
Fully Automatic Horizon Estimation
for Surveillance Cameras

Vojtěch Bartl Adam Herout
ibartl@fit.vut.cz herout@fit.vut.cz

Graph@FIT, Brno University of Technology
Brno, Czech Republic

Abstract—This paper deals with automatic estimation of the
horizon in videos from fixed surveillance cameras. The proposed
algorithm is fully automatic in the sense that no user input is
needed per-camera and it works with various scenes (indoor,
outdoor, traffic, pedestrian, livestock, etc.). The algorithm detects
moving objects, tracks them in time, assesses some of their
geometric properties related to the object dimensions and infers
observations related to the position of the horizon. We collected
a dataset of 47 public camera streams observing suitable scenes
of various nature. We annotated ground truth horizons based on
geometric properties in the images and by direct human input.
We evaluate the proposed algorithm and compare it to human
guesses – it turns out that the algorithm is on par with humans
or it outperforms them in the difficult scenes.

I. INTRODUCTION

Estimation of viewpoint is critical for understanding a given
scene. Quick (and possibly not quite accurate) guess of the
viewpoint is an important component of the gist of the scene
[1], [2]. Creating such a representation of an image can
be beneficial not only for human visual processing but also
in computer vision. One of the most mentioned viewpoint
aspects is the image’s horizon [1]. Although horizon is a fairly
intuitive characteristic of the viewpoint, in some complicated
scenes (urban, occluded, . . . ), establishing exact horizon can
be complicated for humans and even more so for machines.

Horizon is very often simply explained as “the line where
the sky meets the ground”. This explanation corresponds to the
intuitive human feeling about the horizon. The astronomical
horizon is defined by the horizon plane, a plane that is
perpendicular to gravity and located at the same altitude as
the camera [1]. In a given image, the plane is only visible
as a horizontal line, it is not dependent on the slant of the
ground surface nor on the presence of occluders. Literature
also defines a “horizon of an arbitrary plane” which is the line
in the image where all parallel lines within this plane meet (i.e.
the projection of the plane’s ideal line) [3]. Horizontal lines
that are parallel in the real world meet at a vanishing point
which lies on the horizon. Horizon is thus naturally, and at
no additional cost, established by algorithms that recognize
vanishing points in Manhattan worlds, e.g. [4].

Horizon is very often used for camera calibration because
two horizontal vanishing points lie on the horizon line. With
the knowledge of the horizon line and the third (vertical)
vanishing point, camera calibration can be done [5], [6]. An
approach which estimates the vanishing points by connecting

corresponding points of the same object and then constructs
the horizon is often used for camera calibration with human
tracking [7], [8], [9], [10], [11], where pedestrian’s head and
feet are connected by lines as the person moves across the
scene and their intersection lies on the horizon line. Simi-
larly, vanishing points and the horizon line can be localized
for example by detecting pedestrians’ toes in the ground
plane [12]. Although camera calibration methods which avoid
using horizon exist, they typically have some constraints,
for example, known pedestrian height distribution [13], [14],
‘Manhattan world’ scene [15], [16], [17], or dominant motion
only in one coherent direction [18], [19]. Horizon can also be
used for estimating 3D scene geometry and object detection
support [20], [21].

Our goal is to detect the horizon (in the sense of the
ideal line of the ground plane perpendicular to the gravity)
in a single static (often surveillance) uncalibrated camera
stream based on motion of objects in the scene without
any a priori constraints except that the majority of motions
happen in horizontal planes (which share the same horizon
by definition). Such a method can be later used for automatic
camera calibration, scene understanding, and other computer
vision tasks. We assume that the scene contains arbitrary
objects (pedestrians, cars, dogs, cattle, machinery, . . . ) with
an arbitrary height/size distribution. The scene does not need
to be manhattanian and the motion can appear in any direction
and in virtually any place in the scene. Existing methods for
horizon estimation [22], [23] use a single static image without
assumption of a movement in the scene. Although motion can
be used for horizon estimation for example in the form of
cloud motion together with wind velocity [24], in our work
we assume surveillance cameras without any constraints, no
clouds thus need to be present in the scene and no additional
information is provided.

Although datasets with horizon position in image exist
(HLW [25], ECD [26], YUD [27]), they only contain static im-
ages without any motion in the scene. To evaluate the method
and to allow for future comparison (to our knowledge, there
is no existing dataset dealing with this issue), we collected
a dataset based on publicly available IP cameras. We manually
constructed a ground truth by using geometric properties of
objects in the scene and we also collected human annotations
which cast a light on the algorithm’s performance and allow
for its comparison to human (well trained and routinely used)



gist of the scene mentioned earlier. The second contribution
of this paper – after proposing the fully automatic horizon
estimation algorithm – is making this dataset public1.

II. HORIZON ESTIMATION BY OBSERVING MOTION

This section describes the use of object trajectories in the
scene and it proposes an algorithm for fully automatic horizon
estimation from them.

A. Trajectories and Horizons

Our horizon estimation is based on trajectories of objects
tracked in a video (Figure 1). The objects can be arbitrary and
heterogeneous in the scene (unlike many approaches we do
not focus on a given known object class such as pedestrians
or vehicles). The video is first transformed into a set of
trajectories T by tracking foreground objects:

T = {t1, . . . , tN} (1)

Every trajectory is composed of individual object observations

t = {o1, . . . ,oMt
} (2)

which will be referenced as t(1), t(2), . . . , t(Mt) for brevity.
Each observation is described by a pair (p,d) whose parts
are:

t(i)p − position of the observation (3)
t(i)d − dimensions of the observation (4)

Position t(i)p is naturally the 2D position of the center of the
observation in the image. The dimensions t(i)d are possible
dimensions of the observation (naturally width and height,
possibly diagonals, other chord lengths, a measure related to
the area, . . . ) and so d is potentially k-dimensional. Since we
are dealing with quite low-resolution videos, we are only using
width, height and diagonal of the axis-aligned bounding box in
our experiments and k is thus 3 (d is three-dimensional). Here
and later in the text, we are assuming ‘normal’ surveillance
camera orientation; should the camera be placed so that the
horizon turns ‘vertical’, such a situation would be easily
detected and the algorithm can be adjusted in a straightforward
way. We are omitting such adjustments here for simplicity.

Let us consider an arbitrary horizon

h = (hm,hb), (5)

a straight line in the slope-intercept form

y = hmx+ hb. (6)

We define the distance of a given observation with the position
t(i)p from the given horizon h as

∆(t(i),h) =

∣∣∣∣∣hmt(i)px − t(i)py + hb√
h2
m + 1

∣∣∣∣∣ (7)

If the object captured by a trajectory t is moving within
the plane corresponding to the horizon (and no occlusion is

1https://medusa.fit.vutbr.cz/trajectories

Fig. 1. One possible trajectory (a few selected observations) in the video
frame. Each observation consists of position t(i)p and possible dimensions
t(i)d. The distance ∆(t(i),h) from horizon h is also depicted.

Fig. 2. Example of a scene with one dominant direction of objects’ motion.
There are two directions of car movement in the road and a bidirectional
stream of pedestrians on the sidewalk. Most of the tracks only testify for
one vanishing point, only rare pedestrians crossing the road bring the missing
information.

involved etc.) and the dimensions d are correctly selected, the
measured dimensions t(i)d must be linearly dependent on the
distances ∆(t(i),h), as illustrated in Figure 1:

λ∆(t(i),h) = t(i)d. (8)

B. Trajectory Contribution

Some scenes are typically problematic for horizon estima-
tion; mainly scenes with one dominant direction of motion
present. In such cases, the motion provides information about
one vanishing point (situated on the horizon line), but not
enough information about the whole horizon. It is thus nec-
essary to compute the contribution value of the given track,
where tracks in rare directions should contribute more, since
they provide valuable information. An example of a scene with
one dominant motion direction is shown in Figure 2.

For computing the contribution value for each trajectory t,
histogram D is accumulated, which stores information about
directions of motions which appear in the scene. Histogram
D contains B bins separating the interval of angles (0, π)
uniformly. The trajectory is divided to C parts uniformly, each
part described by its motion direction (see Figure 3).

For every trajectory part vector defined by its endpoint in-
dices a, b, i.e. ~v = t(b)p−t(a)p, its angle to an arbitrary fixed

https://medusa.fit.vutbr.cz/trajectories


Fig. 3. An example of computing the trajectory contribution value. Rectangles
are observations, endpoint observations of the trajectory parts are blue.
Direction vectors ~v = t(b)p−t(a)p for each consequent couple of endpoint
indices a, b are shown as green lines. left: Typical movement in the single
dominant direction (car on the road). right: Motion in an uncommon direction
(car leaving parking place).

reference horizon vector ~href (typically the vector horizontal
in the image) is computed as

φ = arccos(~href · ~v), (9)

with the assumption of normalized vectors. Angle φ deter-
mines which bin of histogram D is incremented for each
trajectory’s part. Histogram bin values are computed for all
C parts of the trajectory and the final contribution value γ(t)
is computed by normalizing the sum of values of the corre-
sponding histogram bins using the sum of all histogram values.
It should be noted that for efficiency of the computation,
the histogram accumulation and evaluation of the contribution
value is done on the fly with further trajectories coming. The
histogram is first initialized by a non-zero value Γ configuring
the initial estimation of the contribution values.

C. Automatic Horizon Estimation

Parametric space M×Y of potential horizons is generated
for horizon estimation. This parametric spaceM×Y samples
the set of potential horizons h = (hm,hb). Each horizon is
the line with slope hm, whose hb is computed so that the
line intersects the vertical central line of the image in the
y coordinate. M are slopes of angles from interval (−β, β)
sampled with step sm, and Y are vertical positions of the
horizons from interval (−ygenfh, ygenfh) sampled with step
sy , where fh is the height of the video frame and ygen is
a configuration constant, in the experiments ygen = 80 %, as
illustrated by Figure 4.

For every potential horizon h and every trajectory t, a con-
fidence value is computed indicating how much the linear
dependency assumption (8) of observation’s distances from
the horizon and their dimensions is met. In particular, least-
squares linear regression is computed between the presumably
linearly dependent values, and its error ε(t,h) is computed as
the root mean square error (RMSE):

ε(t,h) =

k∑
j=1

wj

√√√√ 1

Mt

Mt∑
i=1

(
t(i)dj − λ∆(t(i),h)

)2
, (10)

where w is k-dimensional vector of weights for individual
dimensions of observation t(i)d. Regression error ε(t,h)
describes how (un)likely the potential horizon h can be the real
horizon of trajectory t. The trajectory’s contribution value γ(t)

Fig. 4. Generated potential horizons which are used for horizon estimation.
In this case with value ygen = 80 % (y values from interval defined by 0.8
times height of frame above and below top frame border) and slope angle
values from interval (−β, β).

(Section II-B) is also accounted for in the resulting confidence
c(t,h) of the trajectory t being assigned to potential horizon
h. The resulting confidence is then

c(t,h) =
1

δe + ε(t,h)
· 1

δc + γ(t)
, (11)

where parameters δe and δc control the weight of regression er-
ror and trajectory contribution value in the resulting confidence
and they also ensure computational stability. This confidence
is computed for every trajectory t and every potential horizon
h and it is accumulated to the parametric space of potential
horizons M×Y in a manner similar to the Hough transform
and also following the work of Litman et al. [28] and the
work by Zhai et al. [22]. After accumulating all the tracks’
confidences, the horizon in the parametric space with the
highest confidence is selected as the most likely solution.

D. Motion with One Dominant Direction

Although the trajectory contribution value, as described
in Section II-B, is computed to emphasize trajectories with
unusual direction, in some specific scenes, the motion happens
solely in one dominant direction. In such cases, the trajectories
do not provide enough information about the horizon, only
information about a single vanishing point corresponding to
the dominant direction. This is typical mainly for traffic
surveillance scenes, where only the single motion direction
parallel to the road direction can be seen. An example of such
a scene is shown in Figure 5 (a).

In such problematic scenes, there is a typical pattern in the
parametric space M×Y , where confidences are accumulated
mainly for potential horizons all of which are coincident with
the vanishing point given by the motion in the scene. The
parametric space for such a scene is shown in Figure 5 (b).
It manifests as a pattern resembling a ‘line’ in the parametric



(a) (b) (c) (d) (e)

Fig. 5. Scene with a single dominant motion direction. (a) The scene.
The final horizon given by the fallback solution is marked by red line; (b)
Parametric spaceM×Y of the scene with apparent vanishing point pattern;
(c) Parametric space M× Y after OTSU threshold computation; (d) Line
fitted to the non-zero values from (c) for points’ mean distance computation
to ‘line’ pattern detection; (e) Parametric spaceM×Y with fallback solution
(zero slope) marked by red circle.

(a) (b) (c) (d) (e)

Fig. 6. Scene with multi-direction movement. (e) Parametric space M×Y
with solution marked by red circle (no fallback)

space – all potential horizons with high confidence intersect
near one vanishing point. Simply selecting one point with the
highest confidence would be random (provided that the point
is on the line corresponding to the vanishing point). This
situation is recognized by thresholding the parametric space
by Otsu’s algorithm [29] (Figure 5 (c)). A least-squares error
line is fitted to the non-zero points in the thresholded image
(Figure 5 (d)) and if the mean non-zero points’ distance to the
fitted line is below a threshold, then the one dominant motion
situation is recognized. As a fallback solution, the horizon is
declared to be the one horizon with zero slope and the highest
confidence (Figure 5 (e)). A non-problematic scene with multi-
direction movement is shown in Figure 6 for contrast; the ‘line’
pattern in the parametric space is not present and the fallback
solution is not necessary.

III. DATASET – GEOMETRIC AND HUMAN ANNOTATIONS

This section describes the dataset collected for testing the
horizon estimation and its annotations (geometric and human).

A. Data Collection

Most of the recordings were taken from publicly available
IP cameras, some recordings were captured by a camcorder.

0.0625 0.125 0.25 0.5 1 2 4 8 16 32
hours

0

2

4

6

8

10

12

14

16

18

co
u
n
t

Fig. 7. Histogram of video durations in the dataset.

Fig. 8. Scene horizon annotation principles. left: Web annotation tool for
crowsourced data collection. right: ‘Geometric’ ground truth annotation by
using scene parallel lines.

One scene was used from the PETS dataset but it is not a very
suitable one because of its short duration. One overcrowded
scene was used from [30] to cover as much complex scenes
as possible.

The recordings differ in many aspects – places, camera posi-
tions, day time, scene type, duration, resolution, . . . The collec-
tion includes scenes from traffic, indoor, outdoor, pedestrians,
etc. Some recordings were taken during night so different light
conditions are also available. The duration of the recordings
is in the range from 5 minutes to 30 hours, mean length is
about 2.9 hours (details in Figure 7). The resolution is largely
varying with the given IP camera’s quality in the range from
320×240 to 1 920×1 080 pixels. In total, 47 different usable
scenes were obtained. Some scenes were re-captured under
different conditions (lighting, crowd density, . . . ), yielding 66
recordings in total.

B. Horizon Annotations

Obtaining horizon ground truth turned out to be a chal-
lenging problem mostly due to very frequent occlusion of
the natural horizon in the scenes (buildings, horizon out of
frame, . . . ). In order to obtain a geometrical estimation of the
horizon, we extracted one representative frame from the video
recording and manually annotated groups of lines that are
parallel in the original 3D scene (edges of a house’s windows,
markings on the streets, patterns in the pavings, etc.). Each



Fig. 9. Examples of humans’ annotations. Blue lines are individual anno-
tations, cyan is the mean horizon location. left: Convenient scenes. right:
Scenes with high variance in the annotations.

of these groups of lines provides one estimated vanishing
point; all vanishing points should be collinear – coincident
with the line of the horizon. The horizon is obtained by using
the least-squares linear regression on the set of the estimated
vanishing points obtained as the minimal error intersections
of the lines in the individual groups. Such obtained horizon
is referenced as the ‘geometric’ annotation later in this text.
This geometric horizon line is established for every scene of
the dataset; an example of this annotation process is depicted
in Figure 8 right.

Aside from the geometric horizon estimation, we collected
horizon annotations by humans. We created a web annotation
tool (Figure 8 left) and knowledgeable people were asked to
estimate the horizon in the scene frame as precisely as pos-
sible. As described by Herdtweck and Wallraven [1], people
are able to localize the horizon in a given image with small
error after a short description of what horizon really is. To
prevent people of simply assuming a horizon line being always
horizontal in the image (though this is common in many
camera shots), the images given to the users for annotation
were rotated by ±20◦ and the maximal rectangle was slightly
cropped as in Figure 8 left.

TABLE I
ALGORITHM PARAMETERS

Name Usage Value
B Section II-B 45 (each bin covers 4◦)
C Section II-B 10
Γ Section II-B 10.0

~href Section II-B [1, 0] – zero slope
β Section II-C 20◦

sm Section II-C 0.5◦

ygen Section II-C 0.8
sy Section II-C 1.0 px
δe Section II-C 5e−2
δc Section II-C 5e−4

Participants estimated the horizon by moving a visual line
with markers on its sides as precisely as possible – the
users could try different positions of the controlled line and
look for the best match. Every participant marked 20 least
annotated scenes. The annotations were filtered to rid of
annotations clearly skipped or carelessly performed. Finally,
16 – 21 annotations for each of the 47 scenes are available
(mean number 18.42 annotations per scene by different human
subjects). Some examples of annotated scenes are depicted in
Figure 9. It is apparent that in some scenes, it is very difficult
for a human to mark the horizon (Figure 9 right) – mostly
in cases when the horizon is ‘somewhere above’ the frame or
totally occluded. In some scenes (Figure 9 left), the correlation
between the horizons indicated by humans is very high.

C. Trajectories Data

Object tracking (together with the necessary video decom-
pression) is computationally the most difficult part of the
whole process of horizon estimation and so these data are
stored for faster processing and also for possible later usage
of these data by other users as part of our dataset. We used our
own implementation of the object tracking method proposed
by Yang et al. [31]. For every scene in the dataset, the
following information are stored:

• Scene name
• ‘Geometric’ annotation
• Humans’ annotations
• Contours for all observations of individual trajectories

IV. EXPERIMENTAL RESULTS

This section evaluates the algorithm by comparing it to the
humans’ and ‘geometric’ annotations on all the 47 scenes (66
recordings) from our dataset.

A. Experimental Setup

All experiments used parameters defined in Table I. Pre-
liminary experiments showed that the computation is not very
sensitive to settings of parameters δe and δc. As was mentioned
in Section II-A, axis-aligned bounding boxes of the observa-
tions are used for computation of observations’ dimensions
t(i)d. Experiments with contour usage instead of axis-aligned
bounding box were done but contours’ dimensions incline to
be more noisy.



0.0 0.1 0.2 0.3 0.4 0.5ψ
0.0

0.2

0.4

0.6

0.8

1.0

algorithm - humans’
‘geometric’ - humans’
algorithm - ‘geometric’

0 2 4 6 8 10ω
0.0

0.2

0.4

0.6

0.8

1.0

algorithm - humans’
‘geometric’ - humans’
algorithm - ‘geometric’

Fig. 10. Cumulative histograms of differences between different methods
of obtaining the horizons (human crowdsourced annotation, ‘geometric’
horizons, algorithmic method). left: differences in vertical position ψ (relative
to frame height), right: differences in the horizon’s angle ω in degrees.

0 1 2 3 4 5σ
0.0

0.2

0.4

0.6

0.8

1.0

ψ - distance
ω - angle
ψ –ω space

0 1 2 3 4 5σ
0.0

0.2

0.4

0.6

0.8

1.0

ψ - distance
ω - angle
ψ –ω space

Fig. 11. Cumulative histograms of output distances to the human input means
in terms of σ. left: algorithmic horizons, right: ‘geometric’ horizons.

After the preliminary experiments, the weight vector w
(Section II-C) was set to the value w = (0.7; 0.3; 0.6), where
the observation dimensions t(i)d are sequentially: bounding
box height, width, and diagonal length. Height provides the
most valuable contribution to the resulting error computation
(10) and is well usable for humans (objects which do not
change dimensions rapidly during motion). Width and diago-
nal lengths help with computation for objects, which change
their dimensions by rotation in the scene (typically vehicles).

B. Evaluation and Results

The experiments are done by comparing the proposed
algorithm outputs with the humans’ and the ‘geometric’ an-
notations in their values of ω (angle of horizon’s slope in
degrees) and ψ (vertical position of the horizon, relative to
image height, i.e. 0 at image top, 1.0 at image bottom.

The left graph in Figure 10 displays the absolute differences
between the horizons’ positions ψ, comparing the algorithmic
outputs to the humans’ annotations (mean horizon) and to the
‘geometric’ references: when compared to the humans’ anno-
tations, in 80 % cases, the relative vertical position difference
is under 0.112 (cca 11 % of the image height), and 95 % of
cases fit under 0.144 relative vertical position difference. When
compared to the ‘geometric’ annotations, the values of ψ are
bellow 0.055 in 80 % of cases and bellow 0.083 in 95 % cases.
The right plot in Figure 10 shows the absolute differences
between the horizon angles, compared both to the humans’
annotations and to the ‘geometric’ reference. When compared
to the human annotations, in 80 % cases the angular error (in
degrees) was below 2.33◦ and in 95 % cases below 5.7◦. When

compared to the ‘geometric’ annotations, in 80 % cases the
value was below 2.08◦, and in 95 % cases it fit under 3.3◦.

The graphs in Figure 10 indicate that the algorithm’s
outputs compared to ‘geometric’ ground truth are on par or
outperform the human ‘guesses’. We therefore conclude that
the algorithmic approach based on observing moving objects
can provide the ‘gist’ of the scene [1], [2] used by humans
for understanding an arbitrary visual scene.

For another comparison with the humans’ annotations, the
mean of annotation horizons is taken as the reference value
and the errors are expressed in terms of standard deviation
σ – see Figure 11 for the results. The left graph shows the
difference of the algorithmically obtained horizons from the
mean of human annotations; the right graph shows the distance
of the ‘geometric’ annotations from the mean of the human
annotations. It is apparent that humans can indicate the horizon
quite accurately, because the Mahalanobis distance in 2D ψ –ω
space (as depicted also in Figure 12) is bellow 1σ in 51 % of
cases and in 83 % cases bellow 2σ.

Some examples of the proposed algorithm outputs can be
seen in Figure 12 together with the humans’ and ‘geometric’
references.

The main source of inaccuracies is the noise in the tracked
data – occlusions of the tracked objects, pixel segmenta-
tion imprecisions, etc. Despite that, the method works with
comparable accuracy as the human annotators; in difficult
scenes, our method outperforms humans (with the ‘geometric’
horizon as the reference). One source of inaccuracy is the
radial distortion of many of the cameras. In such cases, the
horizons (lines) produced by our method behave similarly to
the human annotations and to the geometric construction. Thus
established approximate horizon can still serve the purpose of
basic understanding of the scene. The final observation is that
with longer videos, the results improve (as expected) and the
noise cancels out. Our method is therefore suitable for fixed
surveillance cameras, because with more coming data, it has
the chance to improve (contrary to methods only processing
one frame of the video).

State-of-the-art method for horizon detection by only pro-
cessing one image by Zhai et al. [22] fails when short line
segments or curved structures are present in a scene (relies on
line segments). Our proposed method does not rely on visual
information thus it can also handle this type of scenes. By
contrast, compared to methods only processing one image, the
proposed method can finish with different results for the same
scene (depends on the motions happening in the scene at the
given time). Figure 13 shows results for different recordings
of the same scene.

V. CONCLUSIONS

This paper introduced an algorithm for estimating the
horizon in surveillance videos based only on motion in the
scene. Contrary to existing approaches, our algorithm does
not assume presence of particular objects (such as vehicles or
humans) in the scene, but it works with arbitrary scenes.



a)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ψ

−40

−20

0

20

40

ω

0.10 0.15 0.20 0.25 0.30 0.35 0.40
ψ

0

2

4

6

8

10

12

14

−8 −6 −4 −2 0 2 4
ω

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

b)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ψ

−40

−20

0

20

40

ω

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ψ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

−8 −6 −4 −2 0 2 4 6 8
ω

0.00

0.05

0.10

0.15

0.20

0.25

c)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ψ

−40

−20

0

20

40

ω

0.38 0.40 0.42 0.44 0.46 0.48 0.50
ψ

0

5

10

15

20

25

30

35

40

45

−4 −3 −2 −1 0 1 2 3 4 5
ω

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

d)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ψ

−40

−20

0

20

40

ω

0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
ψ

0

5

10

15

20

25

30

−6 −5 −4 −3 −2 −1 0 1 2 3
ω

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

e)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ψ

−40

−20

0

20

40

ω

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
ψ

0

5

10

15

20

25

−10 −8 −6 −4 −2 0 2 4
ω

0.00

0.05

0.10

0.15

0.20

0.25

0.30

f)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ψ

−40

−20

0

20

40

ω

−1.5 −1.0 −0.5 0.0 0.5 1.0
ψ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

−60 −40 −20 0 20 40 60
ω

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Fig. 12. Selected scene samples. camera images include alternative horizons; red: ‘geometric’ horizon, green: horizon computed from the video, cyan: mean
of human inputs. graphs: blue dots are individual human annotations, green dot is computed by the algorithm, red dot is the ‘geometric’ horizon, shades of
red are parts of normal distribution of the human inputs (1σ, 2σ, 3σ) left: ψ –ω plot, center: distribution along ψ axis, right: distribution along ω axis.



Fig. 13. Resulting detected horizons for different recordings of the same scene
(different lightning conditions, daytime, present objects, . . . ); red: ‘geometric’
horizon, green: horizon computed from the video, cyan: mean of human inputs

We collected a set of videos from real-life web cameras,
surveillance cameras, and other scenes, and make it public
along with this paper. The videos in this dataset are very
diverse (in terms of scale, nature of the scene, type of objects
appearing in, horizon position, lighting, etc.). We provide two
kinds of annotations of this dataset: geometrically extracted
horizons, and direct human annotations. The dataset also
contains the tracks of the objects moving in the scene.

Our algorithm manages to get the ‘gist’ of the scene, that
could help other tasks of computer vision (as it has been shown
that it helps humans in their understanding). The experiments
show that the accuracy achieved by our solution is comparable
to the performance of human annotators; some scenes even
confused the human annotators so much that our algorithm
outperformed humans. Our purpose was to show that this task
is possible to solve and to establish a baseline for further
development.

REFERENCES

[1] C. Herdtweck and C. Wallraven, “Estimation of the horizon in pho-
tographed outdoor scenes by human and machine,” PLoS ONE, vol. 8,
no. 12, pp. 1–14, 12 2013.

[2] G. A. Rousselet, O. R. Joubert, and M. Fabre-Thorpe, “How long to get
to the “gist” of real-world natural scenes?” Visual Cognition, vol. 12,
no. 6, pp. 852–877, 2005.

[3] K. Andersen, Brook Taylor’s Work on Linear Perspective. Springer
New York, 1992.

[4] J. Košecká and W. Zhang, “Video compass,” in ECCV, 2002.
[5] B. Caprile and V. Torre, “Using vanishing points for camera calibration,”

International Journal of Computer Vision, vol. 4, no. 2, pp. 127–139,
1990.

[6] R. Orghidan, J. Salvi, M. Gordan, and B. Orza, “Camera calibration
using two or three vanishing points,” in 2012 Federated Conference on
Computer Science and Information Systems (FedCSIS), Sept 2012, pp.
123–130.

[7] I. Junejo and H. Foroosh, “Robust auto-calibration from pedestrians,”
in 2006 IEEE International Conference on Video and Signal Based
Surveillance, Nov 2006, pp. 92–92.

[8] W. Kusakunniran, H. Li, and J. Zhang, “A direct method to self-calibrate
a surveillance camera by observing a walking pedestrian,” in 2009
Digital Image Computing: Techniques and Applications, Dec 2009, pp.
250–255.

[9] F. Lv, T. Zhao, and R. Nevatia, “Self-calibration of a camera from video
of a walking human,” in Object recognition supported by user interaction
for service robots, vol. 1, 2002, pp. 562–567 vol.1.

[10] ——, “Camera calibration from video of a walking human,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28,
no. 9, pp. 1513–1518, Sept 2006.

[11] G. M. Y. E. Brouwers, M. H. Zwemer, R. G. J. Wijnhoven, and P. H. N.
de With, Automatic Calibration of Stationary Surveillance Cameras in
the Wild. Cham: Springer International Publishing, 2016, pp. 743–759.

[12] S. Huang, X. Ying, J. Rong, Z. Shang, and H. Zha, “Camera calibration
from periodic motion of a pedestrian,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[13] L. Teixeira, F. Maffra, and A. Badii, Scene Understanding for Auto-
Calibration of Surveillance Cameras. Cham: Springer International
Publishing, 2014, pp. 671–682.

[14] J. Liu, R. T. Collins, and Y. Liu, “Surveillance camera autocalibration
based on pedestrian height distribution,” British Machine Vision Confer-
ence, Jan 2010.

[15] S. C. Lee and R. Nevatia, “Robust camera calibration tool for video
surveillance camera in urban environment,” in CVPR 2011 WORK-
SHOPS, June 2011, pp. 62–67.

[16] J. Deutscher, M. Isard, and J. MacCormick, “Automatic camera calibra-
tion from a single manhattan image,” in Computer Vision—ECCV 2002.
Springer, 2002, pp. 175–188.

[17] H. Wildenauer and A. Hanbury, “Robust camera self-calibration from
monocular images of manhattan worlds,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition, June 2012, pp. 2831–2838.

[18] M. Dubská, J. Sochor, and A. Herout, “Automatic camera calibration for
traffic understanding,” British Machine Vision Conference, Jan 2014.

[19] M. Dubská, A. Herout, R. Juránek, and J. Sochor, “Fully automatic
roadside camera calibration for traffic surveillance,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 3, pp. 1162–1171,
June 2015.

[20] D. Hoiem, A. A. Efros, and M. Hebert, “Putting objects in perspective,”
International Journal of Computer Vision, vol. 80, no. 1, pp. 3–15, 2008.

[21] P. Wang, K. Morton, P. Torrione, and L. Collins, “Viewpoint adaptation
for rigid object detection,” 2017, arXiv:1702.07451.

[22] M. Zhai, S. Workman, and N. Jacobs, “Detecting vanishing points using
global image context in a non-manhattan world,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[23] J. Lezama, R. Grompone von Gioi, G. Randall, and J.-M. Morel,
“Finding vanishing points via point alignments in image primal and
dual domains,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2014.

[24] N. Jacobs, M. T. Islam, and S. Workman, “Cloud motion as a calibra-
tion cue,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2013.

[25] S. Workman, M. Zhai, and N. Jacobs, “Horizon lines in the wild,” in
British Machine Vision Conference (BMVC), 2016.

[26] O. Barinova, V. Lempitsky, E. Tretiak, and P. Kohli, “Geometric image
parsing in man-made environments,” in ECCV, 2010.

[27] P. Denis, J. H. Elder, and F. J. Estrada, “Efficient edge-based methods
for estimating manhattan frames in urban imagery,” in ECCV, 2008.

[28] R. Litman, S. Korman, A. Bronstein, and S. Avidan, “Inverting ransac:
Global model detection via inlier rate estimation,” in 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2015, pp. 5243–5251.

[29] N. Otsu, “A threshold selection method from gray-level histograms,”
Automatica, vol. 11, no. 285-296, pp. 23–27, 1975.

[30] S. Yi, H. Li, and X. Wang, “Understanding pedestrian behaviors from
stationary crowd groups,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3488–3496.

[31] T. Yang, Q. Pan, J. Li, and S. Z. Li, “Real-time multiple objects
tracking with occlusion handling in dynamic scenes,” in 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05), vol. 1, June 2005, pp. 970–975 vol. 1.


