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Abstract—Discrete wavelet transform of finite-length signals 

must necessarily handle the signal boundaries. The state-of-

the-art approaches treat such boundaries in a complicated and 

inflexible way, using special prolog or epilog phases. This holds 

true in particular for images decomposed into a number of 

scales, exemplary in JPEG 2000 coding system. In this paper, 

the state-of-the-art approaches are extended to perform the 

treatment using a compact streaming core, possibly in multi-

scale fashion. We present the core focused on CDF 5/3 wavelet 

and the symmetric border extension method, both employed in 

the JPEG 2000. As a result of our work, every input sample is 

visited only once, while the results are produced immediately, 

i.e. without buffering. 
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I.  INTRODUCTION 

The discrete wavelet transform (DWT) is the signal-
processing transform suitable as a basis for sophisticated 
compression algorithms. Particularly, JPEG 2000 is an image 
coding system based on such compression technique. The 
transform results in two subbands, corresponding to two FIR 
filters (a low-pass and high-pass ones). With focus on 
computing demands, the transform is most commonly 
calculated using the lifting scheme. This scheme reduces the 
number of arithmetic operations as compared with the 
original filter bank. Considering finite signals, some special 
treatment of signal boundaries is unavoidable in both cases. 
This induces special prolog and epilog phases, which cause 
delays at the beginning and end of the processing. Such 
scenario breaks the ability for a continuous stream 
processing, especially considering the multi-scale 
decomposition. 

In this paper, we propose a solution consisting of a linear 
mapping of input coefficients onto output ones. This 
mapping is built above the lifting scheme. Moreover, the 
mapping is referred to as the core in the rest of the paper. 
The key idea is exploiting of the possibility of appropriate 
adjustments of the core, when it processes close to the signal 
boundaries. For this reason, we speak about the mutable core. 
The solution is demonstrated using the CDF 5/3 wavelet 
(used e.g. in JPEG 2000). 

The rest of the paper is organized as follows. Section 
Related Work reviews the state of the art, especially the 
lifting scheme. Section Proposed Method proposes the core 
and the treatment of signal boundaries. The purpose of 
Section Discussion is to state our interpretations and 
opinions. Finally, Section Conclusions summarizes the work. 

II. RELATED WORK 

The discrete wavelet transform has undergone gradual 
development in the last few decades. As a key advance in 
image processing, Cohen-Daubechies-Feauveau (CDF) [1] 
biorthogonal wavelets provided several families of 
symmetric wavelet bases. Afterwards, W. Sweldens [2]–[4] 
presented the lifting scheme which sped up such 
decomposition. Following his work, any discrete wavelet 
transform can be decomposed into a sequence of simple 
filtering steps (lifting steps). Readers not closely familiar to 
the DWT are referred to the excellent book [5] by S. Mallat. 

The polyphase matrix [4], [6], [7] is a convenient tool to 
express the transform filters. The lifting scheme factorizes 
this matrix into a series of shorter filterings. In detail, the 
polyphase matrix can be factorized [8], so that 

        
      
  

  
  

      
  

   

   
 
  
    

   

 
where   is a non-zero constant, and polynomials             
represent the individual lifting steps. Focusing on the CDF 
5/3 wavelet as an example, the forward transform in can be 
expressed [4] by the dual polyphase matrix 

                

  
  

  

       
  

  

    
   

where     are real constants, and the   is called the scaling 
factor. For details about the lifting scheme, see [3], [4]. 
Unlike a convolution scheme, the lifting allows [9] 
formulation of the transforms mapping integers to integers. 

To keep the total number of wavelet coefficients equal to 
the number of input samples, symmetric border extension is 
widely used. The symmetric border extension method 
assumes that the input image can be recovered outside its 
original area by symmetric replication of boundary values. A 
special variant (periodic symmetric extension) of this 
extension is employed in JPEG 2000 standard. 

The treatment of the symmetric (or any other) border 
extension requires special prolog and epilog phases. 
Considering the contemporary solutions, these phases cause 
increased delays at the beginning and end of the data 
processing. Consequently, these phases break the stream 
processing. Although this issue seems insignificant in single-
level transform, it becomes a big problem considering the 
multi-scale processing. 
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The paper is mainly focused on contemporary processors 
equipped with some sort of CPU cache. Inherently, the data 
processing should be performed in a single loop. Excellent 
introduction to this topic can be found in [10]. 

Originally, the problem of efficient implementation of 
the 1-D lifting scheme was addressed in [11] by Ch. 
Chrysafis and A. Ortega. Their general approach transforms 
the input data in a single loop. Nonetheless, this is essentially 
the same method as the on-line or pipelined method 
mentioned in other papers (although not necessarily using 
lifting scheme nor 1-D transform). The key idea is to make 
the lifting scheme causal, so that it may be evaluated as a 
running scheme without buffering of the whole signal. 
However, due to borders of the finite signals, some buffering 
is necessary at least at the beginning and end of the single-
loop processing. For 2-D signals, the same idea was also 
discovered in another papers under various names, e.g. in 
[12]–[17]. The most sophisticated techniques, that we are 
aware of, were investigated by R. Kutil in [18]. The author 
emphasizes that the main issue are the arduous prolog and 
epilog phases. Many authors [19]–[22] also discovered a 
similar technique with a slightly different goal (a better 
utilization of cache lines). This technique is referred to as the 
aggregation, strip-mine, or loop tiling. 

Since this work is based on our previous works in [23]–
[25], it should be explained what the difference between this 
work and the referenced papers is. In [23], we formulated 
two-dimensional cores using a different notation. However, 
they were not designed for any effective treatment of signal 
boundaries. In [24], [25], we have proposed DWT transform 
engine for JPEG 2000 encoders. Also in this work we have 
not overcame the problem with effective treatment of signal 
boundaries. Instead, we have introduced several buffers in 
order to circumvent the problem. 

As it can be expected, we see a gap which can allow for 
significant simplifications and speedups. Specifically, we 
propose a solution consisting of a mutable mapping of input 
coefficients onto output ones. 

III. PROPOSED METHOD 

The section proposes a computation unit built using the 
lifting scheme technique. The direct consequence of this 
formulation is the possibility of an elegant treatment of 
signal boundaries. As mentioned above. the proposes unit is 
referred to as the core. 

In this paragraph, some terminology necessary to 
understand the following text is clarified. Lag   describes a 
delay of the output samples with respect to the input samples. 
The stage is used in the sense of the scheme step, usually the 
lifting step. In linear algebra, such stage can be described by 
the linear operator (a matrix) mapping the input vector onto 
the output vector. 

The following part of the section leads to the formulation 
of the core. For demonstration purposes, only even-length 
signals are considered. The single level of the discrete 
wavelet transform decomposes the input signal 

     
        

 
of size   samples into the resulting wavelet bands 

     
               

            

As a next step, a unit which continuously consumes the 
input signal    and produces the output       subbands is 
proposed. As mentioned above, this unit is referred to as the 
"core" in this paper. As a consequence of the DWT nature, 
the core has to consume pairs of input samples. The input 
signal is processed progressively from the beginning to the 
end, therefore in a single loop. The corresponding output 
samples are produced with a lag   samples depending on the 
underlying computation scheme. The core requires access to 
an auxiliary buffer  . This buffers hold intermediate results 
of the underlying computation scheme. The size of the buffer 
can be expressed as   coefficients, where   is the number of 
values that have to be passed between adjacent cores. 

To simplify relations, two functions are introduced given 
by 

                         

The function      maps core output coordinates onto core 
input coordinates with the lag  . The function      maps 
the coordinates at the input level onto coordinates at the 
output level with respect to the chosen coordinate system. 
Note that the      can be defined in many ways. We chose 
the definition (5) that is compatible with JPEG 2000 standard. 

The core transforms the fragment    of an input signal 
onto the fragment    of an input signal 

          
        

  
 
  

          
        

  
 
  

while updating the auxiliary buffer. 
Finally, operations performed inside the core can be 

described using a matrix   as the relationship 

      

of the input vector 

           

with the output vector 

            

where    denotes the concatenation operator. The (8) is the 
most fundamental equation of this thesis. In this linear 
mapping, the matrix   defines the core. 

The meaning and the number of individual coefficients in 
  is not firmly given. The choice of the matrix   involves a 
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degree of freedom of the presented framework. Some notes 
regarding this choice can be found in Section Discussion. 

To keep the total number of wavelet coefficients equal to 
the number of input samples, symmetric border extension is 
widely used. A particular variant of this extension is 
employed in JPEG 2000 standard. Please, consult particular 
details with [26]. 

This paper describes the core which calculates the CDF 
5/3 transform. For the shortest possible lag    , it is easy 
to ensemble the core from (2) as 

    

    
    
    
    

  

    
    
    
    

   

for 

            
   

        

              
     

  
 
  

The   comprises     elements. For the purposes of the 
discussion, only even-length signals are considered. The core 
consists of two stages suitable for hardware pipelining. 

As mentioned earlier, the core processes the signal in the 
single loop. The naive way of border handling is described 
first. Due to the symmetric extension, the core begins the 
processing at a certain position before the start of the actual 
signal sequence. Similarly, the processing stops at a certain 
position after the end of the signal. The samples outside the 
actual signal are mirrored into the valid signal area. This 
processing introduces the need for buffering of the input at 
least at the beginning and the end of the signal. Such 
buffering breaks the ability of simple stream processing, 
especially considering the multi-scale decomposition. All 
approaches referenced in Section Related Work also suffer 
from this issue. 

The situation can be neatly resolved changing the core 
near the signal border. In more detail, the "mutable" core 
performs 5 different calculations depending on the position 
in relation to the input signal. Therefore, the core comprises 
    slightly different steps (stages) in total. This can be 
written in matrix notation as 

                    

where                 are the linear transformations of the 

predict and update stages performed at the subsampled 
output position     . These coefficients are generated in 
        so that these can be used by           at the same 

TABLE I.  INDIVIDUAL LINEAR TRANSFORMATIONS INSIDE THE MUTABLE CDF 5/3 CORE. ALSO INVERSE LIFTING STEPS        
          

  
 ARE 

SHOWN.CHANGES ARE DISPLAYED IN DIFFERENT COLOR 
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time at which           runs. It is essential that the 

coefficients       are initially set to zero. The output signal 
is generated with the lag     sample with respect to the 
input signal. The input   samples outside of the input signal 
are treated as zeros. Similarly, the output     coefficients 
outside of the output signal are discarded. The following 
table describes the individual                 transformations. 

The transform is defined using the     constants. Table I 
enumerates the individual core stages. In addition, Figure I 
illustrates their usage. The very first and very last cores 
access outside the signal. The input samples already split into 
    subbands. As a result, the signal is transformed without 
buffering, possibly on a multi-scale basis.  

IV. DISCUSSION 

So far, only the CDF 5/3 wavelet has been discussed as 
an illustrative example. However, the presented computation 
scheme is general. 

One can identify the core in arbitrary underlying lifting 
schemes. However, its implementation can be obscure in 
some cases mainly due to the increasing number of 
intermediate results in auxiliary buffers. For his reason, a 
lifting factorization employing steps in the form of degree-1 
filters is a proven choice. Many such factorizations of 
various wavelets have been presented in the literature, e.g. 
[4]. Moreover, the symmetric filters with lengths      , as 
is case of the CDF 5/3 and 9/7 filters, can be implemented 
through some sequence of lifting steps having this particular 
form. See [26] for details. 

In parallel environments, the presented scheme can be 
"unwrapped" to fit the number of computing units (threads). 
Instead of passing the intermediate results through the buffer 
 , an direct exchange of them then arises. Unfortunately, this 
exchange introduces the need for a synchronization barrier, 
that can be a bottleneck of the processing. 

The multi-scale decomposition can be easily constructed 
by chaining the cores into a series. In this case, only the   
coefficients are linked to the next decomposition level. Each 
subsequent decomposition level causes additional delay   at 
the half sampling rate. 

Considering multi-dimensional signals, multi-
dimensional cores can be constructed as the tensor product of 
1-D cores. For example, the 2-D core consumes the     
fragment of the input signal    and immediately produces 
the four-tuple               of resulting subbands. 

The core   can also be internally reorganized in order to 
minimize some of the resources. In [23], we demonstrated 

this property on FPGA where the minimization of the core 
latency had a direct impact on the utilization of flip-flop (FF) 
circuits and look-up tables (LUT). 

The construction of the matrices themselves is governed 
by simple rule. When the coefficient outside a valid signal 
sequence would be accessed, the zero is put into the matrix at 
the corresponding place. Additionally, the symmetrization is 
obtained by placing the factor of 2 at desired locations at the 
same moment. In this paper, we have discussed only the 
symmetric signal extension. Nevertheless, the matrices for 
any other extension could be constructed. For zero-padding, 
the factor of 2 should be eliminated everywhere in Table I. 

One can simply verify the correctness of the scheme 
presented by its unwrapping. The data-flow graph obtained 
shows the mirroring at the beginning and end of the signal. 
 
In conclusion, this paper presents nice idea to take of 
boundary effects in DWT processing. Usually some form of 
wrap-around or replication is necessary to take care of the 
image boundaries. But we have proposed a slightly different 
way of handling this which then makes efficient parallel or 
pipelined processing possible. 

V. CONCLUSIONS 

We have focuses on treatment of signal boundaries for 
computing of the discrete wavelet transform. In the state-of-
the-art methods, the treatment of signal boundaries is 
performed in a complicated way. This way causes buffering 
of the signal at least at the beginning and end of data. 

In this paper, we have overcome this issue. This was 
accomplished using the proposed mutable core which 
performs the transform in a single loop. Using this core, the 
complete transform can be evaluated as a running scheme. In 
other words, no buffering is required anywhere. The 
resulting coefficients are exactly the same as with the 
original lifting scheme. 

The future work we would like to do includes an 
extension to more complicated lifting factorizations, and a 
hardware implementation of the core proposed. 
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Figure 1.  Signal Processing Using the Mutable Core. The Input Position on the Original Location   is Shown. The First and Last two Cores (Highlighted) 

differ from the Others. 
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