
On Creation and Analysis of Reliability Models
by Means of Stochastic Timed Automata and

Statistical Model Checking: Principle

Josef Strnadel⋆

Brno University of Technology, IT4Innovations Centre of Excellence
Bozetechova 2, 612 66 Brno, Czech Republic

strnadel@fit.vutbr.cz

http://www.fit.vutbr.cz/~strnadel

Abstract. The paper presents a method of creation and analysis of re-
liability models by means of stochastic timed automata statistical model
checking approach available in the UPPAAL SMC tool. The method can
be seen as an alternative to classical analytic approaches based on instru-
ments such as fault-tree or Markov reliability models of the above-specified
systems. Main goal of the paper is to show that – taking the advantage
of the statistical model checking – the reliability analysis of systems can
be facilitated even for adverse conditions such as inconstant failure (haz-
ard) rate of inner system components. In the paper, basic terms and
principles related to modeling and analysis of fault-tolerant systems are
summarized, followed by a short introduction to the UPPAAL SMC tool,
its practical applicability to analysis and modeling of basic fault-tolerant
systems and evaluation of the results achieved on basis of the tool.

Keywords: reliability, model, analysis, fault tolerant, FT, stochastic
timed automata, STA, statistical model checking, SMC, UPPAAL SMC,
probability, distribution, bathtub, fault, transient, permanent, intermit-
tent, rate, scenario, tripple modular redundancy, TMR

1 Introduction

Technological, parametrical and other progress related to electronic systems has
resulted into the rapid expansion of such systems into many application areas,
including safety, time and/or mission critical ones such as anti-lock breaking or
airbag control in cars, flight-crucial avionics, medical devices like pacemaker,
automated control of an industrial heavy payload robot or a nuclear plant oper-
ation.

⋆ This work was supported by the Ministry of Education, Youth and Sports from
the National Programme of Sustainability (NPU II) project ”IT4Innovations
excellence in science – LQ1602”, by the European Regional Development
Fund in the ”IT4Innovations Centre of Excellence” (OP VaVpI) project No.
CZ.1.05/1.1.00/02.0070 and the inner university project No. FIT-S-14-2297 (Ar-
chitecture of parallel and embedded computer systems).

ISoLA2016, 036, v1: ’On Creation and...’ 1

2 Lecture Notes in Computer Science: Authors’ Instructions

It is a common practice that a critical system must be designed, constructed,
realized and especially analyzed so that – within a given degree of confidence
interval or probability interval – its predetermined, criticality-crutial properties
(such as a deadlock-free operation or high availability of provided services) are
guaranteed during the system operation yet before the system starts to operate
under real operating conditions. This paper limits this complex problem to the
design-time modeling and analysis of selected reliability-related properties of
electronic systems.

This paper is organized as follows. Sections 2.1 and 2.2 outline techniques
applicable for that purpose, followed by a sum of basic terms and principles
related to fault tolerance (2.3) and the UPPAAL SMC tool (2.4). Section 3
presents our method based on the tool while Section 4 summarizes achieved
results and finally, Section 5 concludes the paper.

2 Preliminary

2.1 Model Checking

Various techniques can be utilized to check whether particular (typically, for-
mally specified) properties are guaranteed under a given model of a system; in
this paper it is supposed that so-called model checking (MC) [1] technique is
utilized for that purpose. Contrary to testing, MC is able to detect all potential
faults in a system and allows a designer to deal with them in early phases of a
system’s life cycle. MC has been implemented in several powerful tools such as
SPIN [2] or SMV [3] being successfully applied in practice.

Classical MC techniques are binary (i.e. they check whether the system sat-
isfies a property or not). Indeed, in many situations it is not enough to know
whether something could or could not happen; rather, one needs to have a precise
estimate of the time when some situation could arise. This motivated the cre-
ation of a number of new, so-called timed MC techniques. However, even though
various optimizations and/or heuristics exist (partial order, symbolic approach,
BDDs, etc.), they cannot avoid MC techniques from the state-space explosion
in general, because of the complexity of problems they solve.

2.2 Statistical Model Checking

To avoid an exhaustive exploration of the state-space of a model, so-called sta-
tistical model checking (SMC) has been proposed – and implemented in several
tools such as PRISM [4] or UPPAAL SMC [5] – as a compromise between testing
and classical (binary, exhaustive) MC techniques. Simulation-based SMC meth-
ods are known to be far less memory/time intensive than classical ones, and
are oftentimes the only option to approximate undecidable problems. Simply,
SMC is based on monitoring some simulations of the system and their statistical
processing (such as sequential hypothesis testing or Monte Carlo simulation) to
estimate the satisfaction probability of a specified property under some degree

2 ISoLA2016, 036, v1: ’On Creation and...’

Lecture Notes in Computer Science: Authors’ Instructions 3

1 2 3
3λ 2λ 1 2 3 4

3λC 2λ

3λ(1− C)

a) Triple modular redundancy (TMR) w.o. resp. with a single-point failure
on the left (TMRNSF) resp. right (TMR1SF) of the figure

1 2 3

4 5 6

7 8

3λ 2λ

F1(t)
2λ λ

F2(t)
λ

b) Triplex with successive degradation (TSD)

Fig. 1. Markov models of selected fault-tolerant (FT) systems based on static redun-
dancy (a) and dynamic reconfiguration by degradation (b) – (c), spares (d) or both
(e). λ is the permanent-failure rate, F (t), F1(t), F2(t) are utilized to model the removal
of a permanent fault and C is the ratio of faults not being the single point of failure;
more details can be found in [15]

of confidence. The SMC approach has been applied to problems that are far
beyond the scope of classical MCs and has been widely accepted in various areas
such as biology [5], software engineering [6][7], aerospace applications [8][9] or
system analysis [4][10][11][12][13].

2.3 Fault Tolerance

Fault tolerance (FT) [14] is typically based on some form of redundancy uti-
lized to extend system reliability by extra resources; the redundancy may be in
hardware, software, information, time, or combinations thereof. For hardware
and software, the following types of redundancy can be distinguished: static
(sometimes called passive), dynamic (sometimes called active), and hybrid.

Static redundancy masks faults e.g. by taking a majority of the results being
produced by three replicas of the same module (Triple Modular Redundancy,
TMR). For TMR, it is typical that its replicas are operational (active) and the
majority is processed just by a voter, which is a single point of failure (SPF).
For dynamic redundancy, it is typical that on top of a (primary) module being
operational, one or more its spare (backup) modules stays in active (hot), warm
(standby) or cold mode until the primary module fails (for that purpose, each
module must be associated with a corresponding error detection circuitry able to
signalize whether the module is faulty or not); result of just one of the operational
plus spare modules is propagated to output – this is guaranteed by the switch
component. Thus, dynamic redundancy is based on a sequence of the following
steps: detection of a fault and recovery from the fault. The detection step helps
to (locally) isolate the fault present in the primary module to avoid propagation
of its effects. In the recovery step, the faulty module is replaced by one of its

ISoLA2016, 036, v1: ’On Creation and...’ 3

4 Lecture Notes in Computer Science: Authors’ Instructions

spare modules and then, remaining system assets are reconfigured to operate
with the spare module instead of the faulty one.

Hybrid redundancy combines both static and dynamic redundancy so that
any disagreement among replicas – i.e., any mismatch between modules’ outputs
and the voting result – leads to replacement of faulty replica(s) by spare(s) from
the common pool of spares, as long as the pool is not exhausted.

Typically, reliability of FT systems is modeled by means of classical well-
known instruments such as Markov models [14] – for illustration, see Fig. 1 (find
details in [15], please).

2.4 Concepts of Modeling in UPPAAL and UPPAAL SMC

UPPAAL [16] is a toolbox primarily designed for formal verification of real-time
(RT) systems modeled by (a network of) Timed Automata (TA) extended with
instruments such as typed variables and channel synchronization. SMC extension
of UPPAAL (being denoted as UPPAAL SMC) has been proposed [17] to avoid
the state-space explosion w.r.t. checking properties of an RT system model.

The modeling formalism of UPPAAL SMC is based on a stochastical exten-
sion of the original TA formalism from UPPAAL. On basis of the extension –
called Stochastic Timed Automata (STA) –, one can validate properties of a given
deterministic or stochastic system in given stochastic environment or conditions
such as radiation or aging. In the next, concepts of (S)TA-based modeling are
informally outlined.

First of all, it should be noted that a single TA [18] is formed of at least
the start state, being represented by two concentric circles (for illustration, see
state a in Fig. 2); a TA state is called a location too. A transition between two
locations (let us say from a to b and denote it by a → b) is represented by an
oriented edge from a to b. Transition in Fig. 2a can be made anytime (but the
concrete time is unknown), while transition in Fig. 2b – being conditioned by
so-called guard (where x is a variable of the clock type) – can be made if x is 5
or later, but again: no upper bound is specified for x.

In Fig. 2c, time of staying in a is limited by so-called invariant, i.e., a con-
dition defined for a location; the transition must be made before the invariant
becomes false. In Fig. 2d, a guard/invariant combination is utilized to model
a transition that can be made if x ≥ 5, but must be made if x ≤ 7, i.e., the
transition is possible if 5 ≤ x ≤ 7. Further TA-related instruments related e.g.
to communication via channels, location types etc. are omitted herein because of
the limited scope of this paper and no meaning for planned illustrative examples.

The above-mentioned principles as well as related non-deterministic behavior
of TAs (such as non-deterministic choice among parallel transitions between the

a b a b
x ≥ 5

a

x ≤ 7

b a

x ≤ 7

b
x ≥ 5

a) b) c) d)

Fig. 2. Illustration to basic TA terms: place, transition, guard, invariant

4 ISoLA2016, 036, v1: ’On Creation and...’

Lecture Notes in Computer Science: Authors’ Instructions 5

same locations) are refined in STAs by stochastic ones, being briefly illustrated in
the next. For example, weight annotations on locations are extended to model
the staying in a location using a probability distribution; e.g., in Fig. 3a, the
staying in a (i.e., entering b) is given by the exponential distribution with the
rate (λ) set to 1

2 . In Fig. 3b, the probabilistic uniform-distribution choice between
a → b (with probability 1

5) and a → c (with probability 4
5) is modeled. Fig. 3c

illustrates the following (so-called stopwatch) concept able to determine the exact
time that has elapsed. In Fig. 3c, the clock x is reset in parallel with setting a
value (being produced by a user-defined function f) to the delay variable of the
clock type (during a → b) first; then, staying in b cannot be longer than for
delay units of time being measured by x while delay is stopped (delay′ == 0)
in b. Finally, b → c is possible just if x matches delay.

Properties of an STA-based model can be verified (checked) using special
queries a user can post in the UPPAAL SMC tool w.r.t. model; among others,
queries from the following areas are supported:

– Probability estimation – a question in the form Pr[bound](φ) is used to get
the probability that something (φ) – such as entering a state/place – happens
under the specified bound,

– Hypothesis testing – a question Pr[bound](φ) ≥ p can be posted to check
whether the probability of something (φ) is greater or equal to a certain
probability treshold (p) under the specified bound,

– Probability comparison – a question in the form Pr[bound1](φ1) ≥ Pr[bound2](φ2)
can be posted to check whether the probability of φ1 is greater or equal to
φ2 under the specified bound1, bound2,

where bound, bound1, bound2 define how to bound – e.g. the number of –
simulation steps (runs), φ, φ1, φ2 are assertions (formulas) to check and p is a
real-number value. E.g., for Fig. 3a one can post the Pr[<=3000](<> STA.b) query
to get the probability of eventual entering the state b within 3000 units of the
simulation time. A possible (probabilistic) result of the query is vizualized in
Fig. 4. For further examples, please see [17].

3 Proposed Method

The method presented in this paper has been initially inspired by [19] approach
giving an idea of creating a model of basic components for constructing FT

a

1 : 2

b

a

b

c

1

4
a b

x ≤ delay &&
delay′ == 0

c
x = 0,

delay = f()
x == delay

a) b) c)

Fig. 3. Illustration to basic STA terms: place, transition, guard, invariant

ISoLA2016, 036, v1: ’On Creation and...’ 5

6 Lecture Notes in Computer Science: Authors’ Instructions

Fig. 4. Illustration to probability of entering b (left) and cumulative probability with
confidence intervals (right) of that for the STA model from Fig. 3a

systems to verify properties of such systems by means of formal verification in
classical UPPAAL. However, the approach was based on a timed – but deter-
ministic – model and exhaustive verification with binary (i.e., yes/no) answers
to questions about properties. We have decided to utilize a completely different
approach, allowing i) creation of probabilistic models (such as those from Fig. 1)
and ii) statistical model checking instruments to be applied to our models. For
the purpose, several models must be created, e.g., by means of STAs supported
by the UPPAAL SMC tool – details to the models follow in the sections 3.1, 3.2
and 3.3.

3.1 Probability distribution models

First, probability distribution models must be created to model various failure
rates. Basically, it is not a problem to create almost any time-dependent failure
rate function; however, because of limited space in this paper, we have decided to
present just a simplified model of the typical bathtub curve. The curve consists
of several regions – such as early (infant mortality), constant, aging, wear out,
break in – each representing different progress of the failure rate. In fact, those
regions seems to be enough to show that by means of STAs, it is possible to
cover a wide range of very different rate functions.

The skeleton of our STA-based model of the bathtub curve is vizualized in
Fig. 5, where x is the clock-type variable, EARLY, CONST and WEAR-OUT
are probability weights, EXP RATE is a rate of the exponential probability
distribution and TFROM

CONST , T
TO
CONST , T

FROM
WOi

, TTO
WOi

, i = 1, . . . , n, are constants
specific to a particular bathtub-part shape.

C

EXP RATE

x ≤ TTO
WO1

x ≤ TTO
CONST

end

...

x ≤ TTO
WOn

EARLY

CONST

WEAR-OUT

x ≥ TFROM
CONST

x ≥ TFROM
WO1

x ≥ TFROM
WOn

Fig. 5. Idea of composing a probability distribution model by means of STAs in the
UPPAAL SMC tool (bathtub failure rate example)

6 ISoLA2016, 036, v1: ’On Creation and...’

Lecture Notes in Computer Science: Authors’ Instructions 7

Basically, a separete branch exists in the model for each region in the curve.
From the initial state, the STA can transit into one of the three consecutive states
(starting a particular branch), each being enabled with different probability –
typically, very small values of probability are utilized for the early and wear
out regions of the curve, while high value is utilized for its constant-rate region.
Interval in which a fault of a given rate is allowed to appear can be limited later
in the particular branch.

For example, a failure from the early-rate region can occur rarely – this is
guaranteed by the low (EARLY) probability weight – and with the exponential
probability distribution given by the EXP RATE parameter; a failure from
the constant-rate region can occur more often – that is defined by the high
(CONST) probability weight –, but with its rate uniformly distributed in the
< TFROM

CONST , T
TO
CONST > interval with a lower resp. upper bound defined by a

guard resp. invariant (see Fig. 2d). Alike, the probability distribution for the
wear-out region can be formed e.g. using a chain of consequent, properly-shaped
uniform distributions of a failure occurence.

3.2 Fault generation models

In the next step, it is necessary to model fault generators. A fault generator
is required to produce a fault with times of its occurence being defined by a
probability distribution model (such as from 3.1) of the rate corresponding to
the fault. When the time comes for the occurence of a fault in a system, the fault
is introduced so that an instance of the STA (representing the corresponding
behavioral model of the fault – for such a model, see 3.3) is dynamically created.
To create a fault dynamically, the spawn keyword must be utilized in STA.

This kind of modeling is very close to the reality – after its introduction to
a system, a fault can remain there for a predetermined time and then disappear
and never show again or occur/disappear repeatedly (timing may vary accross
faults of the same type) or, a fault may last until it is removed.

a) fdef [N].ttf

spawn fault(gid),
factive[gid] + +

b) x ≤ fdef [N].ttf

spawn fault(gid),
factive[gid] + +

x = 0

Fig. 6. Illustration to dynamic creation of faults with rates described using a) ex-
ponential resp. b) constant failure rates. factive[gid] is utilized as a counter of the
number of active faults dynamically created by the generator identified by gid. For
better readability, fid[gid] is substituted by N

In Fig. 6, an example of dynamic creation of faults with rates described
using a) exponential resp. b) constant, i.e. uniformly distributed, failure rates is

ISoLA2016, 036, v1: ’On Creation and...’ 7

8 Lecture Notes in Computer Science: Authors’ Instructions

illustrated; for the bathtub case, the spawn construction will be applied to the
end state of the STA from Fig. 5.

Listing 1.1. Basic components of a fault in our model

1 typedef struct { // fault:
2 t_ftype ft; // - type: 0-perm., 1-tran., 2-int.
3 t_ttf ttf; // - time to (occurence of a) fault: 0, 1, ...
4 t_pdist pttf; // - probab. distr .: 0-uni., 1-exp.,
5 // 2-norm., 3-bathtub , 4-early , ...
6 t_ttd ttd; // - time to disappear : 0, 1, ...
7 t_pdist pttd; // - probab. distr .: 0-uni., 1-exp., ...
8 } t_sFault;

Let it be noted there that a fault is of a given type (see Listing 1.1) allowing
to create multiple fault definitions in fdef [] (see Listing 1.2).

Listing 1.2. Illustration to declaration of an array with fault definitions

1 const t_sFault fdef[t_nfault] = {
2 // ft ttf pttf ttd pttd array -index
3 {1, 100, 0, 100, 0}, // 0
4 {0, 500, 0, 500, 0}, // 1
5 {1, 1, 1, 1, 1}, // 2
6 {1, 5, 1, 5, 1} // 3
7 };

The mapping fid[] (see Listing 1.3) is needed to make a relation between the
definition of a fault and the generator.

Listing 1.3. Example to mapping of a fault generator onto an index to fdef[]

1 // generator indexes: 0 1 2 ...
2 t_nfault fid[t_ngen] = { 0, 1, 1 }; // fdef [] indexes

3.3 Fault behavior models

After a fault is introduced into a system, it can behave in a way that can be
defined by a special STA. In Fig. 7, a skeleton of the behavioral model for inter-
mittent, permanent and transient types of faults is illustrated, focusing to the
branch for transient faults. A transition from the initilal state is enabled for a
particular fault type (FINTER, FPERM or FTRAN). In the next state, a branch
for modeling duration of the fault is selected (PUNI resp. PEXP for uniform/-
constant resp. exponential probability distribution of the durations, based on
the STA design patterns from Fig. 2d resp. Fig. 3a).

Before reliability models (such as those from Fig. 1) can be created on basis
of the above-mentioned modeling techniques, an instrument able to signalize the
occurence of a fault is needed to make the construction of reliability models as
straightforward as possible. In our approach, we have based the signalization
mechanism on the STA from Fig. 8. The mechanism relies on sending a message
via the broadcast channel named fail while at least one active fault exists that
has been produced by the corresponding fault generator (identified by gid).
Such an STA is created for each fault generator in a system. If ! resp. ? follows

8 ISoLA2016, 036, v1: ’On Creation and...’

Lecture Notes in Computer Science: Authors’ Instructions 9

C

CC...

x ≤
fdef [N].ttd

fdef [N].ttd......

fdef [N].ft
== FPERM

fdef [N].ft
== FTRAN

fdef [N].ft
== FINTER

fdef [N].pttd
== PUNI

exit(),
factive[gid]−−

fdef [N].pttd
== PEXP

exit(),
factive[gid]−−

Fig. 7. Illustration to the behavioral model of a fault. After its duration is over, a
dynamically created transient fault removes itself from a system by calling exit() and
decrementing the number (factive[gid]) of active faults introduced by the same gener-
ator. For better readability, fid[gid] is substituted by N

the channel name (i.e., fail! resp. fail? is associated with a transition) then a
message is sent resp. expected via the fail channel reserved for a fault generator.

x ≤ 1

factive[gid] ≤ 0
x = 0

factive[gid] > 0
fail[gid]!, x = 0

Fig. 8. Illustration to a fault signalization mechanism

3.4 Reliability models

In the next, a method for construction of reliability models by means of the
above-mentioned modeling techniques is described. To create a reliability model,
definitions of considered faults must be prepared (such as in Listing 1.2) first
in fdef []. Then, a decision about the number of fault generators – each able
to produce a fault of a given definition – must be made and stored into fid[].
Let it be noted that it is possible to create multiple generators for the same
fault definition; for example, in Listing 1.3 three generators are utilized, where
generator identified by gid = 0 is associated with the fault definition fdef [gid]
= (1, 0, 100), i.e. a transient fault with probability of its ocurence uniformly
distributed over 100 units of time while generators identified by gid = 1 and
gid = 2 are associated with fdef [gid] = (0, 0, 500), i.e. a permanent fault with
uniform probability distribution over 500 units of time.

Once STA-based models for the fault generator, fault behavior and fault
signalization are created, process of creation of a reliability model can be started.
In the next, an idea of such a process is discussed in the form of a straightforward
transformation from the classical models from Fig. 1. Because of the limited
space in this paper and simplicity of the transformation, the resulting STA-based
models are omitted herein. Key principle w.r.t. our model relies on replacing λ –
or similar probabilistic quantity such as F (t), F1(t), F2(t), Fz(t), W1(t), W2(t)
from Fig. 1 – in a Markov model by waiting for a message on the fail channel
(Fig. 9).

ISoLA2016, 036, v1: ’On Creation and...’ 9

10 Lecture Notes in Computer Science: Authors’ Instructions

a)
1 2

λ

b)
1 2

fail[N]?

Fig. 9. Principle of converting a Markov model (a) to an STA model (b). N identifies
a generator producing a fault the edge is sensitive to

With no impact to the generality, all important design patterns w.r.t reliabil-
ity models can be presented over a simple TMR model from Fig. 1a. Basically,
a separate fault generator is needed for each of independent faults (TMRNSF

from Fig. 1a, Fig. 10a) – in such a case, separate fault signalization mechanisms
are available. On the contrary, signalization of the same fault can be utilized e.g.
to model a SPF (TMR1SF from Fig. 1a, Fig. 10b).

1 2 3

i : int[1, 3]
fail[i]?

failed = i

i : int[1, 3]
fail[i]?

i 6= failed

1 2

4

3
i : int[1, 3]
fail[i]?

failed = i

C

100-C
i : int[1, 3]
fail[i]?

i 6= failed

a)

b)

Fig. 10. STA-based realization of the TMR models from Fig. 1: a) TMRNSF , b)
TMR1SF . C is probability that a fault is not SPF

STA-based versions of the TMR are depicted in Fig. 10. In a), the 1 → 2
transition is utilized to wait for a reception of a signal over three channels, i.e.,
fail[i], i = 1, 2, 3, each belonging to one of the three replicas in the TMR system.
If a fail signal is received on a particular channel then the corresponding value
of i is stored into failed to identify the failed replica. The consecutive 2 → 3
is sensitive just to a failure in replicas identified by i = 1, 2, 3, i 6= failed, i.e.,
it is sensitive just to a failure of the remaining two replicas. The same principle
is applied in the case b), extended to model a SPF by means of a probabilistic
choice made at the end of the transition outgoing from 1 ,i.e., after one of the
three replicas fails; then, TMR can either operate in a two-replica mode (if it
transits to 2; here, it operates in the same way as in the a) case) or it can be a
subject to a SPF and fail (if it goes to 4).

4 Evaluation

To show practical applicability of our above-mentioned modeling techniques and
its benefits, we have decided to present few results produced on basis of our
models (see Fig. 11, Fig. 12).

4.1 Selected Results

The results from Fig. 11 were produced on basis of the model-checking query
Pr[<= 100](<> sta.end), being applied consequently to special cases of the Fig.

10 ISoLA2016, 036, v1: ’On Creation and...’

Lecture Notes in Computer Science: Authors’ Instructions 11

a)

b)

c)

d)

e)

f)

Fig. 11. Illustration to probability (left column) and cumulative probability (right
column) with confidence intervals for selected failure rates models realized by means of
UPPAAL SMC: a) bathtub, b) early (infant mortality), c) constant, d) aging, e) wear
out, f) break-in

5; sta is the name of an STA representing the bathtub model. It can be seen
that STA-based models are able to cover all regions of the bathtub, allowing us
to analyze reliability under different fault rate scenarios.

The results from Fig. 12 have been achieved on basis of several queries, de-
tails of which follows; in all cases, one simulation run has been performed, which
is denoted by simulate 1 at the beginning of the queries. For a) – d), the query
simulate 1 [<= N]{numOf(fault), n fin/K} has been utilized with N = 200
resp. N = 2000 for a), b) resp. c), d) and K = 1, 50, 100, 200 for a), b), c), d).
For 12e) resp. f), simulate 1 [<= 1000]{numOf(fault), 2 ∗n fperm, n ftrans}
resp. simulate 1 [<= 2000]{factive[0], 10 + factive[1], 20 + factive[2], 30 +
factive[3], 40 + factive[4], 50 + factive[5]} queries have been utilized.

ISoLA2016, 036, v1: ’On Creation and...’ 11

12 Lecture Notes in Computer Science: Authors’ Instructions

a) b)

c) d)

e)

f)

Fig. 12. Results produced on basis of various declarations of fid[]: a) { 0 }, b) { 0,
2, 3 }, c) { 0, 1, 3 }, d–f) { 0, 0, 1, 1, 2, 3 }. In a)–d), an evolution of the number of all
incomming faults (n fin) and of faults in the system (numOf(fault)) are visualized. In
e), a relation among the number of permanent (2 ∗ n fperm), transient (2 ∗ n ftran)
and all faults is depicted. In f), an evolution of the number of active faults (facti)
produced by a particular fault generator (indexed by i = 0, 2, . . . , 5) is visualized

4.2 Benefits

Benefits of utilizing modeling instruments proposed in this paper can be sum-
marized as follows. First, our models are scalable and our solution is open to
additions – proposed models can be easily extended to further types of fault
rates, behavior types etc. Moreover, our approach can be utilized to analyze
properties of systems

– with variable failure rates described e.g. by means of the complete bathtub
curve(s) rather than just by their isolated portions,

– formed of dependent components or suspensible to dependent faults,
– dynamic, evolvable/reconfigurable systems able to add, remove their com-

ponents and/or change their parameters at run-time,
– in the context of further parameters such as liveness, safety and/or timing,

power and other constraints.

Second, model checking engine in the UPPAAL SMC tool can be utilized to
simply check key properties (such as probability that something, like a failure,
may happen) w.r.t. a system being modeled.

12 ISoLA2016, 036, v1: ’On Creation and...’

Lecture Notes in Computer Science: Authors’ Instructions 13

Third, transformation of existing reliability models (such as widely-utilized
Markov models) is straightforward and there is no need to solve any system of
equation by your own.

It can be concluded that the benefits represent a very good prerequisite for
rapid prototyping as well as reliability analysis of FT systems under various fault
scenarios and applied FT techniques.

5 Conclusion

In the paper, a method of creation and analysis of reliability models by means
of the STAs and SMC approach supported by the UPPAAL SMC tool has been
presented. The method allows more precise and close-to-reality modeling com-
paring to classical approaches such as Markov reliability models. Further activity
w.r.t. topic of the paper can be seen especially in

– applying the proposed method to complex, practical FT systems, systems
with dynamic redundancy and hybrid (i.e., discrete/analog) systems,

– reliability analysis throught multiple bathtub regions and of particular sys-
tem classes such as memories, CPU cores or operating system kernels,

– analyzing an impact of multiple faults of same/different type to reliability
of an FT system equipped by particular FT techniques.

References

1. C. Baier and J.-P. Katoen, Principles of Model Checking, ser. Representation and
Mind. MIT Press, 2008. [Online]. Available: https://mitpress.mit.edu/books/
principles-model-checking

2. G. J. Holzmann, “The model checker spin,” IEEE Transactions on Software Engi-
neering, vol. 23, pp. 279–295, 1997.

3. K. L. McMillan, “Symbolic model checking: An approach to the state explosion
problem,” Ph.D. dissertation, Pittsburgh, PA, USA, 1992, uMI Order No. GAX92-
24209. [Online]. Available: http://www.kenmcmil.com/pubs/thesis.pdf

4. M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilistic model check-
ing for performance and reliability analysis,” SIGMETRICS Perform. Eval. Rev.,
vol. 36, no. 4, pp. 40–45, Mar. 2009. [Online]. Available: http://doi.acm.org/10.
1145/1530873.1530882

5. A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen, and S. Sedwards,
“Statistical model checking for biological systems,” Int. J. Softw. Tools Technol.
Transf., vol. 17, no. 3, pp. 351–367, Jun. 2015. [Online]. Available: http://dx.doi.
org/10.1007/s10009-014-0323-4

6. C. Dubslaff, S. Klüppelholz, and C. Baier, “Probabilistic model checking for energy
analysis in software product lines,” in Proceedings of the 13th International Confer-
ence on Modularity, ser. MODULARITY ’14. New York, NY, USA: ACM, 2014,
pp. 169–180. [Online]. Available: http://doi.acm.org/10.1145/2577080.2577095

7. R. Calinescu, C. Ghezzi, K. Johnson, M. Pezze, Y. Rafiq, and G. Tamburrelli, “For-
mal verification with confidence intervals to establish quality of service properties
of software systems,” IEEE Transactions on Reliability, vol. PP, no. 99, pp. 1–19,
2015.

ISoLA2016, 036, v1: ’On Creation and...’ 13

14 Lecture Notes in Computer Science: Authors’ Instructions

8. K. Hoque, O. Ait Mohamed, Y. Savaria, and C. Thibeault, “Early analysis of soft
error effects for aerospace applications using probabilistic model checking,” in For-
mal Techniques for Safety-Critical Systems, ser. Communications in Computer and
Information Science, C. Artho and P. C. lveczky, Eds. Springer International Pub-
lishing, 2014, vol. 419, pp. 54–70. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-05416-2_5

9. Y. Lu, Z. Peng, A. A. Miller, T. Zhao, and C. W. Johnson, “How reliable is
satellite navigation for aviation? checking availability properties with probabilis-
tic verification,” Reliability Engineering & System Safety, vol. 144, pp. 95 – 116,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0951832015002252

10. N. Benes, B. Buhnova, I. Cerna, and R. Oslejsek, “Reliability analysis in
component-based development via probabilistic model checking,” in Proceedings of
the 15th ACM SIGSOFT Symposium on Component Based Software Engineering,
ser. CBSE ’12. New York, NY, USA: ACM, 2012, pp. 83–92. [Online]. Available:
http://doi.acm.org/10.1145/2304736.2304752

11. A. Basu, S. Bensalem, M. Bozga, B. Delahaye, and A. Legay, “Statistical abstrac-
tion and model-checking of large heterogeneous systems,” International Journal on
Software Tools for Technology Transfer, vol. 14, no. 1, pp. 53–72, 2012. [Online].
Available: http://dx.doi.org/10.1007/s10009-011-0201-2

12. Z. Peng, Y. Lu, A. Miller, C. Johnson, and T. Zhao, “A probabilistic model checking
approach to analysing reliability, availability, and maintainability of a single satellite
system,” in Modelling Symposium (EMS), 2013 European, Nov 2013, pp. 611–616.

13. P. Swain, P. Bhaduri, and S. Nandi, “Probabilistic model checking of ieee 802.11
ibss power save mode,” Int. J. Wire. Mob. Comput., vol. 7, no. 5, pp. 465–474, Sep.
2014. [Online]. Available: http://dx.doi.org/10.1504/IJWMC.2014.064818

14. I. Koren and C. M. Krishna, Fault-Tolerant Systems. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2007.

15. B. Ricky W. and J. Sally C., “Techniques for modeling the reliabil-
ity of fault-tolerant systems with the markov state-space approach,” Tech.
Rep., 1995. [Online]. Available: http://shemesh.larc.nasa.gov/fm/papers/

Butler-RP-1348-Techniques-Model_Rel-FT.pdf

16. G. Behrmann, A. David, and K. Larsen, “A tutorial on uppaal,” in Formal Meth-
ods for the Design of Real-Time Systems, ser. Lecture Notes in Computer Science,
M. Bernardo and F. Corradini, Eds. Springer Berlin Heidelberg, 2004, vol. 3185, pp.
200–236. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-30080-9\

_7

17. A. David, K. Larsen, A. Legay, M. Mikuionis, and D. Poulsen, “Uppaal
smc tutorial,” International Journal on Software Tools for Technology Transfer,
vol. 17, no. 4, pp. 397–415, 2015. [Online]. Available: http://dx.doi.org/10.1007/
s10009-014-0361-y

18. R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput. Sci., vol.
126, no. 2, pp. 183–235, Apr. 1994. [Online]. Available: http://dx.doi.org/10.
1016/0304-3975(94)90010-8

19. M. Zhang, Z. Liu, C. Morisset, and A. Ravn, “Design and verification of fault-
tolerant components,” in Methods, Models and Tools for Fault Tolerance, ser. Lec-
ture Notes in Computer Science, M. Butler, C. Jones, A. Romanovsky, and E. 0.5em
minus 0.4emSpringer Berlin Heidelberg, 2009, vol. 5454, pp. 57–84. [Online]. Avail-
able: http://dx.doi.org/10.1007/978-3-642-00867-2_4

14 ISoLA2016, 036, v1: ’On Creation and...’

