
Restful-based Mobile Web Service Migration
Framework

M. Mohanned Kazzaz

Department of Information Systems

Faculty of Information Technology

Brno University of Technology

Brno, Czech Republic

Email: ikazzaz@fit.vutbr.cz

Marek Rychlý

Department of Information Systems

Faculty of Information Technology

Brno University of Technology

IT4Innovations Centre of Excellence

Brno, Czech Republic

Email: rychly@fit.vutbr.cz

Abstract—Nowadays, web service provisioning on mobile de-
vices has become a high demand due to the improvement in
mobile device capabilities and web service technologies. In this
paper we present a RESTful-based framework for Mobile Web
service migration and provisioning on both Android-based mobile
devices and Java-based stationary devices in P2P wireless net-
work. The proposed Web service migration framework enables
deploying, publishing, discovering, provisioning and migrating
Web services to satisfy service providers’ and Web services’ pref-
erences and improve QoS performance.

Keywords-service-oriented architecture; RESTful; Self-
Adaptation; Mobile-Hosted Mobile Web Services (MHMWS)

I. INTRODUCTION

In Service Oriented Architecture (SOA) [1], Web Services

are provided according to specific context which represents the

status of the information system and its software and hardware

components during design-time and run-time. This context

contains services technical specifications, technical require-

ments and current status. If one or more of these requirements

are violated, an adaptation mechanism to heal the system

and remove this violation becomes a major need in order to

satisfy service requirements by finding the proper providers

to host them in the network. Such a mechanism is provided

by implementing Service Migration, which is the ability for

services to move between service providers.

In our previous papers [2], [3], Service Migration is proposed

as a reaction to context changes and enabled by a continuous

monitoring mechanism and an automatic discovery process

of any inconvenient runtime context (i.e., low memory, high

CPU usage, and low battery power level) that violates system

components requirements.

A migration can be implemented for a regular system main-

tenance to survive urgent breakdowns. Moreover, it is a helpful

method to ease the process of system configuration during the

design time and also the re-configuration process during run-

time implementing new versions of the utilized services. The

quality of services (QoS), service availability and other services

pre-conditions must be considered and guaranteed through the

migration. A migration strategy can also perform a customized

service migration that allows services to be provided according

specific conditions and configurations.

The need to invest the improvements in mobile devices

capabilities and wireless technologies motivates our work to

extend SOA adaptation to be performed on mobile devices

which allows including mobile devices resources as volatile

processing power and memory storage units to system resources.

The volatile connectivity of mobile devices presents another

motivation to implement Web service migration to improve

service availability and web service provisioning on mobile

hosts.

We selected Android as an implementation platform for our

framework on mobile devices as Android OS is the most dom-

inating operating system for smartphones and mobile devices

having by the first quarter of 2016 around 85% share of the

global smartphone market share according to the statistics com-

pany Statista [4]. On the other hand, Android is an open source

development platform which is an advantage to demonstrate

work and results on such developing research areas [5].

In previous work [6] we presented our SOAP-based frame-

work for Web services migration between stationary devices

in SOA. The migration process is controlled by services and

service providers preference rules provided by service manu-

facturers and system administrators. The system is described

by an ontology-based context model which is evaluated and

reasoned during the Web service migration discovery process.

When a migration is found, web service migration decision

selection process is launched to choose one migration from

the found possible migrations which has the highest weight

calculated by the Analytic Hierarchy Process (AHP) [7]. Each

migration process is governed by Jena language1 based rules

describing services and service providers preferences during

design-time and run-time. The selection process of the best

migration decision is made by implementing the AHP multi-

criteria decision-making method.

In this work we provide a software framework that enables

web service provisioning on constrained resource devices. The

proposed framework enables a hyper-platform web service mi-

gration between Android based mobile devices and Java-based

stationary devices. Moreover, it empowers mobile devices to

1https://jena.apache.org/

2017 IEEE 6th International Conference on AI & Mobile Services

978-1-5386-1999-5/17 $31.00 © 2017 IEEE

DOI 10.1109/AIMS.2017.18

70



manage web service migration to increases service availability

in the system.

The paper is organized as follows. Section II discusses

related work on mobile service provisioning on mobile devices

and service migration. In Section III we present the example

scenario for the implementation of the proposed web service

migration framework. In Section IV, we describe our migration

framework for mobile web services. Section VI present our

experiments with an example of Web service migration between

mobile devices and the efficiency gained over Web service

response time and availability by migrating a service to another

device through our proposed framework. Finally, we conclude

our work in Section VII.

II. RELATED WORK

Several frameworks have been proposed for Mobile-hosted

provisioning on mobile devices.

In [8], authors proposed a description based mash-up ap-

proach to enable composition and cooperation between of

Web services and Web applications hosted on mobile devices.

However, web services are only utilized in invoking installed

applications on mobile devices enrolled in a planned task.

A mobile-hosted mobile Web service migration framework

is proposed in [9]. The framework utilizes SOAP engine to

analyse SOAP messages and execute the corresponding service.

They utilized a migration policy [10] which only considers

Web services preferences without consideration of the service

provider preferences. However, their work only considered

migration between mobile devices running on mobile windows

OS connected via Bluetooth based ad-hoc network. The authors

only show the possibility of provisioning and migrating web

services on mobile hosts without showing experimental results

on the migration decision costs and time measurements.

In [11], authors presented Android-based framework for

hosting mobile services using RESTful web services to enable

Web service provisioning. The framework utilizes a fuzzy

controller to monitor the framework and its devices context,

analyses the context and decides which hosted service to be

provided.

AlShahwan et al., [12], provided SOAP- and RESTful-based

frameworks for distributed execution of mobile Web services.

The framework utilizes a FuzzyLogic Module which mon-

itors system resources and activates the offloading strategy

by distributing the execution of the web services of an over-

loaded mobile host on several mobile hosts. Based on the

performed tests on both frameworks, the authors found that

the REST framework has better performance than the SOAP

one in relation to hosting Web services on mobile devices.

However, authors did not address the discovery process of

service providers but instead they dealt with a pre-defined set

of hosts. Moreover no decision making process is proposed to

determine the destination host. We present a framework for

physical migration of Web service deployable package whereas

the authors only use a technique of redirecting the requests

to another device hosting the service instead of executing a

physical migration of the service to a new host.

In [13], authors provided an agent-based system architecture

to improve service availability on mobile hosts by migrating

agents onto other mobile hosts as an adaptation against system

failures and malicious attacks. However, they did consider

service providers preferences in the migration decision process.

Contrary to our work, their work only considered a predefined

set of participated platforms and did not consider the discovery

process of a new participated platforms or mobile agents in

the network.

The proposed Restful-based framework enables provider’s

and service’s automatic discovery, system monitoring and

adaptive service migration. It supports redistribution of system

services between mobile devices running on Android OS as

well as stationary devices in wireless P2P network. Moreover,

The framework uses an ontology-based description of both

devices and web services to support 1) context-awareness

in the software system. 2) defining services’ and providers’

preferences and rules, and 3) service migration decision making

process.

III. EXAMPLE SCENARIO AND MOTIVATION

We propose the following scenario to provide a real life

case study for the implementation of our framework. On a

tour programme, tourists are subscribing to a travel company

service hosted on a mobile phone of a tourist guide. The service

provides information about the scheduled tour, information

about the sightseeing located around the user position, and

also video editing service that allow passengers to edit their

videos and publish them on company social webpage. If the

tour guide mobile device has a low memory situation, the

framework performs a migration of the service onto another

device which is located on the travel company bus. Another

migration example can happen when passengers leave the bus

to a ferry as the service can migrate to a company server

located on the ferry and migrated back to the bus after the

ferry journey finished and passengers return onboard the bus.

In similar implementation to Facebook internet beaming

project2 proposed to provide internet by solar-powered drones

on remote areas, or to Project Loon3 by Google to connect the

world by balloons, we think that our framework can be utilized

to provide service migration between drones and balloons due

to location preferences or resource vulnerability situation.

IV. WEB SERVICE MIGRATION FRAMEWORK FOR MOBILE

AND STATIONARY DEVICES

In this section we describe the proposed framework for Web

service migration running on both standalone and mobile de-

vices. The framework architecture, shown in Figure 1, consists

of the controller, context model and a set of migratable Web

services. A decentralized service migration decision making

process can be performed using our proposed framework by

the controller on each emerged service provider.

2http://www.telegraph.co.uk/technology/facebook/11895598/
Facebook-ready-to-test-internet-drones-using-AI-generated-population-maps.
html

3https://x.company/loon/

71



Service Provider 

Migration Controller 

Migration Decision  
Making Unit  

(AHP Algorithm)  

Context Reasoning 
and Monitoring Unit 

“Jena, Sparql APIs” 

Discovery Unit 
“JMEDS API” 

JMEDS Framework 

System Context Model 
Generator 
“Jena API” 

Migration Unit 

 FrameworkWebService 
“Restlet API” 

Migratable WS 
“Restlet API” 

Migratable WS 
“Restlet API” 

Migratable WS 
“Restlet API” 

Core Context Model 

Wireless Network 

Fig. 1. MOBILE WEB SERVICE MIGRATION FRAMEWORK ARCHI-
TECTURE.

A service provider’s Controller periodically performs service

and device discovery, system violation monitoring and decision

making processes to improve system performance and QoS

factor. A controller consists of the following modules:

A. Discovery Unit

The Discovery Unit is responsible for the automatic discovery

of the emerging stationary/mobile service providers and their

hosted services. This is enabled using the light-weight stack

WS4D-JMEDS, that implements the Devices Profile for Web

Services (DPWS) build-in services on Java-based and Android

platforms.

The discovery unit provides the means to create local list

of the discovered devices that can participate in a Web service

migration decision making process when a migration necessity

is found by means of the Reasoning and Monitoring Module

described in Section IV-C.

B. System Context Model Generator

This module is responsible for generating system context

which consists of the core context model and all partial context

models of services and service providers discovered by the

Web Service Provider Discovery Module. The core model is

an ontology based description of SOA software architecture

components of Service and ServiceProvider classes including

description of their properties, relationships, and subclasses.

The partial models define status properties and preference rules

of Service and ServiceProvider instances representing services

and their providers currently available in a system, as it is

described in Section IV-F.

The Module generates system context model by extracting

the context model of each discovered service, that is integrated

in the service WADL file and by retrieving the context model

of each service provider by calling a framework service on the

provider that respond with the context model of the related

service provider, a description of the aforementioned framework

service is provided in Section IV-E.

C. Context Monitoring and Reasoning Unit

After creating the system context model of the discovered ser-

vice providers and services, the Controller performs a context

monitoring of the pre-defined rules governing the utilization

of the discovered service providers and their services.

Through Context Monitoring and Reasoning Unit, the Con-
troller uses an ontology based reasoning process using JENA
reasoner on the context model in order to monitor services

and service provider pre-defined rules, find the violated rules

and discover the services and service providers affected by the

violated rules.

The monitoring process describes the related services as

a CandidateForMigrationService service and the devices as

CandidateOriginServiceProvider and CandidateDestinationSer-
viceProvider. Moreover, the context reasoning process derives

higher level context with new information for the possibleDes-
tinationProvider and the possibleProvidedService to be hosted

on other service providers.

The output of this unit is a list of triple entries stating the

candidate service and their origin service provider and the

destination service provider. This list of entries is the input of

the Migration Decision Making Unit.

D. Migration Decision Making Unit

Having a list of possible migrations with different services,

origin service provider, and destination service providers, a

process to select the best migration to perform is required. We

proposed a multi-criteria decision making process using the

AHP decision-making method. A detailed description of the

process of decision making is noted in [6] where one migration

process can be performed per time considering the impact on

network components following that performed migration.

E. Migration Module

The migration module consists of framework web services

required to enable the physical migration of the migratable web

service package from a service provider to another. Moreover,

this module is responsible for replying requests seeking the

context model of its hosting service provider, and for deploying

a migratable service on the destination service provider. Having

an URI for each service provider and using Restlet API, a

request to derive the context model of device X is:

http://{X.IP}:{X.Port}/framework/getProviderContext/json

and the request to migrate a service from X to Y and is:

http://{Y.IP}:{Y.Port}/framework/download/{X.IP}
/port/{X.Port}/temp/{X.TempFolder}/service/{ServiceWAR}

F. Context Model

The Web service migration is performed as a reaction to

violation in the pre-defined rules of the services and/or service

providers presented in their context models. The context model

of each service and service provider is an ontology based

semantic description stating their properties/configurations and

pre-conditions. Using an ontology based context model of

72



{"name":"S", 
"type":"MigratableService", 
"properties": {"propertyName":"ServicePriority", 
  "propertyValue":"50", 
  "propertyType":"INT", 
  "criteria":"ServicePriorityCriteria"}, 
"rules":"[SPreference: (?service rdf:type core:MigratableService),  
 (?origin rdf:type core:CandidateOriginServiceProvider),  
 (?destination rdf:type core:CandidateDestinationServiceProvider), 
 (?origin core:provides core:S), 
 (?destination core:hasProperty ?property), 
 (?property rdf:type core:CPUUsage), 
 (?property core:propertyValue ?v1), 
 le(?v1, \"45\"^^http://www.w3.org/2001/XMLSchema#int) ->  
 (core:S core:possibleDestinationProvider ?destination)]"} 

Fig. 2. AN EXAMPLE OF THE PARTIAL CONTEXT MODEL OF
SERVICE S.

system components provides a common understanding be-

tween service providers and consumers of services and service

providers preferences and configurations which enables system

adaptivity and as a result guarantees service availability and

eases system maintenance.

Considering results of [14], [15], we choose to use JSON
based representation instead XML-based representation of

services and providers context models and in message exchange

format between mobile devices due its positive impact on

system performance and message exchange especially when

used on resource constrained devices. A context model contains

type and name elements to specify the type of the component

and its given name in the network. The type can have value

of MigratableService, FrameworkService, or ServiceProvider.

Also a model contains a hasProperty element, to describe a

property of a service (i.e., Service Priority) or a service provider

configuration (i.e., Battery Life Time) as a Property element

which is described by two sub elements propertyType and

propertyValue stating the type and value of the related property

respectively. The rules section includes Jena-based language

rules each one representing a preference rule of a service or a

service provider that should be satisfied during design-time and

run-time. The Criteria section holds the criteria considered by

the Property during the migration decision making process by

AHP. In Figure 2, we demonstrate the JSON based schema of

the context model of a MigratableService called S that we use

during our experiment and describe in more details in Section

VI.

V. TECHNICAL DESCRIPTION

In this section we provide implementation description of the

proposed framework for Web service migration and provision-

ing on mobile and stationary devices.

We adopt the Representational State Transfer (REST) [16]

architectural style for SOA design due to the lower message

payload of REST framework than SOAP framework which

makes REST more suitable for mobile devices [17]. For this

reason, we utilize Restlet APIs4 to implement our RESTful

Web services for the migration framework as Restlet APIs

supports both JAVA and Android platforms which enables to

run web services on stationary devices presented by Java based

host and also on mobile devices presented in Android-based

host without any need to modify its source-code.

For the HTTP server we choose I-Jetty project5 which is

a lightweight HTTP server for Android. Each HTTP server

hosts one grounding service FrameworkWebService which has

the required functionalities to package, send and receive Web

service WAR packages between system devices. First, The

getWar method packages the service in a WAR format file.

Second, The getContext method returns the service provider

context model. Last, the downloadWar method that is called

to download and deploy the Web service WAR package to the

destination service provider. Each method are presented in a

class file and attached to the device URL and called via http

requests to its host using Restlet APIs.

On the other hand, each running service has its context model

which can be retrieved by its URL. The service OWL/RDF

context model is attached to the service’s Web Application

Description Language (WADL) file by inheriting the WadlAppli-
cation Restlet class in the main service Application class. Then

the WADL context model is provided through implementing

the getApplicationInfo method and stored as an instance of

DocumentationInfo class of Restlet framework.

The process of deriving possible migrations is performed

through implementing JENA reasoner on the devices’ and

services’ models with respect to their defined JENA rule

preferences. We integrated Androjena APIs 6 for Android

to enable JENA based reasoning for the generated system

context model. Then the migration with the highest weight

from the proposed set of migrations is chosen to be executed.

We provided a detailed description of the AHP algorithm to

calculate the weight of the possible migration based on defined

criteria list in [6].

VI. EXPERIMENT AND RESULTS

We propose a case study of service migration between two

mobiles to demonstrate the improvement on the QoS gained

by the migration in addition to the framework impact on CPU

Usage and Battery Level of the mobile device running the

migration process.

Two devices are used as service providers in this experiment.

Both are Huawei Y560-L01 mobile phones namely: Destination
and Source, with 1.1GHz CPU frequency, 1GB RAM and

running Android 5.5.1 APIs. The status properties of both

providers are listed in Table I including their preference rules.

Destination Provider has CPUUsage property equals to 40%

and a preference rule defining the least ServicePriority of

services that can be hosted on Destination by 50%. Source
provider has 85% of CPUUsage and no preference rules.

4https://restlet.com/
5https://github.com/jetty-project/i-jetty
6https://github.com/lencinhaus/androjena

73



TABLE I
VALUES OF THE STATUS PROPERTIES AND PREFERENCES OF

THE MOBILE SERVICE PROVIDERS.

Provider CPUUsage Preference Rule

Source 85% NA

Destination 40% ServicePriority>=50%

OWL/RDF
Core Context

Model 

Start

Search For Devices
and Services

Build System Model

Reasoning Process

NoMigration
Found?

AHP Migration
Decision MakingPhysical Migration

Yes

Stop

Fig. 3. ILLUSTRATION OF THE MIGRATION PROCESS STEPS.

The subject Web service S is a video transcoding service

which converts AVI video files into FLV format. S has Ser-
vicePriority property of value 50% and has one preference

rule that allows it to be migrated only to service provider with

CPUUsage < 45%. ServicePriority and CPUUsage both are

sub properties of the Property Class in the context model.

ServicePriority’s states the priority of the service by a value

of [0, 100] while CPUUsage is a service provider property

stating the percentage of the device processor in use.

First, we publish S on Source and we call service S to

convert an AVI sample video file of 17.1 MB size and

measured the response times of for service S for10 times

using the Advanced REST Client API testing tool7. The

video conversion method of S is called the following URI:

http://{Host.IP}:{Host.Port}/S/convert/{VideoFilePath} .

7https://advancedrestclient.com/

Later, we connect the second mobile service provider Desti-
nation and run the migration framework application on both

mobile phones. The migration process, demonstrated in Figure

3, begins when the Discovery Unit on Destination by starting

the Search process to discover the connected devices and

services in the network.

When Destination discovers Source and its hosted service S,

the framework System Context Model Generator on Destination
fetches and adds the partial context models of Destination,

Source and its service S to the core context model including

their preference rules found in the partial context model of

them.

After that, the Context Monitoring and Reasoning Unit
utilizes JENA reasoner to reason the generated system model

and query it for any derived migration suggestions matching

the services and devices preferences. The suggested list of

possible migration is ranked through the Decision Making Unit
which selects the migration with the highest priority to be

performed.

In this example, Destination is suggested to host S as a new

service provider based on its preference where it has only 40%

CPUUsage. On the other hand, S’s ServicePriority of 50%

satisfies Destination preference which permits only services

with ServicePriority ≥ 50 to be migrated to Destination.

Similarly, measurements of response times of Service S
are made to convert the same AVI file while S is hosted on

Destination. The measurements show that the average response

time of service S is 48.6 Seconds when hosted on Destination
while it is around 134.4 Seconds when hosted on Source. The

results show that by the migration of Service S from Source to

be hosted on Destination that has CPU Usage less than 45%,

the proposed migration framework provides the mechanism

that achieves improvements on Service S QoS measured by its

response time.

We configured this example to be repeatedly executed by

the framework Controller of Destination for an hour in order

to investigate the migration process time and the impact of

running the implemented framework on device resources.

a) Migration Process Time: During this test, the controller

perform the migration process 634 times. We observed that the

average time to perform the migration process from Source
to Destination is 4.836 Seconds. By excluding the time to

download and deploy Service S WAR file of 2.30 MB on

Destination, the time spent to take the migration decision is

0.576, 0.449, and 1.309 Seconds at its Average, Minimum and

Maximum value respectively. Based on this measurements, we

see that the proposed framework enable a seamless adaptation

in SOA to redistribute system components.

b) CPU Usage Consumption: We collected the CPU

usage samples consumed by the framework application. Figure

4 presents the percentage of time for the CPU usage of the

framework during this example. The measurements show that

the framework total CPU usage is 23% in average (18% in

User mode and 5% in Kernel mode), while it is 8% and 50%

at its minimum and maximum value respectively.

74



0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

0 10 20 30 40 50 60

Average Time % of the total CPU usage level by the framework during an hour.

Fig. 4. FRAMEWORK TOTAL CPU USAGE BY ITS AVERAGE LASTING
TIME DURING AN HOUR.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

Battery Level Drop duing an hour

Framework is ON Framework is OFF

Fig. 5. BATTERY LEVEL DROP DURING THE EXPERIMENTS.

c) Battery Consumption: To investigate battery consump-

tion by the framework, we collected Battery level drop while

the migration framework during the test and compare it with

battery level drop when the framework is not running. Presented

in Figure 5 the results show that the battery level is dropped

in 4% during the test more than the battery drop when the

framework is OFF.

VII. CONCLUSION

We demonstrate our Restful-based Web service migration

framework for dynamic relocation and provisioning of Web

services on mobile and stationary devices. The experimental re-

sults shows the proposed framework impact on device resources

and efficiency gained by utilizing the proposed Web services

migration framework to assure services’ and devices’ prefer-

ences and improve QoS in SOA by enabling self-adaptation

on mobile devices in P2P network. Our future work will focus

on testing the framework on a real case study and measuring

the impact of the amount of joined devices on framework

performance, more specifically during system context model

generating and decision making processes.

Acknowledgements: This work was supported by The Min-

istry of Education, Youth and Sports of the Czech Republic

from the National Programme of Sustainability (NPU II) project

“IT4Innovations excellence in science” LQ1602 and by BUT

internal project “ICT tools, methods and technologies for smart

cities” FIT-S-17-3964.

REFERENCES

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design.
Upper Saddle River, NJ, USA: Prentice Hall PTR, Aug. 2005.

[2] M. M. Kazzaz and M. Rychlý, “Web service migration with migration
decisions based on ontology reasoning,” in Proceedings of the Twelfth
International Conference on Informatics-Informatics, 2013, pp. 186–191.

[3] M. M. Kazzaz and M. Rychlý, “A web service migration framework,”
in ICIW 2013, The Eighth International Conference on Internet. The
International Academy, Research and Industry Association, 2013, pp.
58–62.

[4] Statista, Inc., “Global mobile OS market share in sales to end users from
1st quarter 2009 to 1st quarter 2016,” http://www.statista.com/statistics/
266136/global-market-share-held-by-smartphone-operating-systems,
2016, accessed: 2016-08-14.

[5] K. S. Wagh and R. C. Thool, “Performance analysis of mobile web
service provisioning on different mobile host,” in 2014 Annual IEEE
India Conference (INDICON). IEEE, 2014, pp. 1–5.

[6] M. M. Kazzaz and M. Rychlý, “Web service migration using the analytic
hierarchy process,” in 2015 IEEE International Conference on Mobile
Services (MS). IEEE, 2015, pp. 423–430.

[7] T. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting,
Resource Allocation. RWS, 1990.

[8] K. Prutsachainimmit, P. Chaisatien, and T. Tokuda, “A mashup con-
struction approach for cooperation of mobile devices,” in International
Conference on Web Engineering. Springer, 2012, pp. 97–108.

[9] Y.-S. Kim and K.-H. Lee, “A lightweight framework for mobile web
services,” Computer Science-Research and Development, vol. 24, no. 4,
p. 199, 2009.

[10] K. Yeon-Seok and L. Kyong-Ho, “An efficient policy establishment
scheme for web services migration,” in International Conference on
Convergence Information Technology. IEEE, 2007, pp. 595–600.

[11] K. Wagh and R. Thool, “Mobile web service provisioning and perfor-
mance evaluation of mobile host,” International Journal on Web Service
Computing, vol. 5, no. 2, p. 1, 2014.

[12] F. AlShahwan, F. Carrez, and K. Moessner, “Providing and evaluating the
mobile web service distribution mechanisms using fuzzy logic,” Journal
of Software, vol. 7, no. 7, pp. 1473–1487, 2012.

[13] Y. Zuo and J. Liu, “Mobile agent-based service migration,” in 2015 12th
International Conference on Information Technology-New Generations
(ITNG). IEEE, 2015, pp. 8–13.

[14] C. Rodrigues, J. Afonso, and P. Tomé, “Mobile application webservice
performance analysis: Restful services with json and xml,” in Interna-
tional Conference on ENTERprise Information Systems. Springer, 2011,
pp. 162–169.

[15] A. Sumaray and S. K. Makki, “A comparison of data serialization formats
for optimal efficiency on a mobile platform,” in Proceedings of the 6th
international conference on ubiquitous information management and
communication. ACM, 2012, p. 48.

[16] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California, Irvine,
2000.

[17] K. Wagh and R. Thool, “A comparative study of soap vs rest web
services provisioning techniques for mobile host,” Journal of Information
Engineering and Applications, vol. 2, no. 5, pp. 12–16, 2012.

75


