17408 55744 12800 15744 47552 15872 35840
Slices [–] 196 147 370 135 165 379 147 250
Failures [h] 33.0h 27.0h 13.5h 30.5h 37.5h 15.5h 29.5h 17.0h
RDT
ops.
[–]

unary 0 0 7 22 4 4 2 2
binary 0 6 7 32 7 9 5 2
ternary 0 0 0 0 0 0 0 0

RDT
ops.
[–]

inter-DT 0 0 0 0 0 0 0 0
intra-DT 0 0 0 30 4 0 0 2
orig.-DT 0 6 14 24 7 13 7 2

Reliability
improv. [%]

− 18.2% 59.1% 7.6% -13.6% 53.0% 10.6% 48.5%

Area over-
head [%]

− -25.0% 88.8% -31.1% -15.8% 93.4% -25.0% 27.6%

the operations are associated with variables of vari-
ous bit-width lengths, thus the operations complexity
varies. Therefore, the size of the resulting design does
not correlate with the number of operations hardened.
As part of our future research, we would like to try our
approach with a different HLS tool that would allow
us to to specify the synthesis parameters in a more de-
tailed way. Our intention is to also research a method
to estimate the importance of variables from the input
algorithm without the need for the long process of the
synthesis and fault injection.

5. Conclusions and Future Research

In this paper a newly emerging approach to fault
tolerance of HLS-synthesized systems was briefly ex-
plained and evaluated after its application to a robot
controller unit. The robot controller C++ description
was partitioned and into each partition a set of vari-
ables was assigned. Finally, each robot controller ver-
sion, which included the corresponding set hardened by
our approach, was evaluated. The experimental eval-
uation was performed using our evaluation platform,
which incorporates injection into the utilized contents
of FPGA LUTs. The main contribution of the paper
is to demonstrate a way to evalate the importance of
particular operation in HLS.

In the near-future, we would like to try our approach
with a different HLS tool (possibly with some open-
source alternative). As part of our future work, we
would like to incorporate various fault tolerance meth-
ods and evaluate the impact of hardening other places
in the C++ code the fault tolerance could be applied
to (mainly the control statements). And finally, from
the results investigated, we would also like to focus on
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the creation of a methodology to automate the whole
process of design modifications and the proper form of
redundancy selection.
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