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Abstract—Functional verification is a modern approach to
verifying that a digital system complies with its specification.
The verification environment for functional verification of robot
controller which searches path for the robot through a maze is
presented in this paper. This verification environment is designed
according to UVM (Universal Verification Methodology) princi-
ples. As an interesting feature of the verification environment we
see the use of a mechanical part (robot in a maze) simulation.
The article describes the use of the verification environment for
evaluating impacts of faults in electro-mechanical systems. It will
serve as a tool for automating the fault tolerance evaluation of
electro-mechanical systems and together with the fault injector
will form the basis of the verification platform in the future. The
experimental results gained from the verification process are also
presented in the paper.

Keywords—Functional Verification, Robot Controller, Electro-
mechanical Systems, Fault Tolerance, Maze Generation.

I. INTRODUCTION

Digital systems play an important role in our everyday
lives. They are widely used in industry, medicine and other
safety critical sectors. Not only the loss of a huge amount of
money, but also the loss of human lives may occur in case of
their failure. The current trend is that the complexity of digital
systems rises, which leads to an increased susceptibility to
faults. It is possible to specify two main sources of faults [1]:
1) Design faults (bugs) are always the consequence of an in-
correct design, an ambiguous specification or misinterpretation
of the specification and 2) Hardware/physical faults (defects)
which arise during manufacturing or during system operation.

The approach which deals with design faults is called func-
tional verification [2] which currently has an irreplaceable po-
sition in the development cycle of digital systems. Functional
verification checks whether a hardware system satisfies a given
specification. The main purpose is to find as many design faults
as possible before the system is deployed. The main principle
of functional verification is to compare the outputs of verified
circuits with those of the reference model. Different coverage
metrics are defined in order to assess that the design has
been adequately exercised. These include code coverage and
functional coverage. Code coverage gives information about
how many lines and how many times expressions and branches
are executed. This coverage is collected by the simulation tool.
Functional coverage is defined by the user. The user defines
the coverage points for the functions to be covered in a verified
circuit (DUT - Design Under Test) and it is completely under
user control. Moreover, standard languages, methodologies
and libraries were defined for functional verification. The
most commonly known are the SystemVerilog IEEE language

standard, Universal Verification Methodology (UVM) [3] and
the open-source UVM library (with all the basic components
of verification environments).

The techniques called Fault avoidance or Fault toler-
ance [4] deal with the second type of faults called hard-
ware/physical faults. Fault avoidance is mainly obtained by
the use of radiation hardened technologies, improved design
of storage elements or asynchronous circuits. Fault tolerance
is the ability of a system to continue performing its correct
function even in the presence of unexpected faults. There have
been many fault-tolerant methodologies inclined, among oth-
ers, to Field Programmable Gate Arrays (FPGAs) developed
and new ones are under investigation [5], because FPGAs
are becoming more popular due to their flexibility and re-
configurability. The second reason why so many techniques
are inclined to FPGAs is their sensitivity to faults and ability
to be reconfigured in the case of fault occurrence. FPGAs are
composed of configurable logic blocks [6] which are connected
by programmable interconnection. The configuration is stored
as a bitstream in SRAM memory. The problem is that FPGAs
are quite sensitive to faults caused by charged particles [7].
This particle can induce inversion of a bit in bitstream and
this may lead to a change in its behaviour. This event is called
Single Event Upset (SEU).

It is important to test and evaluate these techniques. Various
approaches to the evaluation of fault tolerance exist, some
of them are performed on a theoretical level, for example,
a simulation method for SEU emulation is presented in [8].
Another approach is in the use of fault injection directly to the
design implemented in FPGA. Special evaluation boards are
developed for these purposes, one of them is presented in [9]
or [10]. The systems implemented as fault-tolerant very often
consist of two parts - an electronic one and a mechanical one.
The mechanical part is controlled by its electronic controller. It
can be stated that such areas exist in which electro-mechanical
applications are implemented as fault-tolerant - aerospace and
space applications can serve as an example. The platforms
for the verification of fault-tolerant qualities that allow us to
just chceck the resilience of the electronic component have
been used until now. We feel that for electro-mechanical
systems the approach must be different. It must be possible
to check what are the reactions of the mechanical component
if the functionality of its electronic controller is corrupted by
external attacks.

The basic concepts and the first version of evaluation
platform were presented in our previous work [11]. The first
version of the evaluation platform is composed of three parts:
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1) robot controller running on FPGA, 2) simulation of the
robot and its environment running on PC and 3) previously
developed fault injector [12] running on PC. Based on experi-
ments with our platform we realized the necessity to automate
the process of a fault impact evaluation. We found functional
verification as an appropriate technique for this purpose.

The proposed process of the fault impact evaluation, which
is shown in Figure 1, is divided into three phases. In the
first phase, we use the simulation-based functional verification
where the VHDL description of the electronic robot controller
is used as the DUT. In this phase, the correctness of the
robot controller is evaluated. The second phase consists of
the verification of the robot controller implemented into FPGA
with the scenarios obtained during the previous phase and uses
a previously implemented fault injector. The analysis of the
faults which corrupted the mechanical part is the goal of the
third phase. The development of the verification environment
and the development of a reference model for the electronic
control unit (the robot controller) are the first steps towards
this process. Both of these activities are described in detail in
this paper. The second step is to implement DUT to FPGA
and its interconnection with the simulation environment of
robot. The architecture of the verification environment with
the robot controller implemented to FPGA is also presented in
this paper. The experiments which correspond with the first and
the second phases of the proposed process are also important
parts of our work.
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Fig. 1. The flow of phases in the digital systems verification.

The main output of the first phase is a test on whether the
robot controller works correctly according to the specification.
It is important because we have to ensure that the robot
controller does not contain any functional errors in the imple-
mentation. It is also important to point out that in this phase
we acquire a set of verification scenarios (different mazes with
different start and goal positions for robot movements) that will
also be used in the subsequent phase. One verification run is
represented by the robot moving through the maze from the
start position to the goal position.

The outputs of the second phase are previously verified
verification scenarios supplemented by information about in-
jected faults and its impact on the electronic part. The injected
faults are divided into two categories, faults with no impact
on electronic part and faults which cause mismatches on
the output of the electronic part. Various strategies of fault
injection may be used in this phase (e.g. one fault for one
verification run, multiple faults in the same functional unit or
multiple faults in different functional units).

This paper is organized as follows. The architecture of the
verification environment for the first phase is described in Sec-
tion II. Section III describes evaluation platform architecture
used in the second phase. The principles of generating verifi-
cation scenarios are described in Section IV. Section V shows
experiments and results corresponding with the first and second
phases of the evaluation process. Section VI summarizes the
results and proposes our plans for future research.

II. THE FIRST PHASE - VERIFICATION ENVIRONMENT

ARCHITECTURE

The verification environment architecture, its basic com-
ponents and used techniques are described in this section.
First, UVM based verification environment for one verification
scenario (one maze, start and goal positions) is presented,
which forms the core of an extended verification environment
for multiple verification scenarios evaluation.

A. Verification Environment for Single Verification Scenario

The verification environment for the robot controller is
designed according to UVM, so it corresponds with current
trends and requirements. The basic architecture of the verifi-
cation environment with main components is shown in Figure
2 [13]. It should be noted that the verification environment is
connected with the robot in the maze (the robot in the maze is
simulated in simulation environment Player/Stage [14]). The
robot in the maze is controlled by the outputs of the robot
controller (DUT) while the outputs of the robot in the maze
(information from sensors) are inputs to the robot controller.
The information whether DUT satisfies (or does not satisfy)
specification and coverage report for the verified scenario are
the outputs of the verification environment. These are the
components of the system together with their description:

• The robot controller under verification implemented
in VHDL is able to search a path through a maze.
Detailed information is available in [15].

• The golden (reference) model implemented in C/C++
according to the same specification as the robot con-
troller performs the same operations as DUT. The
reference model is described in detail in [13].

• The sequence is the component which receives data
from sensors placed in the robot in the maze. Received
data (information about barriers in four neighborhoods
and the position in the maze) are transformed to the
inputs of the verification environment.

• The driver sends input values (data from sensors) to
reference model and DUT (robot controller).

• The monitor reads the outputs from DUT (speed of
the robot in the maze) and forwards them to the
scoreboard and to the robot in the maze which moves
according to these values.

488



• The scoreboard compares the outputs of the monitor
and reference model on equality and checks mis-
matches on the outputs. The detected mismatch shows
that there are differences between DUT and reference
model outputs.
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Fig. 2. Verification environment for single verification scenario.

B. Extended Multiple Verification Scenarios Evaluation

The presented verification environment is not able to eval-
uate multiple verification scenarios automatically and we need
the extension of the process to be automated. The extension
of the verification environment is presented in this section.
The verification environment is used as one of several com-
ponents. Other components such as maze random generator
are also important. The design of the complete extension is
shown in Figure 3. The components, their inputs, outputs and
connections are shown in the figure and their description is as
follows:

• The maze generator allows us to generate a sufficient
number of mazes with respect to specified parameters
(size, width of corridor etc.) in order to achieve
the required coverage. In our work, we use a maze
generator based on our universal generating principle
described in Section IV.

• The robot simulation replaces the real robot because
we do not have a real one. As mentioned above, we use
the Player/Stage [14] simulation environment which
provides features that we need for our research.

• The step counter calculates the number of steps that
the robot must perform to pass from the starting to the
goal position. This information is important for proper
operation of the UVM verification environment.

• The UVM verification environment is the core of the
extended evaluation.

• The verification scenario allows us to use it in the
second phase which uses a fault injector (Figure 1). A
certain part of the stored verification scenario is also a
report about the coverage which was obtained by this
scenario.

• Merge the coverage achieved by the single verification
scenario is important to obtain a final coverage report
gained by stored sets of verification scenarios.

Figure 3 also shows the outputs of the first phase of the
fault impact evaluation process presented in Section I which
are Set of Verification Scenarios and obtained Total Coverage
Report.
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Fig. 3. Extension of verification environment for multiple evaluation.

III. THE SECOND PHASE - EVALUATION PLATFORM

ARCHITECTURE

The second phase of the evaluation process is functional
verification of the design implemented to the FPGA. Moreover,
the fault injection into the FPGA is performed in this phase.
The experimental platform was designed for these purposes
which is composed of a few components running on a com-
puter or on an FPGA evaluation board:

1) software part of verification environment for the robot
controller running on computer,

2) software simulation environment for robot simulation
(Player/Stage) running on computer,

3) robot controller implemented to FPGA, and
4) external fault injector [12] running on a computer

which allows us to simulate real faults in FPGA.

The overall experimental platform interconnection is shown
in Figure 4. The connection between a computer and an FPGA
is realized by JTAG and Ethernet. JTAG interface is used for
FPGA programming and the software and hardware part of
verification environment are connected through Ethernet. The
fault injector also uses JTAG for placing faults into the FPGA
configuration memory. The description of the architecture of
the verification environment and of the fault injection process
follows.

A. Architecture of FPGA-based verification environment

For these purposes, the FPGA-based verification environ-
ment which is displayed in Figure 5, is derived from the
version created in the first phase. The architecture of the
verification environment is divided into two parts. The first
part is the simulation environment of a robot in the maze
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Fig. 4. The structure of the experimental platform.

which is controlled by the robot controller implemented to
FPGA. The communication between the software and the
hardware part is accomplished using a proprietary interface
(more details about the communication are provided in the
subsequent subsections). This part operates autonomously, the
robot controller receives information from the robot sensors
which are produced by the simulation environment and sends
them to the FPGA through Output Wrapper. On the other
hand, speed and direction of movement are sent through Input
Wrapper from the robot controller implemented in FPGA to
the robot in a simulation.

The second part is the UVM-based verification environ-
ment which operates as an observer without direct intervention
to data transfers between the robot controller and robot in
a simulation environment. The verification environment just
checks the correctness of transferred data which are resent
to the verification environment as can be seen in Figure 5.
Information from sensors is received in the Sequence com-
ponent where they are transformed to transactions and trans-
ferred to the Golden Model which produces reference output
data. Speed and direction of movement are received in the
Monitor component and sent to the Scoreboard component.
The Scoreboard compares received data with reference data
obtained from Golden Model.

Both parts are synchronized by signals sent from the
Sequence and Monitor components to the robot simulation
environment. These signals indicate that the verification en-
vironment is ready to observe robot movement in the maze.

Presented FPGA-based verification environment evaluates
only one verification scenario, but automated evaluation of
multiple verification scenarios with fault injection is needed.
The second phase eliminates the need for maze generation
because mazes pregenerated and verified in the first phase
are used. Conversely, there are new steps as a consequence
of implementing robot controller into FPGA and the creation
of an autonomous connection between the FPGA and robot
in the maze. The first necessary step is programming the
FPGA through JTAG interface which must be done before each
verification run. This step ensures that the correct functionality
of the robot controller is verified and is without faults. Pro-
gramming FPGA clears BRAM memory where a map of the
maze is continuously stored which is important when the maze
is changed.

The next step is launching the robot in a simulation and
verification environment which provides enable signals to the
simulation environment when it is ready to start monitoring.
Then, the robot starts to search for paths through the maze
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Fig. 5. The architecture of the FPGA-based verification environment.

which is the proper time for fault injection. It should be
noted that fault injection proceeds according to the selected
strategy. Our fault injector allows us to inject faults into
specified functional units which can be advantageously used.
For example, we can inject single faults during one verification
run into the specified functional unit, multiple faults into
the specified functional unit or inject multiple faults into
multiple functional units. After fault injection, the verification
run is finished or timeout is expired and then results of the
verification are recorded into the verification report.

B. Communication Between Software and Hardware Part

Communication between the robot controller implemented
on the FPGA (hardware part) and robot in a simulation
environment (software part) is accomplished through Input
and Output Wrapper. We chose ML506 development board
[16] with Xillinx Virtex 5 FPGA as the hardware platform.
This board offers various peripherals and some of them can
provide communication with a PC (e.g. PCIe, UART, USB
or Ethernet). We decided to use Ethernet communication
because of its versatility. The chip implementing the Ethernet
physical layer is connected to the FPGA and user design
which implements higher layers of the Ethernet protocol stack
that can communicate with this chip. However, we do not
implement a full Ethernet protocol stack, but use an existing
implementation presented in [17].

Figure 6 shows the architecture of the communication
layer. Although we use an existing implementation of Ethernet
communication we must solve a problem with different clock
signals on receive (RX) and transmit (TX) interfaces. These
clock signals are generated by a physical layer chip and the
designer is not able to modify the frequency and phase offset.
We use FIFO memory as an input and output buffer with
different writing and reading clock signals. This solves not
only the problem with clock domain crossing, but also the
problem with data storing before their processing. Received
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data from Ethernet are buffered in the input buffer and data
ready to be sent are buffered in the output buffer. We use
FIFO as the interface of DUT which allow us to exchange
a communication layer with another one which uses FIFO
buffers.
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Fig. 6. The architecture of communication between SW and HW part.

C. Evaluation of Reliability by Fault Injection

The simulation of the effects of faults in the FPGA can be
done by a direct change of the configuration bitstream which
is loaded into the configuration memory. For this purpose, we
implemented a fault injector [12] which allows us to prepare
the bitstream for our FPGA and also modify single or multiple
bits of the bitstream in order to simulate single and multiple
faults. As a consequence, the design placed in the FPGA
(determined by the configuration data) is similarly influenced
by a real fault which strikes the hardware architecture of the
FPGA in a real environment.

The injector is based on the SEU generation outside of the
FPGA (in PC), so it is not targeted to a specific FPGA board
(testing was performed on the ML506 card with the Virtex 5
FPGA technology). The original and the modified bitstream
is transported through the JTAG interface. The process of the
SEU generation is divided into four steps: 1) specifying the
location of the fault injection, 2) reading the related part of
the configuration bitstream, 3) the SEU generation (i.e. the
inversion of the specified bit of the bitstream), and 4) applying
the bitstream using Partial Dynamic Reconfiguration (PDR)
without stopping the FPGA.

The implemented fault injector is able to inject a fault into
a specified bit of bitstream. If we are able to find a relation
between bits of bitstream and functional units, we can inject
faults into the specified functional unit. For this purpose, the
analysis of FPGA can be done by RapidSmith [18] tool. This
tool identifies the bits of bitstream which are related with a
specified area on the FPGA. Functional units placement on
the FPGA is done by PlanAhead [19] tool, then we know
where each of the functional units are placed. This process
allows us to inject faults into specified functional units during
our experiments. Unfortunately, the process actually finds only
the bits of the bitstream corresponding with Look-up tables
(LUTs).

IV. MAZE GENERATION

Maze generation is a well known and explored area for
which a considerable number of algorithms generate simple
or sophisticated mazes that exist [20]. The vast majority
of algorithms operate in a two-dimensional space, keep the
current state and can constantly change cell values of a maze in
time. These algorithms are highly unsuitable for our proposed

architecture of the universal generator [21], because the output
of the generator (a line of the maze) cannot be determined
in one step, therefore, it is determined gradually by many
factors and dependencies between different cells of the maze.
However, an algorithm exists that is based on a binary tree and
a particular line of the maze can be determined only from the
previous one. This principle is completely satisfactory for our
generator and the output maze is fully sufficient for our needs.

The basic principle of the binary tree algorithm is shown
in Figure 7. It starts from the basic matrix of the maze (a) in
which some cells are tightly specified - either the corner or
the wall. We represent the corridors by zeros and the walls
by ones. Cells marked with a question mark represent areas
that can take the value of 0 or 1, thus the corridor or the wall.
Inorder to maintain the continuity from any corner of the maze
to another, it is necessary to perform modification of the basic
matrix of the maze so that each two adjacent sides of the maze
must contain the corridor over its entire dimension (b). In our
case, we chose this corridor to the northern and the eastern
side of the maze. The final most critical task is to determine
the cells A, B, C, D which allows us to have the maximal
continuous maze (c).
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a.                                     b.                                     c.
Fig. 7. The demonstration of a conversion of the basic matrix of the maze
for needs of the generator.

The original description of the algorithm [20] divides cells
of the maze in a line into groups of corridors bordered by
walls. For each group, an algorithm determines one entrance,
either in the northern or in the eastern part of the border. This
ensures the passage from the northern part of the maze to the
south and the same applies for the passage from the west to
the east. We transferred this principle into one line dependency
in the maze and the result is the following dependence. If a
cell A respectively C was randomly selected for the corner in
Figure 7.b, then the cell B respectively D will be a wall and
vice versa.

The architecture of the universal generator is based on two
input structures - the Problem Description and Constraints. In
this case, the Problem Description defines a set of values and
desired output format - zeros and ones. Constraints represent
restrictions based on the preceding paragraph which are re-
quired for the continuous generation of the maze. The samples
of simplicity of both structures, without further explanation,
are available below. The structures are sufficient to generate
the maze with 7x7 cells.

----- Problem Description -----

substitute {
A,C { "0"|"1" }
B,D { "0" }

}
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syntax {
odd { "1A1C101" }
even { "10B0D01" }

}

----- Constraints -----

constraints {
nlines(7,7)

ifthen(A("0"),B("1"))
ifthen(C("0"),D("1"))

start("1111111")
start("1000001")

useonly(odd)
afterinsert(odd,even)

end("1111111")
}

We continued in our previous research published in [11] by
this maze generation and we have shown another possible area
for our architecture of the generator. Any desired dimension
of the maze can be generated with minor modifications. In
order to use an assumption of the basic matrix of the maze,
it is necessary to choose the odd dimensions of mazes. In our
previous work, we were able to generate assembler programs
for RISC and VLIW processors [21] which is a completely
different type of input stimuli for the same generator.

V. EXPERIMENTS AND RESULTS

Performed experiments correspond to the activities of the
first and second phase of the fault impact evaluation process.

A. The First Phase

The outputs of the first phase are: 1) the electronic part
without bugs (robot controller), 2) the list of the used veri-
fication scenarios, and 3) achieved coverage. Figure 8 shows
three types of mazes which we used in our experiments. The
presented mazes differ in their dimensions, we chose 7x7,
15x15 and 31x31 cells. Examples of start and goal positions
are also shown in Figure 8. With the growing size of the
maze the number of steps that the robot must also go through
increases. The average number of the robot steps in various
types of mazes is shown in Table I. The main goal of the
experiment, including debugging the robot controller, was to
determine the optimal size of the maze and the number of
generated mazes (verification scenarios) which will lead to the
best code coverage.

TABLE I. AVERAGE NUMBER OF ROBOT STEPS

Maze size 7x7 15x15 31x31

Average number of steps 16 93 433

For the experiment, we chose the number of performed
verification scenarios equal to 10, 100, 200 and 500, for
which we monitored achieved code coverage. The numbers of
performed verification scenarios were the same for all types
of mazes, in total 1,500 verification scenarios were performed
with a variety of mazes. Various bugs were identified and
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Fig. 8. Three types of mazes.

debugged during the verification process. We can state that
the robot controller operates according to its specification for
the performed 1,500 verification scenarios.

Experimental results are presented in Table II. It can be
recognized that the maximal achieved total code coverage is
91.85%. The missing percentage to an ideal 100% is caused
by the ”others” branches in the source code which are never
executed (which is correct), and also by some of the control
expressions that are used only when an abnormal situation
occurs (e.g. fault). The table also shows that a rising number
of verification scenarios does not increase the achieved code
coverage. It is probably because in one scenario multiple input
transactions are packed.

On the other hand, resizing the maze from 7x7 to 15x15
cells led to a slight increase of code coverage, suggesting the
effect of the maze. When increasing the size of maze to 31x31
cells, the coverage was not changed. Such studies show that
the 7x7 cells maze is too small for the next phase of fault
impact evaluation process. This trend is shown in a bar chart
in Figure 9 which shows the code coverage for different sizes
of mazes for 100 verification scenarios.
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Fig. 9. Code coverage for each type of mazes for 100 verification scenarios.

The results needed to perform the next phase of the fault
impact evaluation were obtained in the experiment. Faults
will be injected into the electronic controller during each
verification scenario in the second phase of evaluation. Each
verification scenario will be repeated several times and during
each run various faults or various sequences of faults will be
injected.

B. The Second Phase

The second phase in the proposed evaluation process
is targeted towards evaluating the correct function of robot
controller implemented into the FPGA. For this purpose fault
injection is used. No fault tolerance methodology implemented
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TABLE II. THE EXPERIMENTAL RESULTS

# of verification scenarios 10 100 200 500

Size of mazes 7x7 15x15 31x31 7x7 15x15 31x31 7x7 15x15 31x31 7x7 15x15 31x31

Statement coverage 93,54 % 93,70 % 93,70 % 93,54 % 93,70 % 93,70 % 93,54 % 93,70 % 93,70 % 93,54 % 93,70 % 93,70 %

Branch coverage 94,91 % 95,07 % 95,07 % 94,91 % 95,07 % 95,07 % 94,91 % 95,07 % 95,07 % 94,91 % 95,07 % 95,07 %

Expression coverage 81,33 % 81,33 % 81,33 % 81,33 % 81,33 % 81,33 % 81,33 % 81,33 % 81,33 % 81,33 % 81,33 % 81,33 %

Condition coverage 88,28 % 89,18 % 89,18 % 88,28 % 89,18 % 89,18 % 88,28 % 89,18 % 89,18 % 88,28 % 89,18 % 89,18 %

Total coverage 91,61 % 91,85 % 91,85 % 91,61 % 91,85 % 91,85 % 91,61 % 91,85 % 91,85 % 91,61 % 91,85 % 91,85 %

in the robot controller for these experiments was used and the
goals of the experiment are: 1) detailed reliability analysis of
the robot controller and its functional units, and 2) demonstra-
tion that the evaluation platform can be used for fault tolerance
evaluation.

Before explaining the details of our experiments, we must
introduce the robot controller which consists of various blocks,
whose function is described in [15]. The controller is con-
nected to the PC on which robot simulation environment
(SEPC) runs via the Interface Block. Through this block,
data from the simulation are received and in the opposite
direction, instructions defining the required movement of the
robot are sent back. The central block of the robot controller
is a bus through which the communication between blocks is
accomplished. The Position Evaluation Unit (PEU) calculates
the positions of the robot in the maze and provides them
to other units as coordinates x and y. The Barrier Detection
Unit (BDU) uses four sensors and provides information about
the distance to the surrounding barriers. The map updating
provided by the Map Unit (MU) is based on information about
the positions of the robot and the barriers vector. The Map
Memory Unit (MMU) stores the information about an up-
to-date map. Path Finding Unit (PFU) implements a simple
iteration algorithm for finding a path through the maze. The
mechanical parts of the robot are driven by setting the speed in
the required direction of the movement by the Engine Control
Module (ECM). The communication of functional units with
bus is accomplished through the bus wrapper (FU WB) and
controlled by the finite state machine (FU FSM).

As was mentioned above, faults can be injected in a way
which reflects various strategies. Similar experiments were
done in our previous work [11] but significant differences
in evaluation strategies are presented in this paper. We have
decided to perform 50 verification runs and inject one fault into
one functional unit (single fault) during one verification run
and to use the mazes of larger dimensions, the mazes of 15x15,
for this phase. The robot controller consists of 15 functional
units which leads to 750 verification runs and injected faults in
total. The task of the verification environment was to compare
the outputs of the robot controller and check the impact of
injected fault. Table III shows the number of verification runs
where the incorrect outputs of the robot controller were caused
by faults (percentage values are shown as well). The total
number of verification runs for each functional unit is 50
and the main reason for this is the time complexity of the
verification runs, because the robot has to go through the whole
maze.

The results of our experiments are shown in Figure 10 as
well. The bar chart expresses a percentage number of faults
with their impact on the robot controller. Horizontal lines in
the chart show minimum, average and maximum values. As
can be seen, some anomalies in the results of the experiments

TABLE III. EXPERIMENTAL RESULTS IN FUNCTIONAL VERIFICATION.

Unit Number
of fails

Fails in % Unit Number
of fails

Fails in %

bdu 40 80 mu wb 31 2

bdu fsm 19 38 peu 39 78

bdu wb 35 70 peu fsm 40 80

ecu 38 76 pfu 34 68

intercon 31 62 pfu wb 28 56

mmu 31 62 sif fsm 50 100

mu 25 50 sif wb 34 68

mu fsm 1 2

exist. These include results combined with three functional
units mu fsm, peu fsm and sif fsm. In the case of mu fsm,
it is apparently a low number of faults with an impact on
the correct function of the robot controller. Functional units
peu fsm and sif fsm represent a completely different situation,
the number of faults with impact is significantly higher than
for other units. That is why we repeated the experiments on
a higher number of verification runs (225 in this case) with
these functional units. Table IV shows additional verification
runs that was performed in order to analyse these anomalies
in detail. As can be seen, the additional results are closer to
the overall average.
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Fig. 10. Experimental results in functional verification.

We have made the fault injection analysis of the robot
controller. We have found out that some blocks are more
prone to faults than others. As can be recognized in the chart
showing the results, the functional unit mu fsm is less prone
to faults than the other units. On the other hand, the units
peu fsm and sif fsm are the most prone units to faults. This
is especially important for future application of fault-tolerant
methodologies. A system designer obtains the information
which blocks needs more attention from a reliability point of
view.

The second finding is that we are able to use the functional
verification in conjunction with the fault injector to determine
the impact of faults on the electro-mechanical system. Our sys-
tem could be used to automate the evaluation of fault tolerance
methodologies after these methodologies are applied to the
electro-mechanical system (in our case the robot controller).

VI. CONCLUSIONS AND FUTURE RESEARCH

In this work, we introduced a verification environment
which shows the progress of our research. The verification
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TABLE IV. EXTENDED EXPERIMENTAL RESULTS.

Unit Number of fails Fails in %

mu fsm 18 8

peu fsm 181 80.4

sif fsm 219 97.3

environment is the main part of our platform for evaluating
fault impact on the electro-mechanical system. The introduced
basic verification environment is able to evaluate a single
verification scenario and the creation of an extension which
allows automated evaluation of multiple verification scenarios
was presented as well. This automated evaluation uses the
maze generator based on our universal generator approach.
The verification environment for the second phase where the
DUT is implemented to the FPGA was also created. In the
proposed methodology, the verification environment acts as an
observer that checks data transferred between the electronic
and mechanical part.

Performed experiments correspond to the first and second
phases of a fault impact evaluation process. The output of the
first phase is the debugged electronic controller and the list
of verification scenarios for the next phase. During the second
phase, the reliability analysis was done by means of the fault
injection into the FPGA. The result is the ratio of faults that
caused an incorrect output of the electronic controller.

In our future research, we shall prepare experiments cor-
responding with the third phase of the proposed evaluation
process which checks reactions of the mechanical part, not
only of the electronic part. We must create the extension of
our evaluation platform for these purposes. Thanks to the
Player/Stage simulation environment we are able to receive
not only information from sensors, but also information about
the behaviour of a robot in the maze. Next, the goal of our
future work is to apply various fault tolerance methodologies
on the robot controller and evaluate them with our evaluation
platform. For example, we plan to construct our robot con-
troller as a fault tolerant neural network. We can use more
conventional fault tolerant methodologies such as TMR, on-
line checkers or error correction codes. We will focus on
testing fault tolerance methodologies targeted to FPGAs in
the context of electro-mechanical systems which is often the
way of using fault-tolerant electronic controllers. On the basis
of these results, we are going to develop generally usable
principles of developing systems for evaluating fault tolerant
qualities of electro-mechanical systems.
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