
Fair Termination for Parameterized Probabilistic
Concurrent Systems

Ondřej Lengál1, Anthony W. Lin2(B), Rupak Majumdar3,
and Philipp Rümmer4

1 FIT, Brno University of Technology, Brno, Czech Republic
lengal@fit.vutbr.cz

2 Department of Computer Science, University of Oxford, Oxford, UK
anthony.lin@cs.ox.ac.uk

3 MPI-SWS Kaiserslautern, Kaiserslautern, Germany
4 Uppsala University, Uppsala, Sweden

Abstract. We consider the problem of automatically verifying that a
parameterized family of probabilistic concurrent systems terminates with
probability one for all instances against adversarial schedulers. A para-
meterized family defines an infinite-state system: for each number n, the
family consists of an instance with n finite-state processes. In contrast to
safety, the parameterized verification of liveness is currently still consid-
ered extremely challenging especially in the presence of probabilities in
the model. One major challenge is to provide a sufficiently powerful sym-
bolic framework. One well-known symbolic framework for the parameter-
ized verification of non-probabilistic concurrent systems is regular model
checking. Although the framework was recently extended to probabilistic
systems, incorporating fairness in the framework—often crucial for veri-
fying termination—has been especially difficult due to the presence of an
infinite number of fairness constraints (one for each process). Our main
contribution is a systematic, regularity-preserving, encoding of finitary
fairness (a realistic notion of fairness proposed by Alur and Henzinger)
in the framework of regular model checking for probabilistic parameter-
ized systems. Our encoding reduces termination with finitary fairness to
verifying parameterized termination without fairness over probabilistic
systems in regular model checking (for which a verification framework
already exists). We show that our algorithm could verify termination for
many interesting examples from distributed algorithms (Herman’s proto-
col) and evolutionary biology (Moran process, cell cycle switch), which
do not hold under the standard notion of fairness. To the best of our
knowledge, our algorithm is the first fully-automatic method that can
prove termination for these examples.

1 Introduction

In parameterized probabilistic concurrent systems, a population of agents, each
typically modeled as a finite-state probabilistic program, run concurrently in
discrete time and update their states based on probabilistic transition rules.
c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 499–517, 2017.
DOI: 10.1007/978-3-662-54577-5 29

500 O. Lengál et al.

The interaction is governed by an underlying topology, which determines which
agents can interact in one step, and a scheduler, which picks the specific agents
involved in the interaction. Concurrent probabilistic systems arise as models of
distributed algorithms [25,29,31,34,38], where each agent is a processor, the
interaction between processors is determined by a communication topology, and
the processor can update its internal state based on the communication as well
as randomization. In each step, the scheduler adversarially chooses a processor
to run. Concurrent probabilistic populations also arise in agent-based popula-
tion models in biology [35], wherein an agent can represent an allele, a cell, or
a species, and the interaction between agents describes how these entities evolve
over time. For a population of a fixed size, there is a rich theory of probabilistic
verification [1,7,20,48] based on finite-state Markov decision processes (MDPs).
Verification questions for population models, however, ask if a property holds
for populations of all sizes: even if each agent is finite-state, the family of all
processes (for each population size) is an infinite-state MDP. Indeed, for many
simple population models, one can show that the verification question is unde-
cidable, even for reachability or safety properties in the non-probabilistic set-
ting [6,11,22]. Consequently, the verification question for populations requires
techniques beyond finite-state probabilistic verification, and requires symbolic
techniques to represent potentially infinite sets of states.

One well-known symbolic framework for verifying parameterized non-
probabilistic concurrent systems is regular model checking [3,4,13,41,42,47],
where states of a population are modeled using words over a suitable alpha-
bet, sets of states are represented as regular languages, and the transition rela-
tion is defined as a regular transducer. From parameterized verification of non-
probabilistic processes, it is known that regular languages provide a robust sym-
bolic representation of infinite sets, and automata-theoretic algorithms provide
the basis of checking safety or termination properties.

In this paper, we consider the problem of verifying that a given parameterized
family of probabilistic concurrent systems almost surely terminates, i.e., reaches
certain final states with probability 1 from each initial state regardless of the
behaviour of the schedulers. Termination is a fundamental property when veri-
fying parameterized probabilistic systems. Since termination typically, however,
fails without imposing certain fairness conditions on the scheduler, it is cru-
cial to be able to incorporate fairness assumptions into a termination analysis.
Therefore, although the framework of regular model checking has recently been
extended for proving termination (without fairness) over parameterized proba-
bilistic concurrent systems [36], it still cannot be used to prove termination for
many interesting parameterized probabilistic concurrent systems.

What notion of fairness should we consider for proving termination for para-
meterized probabilistic concurrent systems? To answer this question, one would
naturally start by looking at standard notions of fairness in probabilistic model
checking [7], which asserts that every process must be chosen infinitely often.
However, this notion seems to be too weak to prove termination for many of
our examples, notably Herman’s self-stabilizing protocol [29] in an asynchro-

Fair Termination for Parameterized Probabilistic Concurrent Systems 501

nous setting, and population models from biology (e.g. Moran’s process [35]).
The standard notion of fairness gives rise to a rather unintuitive and unrealistic
strategy for the scheduler, which could delay an enabled process for as long as
it desires while still being fair (see [15, Example 8] and the Herman’s protocol
example in Sect. 3). For this reason, we propose to consider Alur and Henzinger’s
[5] finitary fairness—a stronger notion of fairness that allows the scheduler to
delaying executing an enabled process in an infinite run for at most k steps, for
some unknown but fixed bound k ∈ N. Alur and Henzinger argued that this
fairness notion is more realistic in practice, but it is not as restrictive as the
notion of k-fairness, which fixes the bound k a priori. In addition, it should be
noted that finitary fairness is strictly weaker than probabilistic fairness (sched-
uler chooses processes randomly) for almost-sure termination over finite MDPs
and parameterized probabilistic systems (an infinite family of finite MDPs). We
will show in this paper that there are many interesting examples of parame-
terized probabilistic concurrent systems for which termination is satisfied under
finitary fairness, but not under the most general notion of fairness.

Contributions. Our main contribution is a systematic, regularity-preserving,
encoding of finitary fairness in the framework of regular model checking for
parameterized probabilistic concurrent systems. More precisely, our encoding
reduces the problem of verifying almost sure termination under finitary fairness
to almost sure termination without fairness in regular model checking, for which
a verification framework exists [36].

In general, the difficulty with finding an encoding of fairness is how to deal
with an infinite number of fairness requirements (one for each process) in a sys-
tematic and regularity-preserving manner. There are known encodings of general
notions of fairness in regular model checking, e.g., by using a token that is passed
to the next process (with respect to some ordering of the processes) when the
current process is executed, and ensuring that the first process holds the token
and passes it to the right infinitely many times (e.g. see [4,42]). However, these
encodings do not work in our case for several reasons. Firstly, they do not take
into account the unknown upper bound (from finitary fairness) within which
time a process has to be executed. Adapting these encodings to finitary fairness
would require the use of unbounded counters, which do not preserve regularity.
Secondly, such encodings would yield the problem of verifying an almost-sure
Rabin property (of the form �♦A∧♦B in LTL notation, where A and B are reg-
ular sets). Although we could reduce this to an almost-sure termination property
by means of product automata construction (i.e. by first converting the formula
to deterministic Rabin automaton), the target set B in the resulting termina-
tion property ♦B (consisting of configurations in strongly connected components
satisfying some properties) is not necessarily regular.

Instead, we revisit the well-known abstract program transformation in the
setting of non-probabilistic concurrent systems [26] encoding fairness into the
program by associating to each process an unbounded counter that acts as an
“alarm clock”, which will “set off” if an enabled process has not been chosen

502 O. Lengál et al.

by the scheduler for “too long.” This abstract program transformation has been
adapted by Alur and Henzinger [5] in the case of finitary fairness by additionally
incorporating an extra counter n that stores the unknown upper bound and
resetting the value of a counter belonging to a chosen process to the “default
value” n. Our contributions are as follows:

1. We show how Alur and Henzinger’s program transformation could be adapted
to the setting of probabilistic parameterized concurrent systems (infinite fam-
ily of finite MDPs). This involves constructing a new parameterization of the
system (using the idea of weakly finite systems) and a proof that the trans-
formation preserves reachability probabilities.

2. We show how the resulting abstract program transformation could be made
concrete in the setting of regular model checking without using automata
models beyond regular automata.

3. We have implemented this transformation in FairyTail. Combined with the
existing algorithm [36] for verifying almost sure termination (without fair-
ness) in regular model checking, we have successfully verified a number of
models obtained from distributed algorithms and biological systems includ-
ing Herman’s protocol [29], Moran processes in a linear array [35,40], and the
cell cycle switch model [17] on ring and line topologies. To the best of our
knowledge, our algorithm is the first fully-automatic method that can prove
termination for these examples.

Related Work. There are few techniques for automatic verification of live-
ness properties of parameterized probabilistic programs. Almost sure verifica-
tion of probabilistic finite-state programs goes back to Pnueli and co-workers
[28,45]. Esparza et al. [23] generalize the reasoning to weakly finite programs,
and describe a heuristic to guess a terminating pattern by constructing a non-
deterministic program from a given probabilistic program and a terminating
pattern candidate. This allows them to exploit model checkers and termination
provers for nondeterministic programs. More recently, Lin and Rümmer [36] con-
sider unconditional termination for parameterized probabilistic programs. While
our work builds on these techniques, our main contribution is the incorporation
of fairness in regular model checking of probabilistic programs, which was not
considered before.

Fairness for concurrent probabilistic systems was considered by Vardi [48]
and by Hart et al. [28], and generalized later [8,21,45]. The focus was, however,
on a fixed number of processes. The notion of fairness through explicit scheduling
was developed by Olderog and Apt [43]. More recently, notions of fairness for
infinitary control (i.e., where an infinite number of processes can be created) was
considered by Hoenicke, Olderog, and Podelski [30,44].

Martingale techniques have been used to prove termination of sequential,
infinite-state, probabilistic programs [18,19,24,32,39]. These results are not com-
parable to our results, as they do not consider unbounded families of fairness
constraints nor communication topologies.

Fair Termination for Parameterized Probabilistic Concurrent Systems 503

2 Preliminaries

General Notations: For any two given real numbers i ≤ j, we use a standard
notation (with an extra subscript) to denote real intervals, e.g., [i, j]R = {k ∈
R : i ≤ k ≤ j} and (i, j]R = {k ∈ R : i < k ≤ j}. We will denote intervals over
integers by removing the subscript, i.e., [i, j] = [i, j]R ∩Z. Given a set S, we use
S∗ to denote the set of all finite sequences of elements from S. The set S∗ always
includes the empty sequence, which we denote by ε. We use S+ to denote the
set S∗ \ {ε}. Given two sets of words S1, S2, we use S1 · S2 to denote the set
{v · w : v ∈ S1, w ∈ S2} of words formed by concatenating words from S1 with
words from S2. Given two relations R1, R2 ⊆ S ×S, we define their composition
as R1 ◦ R2 = {(s1, s3) : ∃s2((s1, s2) ∈ R1 ∧ (s2, s3) ∈ R2)}.

Transition Systems: We fix the (countably infinite) set AP of atomic propo-
sitions. Let ACT be a finite set of action symbols. A transition system over
ACT is a tuple S = 〈S; {→a}a∈ACT, �〉, where S is a set of configurations,
→a ⊆ S × S is a binary relation over S, and � : AP → 2S maps atomic
propositions to sets of configurations (we omit � if it is not important). We
use → to denote the relation

(⋃
a∈ACT →a

)
. The notation →+ (resp. →∗) is

used to denote the transitive (resp. transitive-reflexive) closure of →. We say
that a sequence s1 → · · · → sn is a path (or run) in S (or in →). Given two
paths π1 : s1 →∗ s2 and π2 : s2 →∗ s3 in →, we may concatenate them to
obtain π1 � π2 (by gluing together s2). We call π1 a prefix of π1 � π2. For each
S′ ⊆ S, we use the notations pre→(S′) and post→(S′) to denote the pre/post
image of S′ under →. That is, pre→(S′) = {p ∈ S : ∃q ∈ S′(p → q)} and
post→(S′) = {q ∈ S : ∃p ∈ S′(p → q)}.

Words and Automata: We assume basic familiarity with finite word
automata. Fix a finite alphabet Σ. For each finite word w = w1 . . . wn ∈ Σ∗, we
write w[i, j], where 1 ≤ i ≤ j ≤ n, to denote the segment wi . . . wj . Given an
automaton A = (Σ,Q, δ, q0, F), a run of A on w is a function ρ : {0, . . . , n} → Q
with ρ(0) = q0 that obeys the transition relation δ. We may also denote the run
ρ by the word ρ(0) · · · ρ(n) over the alphabet Q. The run ρ is said to be accepting
if ρ(n) ∈ F , in which case we say that w is accepted by A. The language L(A)
of A is the set of words in Σ∗ accepted by A.

Reachability Games: We recall some basic concepts on 2-player reachability
games (see e.g. [27, Chapter 2] on games with 1-accepting conditions). An arena
is a transition system S = 〈S = V1 ∪ V2;→1,→2〉, where S (i.e. the set of
“game configurations”) is partitioned into two disjoint sets V1 and V2 such that
pre→i

(S) ⊆ Vi for each i ∈ {1, 2}. The transition relation →i denotes the actions
of Player i. Similarly, for each i ∈ {1, 2}, the configurations Vi are controlled by
Player i. In the following, Player 1 will also be called “Scheduler,” and Player 2
“Process”. Given a set I0 ⊆ S of initial configurations and a set F ⊆ S of final

504 O. Lengál et al.

(a.k.a. target) configurations, the goal of Player 2 is to reach F from I0, while the
goal of Player 1 is to avoid it. More formally, a strategy for Player i is a partial
function f : S∗Vi → S such that, for each v ∈ S∗ and p ∈ Vi, if vp is a path
in S and p is not a dead end (i.e., p →i q for some q), then f(vp) is defined in
such a way that p →i f(vp). Given a strategy fi for Player i ∈ {1, 2} and an
initial configuration s0 ∈ S, we can define a unique (finite or infinite) path in
S such that π : s0 →j1 s1 →j2 · · · where sjk+1 = fi(s0s1 . . . sjk) for i ∈ {1, 2}
is the (unique) configuration s.t. sjk ∈ Vi. Player 2 wins iff some configuration
in F appears in π, or if the path is finite and the last configuration belongs
to Player 1. Player 1 wins iff Player 2 does not win; we say Player 2 loses.
A strategy f for Player i is winning from I0 if for each strategy g of Player 3− i,
the unique path in S from each s0 ∈ I0 witnesses a win for Player i. Such games
(a.k.a. reachability games) are determined (see e.g. [27, Proposition 2.21]): either
Player 1 has a winning strategy or Player 2 has a winning strategy.

Convention. For notational simplicity, w.l.o.g., we make the following assump-
tions on our reachability games. They suffice for the purpose of proving liveness
for parameterised systems.

(A0) Arenas are strictly alternating, i.e., a move made by a player does not take
the game back to her configuration (post→i

(S) ∩ Vi = ∅, for each i ∈ {1, 2}).
(A1) Initial and final configurations belong to Player 1, i.e., I0, F ⊆ V1

(A2) Non-final configurations are not dead ends: ∀x ∈ S \ F,∃y : x →1 y ∨
x →2 y.

Markov Chains: A (discrete-time) Markov chain (a.k.a. DTMC) is a structure
of the form S = 〈S; δ, �〉 where S is a set of configurations, δ is a function that
associates a configuration s ∈ S with a probability distribution over a sample
space D ⊆ S (i.e. the probability of going to a certain configuration from s), and
� : AP → 2S maps atomic propositions to subsets of S. In what follows, we will
assume that each δ(s) is a discrete probability distribution with a finite sample
space. This assumption allows us to simplify our notation: a DTMC 〈S; δ, �〉
can be seen as a transition system 〈S;→, �〉 with a transition probability func-
tion δ mapping a transition t = (s, s′) ∈ → to a value δ(t) ∈ (0, 1] such that∑

s′∈post(s) δ((s, s′)) = 1. That is, transitions with zero probabilities are removed

from →. We will write s
p−→ s′ to denote s → s′ and that δ((s, s′)) = p. The

underlying transition graph of a DTMC 〈S; δ, �〉 is the transition system 〈S;→,
�〉 with δ omitted. Given a finite path π = s0 → · · · → sn from the initial con-
figuration s0 ∈ S, let Runπ be the set of all finite/infinite paths with π as a
prefix, i.e., of the form π �π′ for some finite/infinite path π′. Given a set F ⊆ S
of target configurations, the probability ProbS(s0 |= ♦F) (the subscript S may
be omitted when understood) of reaching F from s0 in S can be defined using
a standard cylinder construction (see e.g. [33]) as follows. For each finite path
π = s0 → · · · → sn in S from s0, we set Runπ to be a basic cylinder, to which
we associate the probability Prob(Runπ) =

∏n−1
i=0 δ((si, si+1)). This gives rise to

Fair Termination for Parameterized Probabilistic Concurrent Systems 505

a unique probability measure for the σ-algebra over the set of all runs from s0.
The probability Prob(s0 |= ♦F) is then the probability of the event F containing
all paths in S with some “accepting” finite path as a prefix, i.e., a finite path
from s0 ending in some configuration in F . In general, given an LTL formula ϕ
over AP, the event containing all paths from s0 in S satisfying ϕ is measurable
[48] and its probability value Prob(s0 |= ϕ) is well-defined.

Notation: Whenever understood, we will omit mention of � from 〈S; δ, �〉.

3 Abstract Models of Probabilistic Concurrent Programs

In this section, we recall the notion of Markov Decision Processes (MDPs) and
fair MDPs [7]. These serve as our abstract models of probabilistic concurrent
programs. We then define the notion of finitary fairness [5] and discuss its basic
properties in the setting of MDPs.

3.1 Markov Decision Processes

A Markov decision process (MDP) is a strictly alternating arena S = 〈S =
V1 ∪ V2;→1,→2〉 such that 〈S;→2〉 is a DTMC, i.e., →2 is associated with
some transition probability function, and that the atomic propositions are not
important. Intuitively, the transition relation →1 is nondeterministic (controlled
by a “demonic” scheduler), whereas the transition relation →2 is probabilistic.
By definition of arenas, the configurations of the MDPs are partitioned into
the set V1 of nondeterministic states (controlled by Scheduler) and the set V2

of probabilistic states. Formally, pre→1(S) ∩ pre→2(S) = ∅. Each Scheduler’s
strategy1 f : S∗V1 → S gives rise to an infinite-state DTMC with the underlying
transition system Sf = 〈S′;→3, �〉 and the transition probability function δ′

defined as follows. Here, S′ is the set of all finite/infinite paths π from s0. For
each state s′ ∈ S and each path π from s0 ending in some state s ∈ S, we define
π →3 πs′ iff: (1) if s ∈ V1 is a nondeterministic state, then f(π) = s′, and (2) if
s ∈ V2 is a probabilistic state, then s →2 s′. Intuitively, Sf is an unfolding of
the game arena S (i.e. a disjoint union of trees) where branching only occurs on
probabilistic states. Transitions π →3 πs′ satisfying Case (1) have the probability
δ′((π, πs′)) = 1; otherwise, its probability is δ′((π, πs′)) = δ((s, s′)). We let � be
a function mapping each subset X ⊆ S (used as an atomic proposition) to the set
of all finite paths in Sf from s0 to X. Since Sf is a DTMC, given an LTL formula
ϕ over subsets of S as atomic propositions, the probability ProbSf

(s0 |= ϕ) of
satisfying ϕ in S from s0 under the scheduler f is well-defined. In particular,
ProbSf

(s0 |= ♦F) is the probability of reaching F from s0 in S under the
scheduler f . The probability ProbS,C(s0 |= ϕ) of satisfying ϕ from s0 in the
MDP S under a class C of schedulers is defined to be the infimum of the set of
all probabilities ProbSf

(s0 |= ϕ) over all f ∈ C. We will omit mention of C when
it denotes the class of all schedulers.

1 Also called “scheduler” or “adversary” for short.

506 O. Lengál et al.

An MDP is weakly-finite [23] if from each configuration, the set of all con-
figurations that are reachable from it (in the underlying transition system of
the MDP) is finite. Note that the state space of weakly-finite MDPs can be
infinite. The restriction of weak finiteness is another way of defining the notion
of parameterized systems, which are an infinite family of finite-state systems.
Weakly-finite MDPs capture many interesting probabilistic concurrent systems
in which each process is finite-state; this is the case for many probabilistic dis-
tributed protocols.

3.2 Fair Markov Decision Processes

A fair Markov decision process (FMDP) is a structure of the form S = 〈S =
V1 ∪V2;→1,→2,C, J〉, where 〈S = V1 ∪V2;→1,→2〉 is an MDP, J is a weak fair-
ness (a.k.a. justice) requirement, and C is a strong fairness (a.k.a. compassion)
requirement. More precisely, a weak fairness requirement is a set (at most count-
ably infinite) of atomic weak fairness requirements of the form ♦�A ⇒ �♦B,
for some A,B ⊆ S. Here, the � and ♦ modalities are the standard “always”
and “eventually” LTL operators. The set A (resp. B) will be called the premise
(resp. consequence). Intuitively, if A is interpreted as “Process 1 is waiting to
move” and B as “Process 1 is chosen”, then this fairness requirement may be read
as: at no point can Process 1 be continuously waiting to move without being cho-
sen. In addition, a strong fairness requirement is a set (again, at most countably
infinite) of atomic strong fairness requirements of the form �♦A ⇒ �♦B, for
some A,B ⊆ S. Using the above example, a strong fairness requirement reads:
if Process 1 is waiting to move infinitely often, then it is chosen infinitely often.
As before, the set A (resp. B) will be called the premise (resp. consequence).
In the following, when it is clear whether a fairness requirement is a justice or
a compassion, we will denote it by the pair (A,B) of premise and consequence.

Given an FMDP S = 〈S = V1 ∪ V2;→1,→2,C,J〉, a configuration s0 ∈ S,
and a scheduler f , since each atomic fairness requirement is an LTL formula
and there are at most countably many atomic fairness requirements, the set of
paths from s0 in the DTMC Sf induced by f satisfying C and J is measurable.
We say that a scheduler f is S-fair if ProbSf

(s0 |= C ∧ J) = 1 for every initial
configuration s0. The fairness conditions (C,J) are realizable in S if there exists
at least one S-fair scheduler.

A natural fairness notion we consider in this paper is process fairness, which
asserts that each process is chosen infinitely often. For this notion of fairness, we
can assume that the consequence B of each atomic fairness requirement asserts
that a particular process is chosen. We make one simplifying assumption: each
process is always enabled (i.e., can always be chosen by the scheduler). This
assumption is reasonable since we can always introduce an idle transition for
each process. Under this assumption, we have that from each v1 ∈ V1, there
exists a transition v1 →1 v2 for some v2 ∈ B. This implies that our fairness
conditions are always realizable and that the probability ProbS,C(E) of event E
over the set of all S-fair schedulers is well-defined.

Fair Termination for Parameterized Probabilistic Concurrent Systems 507

3.3 Finitary Fairness

Given an FMDP S = 〈S = V1 ∪ V2;→1,→2,C,J〉, a configuration s0 ∈ S, and
a number k ∈ N, we say that a scheduler f is S-k-fair (or k-fair whenever S is
understood) if for each atomic fairness requirement (A,B):

1. if (A,B) is justice, then (the underlying graph of) Sf contains no path π of
length k satisfying the LTL formula �(A ∧ ¬B).

2. if (A,B) is compassion, then Sf contains no path π satisfying the LTL for-
mula ψk ∧ �¬B, where ψ0 := true and ψi := ♦(A ∧ ψi−1) for each i > 0.

In other words, a premise in a justice requirement cannot be satisfied for k con-
secutive steps without satisfying a consequence, while a premise in a compassion
requirement cannot be satisfied for k (not necessarily consecutive) steps without
satisfying a consequence. A scheduler is said to be finitary fair (fin-fair) if it is
k-fair for some k. The fairness conditions (C,J) are said to be finitary-realizable
(fin-realizable) in S if there exists at least one fin-fair scheduler. Under this
assumption, the probability ProbS,C(E) of an event E over the set C of all fin-
fair schedulers is well-defined. In what follows, for an FMDP S, we will simply
denote ProbS,C(E) as ProbS(E). In this paper, we propose to study termination
of probabilistic concurrent programs under finitary fairness, i.e., to determine
whether ProbS,C(s0 |= ♦F) = 1, where C is the class of all fin-fair schedulers.

The following proposition states one special property of weakly-finite MDPs.

Proposition 1. Let S and S′ be two weakly-finite fair MDPs with identi-
cal underlying transition systems (but possibly different probability values). For
each set F of final states, and each initial configuration s0, it is the case that
ProbS(s0 |= ♦F) = 1 iff ProbS′(s0 |= ♦F) = 1.

By Proposition 1, when dealing with almost-sure finitary-fair termination of
weakly-finite MDPs, we only care whether a transition has a zero or a non-zero
probability, i.e., if it is non-zero, then the exact value is irrelevant. Incidentally,
the same also holds for other properties including almost-sure termination with-
out fairness and qualitative temporal specifications [28,36,45]. For this reason,
we may simply omit these probability values from our symbolic representation of
weakly-finite MDPs, which we will do from the next section onwards.

3.4 Herman’s Protocol

Herman’s protocol [29] is a distributed self-stabilization algorithm for a pop-
ulation of processes organized in a ring. The correct configurations are those
where exactly one process holds a token. If, through some error, the ring enters
an erroneous configuration (in which multiple processes hold tokens), Herman’s
protocol ensures that the system will self-stabilize: it will almost surely go back
to a configuration with only one token.

508 O. Lengál et al.

Let us discuss how the protocol works in more detail. Fix N ≥ 3 processors
organized in a ring. If a chosen process does not hold a token, then it can perform
an idle transition (i.e. do nothing). If a chosen process holds a token, then it
can keep holding the token with probability 1

2 or pass it on to its clockwise
neighbor (the process (i+1) mod N , for processes numbered 0, . . . , N − 1) with
probability 1

2 . If a process currently holds a token and receives another token
from its (counter-clockwise) neighbor, then the two tokens are merged2 into one,
leaving the process with one token.

Formally, Hermann’s protocol can be modeled as a weakly-finite Markov
decision process whose states are vectors in {⊥,�}∗. For each N , the state of
the protocol is described by a bitvector of N bits, with the i-th bit being one
iff the i-th process holds a token. From a state v, the scheduler picks a process
i ∈ {0, . . . , N − 1}. Given a chosen process i, the new state remains v if the
chosen process i did not hold a token (v(i) = ⊥). If v(i) = �, the new state is v
with probability 1

2 and v⊕ei ⊕e(i+1) mod N with probability 1
2 . Here, ei denotes

a vector with � in the i-th position and ⊥ everywhere else, and ⊕ is the XOR
operation. We want to ensure that, starting from an arbitrary initial assignment
of tokens, any population self-stabilizes with probability one.

Process fairness for Herman’s protocol is a set of N atomic fairness require-
ments, each asserting that the process i is executed infinitely often, for each
i ∈ {1, . . . , N}. Unfortunately, Herman’s protocol does not terminate with prob-
ability one against some fair schedulers. To see this, consider the start state
s0 = (�,⊥,�). Let us call the token held by Process 0 “the first token”, and
the token held by Process 2 “the second token”. Define a round as the following
sequence of moves by the scheduler: keep choosing the process that holds the
first token until it passes the token to the right, and do the same to the same to
the second token. For example, the two configurations obtained after completing
the first and second rounds from s0 are, respectively, (�,�,⊥) and (⊥,�,�).
To see that the scheduler is fair, for each integer i > 0, the probability that the
i-th round is not completed is 0 since the probability that one of the tokens will
be kept at the same process for an infinite amount of time is 0. Therefore, the
probability that some round is not completed is also 0. Completing two rounds
ensure that all the processes are picked. Therefore, every process will be cho-
sen with probability 1. On the other hand, observe that correct configurations
are not seen in the induced DTMC, showing that self-stabilization holds with
probability 0 under this scheduler.

Herman’s protocol can be shown to self-stabilize with probability one under
all fin-fair schedulers, which can be proved by our fully-automatic verification
algorithm (presented later in the paper).

2 Herman [29] describes a more general protocol in which tokens can be merged/
destroyed with some probability. We consider this restriction for simplicity of pre-
sentation.

Fair Termination for Parameterized Probabilistic Concurrent Systems 509

4 Regular Model Checking: A Symbolic Framework

In this section, we recall regular model checking (see e.g. [3,42,46]), a symbolic
framework for specifying infinite-state systems based on finite automata and
regular transducers and developing automatic verification (semi-)algorithms.

A transition system S = 〈S = V1 ∪V2;→1,→2〉 is specified in the framework
as a regular language S (e.g. as a regular expression over some alphabet Σ), and
two “regular relations” →1,→2 ⊆ Σ∗ × Σ∗. For simplicity, in the following we
will assume that S = Σ∗. How do we specify regular relations? One standard way
is to restrict to length-preserving relations (i.e. the relation may only contain a
pair of words of the same length) and specify such relations as regular languages
over the alphabet Σ × Σ. There is, then, a simple one-to-one correspondence
between the set of words over Σ × Σ and the set of all pairs of words over Σ of
the same length. This can be achieved by mapping a pair (v, w) of words Σ with
|v| = |w| = n to a word v ⊗ w, defined as (v1, w1)(v2, w2) · · · (vn, wn) whenever
v = v1 · · · vn and w = w1 · · · wn.

Proving that a property ϕ holds over a transition system S is done “in a
regular way,”, by finding a “regular proof” for the property. For example, if ϕ
asserts that the set Bad of bad states can never be reached, then a regular proof
amounts to finding an inductive invariant Inv in the form of a regular language
[3,42] that does not intersect with Bad , i.e., Bad ∩ Inv = ∅, S0 ⊆ Inv (S0 is
a regular set of initial states), and post→(Inv) ⊆ Inv , where → = →1 ∪ →2.
Since regular languages are effectively closed under boolean operations and tak-
ing pre/post images w.r.t. regular transducers, an algorithm for verifying the
correctness of a given regular proof can be obtained by using language inclusion
algorithms for regular automata, e.g., [2,14]. The framework of regular proofs is
incomplete in general since it could happen that there is a proof, but no regular
proof. The pathological cases when only non-regular proofs exist do not, however,
seem to frequently occur in practice, e.g., see [3,9,10,12,16,37,41,42,47].

The framework of regular proofs has been extended to deal with almost-
sure termination for weakly-finite probabilistic concurrent programs in [36]. We
briefly summarise the main idea, since we reduce the fair termination problem
to their setting. By Proposition 1, the actual probability values do not matter in
proving almost-sure termination. For this reason, we may specify a weakly-finite
MDP S = 〈S = V1 ∪ V2;→1,→2〉 as a regular specification in the same way
as we specify a non-probabilistic transition system in our regular specification
language. Given an MDP S = 〈S = V1 ∪ V2;→1,→2〉, a set I0 ⊆ V1 of initial
configurations, and a set F ⊆ V1 of final configurations, a regular proof for
Prob(s0 |= F) = 1 for each s0 ∈ I0 is a pair 〈Inv ,≺〉 consisting of a regular
inductive invariant Inv ⊆ S and a regular relation ≺ ⊆ S × S such that:

1. I0 ⊆ Inv and post→(Inv) ⊆ Inv .
2. ≺ is a strict preorder on S, i.e., it is irreflexive (∀s ∈ S : s �≺ s) and transitive

(∀s, s′, s′′ ∈ S : s ≺ s′ ∧ s′ ≺ s′′ → s ≺ s′′).
3. Irrespective of the nondeterministic transitions from any configuration in Inv ,

there is a probabilistic transition to a configuration in Inv that decreases its
rank with respect to ≺:

510 O. Lengál et al.

∀x ∈ Inv \ F, y ∈ S \ F :
(
(x →1 y) ⇒ (∃z ∈ Inv : (y →2 z) ∧ x � z)

)
.

An automata-theoretic algorithm can then be devised for checking the above
verification conditions with respect to a given regular proof [36].

Example 1 (Herman’s protocol, continued). We provide a regular encod-
ing of Herman’s protocol. The configurations are words over the alphabet
{�,⊥,�,⊥}, where � (resp. ⊥) signifies that a process holds (resp. does not
hold) a token, while overlining the character signifies that the process is chosen
by the scheduler. We set Σ = {�,⊥}. The set S0 of initial configurations is
Σ∗�Σ∗, i.e., at least one process holds a token. The set of final configurations
is ⊥∗�⊥∗, i.e., there is only a single token in the system. The actions of the
scheduler is to choose a process; this can be expressed as the regular expression
I∗((�,�)+(⊥,⊥))I∗, where I denotes the regular language (�,�)+(⊥,⊥). The
probabilistic actions can be expressed as a union of the following three regular
expressions:

I∗((�,�) + (⊥,⊥))I∗ (idle)

I∗(�,⊥)((⊥,�)) + (�,�))I∗, ((⊥,�) + (�,�))I∗(�,⊥)) (pass token right)

5 Handling Fairness Requirements

We now describe the main result of the paper: a general method for embedding
finitary fairness into regular model checking for probabilistic concurrent systems.

5.1 Regular Specifications of Fairness

When a complex system or a distributed protocol is being modelled in regu-
lar model checking, it is often necessary to add an infinite number of fairness
requirements. This is because such a system admits a finite but arbitrary num-
ber of agents or processes, each with its own fairness requirement (e.g. that the
process should be executed infinitely often). For this reason, it is not enough
to simply express the fairness requirements as a finite set of pairs of regular
languages (one for the premise, and one for the consequence). We describe a
regular way of specifying infinitely many fairness constraints. Our presentation
is a generalisation of the regular specification of fairness from [4,42].

The general idea is to define a “regular function” T that maps a configu-
ration s = s1 · · · sn ∈ S to a word w = w1 · · · wn such that wi contains: (1)
a bit bi indicating whether s is in the premise of the i-th fairness requirement,
(2) a bit b′

i indicating whether s is in the consequence of the i-th fairness require-
ment, and (3) a bit t indicating whether the i-th fairness requirement is justice
or compassion. Such a regular specification of fairness allows an infinite number
of fairness constraints since S is potentially infinite (i.e., containing words of
unbounded lengths), though only the first |s| fairness requirements matter for
a word s ∈ S. This is sufficient for weakly-finite MDPs since the set of reach-
able configurations from any given configuration s is finite and so, among the
infinite number of fairness constraints, only finitely many are distinguishable.

Fair Termination for Parameterized Probabilistic Concurrent Systems 511

The regular function can be defined by a letter-to-letter tranducer with input
alphabet Σ and output alphabet Γ := {0, 1} × {0, 1} × {0, 1}. Without loss of
generality, we assume that the i-th letter in the output of every input word of T
agree on the third bit (i.e., whether the fairness requirement is justice or com-
passion is well-defined): for every s, s′ ∈ S and i ∈ N, if T (s)[i] = (a, b, c) and
T (s′)[i] = (a′, b′, c′), then c = c′. Observe this condition on T can be algorithmi-
cally checked by using a simple automata-theoretic method: find two accepted
words in which in some position their third bits differ.

In this case, T gives rise to compassion requirements C and justice require-
ments J by associating the i-th position in all output words by a unique fairness
constraint. More precisely, let Ai = {s : T (s)[i] = (1, j, t), for some j, t ∈ {0, 1}}
and Bi = {s : T (s)[i] = (j, 1, t), for some j, t ∈ {0, 1}}. Define: (i) J =
{♦�Ai ⇒ �♦Bi : T (s)[i] = (i, j, 0), for some s ∈ S, for some j ∈ {0, 1}}, (ii)
C = {�♦Ai ⇒ �♦Bi : T (s)[i] = (i, j, 1), for some s ∈ S, for some j ∈ {0, 1}}.
Therefore, by Proposition 1, our regular fairness specification allows us to define
weakly-finite fair MDPs 〈S = V1 ∪ V2;→1,→2,C,J〉. In the following, we shall
call such fair MDPs regular.

Our main theorem is a regularity-preserving reduction from proving almost
sure termination for regular FMDPs (under finitary fairness) to proving almost
sure termination for regular MDPs (without fairness).

Theorem 1. Let S = 〈S = V1 ∪ V2;→1,→2,C,J〉 be a regular representation
of an FMDP, I0 ⊆ V1 be a regular set of initial configurations, and F ⊆ V1 be a
regular set of final configurations. Then one can compute a regular presentation
of MDP S′ = 〈S = V ′

1 ∪ V ′
2 ;�1,�2〉 and two regular sets I ′

0, F
′ ⊆ V ′

1 such
that it holds that if C and J are realizable, then ProbS′(I ′

0 |= ♦F ′) = 1 iff
ProbS(I0 |= ♦F) = 1.

5.2 Abstract Program Transformation

Before proving Theorem 1, let us first recall an abstract program transformation
à la Alur and Henzinger [5], which encodes finitary fairness into a program using
integer counter variables. Intuitively, we reserve one variable for each atomic
fairness condition as an “alarm clock” that will set off if its corresponding process
has not been executed for a long time, and one global variable n that acts
as a default value to reset a clock to as soon as the corresponding process is
executed. Although Alur and Henzinger [5] did not discuss about probabilistic
programs, their transformation can be easily adapted to the setting of MDPs,
though correctness still has to be proven.

We now elaborate on the details of the transformation. Given an FMDP
S = 〈S = V1 ∪ V2;→1,→2,C,J〉 with a probability distribution δ, the transfor-
mation will produce an MDP S′ = 〈S = V ′

1 ∪ V ′
2 ;�1,�2〉 with a probability

distribution δ′ as follows. Introduce a set V of “counter” variables that range
over natural numbers: xj (for each j ∈ J), yc (for each c ∈ C), and n. Let F be
the set of all valuations f mapping each variable in V to a natural number such
that f(xj), f(yc) ≤ f(n) for each j ∈ J and c ∈ C. We define V ′

1 = V1 × F and

512 O. Lengál et al.

V ′
2 = V2×F. We now define the transition relation �i such that (s, f) �i (s′, f ′)

if s →i s′ and

– for each z ∈ V, f(z) > 0,
– f ′(n) := f(n),
– xj (for j = (A,B) ∈ J) and yc (for c = (A,B) ∈ C) change as follows:

f ′(xj) =
{

f(xj) − 1 if s ∈ A ∩ B
f(n) if s ∈ A ∪ B

f ′(yc) =

⎧
⎨

⎩

f(n) if s ∈ A ∩ B
f(yc) − 1 if s ∈ A ∩ B

f(n) if s ∈ B

(A denotes the set-complement of A). Finally, we define the probability distrib-
ution δ′ underlying �2 as δ′((s, f), (s′, f ′)) = δ(s, s′) whenever s ∈ V2.

Lemma 1. If S is a weakly-finite FMDP, then S′ is weakly-finite.

Intuitively, the variables xj ’s and yc’s keep track of how long the scheduler
has delayed choosing an enabled process, while the variable n (unchanged once
the initial configuration of the MDP is fixed) aims to ensure that the scheduler
is n-fair. Since n is a variable (not a constant), the resulting MDP S′ captures
precisely the behaviour of S under fin-fair schedulers.

We next state a correctness lemma for the transformation (proof in the full
version). To this end, given a set S0 ⊆ S of initial configurations in S, we define:

– S′
0 := S0 ×F=, where F= contains functions f ∈ F such that f(xj) = f(yc) =

f(n) for each j ∈ J and c ∈ C.
– F ′ = (F × F>0) ∪ (S × F0), where F0 contains all f ∈ F such that f(xj) = 0

for some j ∈ J or f(yc) = 0 for some c ∈ C (i.e. one of the alarms has been
triggered), and F>0 := F \ F0.

Lemma 2 (Correctness). For weakly-finite fair MDPs S, it is the case that
ProbS(S0 |= ♦F) = ProbS′(S′

0 |= ♦F ′).

These two lemmas immediately imply Theorem 1.

5.3 Finitary Fairness in Regular Model Checking

We now show how to implement the aforementioned abstract program trans-
formation in our regular model checking framework. Fix a regular presentation
of an FMDP S = 〈S = V1 ∪ V2;→1,→2,C,J〉, which includes two automata
over the alphabet Σ × Σ representing →1 and →2, and an automaton over the
alphabet Σ × Γ representing the regular specification of the fairness conditions
C and J. [Recall that Γ := {0, 1}×{0, 1}×{0, 1}.] We describe the construction
of �1 (the construction for �2 is similar). Let A = (Σ × Σ,Q,Δ, q0, F) be an
automaton representing →1 and Af = (Σ × Γ,Qf ,Δf , qf

0 , F f) be an automa-
ton representing the regular specification of fairness. The construction of the
automaton for �1 has two stages.

Fair Termination for Parameterized Probabilistic Concurrent Systems 513

Stage 1: Compute an Intermediate Automaton. The intermediate automaton B
will have the alphabet Σ′ := (Σ ×Σ)∪Γ and recognize a subset of ((Σ ×Σ)Γ)∗.
Intuitively, on input (a, b) ∈ Σ × Σ, the automaton B simultaneously runs both
A and Af . Here, the automaton Af will nondeterministically guess a letter c ∈ Γ
and make a transition on the letter (a, c). The automaton B, then, immediately
consumes the letter c. This process is repeated until both A and Af accept.
More precisely, the automaton is defined as B := (Σ′, QB ,ΔB , qB

0 , FB) where:

– QB = Q × Qf × (Γ ∪ {?}), qB
0 = (q0, q

f
0 , ?), and FB = F × F f × {?}

– ΔB has the following transitions:
• ((p1, q

f
1 , ?), (a, b), (p2, q

f
2 , c)) if (p1, (a, b), p2) ∈ Δ and (qf

1 , (a, c), qf
2) ∈ Δf .

• ((p, qf , c), c, (p, qf , ?)) for each c ∈ Γ .

Stage 2: Regular Substitution of Letters in Γ . Define the following regular
languages

– (Identity) ID := (1, 1)+(?, ?)∗,
– (Decrement) DEC := (1, 1)∗(1, ?)(?, ?)∗, and
– (Reset) RES := (1, 1)+(?, 1)∗.

Define the regular substitution σ mapping letters in Γ to regular languages:

– if (x, y, z) is (i, 1, j) or (0, i, 0) (for i, j ∈ {0, 1}), then σ((x, y, z)) = RES.
– if (x, y, z) is of the form (1, 0, i) (for some i ∈ {0, 1}), then σ((x, y, z)) = DEC.
– define σ((0, 0, 1)) = ID.

We then apply the regular substitution σ to the letters Γ appearing in our
intermediate automaton B. The resulting automaton implements the desired
automaton for �1.

Finishing Off the Rest of the Construction. Computing S′
0, F

′ is easy. Define S′
0

to be the set of all words a1w1a2w2 · · · amwm—where ai ∈ Σ and wi ∈ 1+ for
each i ∈ {1, . . . , m}—such that a1 · · · am ∈ S0. Similarly, define F ′ to be the set
of all words a1w1a2w2 · · · amwm—where ai ∈ Σ and wi ∈ 1+?∗ ∪ ?+ for each
i ∈ {1, . . . , m}—such that a1 · · · am ∈ F or wi ∈ ?+ for some i ∈ {1, . . . , m}.
Regular automata for these sets could be easily constructed given automata for
S0 and F .

Example 2 (Herman’s protocol). We encode process fairness in the following
way. The counters use the unary encoding, their values represented as the lengths
of sequences of 1’s padded on the right by the symbol ? (crucial to keep the
transducers length-preserving). For example, the number 3 is represented by
any word of the form 111?∗. Define X = 1∗?∗, i.e., the set of all valid counters.
The set of initial configurations can be expressed using the regular expression
(Σ · X)∗(� · X)(Σ · X)∗, i.e., counters for all processes are initialized to an
arbitrary value. The set of final configurations is now (⊥ · X)∗(� · X)(⊥ · X)∗ ∪
(Σ · X)∗(Σ· ?∗)(Σ · X)∗, i.e., either there is exactly one token in the system, or
(at least) one counter has reached 0. Scheduler now also performs operations on

514 O. Lengál et al.

the counters for processes: for a chosen process, the counter is reset, for other
processes, the counter is decremented. This can be expressed as the language
(I ·DEC)∗(((⊥,⊥)+ (�,�)) ·RES

)
(I ·DEC)∗. Actions of the protocol are the same

as in the original encoding and the values of counters are left unmodified:

(I · ID)∗(((⊥,⊥) + (�,�)) · ID
)
(I · ID)∗ (idle)

(I · ID)∗((�,⊥) · ID
)(

((⊥,�) + (�,�)) · ID
)
(I · ID)∗ (pass token right1)(

((⊥,�) + (�,�)) · ID
)
(I · ID)∗((�,⊥) · ID

)
(pass token right2)

At this point, we can use existing tools for checking termination (without fairness
constraints), e.g. [36]. Indeed, we can automatically check that the system after
reduction terminates with probability one, thus proving that Herman’s protocol
fairly terminates with probability one (under finitary process-fair schedulers).

6 Implementation and Experiments

The approach presented in this paper has been implemented in the tool Fairy-
Tail.3 For evaluation, we extracted models of a number of probabilistic parame-
terized systems. The tool receives a system with fairness conditions and trans-
forms it into a system without fairness conditions, where fairness of the original
system is encoded using counters. For solving liveness in the output transformed
system, we use Slrp [36] (in the incremental liveness proofs setting) as the
underlying liveness checker for parameterized systems.

Table 1. Times of analyses of prob-
abilistic paremeterised systems. The
timeout was set to 10 h (timeout is
denoted as T/O).

Case study Time

Herman’s protocol (merge, line) 3.64 s

Herman’s protocol (annih., line) 4.33 s

Herman’s protocol (merge, ring) 4.31 s

Herman’s protocol (annih., ring) 4.61 s

Moran process (2 types, line) 2m 48 s

Moran process (3 types, line) 56m 14 s

Cell cycle switch (1 types, line) 43.94 s

Cell cycle switch (2 types, line) 9 h 46m

Clustering (2 types, line) 10m 30 s

Clustering (3 types, line) T/O

Coin game (k = 3, clique) 1m 0 s

Table 1 shows the results of our exper-
iments. The times given are the wall clock
times for the individual benchmarks on
a PC with 4 Quad-Core AMD Opteron
8389 processors with Java heap mem-
ory limited to 64 GiB. The time included
translation of the system into a system
without fairness (always less than 1 s)
and the runtime of Slrp.

We consider two versions of Herman’s
protocol and two topologies. Moran
process, is a model of genetic drift [40]
with individuals of N ≥ 2 types. When
an individual is chosen by the scheduler,
it can either idle or infect a neighbor. The
model of cell cycle switch is a simplification of the model of [17]. Individuals
can be committed to a decision from N ≥ 1 types. An individual neighboring
another one not sharing the same decision can make him undecided, or persuade
an undecided individual to commit to his decision. Clustering considers a pop-
ulation model of alleles of N ≥ 2 (resp. 3) types on a line, that can change

3 https://github.com/uuverifiers/autosat/tree/master/Fairness.

https://github.com/uuverifiers/autosat/tree/master/Fairness

Fair Termination for Parameterized Probabilistic Concurrent Systems 515

position with their neighbours of a different type. Coin game is a population
protocol where every agent has one of two types of coins. If an agent is chosen
by the scheduler, it can change its coin to the one held by the majority of k other
randomly selected agents.

In our experiments, we verify that a given property holds under every finitary
process-fair scheduler with probability one. For clustering, the property is that
the system eventually reaches a configuration with N clusters of the same type,
while for the other population protocols, the property is that the system reaches
a stable configuration.

The experiments show that our encoding of fairness into systems is viable
and can be used for verification of parameterized systems with fairness by their
reduction to systems without fairness. On the other hand, when the size of the
regular proof is large, we observe that the problem for the underlying solver
gets significantly more difficult (as can be seen on the example of clustering
for three types of alleles). We conjecture that the performance can be improved
significantly by making the solver take into account the (not arbitrary) structure
of the problem, which we leave for future work.

Future Work. We leave the reader with several research challenges. A natural
question is how to deal with non-finitary fairness for parameterized probabilistic
concurrent systems in general and in the framework of regular model checking.
Secondly, since there are numerous examples of population models over more
complex topologies (e.g. grids), how do you deal with termination and fair ter-
mination over such models in the parameterized setting?

Acknowledgement. We thank anonymous reviewers and Dave Parker for their help-
ful feedback. This work was supported by the Czech Science Foundation (project 16-
24707Y), the BUT FIT project FIT-S-17-4014, the IT4IXS: IT4Innovations Excellence
in Science project (LQ1602), Yale-NUS Starting Grant, the European Research Council
under ERC Grant Agreement No. 610150, and Swedish Research Council (2014-5484).

References

1. PRISM website (referred in July 2015). http://www.prismmodelchecker.org/
2. Abdulla, P.A., Chen, Y.-F., Hoĺık, L., Mayr, R., Vojnar, T.: When simulation meets

antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 158–174. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2 14

3. Abdulla, P.A.: Regular model checking. STTT 14(2), 109–118 (2012)
4. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J., Saksena, M.: Regular model

checking for LTL (MSO). STTT 14(2), 223–241 (2012)
5. Alur, R., Henzinger, T.A.: Finitary fairness. ACM Trans. Program. Lang. Syst.

20(6), 1171–1194 (1998)
6. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent

systems. Inf. Process. Lett. 22(6), 307–309 (1986)
7. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge

(2008)

http://www.prismmodelchecker.org/
http://dx.doi.org/10.1007/978-3-642-12002-2_14

516 O. Lengál et al.

8. Baier, C., Kwiatkowska, M.Z.: On the verification of qualitative properties of prob-
abilistic processes under fairness constraints. Inf. Process. Lett. 66(2), 71–79 (1998)

9. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: acceleration from theory to
practice. STTT 10(5), 401–424 (2008)

10. Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic
model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
pp. 474–488. Springer, Heidelberg (2005). doi:10.1007/11562948 35

11. Bertrand, N., Fournier, P.: Parameterized verification of many identical proba-
bilistic timed processes. In: FSTTCS 2013, LIPIcs, vol. 24, pp. 501–513. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

12. Boigelot, B., Herbreteau, F.: The power of hybrid acceleration. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 438–451. Springer, Heidelberg (2006).
doi:10.1007/11817963 40

13. Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Hunt,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer, Hei-
delberg (2003). doi:10.1007/978-3-540-45069-6 24

14. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congru-
ence. In: POPL 2013, pp. 457–468. ACM (2013)

15. Bonnet, R., Kiefer, S., Lin, A.W.: Analysis of probabilistic basic parallel processes.
In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 43–57. Springer, Hei-
delberg (2014). doi:10.1007/978-3-642-54830-7 3

16. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree)
model checking. STTT 14(2), 167–191 (2012)

17. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate major-
ity. Sci. Rep. 2(656) (2012)

18. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 34

19. Chakarov, A., Voronin, Y.-L., Sankaranarayanan, S.: Deductive proofs of almost
sure persistence and recurrence properties. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 260–279. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49674-9 15

20. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-
time systems. Form. Methods Syst. Des. 1(4), 385–415 (1992)

21. Alfaro, L.: Temporal logics for the specification of performance and reliability.
In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 165–176.
Springer, Heidelberg (1997). doi:10.1007/BFb0023457

22. Esparza, J.: Parameterized verification of crowds of anonymous processes. Depend-
able Softw. Syst. Eng. 45, 59–71 (2016)

23. Esparza, J., Gaiser, A., Kiefer, S.: Proving termination of probabilistic programs
using patterns. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 123–138. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 14

24. Ferrer Fioriti, L.M., Hermanns, H.: Probabilistic termination: soundness, complete-
ness, and compositionality. In: POPL 2015, pp. 489–501. ACM (2015)

25. Fokkink, W.: Distributed Algorithms. MIT Press, Cambridge (2013)
26. Francez, N.: Fairness. Springer, New York (1986)
27. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:

A Guide to Current Research. Lecture Notes in Computer Science, vol. 2500.
Springer, Heidelberg (2002). [Outcome of a Dagstuhl seminar, February 2001]

28. Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent program.
ACM Trans. Program. Lang. Syst. 5(3), 356–380 (1983)

http://dx.doi.org/10.1007/11562948_35
http://dx.doi.org/10.1007/11817963_40
http://dx.doi.org/10.1007/978-3-540-45069-6_24
http://dx.doi.org/10.1007/978-3-642-54830-7_3
http://dx.doi.org/10.1007/978-3-642-39799-8_34
http://dx.doi.org/10.1007/978-3-662-49674-9_15
http://dx.doi.org/10.1007/978-3-662-49674-9_15
http://dx.doi.org/10.1007/BFb0023457
http://dx.doi.org/10.1007/978-3-642-31424-7_14

Fair Termination for Parameterized Probabilistic Concurrent Systems 517

29. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)
30. Hoenicke, J., Olderog, E.-R., Podelski, A.: Fairness for dynamic control. In:

Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 251–265.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2 20

31. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizing mutual exclusion. In: PODC, pp. 119–131 (1990)

32. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition
reasoning for expected run-times of probabilistic programs. In: Thiemann, P. (ed.)
ESOP 2016. LNCS, vol. 9632, pp. 364–389. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49498-1 15

33. Kwiatkowska, M.Z.: Model checking for probability and time: from theory to prac-
tice. In: LICS, p. 351 (2003)

34. Lehmann, D., Rabin, M.: On the advantage of free choice: a symmetric and fully
distributed solution to the dining philosophers problem (extended abstract). In:
POPL, pp. 133–138 (1981)

35. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature
433(7023), 312–316 (2005)

36. Lin, A.W., Rümmer, P.: Liveness of randomised parameterised systems under arbi-
trary schedulers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780,
pp. 112–133. Springer, Heidelberg (2016). doi:10.1007/978-3-319-41540-6 7

37. Lin, A.W.: Accelerating tree-automatic relations. In: FSTTCS, pp. 313–324 (2012)
38. Lynch, N.A., Saias, I., Segala, R.: Proving time bounds for randomized distributed

algorithms. In: PODC, pp. 314–323 (1994)
39. Monniaux, D.: An abstract analysis of the probabilistic termination of programs.

In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 111–126. Springer, Heidelberg
(2001). doi:10.1007/3-540-47764-0 7

40. Moran, P.A.P.: Random processes in genetics. Math. Proc. Camb. Philos. Soc.
54(1), 60–71 (1958)

41. Neider, D., Jansen, N.: Regular model checking using solver technologies and
automata learning. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS,
vol. 7871, pp. 16–31. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38088-4 2

42. Nilsson, M.: Regular model checking. Ph.D. thesis, Uppsala Universitet (2005)
43. Olderog, E.-R., Apt, K.R.: Fairness in parallel programs: the transformational

approach. ACM Trans. Program. Lang. Syst. 10(3), 420–455 (1988)
44. Olderog, E.-R., Podelski, A.: Explicit fair scheduling for dynamic control. In: Dams,

D., Hannemann, U., Steffen, M. (eds.) Concurrency, Compositionality, and Cor-
rectness. LNCS, vol. 5930, pp. 96–117. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-11512-7 7

45. Pnueli, A., Zuck, L.D.: Verification of multiprocess probabilistic protocols. Distrib.
Comput. 1(1), 53–72 (1986)

46. To, A.W.: Model checking infinite-state systems: generic and specific approaches.
Ph.D. thesis, LFCS, School of Informatics, University of Edinburgh (2010)

47. To, A.W., Libkin, L.: Algorithmic metatheorems for decidable LTL model checking
over infinite systems. In: Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 221–
236. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12032-9 16

48. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: FOCS, pp. 327–338 (1985)

http://dx.doi.org/10.1007/978-3-642-12002-2_20
http://dx.doi.org/10.1007/978-3-662-49498-1_15
http://dx.doi.org/10.1007/978-3-662-49498-1_15
http://dx.doi.org/10.1007/978-3-319-41540-6_7
http://dx.doi.org/10.1007/3-540-47764-0_7
http://dx.doi.org/10.1007/978-3-642-38088-4_2
http://dx.doi.org/10.1007/978-3-642-11512-7_7
http://dx.doi.org/10.1007/978-3-642-11512-7_7
http://dx.doi.org/10.1007/978-3-642-12032-9_16

	Fair Termination for Parameterized Probabilistic Concurrent Systems
	1 Introduction
	2 Preliminaries
	3 Abstract Models of Probabilistic Concurrent Programs
	3.1 Markov Decision Processes
	3.2 Fair Markov Decision Processes
	3.3 Finitary Fairness
	3.4 Herman's Protocol

	4 Regular Model Checking: A Symbolic Framework
	5 Handling Fairness Requirements
	5.1 Regular Specifications of Fairness
	5.2 Abstract Program Transformation
	5.3 Finitary Fairness in Regular Model Checking

	6 Implementation and Experiments
	References

