
Accelerating the process of web page segmentation via
template clustering

Jan Zeleny
Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic E-mail: izeleny@fit.vutbr.cz

Radek Burget

Faculty of Information Technology
Brno University of Technology
IT4Innovations Centre of Excellence
Brno, Czech Republic E-mail: burgetr@fit.vutbr.cz

Abstract: Segmenting a web page is often one of the initial steps when performing
some data mining on that page. We acknowledge that there is a lot of research in
the area of segmentation based on visual perception of the web page. In this paper
we propose a method how to improve the efficiency of virtually all vision-based
segmentation algorithms. Our method, called Cluster-based Page Segmentation,
takes the widely spread concept of web templates and utilizes it to improve
the efficiency of vision-based page segmentation by clustering web pages and
performing the segmentation on the cluster instead of on each page in that cluster.
To prove the efficiency of our algorithm we offer experimental results gathered
using three different vision-based segmentation algorithms.

Keywords: VIPS, vision-based page segmentation, clustering, template,
template detection

Biographical notes: Jan Zeleny is a PhD student at the Brno University of
Technology, Czech Republic. His reserach interests are in the area of Web Data
Mining and Information Retrieval in general. He is also interested in the area of
electronic privacy in context of these two topics.

Radek Burget received his PhD in Information Technology in 2004 from the
Brno University of Technology. He is an assistant professor at the Faculty
of Information Technology, Brno University of Technology. His research
interests include data mining methods, semi-structured data modeling, knowledge
engineering and the semantic web.

1 Introduction

In recent years, the World Wide Web has become perhaps the most important source of
information in the world. A family of algorithms to process that information grows with it.
There are several tasks that we might want to perform on the data on the Web. The largest

Copyright © 2009 Inderscience Enterprises Ltd.

2 J. Zeleny et al.

group of tasks falls into the area of data mining. These are tasks like information retrieval,
content extraction and classification and others. Another big group of tasks targets web page
restructuring for mobile devices.

All algorithms working with the data on the web require one common step – initial
preprocessing in a form of web page segmentation. The segmentation step works with a
simple premise – that the web page is not one coherent block of information. Instead, it
contains multiple such blocks, each one containing different type of content [1]. The goal
of segmentation algorithms is to identify these blocks so they can be processed separately.
In case of the data mining tasks, the segmentation is often complemented by classification
with the intended result being identification of blocks that are either relevant in the context
of the web page or that are important for the subsequent algorithm. In case of restructuring
for mobile devices, the subsequent goal is to rearrange the web page, maybe even remove
some blocks that are not considered important.

There is a variety of ways how to perform the segmentation. They differ in all possible
aspects, starting with the requirements on the input side and ending with granularity of the
output.

Template detection (further referred to as TD) methods are a good example of that. In
the literature it is considered being just remotely related but we see some common parts.
For example TD identifies page segments as well, even though it just distinguishes two –
useful content and the rest. The results of segmentation methods are more generic. It’s a
set of various blocks, each block being internally consistent in some way, most often either
visually or logically.

In our work we focus on unsupervised page segmentation. Although this area has been
extensively researched, there are just two usual ways how to approach the task. The first one
usually utilizes DOM tree of a web page or its textual content and focuses on performance
with the result being potentially inaccurate [2, 3, 4, 5]. The source of this inaccuracy is
that large portions of information from the web page, such as computed CSS styles, are
dropped. The second one on the other hand strongly prefers accurate results even at the
expense of the result being produced more slowly [6, 7, 8, 9]. The most distinct feature of
these algorithms is that they work on every web page independently. This feature is both
their benefit (no need to have more pages on the input) and problem (scaling).

The motivation of our research is to remove the negative aspect of the independent
processing of single web pages by eliminating the need to perform the segmentation on
every inspected web page. This significantly boosts performance and scaling of vision-
based page segmentation. To achieve the goal, we use clustering algorithm that is based
on methods used in template detection. This combination of template detection and vision-
based page segmentation addresses the greatest issue of vision-based page segmentation
(time complexity) while keeping its level of accuracy. It also keeps the positive aspect of
the independent page processing (only a single page is required for the segmentation itself).
The method, called Cluster-based Page Segmentation (further referred to as CPS), is in fact
a complementary algorithm. Its potential usage is not limited to any particular algorithm,
it is not even bound to the area of vision-based page segmentation if the complemented
algorithm in question and its implementation keep some basic rules.

In this paper we describe structures and algorithms that are comprised in CPS. We then
use the theoretical and practical description and demonstrate the efficiency of our algorithm
by selecting three vision-based segmentation methods and running them with and without
the CPS.

Accelerating the process of web page segmentation via template clustering 3

2 Related work

Our research belongs into the extended area of web page segmentation. It is extended
because we are not strictly focused on page segmentation, as explained above. While the
core of our research is in the wider area because we examine possible utilization of template
detection, the state of the art is more important in the area of web page segmentation itself.

To understand the area of web page segmentation, it is first important to properly classify
possible motivations. Reorganizing a web page for devices with small display is a motivation
that is only marginally relevant to our research, therefore it won’t be analyzed further.

The most important motivation to segment web pages is preprocessing for data mining
techniques. This needs to be done because web pages are semi-structured documents
that contain other elements among the useful content, for example HTML tags, various
descriptors and other metadata. The most simple option how to perform the preprocessing
would be to strip all the metadata. However that approach is not entirely accurate because
not all the metadata is easily detectable. A significant portion of what in fact belongs to
metadata or is strictly speaking just a noise is presented as a data to user who looks at the
page [10]. Back to the motivation, the most obvious is to clean up the metadata and the
noise. That can be done by virtually every segmentation method but the template detection
methods focus solely on this goal [11, 12]. Built on top of that, the next motivation is to
identify semantically distinguished blocks that the page contains [8].

The goal of page segmentation is to find blocks that are internally consistent more than
the page itself. The consistency can be either logical or visual, based on input parameters
and used segmentation method. Both types of consistency often overlap.

The logical consistency is targeted by DOM-based and text-based segmentation methods
[2, 3, 4, 5]. These analyze only textual representation of a web page, either in a form
of source code of the page or a DOM tree which is just a model of this text form. The
distinctive feature of these methods is that they don’t need any complex transformations
to perform their task, they completely depend on heuristics applied on some form of the
textual representation of the analyzed page. The set of heuristics is also the only factor
defining the quality of segmentation results. The array of heuristics can vary from pure text
evaluation [2] to complex algorithms taking a wide variety of properties into account [5].
However because these methods don’t perform any complex transformation of the textual
representation of the page, they always fail to take one very important aspect into account
and that is the real layout of the inspected page. Even the text-based DOM model doesn’t
accurately describe the real relations of individual blocks in consideration of their visual
appearance [6]. When we consider CSS rules in all their complexity, the DOM tree and the
corresponding tree representing the visual appearance can be very different. As an example,
figure 1 demonstrates how individual parts of a web page can be moved or transformed
by CSS. The example is very simple and yet the CSS changed the appearance of the page
completely.

Contrary to the DOM processing algorithms, vision-based page segmentation methods
are based on a simple concept with quite large computing demands. They address the issue
of real layout by calculating real values of attributes defining the layout. In its complexity
this calculation corresponds to real rendering of a web page, thus it will be referred to as
such. The process of rendering is very complex due to complexity of both HTML and CSS
specifications. That implies quite high demands both for computational power and time to
process one page and that’s even before the segmentation itself. Rendered page is often
segmented in several iterations [6] which is also very demanding. The most commonly

4 J. Zeleny et al.

Figure 1 Influence of CSS: a) is a slice of raw page, b) is the same page with CSS applied

used algorithm in the area of vision base segmentation is VIPS [7] and algorithms using
it as a black box and improving its results [8, 9]. Another approach, partially derived
from the original VIPS specification, has been offered by Burget [6]. In this paper we
will demonstrate results of Cluster-based Page Segmentation working on top of several
known implementations of vision-based page segmentation, including VIPS as an industry
standard.

Template detection can be perceived as a special type of page segmentation. Template
detection methods [11, 12, 13, 14, 15] are used to identify the noise on the processed web
page so it can be removed afterwards. Algorithms in the template detection group are based
on the concept of page templates [16]. This concept comes from the area of modern web
design where a relatively small number of templates is used to dynamically build all the
content on a web site. Each template defines core structure of a large set of pages within
that site. Physically, each template is a pre-defined code which creates a frame with marked
spaces in it. Based on user input, a data set is fetched from the underlying data source and
a web page is created by filling these fetched data into the frame. While being a great help
to web designers and content authors, templates pose a problem for information retrieval
algorithms. A substantial part of every page contains information unrelated to the core
topic of the page – for example navigation, advertisement and other noise. In the context of
templates and template detection, all this unrelated content is considered to be a part of the
template. The job of template detection methods is to correctly separate the aforementioned
blank spaces from the pre-defined code.

The focus of template detection methods implies one of the disadvantages these methods
have. They can be only used to distinguish between the template and the content, no finer
granularity is available. Because of their design, they also usually lack the ability to perform
inspection on a single web page. On the other hand they are usually designed to be as fast
as possible and they scale very well.

One subset of the template detection methods makes them closely related to our research.
Its a subset containing methods that are based on DOM tree comparison [11, 13, 15, 17].
Their core functionality can be used to determine a degree of similarity between two web

Accelerating the process of web page segmentation via template clustering 5

pages. This can be represented for example by a simple probability-based equality indicator.
If the value of such indicator goes over a pre-defined threshold, the two pages are considered
to be significantly similar. In the context of template detection, the significant similarity
translates to both pages being based on the same template.

3 Cluster-based Segmentation

In our work we consider the following scenario where page segmentation is used as the key
part: we have a crawling algorithm that wants to index as many documents as possible. For
the initial description of the use case we can define a constraint that only a specific web site
will be scanned. Every web page on that site is supposed to be segmented and the result
further processed. At this point it doesn’t matter what is the subsequent processing going
to be, it might be anything starting from information retrieval and ending with semantic
classification.

With the standard segmentation approach, every scanned web page is going to be
segmented. For some large servers like world-wide news servers this means performing the
segmentation task hundreds of thousands of times. Obviously this doesn’t scale at all and
the time required to process mid- to large-size web site is unacceptably long.

In our research we propose a new way how to deal with scaling and performance
problems when processing large sets of web pages. One of the advantages is that the bigger
the set of web pages is, the greater optimization this approach achieves. Another advantage
is that our algorithm doesn’t require all the pages to be processed at once, partial data set
can be retrieved, the process interrupted and continued any time later. Our algorithm can
be summarized in the following proposition.

Proposition 1: When processing more pages within the same site, it is possible to increase
the performance of a segmentation algorithm by performing the actual segmentation only
for a limited number of pages and transform these pages to represent their respective
template-based clusters. When a page can be matched to an existing cluster, an isomorphic
mapping between the page and the structure representing the corresponding cluster can be
used to get the results of page segmentation without performing it.

Most often, the clustering is performed on a complete set of values. However in our
case it is not convenient to store all pages and perform the clustering on the entire set of
pages. One of the reasons is that it is not possible to estimate upfront how many pages
will be in the set. Also there is the issue of continuous content generation. Big web sites
like news servers keep publishing new content, therefore the set of web pages will never
be completed. All these reasons lead to the conclusion that some form of stream clustering
algorithm is required.

This aligns with another preferred feature – to store as few data as possible in order to
optimize memory and disk space consumption in practical application. To achieve this goal,
we don’t store processed web pages at all, we just store minimal structures representing the
individual cluster. These structures will be further called Cluster Representatives. Note that
while we aim for the structure to be minimal, the basic requirement is to store all the data
for situations where the Cluster Representative is used. These will be analyzed further in
the following sections.

6 J. Zeleny et al.

Figure 2 Block schema of the entire approach

The high-level overview of Cluster-based Page Segmentation is outlined on figure 2. Our
design starts at the clustering step where we try to identify which cluster the page belongs
to. If such cluster is identified, an isomorphic mapping between the Cluster Representative
and the page is performed and, by extension of that action, all interesting parts of the web
page identified without performing the segmentation. If there is no cluster corresponding to
a page on the input, we have to create a new cluster and use the input web page as an initial
representative of this cluster. Before we create the representative, we need to segment the
page first, as the segmentation result is an important part of each Cluster Representative.
The segmentation process is considered to be a black box taking DOM tree as an input and
returning a set or hierarchy of visual areas on the output. Any algorithm acting in conformity
with these requirements can be used for the segmentation. Section 7 covers experiment with
three different segmentation algorithms.

4 Segmentation methods

Before going more deeply into the structures and algorithms of Cluster-based Page
Segmentation, we need to take a closer look at the segmentation methods this algorithm is
primarily meant for. This section will be divided into two parts. The first part will cover
some currently used segmentation methods that are described in the literature. The second
part will be oriented towards an alternative segmentation method that we have designed. In
both cases we will outline how these methods work and we will especially focus on their
output format. That will be important for the subsequent design of data structures we use
in the Cluster-based Page Segmentation.

4.1 Hierarchical segmentation methods

There are two methods that will be described here as representatives of hierarchical
segmentation methods. Their common feature is the output format. While the specifics are
different, the main characteristic is the same for both – the output format is structured as a
tree.

The first representative of this algorithm group is VIPS [7]. It segments the page in three
steps. The first step is a top-down analysis of the DOM tree where the algorithm identifies
visual blocks on the web page using various heuristics. For each identified block a decision is

Accelerating the process of web page segmentation via template clustering 7

made whether or not will the block be recursively split further – that creates a tree of blocks.
In the second step the algorithm identifies separators between previously identified blocks.
The approach is top-down again – at first the entire web page is considered a separator and
it is recursively split to smaller ones. The last step of VIPS is content structure construction.
In involves merging some boxes to achieve the right granularity.

After being processed by VIPS, the web page is represented by a set of blocksO, a set of
separators Φ and a relation between blocks δ(two blocks are in relation if they are adjacent).
The most important feature of blocks is that they are not overlapping. Each block in the
set is recursively segmented and then represented by another set of blocks, separators and
relation. Formally, it is designated as follows [7]: Ω = (O,Φ, δ) whereO = Ω1,Ω2, . . .Ωn

and every Ωi is defined in the same way as Ω. This definition implies the tree structure of
the returned result.

For each block the information about its position and size is absolutely essential, as well
as its internal coherence. Also the alignment with its parent is used [9]. For separators it is
important to store their visual impact, which can be in form of width or visibility.

Compared to VIPS, Burget takes the opposite approach in his work [6]. First of all
his algorithm doesn’t work on a DOM tree itself. The web page is rendered first and the
algorithm then processes another structure that is called render tree. This tree basically
represents a hierarchy of visual boxes as they are really placed on the web page.

After the render tree is created, the analysis goes bottom-up. In the next step a new tree
is created – a tree of visual areas. Each visual area corresponds to exactly one box in the
render tree. Only those boxes that are visually distinct from adjacent boxes are considered.
After the initial tree of visual areas is created, it is modified by merging similar visual areas
(for example adjacent paragraphs of a text). Finally the significant areas are identified using
some slightly modified techniques used by VIPS.

The result of Burget’s algorithms is different from the result of VIPS in several ways.
First of all, the tree produced by Burget’s algorithm contains two node types: visual areas
and content nodes called boxes. All visual areas contain information about the position
and dimensions of the area but the system is completely different. Burget assigns a special
topographical grid to each non-leaf visual area and puts all child areas on the grid. A position
of each area is represented by the grid cell in which the top-left corner of the area is.
Area dimensions are represented by the number of rows and columns the area takes. This
grid representation provides the possibility to disregard real distances between boxes while
keeping the information about their mutual position. Every non-leaf visual area in the tree
can contain only other visual areas. Each leaf visual area contains just a list of contained
boxes representing either images or text. Each of these types contains different attributes
describing its appearance.

4.2 Box Clustering Segmentation

The Box Clustering Segmentation is included in this paper for two reasons: 1) it is designed
specifically to remove the hierarchy from the result of page segmentation and 2) it is
much faster than both of the methods above, therefore by including it in the result set we
demonstrate that the variety of algorithms that can be improved by Cluster-based Page
Segmentation is very wide.

First it is important to outline how the algorithm works and then what its results look
like. Unlike the previous two, our algorithm is based on building everything from basic
elements on the web page – elementary boxes. To get these boxes, the first step is to render

8 J. Zeleny et al.

the web page, similarly to Burget’s original approach [6]. After we have the tree of boxes, it
is filtered so only the smallest visible boxes remain. These are often leaf nodes in the render
tree output.

On this set of boxes we create a graph structure G = (B,E, sim) where B is a set of
boxes on the web page, E is a set of edges and sim is a similarity function. To get more
performance from the segmentation algorithm we optimize the graph creation by creating
edges only between boxes that share at least one pixel column or row on the rendered page.

This graph structure is then used for the next step – clustering. Each cluster is started
and then grown by merging boxes with other boxes or clusters. The process it iterative – in
every iteration we take the most similar entities in the graph and if nothing blocks it, we
merge them. The merging step includes detection of possible overlaps of the new cluster
with other boxes and their subsequent inclusion in the cluster. The clustering stops when a
threshold value of similarity is reached. This threshold must be set upfront and its optimal
value differs for every processed page.

The mutual similarity if given by our specially designed similarity two-fold model. For
simple boxes, the similarity is calculated based on similarity of their shape, size and color
and by their mutual position. For clusters we then remember the mean similarity between
the boxes in each cluster and use a set of special formulas to calculate the resulting cluster
similarity.

There are two entities playing role in the output of Box Clustering Segmentation: boxes
and clusters. Clusters represent the identified visual areas after the algorithm run is complete.
For every cluster we disregard the boxes it contain. However some boxes might remain
unclustered after the algorithm finishes. Those are somewhat important but they can be
safely dropped in the Cluster-based Page Segmentation process because they most likely
don’t contain any content that might be worth storing for future retrieval.

Taking that into account, only the clusters remain useful for the Cluster-based Page
Segmentation. Because we disregard the boxes they contain and there is not tree structure
involved in the result of the segmentation process, they are just simple boxes represented
by their position and dimensions, both measured in pixels. This demonstrates the simplicity
of the result compared to the methods described in section 4.1.

5 Cluster set data structures

We will describe the maximally optimized cluster set as introduced in section 3. That means
each cluster consists only of the Cluster Representative. There are three parts we have to
consider:

• templates represented by DOM trees

• trees or sets of visual areas

• mapping between the previous two

Before going deeper, let’s formally define the cluster set in general:

Definition 1: Let the cluster set be defined as a set of Cluster RepresentativesS = {Ci|0 <
i < n} where n is the number of elements in the set and each Cluster Representative is
defined as an n-tuple C = (D,V,MV D). V represents a result of segmentation performed

Accelerating the process of web page segmentation via template clustering 9

on the Cluster Representative, D represents its DOM tree and MV D represents mapping
between V and D.

Each of these parts will be explained in detail in the following parts of the paper.

5.1 DOM tree

In our work we use a pruned DOM tree to represent the web page. The following definitions
therefore define the pruned version of the DOM tree, as used in each Cluster Representative.

Definition 2: Let a DOM tree be defined as a three-tuple D = (VD, vr, PD) where VD
is a set of vertices, vr is a root node and PD is a set of paths. Each vertex in the set VD
represents a node of the DOM tree, i.e. DOM node. A structure of the tree is encapsulated
within these DOM nodes.

Some general features of the DOM tree which should be considered when storing
it follow [18, 19]. There are four basic data types in the DOM tree: string, timestamp
represented by an integer number, user data blob and object. The last one represents a
reference to any other DOM node. Each DOM node can have, depending on its type, 0..N
child nodes. Similarly, a DOM node can have 0..N attributes. These attributes can be
represented either by one of basic data types as element properties (deprecated) or by child
nodes of Attr type.

Definition 3: Let a DOM node be defined as an n-tuple v = (pv, Cv, Av), where pv ∈ VD
is a parent of the node, Cv represents an ordered set of its child nodes and Av is a set of its
attributes.

As it was stated above, tags in HTML follow one another in a specific order and this
order usually matters for rendering. That means the same order has to be preserved in the
DOM tree. The following definition specifies the relation on top of elements of Cv which
makes the set ordered.

Definition 4: Let Cv be an ordered set of child nodes of node v: Cv =
{u1, u2, . . . , un};∀i : ui ∈ VD. The element order preservation in Cv can be expressed
as: let ui, uj ∈ Cv; i 6= j, then the following condition must be obliged i < j ↔
ui precedes uj in the HTML code.

The unordered set of attributes Av can contain virtually any HTML attribute as well as
style definition. All these attributes can be later used for both more accurate matching of
DOM trees and more accurate mapping of DOM nodes. In this paper only one attribute is
important and that is the id attribute. All other attributes can be dropped from the set Av .
The formal definition of set Av follows.

Definition 5: Let the set of node attributes of node v be defined as Av = {(k, v)}, that is
a set of key-value pairs, where k designates a name of the attribute and v its value.

The algorithm for matching DOM trees works with path sets. It is highly inconvenient
to retrieve paths by traversing the tree every time we need to match a Cluster Representative

10 J. Zeleny et al.

to new page. Thus the best option is to create the set and store it as a part of the DOM tree
itself. The path set is designated PD and is defined as follows.

Definition 6: Let a path in the tree be defined as an n-tuple p = (vr, v1, . . . , vn−2, vl) with
the following conditions met:
v1 ∈ Cvr ; vl ∈ Cvn−2

;∀0 < i < n− 2 : vi+1 ∈ Cvi , Cvn = ∅.
Path set is an unordered set of paths PD = {p}.

Note that the path set is not a multiset. The DOM tree itself can contain multiple identical
paths that lead to different nodes of the tree. However the intended application of the path
sets doesn’t require this property to be preserved so only one instance of each element is
kept in the set.

Each piece of text in the web page is always considered to be a special node in the DOM
tree. Text on a web page is split into these pieces by any occurrence of an HTML element.
As it will be explained in section 6, DOM nodes representing text are excluded from paths
in the path set, however we still need them for mapping DOM nodes between the Cluster
Representative and inspected page. Therefore we keep them in the DOM tree but just as
bare DOM nodes, the content itself won’t be included. The same applies for images – only
the DOM node will be included, not their content. In this context it’s important to note that
some properties of both the image and the text might be stored in our representation, as they
might be important for some steps following the Cluster-base Page Segmentation. These
will be then stored in the set of attributes Av .

5.2 Visual areas

Section 4 demonstrates that the representation of segmentation results varies significantly
and each method has some specifics. However we need just a single and generic enough
representation that will unify the results.

We need to start the definitions from the building blocks – visual areas:

Definition 7: Let the visual node v ∈ VV be defined as v = (Av, Cv, Dv), where Av =
{(k, v)} is an implementation specific set of area attributes, defined as key-value pairs. Cv

is a set of child nodes and Dv is a set of corresponding DOM nodes.

This representation of visual area allows both the tree structure of Burget’s algorithm and
VIPS and also for the flat structure of Box Clustering Segmentation. In the last case, the set
of child nodes will be empty for all visual areas.

The set of attributes can contain attributes like position, visual features, size and others
that might be required in further processing. What is important about the attribute Cv is
that unlike in case of DOM tree, this time the order of children doesn’t matter. The same
situation applies to Dv , therefore both these attributes are plain sets.

The attribute setAv is a solution of the requirement for the design to be generic for any
type of tree of visual areas, as it can be simply ignored in generic implementation. Attributes
Cv and Dv reflect common properties of outputs of all the segmentation algorithms
described in section 4.

Similarly to the visual area, we need to define generic enough structure that will hold
all the visual areas. We call this structure tree of visual areas, even though the tree might
have just one level of nodes in some cases.

Accelerating the process of web page segmentation via template clustering 11

Definition 8: Let the tree of visual areas be defined as a two-tuple V = (VV , vr) where
VV is a set of visual vertices and vr is a root node of the tree. Each vertex in the set VV
represents a node in the tree of visual areas, i.e. a visual area. A structure of the tree is
encapsulated within these visual areas.

When using the tree to contain the results of Box Clustering Segmentation, root node vr
will be set to nil value and it won’t be further used. The tree of visual areas is derived from
the DOM tree, the main difference between the two is just in their nodes.

5.3 Tree mapping

The description in sections 5.1 and 5.2 leads to a conclusion that the cluster set can be
viewed as a forest ofD and V . If references from nodes of V to nodes inD are not omitted,
it can be also viewed as one big tree rooted at node vr ∈ V .

References from V to D are important and only their basic version has been described.
Because these connections are utilized in some algorithms working on top of vision-based
page segmentation [8, 9], the mapping between both trees should be well defined:

Definition 9: Let the relationship A ⊃ B,A ∈ VV , B ∈ VD be defined as A visually
contains entireB. Let the mappingMV D betweenV andD be defined as a set of two-tuples:
MV D = {(v, d)|v ∈ VV , d ∈ VD, v ⊃ d, @v1(v1 ⊃ d, v1 ∈ Cv)}.

In order to be consistent with previous sections, we amend the definition of a visual area
by the following definition:

Definition 10: Let Dv be a set of DOM nodes corresponding to a visual area v. This set
is defined as Dv = {d|(v, d) ∈MV D}.

6 CPS Algorithms

Now that all structures related to cluster set and Cluster Representatives have been described,
algorithms working on top of them can be defined. Algorithm 1 displays the Cluster-based
Page Segmentation algorithm, utilizing structures defined in section 5. The Algorithm 1 is
more formal expression of figure 2. All the following algorithms are written in pseudo-code
based on Python syntax.

The algorithm is fully automatic, no human intervention is needed. Also no learning
phase is necessary, it “learns” new templates while processing the web site. Based on the
algorithm outline, it is possible to identify three distinct non-trivial parts. Their description
follows.

Creating a Cluster Representative

This task consists of series of small transformations of DOM tree of the original page and
the corresponding set or tree of visual areas with the result being the initial form of the
Cluster Representative. This transformation leads to the Cluster Representative’s n-tuple
C = (V,D,MV D).

Before the structure V is built, the simplified representation of DOM tree D has to
be created by cleaning the original DOM tree of redundant nodes, according to definition

12 J. Zeleny et al.

Algorithm 1 Segmentation using the CPS algorithm
def segment_cps(page, cluster_set):

dom = parse_page(page)
representatives = cluster_set.get_all()
for representative in representatives:

if dom.matches(representative):
return dom.visual_tree()

visual = segment_page(dom)
cluster_set.store(dom, visual)
return visual

in section 5.1. This step is straightforward – a simple recursive, post-order tree traversing
algorithm can be used. Creating the graph structure D is trivial, it can be done as a part of
the traversing algorithm.

Since V is very similar to the output returned by segmenting algorithm, the only thing
remaining to build V is to ensure that each node has a set of DOM nodes it visually contains.
This is done during the creation of MV D. For purpose of this paper, the assumption is
that this is handled by the segmenting algorithm in use, since the algorithm is the only
component that has this information. With this assumption in consideration, we have Dv

for every node v at the moment V is created and we just have to extract all the information
into MV D and then verify that MV D is correct by checking its conformity with definitions
9 and 10. After this step, we have a valid Cluster Representative which can be added into
the cluster set.

Matching DOM tree to the cluster set

After everything is stored, the trivial approach would be to segment another page. But with
the Cluster-based Page Segmentation we can utilize having the cluster set and try to find a
cluster which the new page belongs to. A comparison with all loaded Cluster Representatives
for the site (more specifically with their D elements) has to be performed first. As it was
outlined in section 3, a simple iteration over the set D containing all clusters and matching
one by one can be performed. Because there is only a small number of clusters for each site,
performing a simple iteration is sufficient to gain considerable performance boost against
the plain page segmentation. The only condition that has to be met is for the DOM-to-DOM
matching algorithm to be fast.

For this DOM-to-DOM matching we use modification of Common Paths Distance
measuring algorithm [13] as it has been proven significantly faster than tree-edit-distance
algorithms while still being precise enough to match the DOM tree to the correct template.
However in our practical evaluation we needed to adjust the original algorithm for better
precision. Our modifications are as follows:

• Filter out all nodes that are not representing particular HTML elements (e.g. attribute
nodes, text nodes, etc.)

• If any element has an id, don’t use the plain element name in the path, use it in
combination with the id

Accelerating the process of web page segmentation via template clustering 13

These simple modifications improved results of the matching algorithm significantly
and enabled higher level of result granularity. That means more clusters are created, thus
less false-positives for cluster matches are encountered.

When a web page is matched to a D belonging to some Cluster Representative, it is
possible to use the corresponding structure V containing visual areas that associated with
the DOM tree. If no matching Cluster Representative is found, we consider the page to be
based on a template that the algorithm hasn’t encountered yet. In such case the segmentation
process has to be performed on it and the result has to be used to create a new Cluster
Representative.

Mapping nodes of both DOM trees

Mapping nodes of the processed page to those stored in the matched Cluster Representative
is the last step for the Cluster-based Page Segmentation to return useful results. We need this
step so the actual content of visual areas can be retrieved, as that is the next process that is
likely to be performed on the result of the Cluster-based Page Segmentation. The mapping
procedure is trivial for Cluster Representatives themselves, as the mapping is already a part
of its stored structure.

However in case of any other page in the cluster the process is more difficult. Again,
we have a set of visual blocks of the Cluster Representative in which we are interested
and the corresponding set of Cluster Representative’s DOM nodes. Now we need to find
the corresponding DOM node of the input page for every DOM node of the Cluster
Representative. If we designate the DOM tree on inputDI , we are looking for a Tree mapping
between DI and D. The tree-mapping problem for two DOM trees is quite complex in
general, as many examples demonstrate [11, 17]. However, as we explain in our previous
work [20], our scenario is very specific so we can afford some simplifications.

We are not looking for a mapping of each node, we are looking for a subtree rooted at
corresponding node. Therefore the assumption is that once we find a root, all descendant
nodes will correspond in both trees. For finding the root we use a distinguished path to a node.
In its simplest version, this path is defined below. We acknowledge that this representation
is rather crude but it serves our purpose well. Possible improvements are covered in our
previous work [20].

Definition 11: Let the distinguished path pN from root of given DOM tree to a node in
that DOM tree N be defined as n-tuple of two-tuples:
pN = ((p1, c1), (p2, c2), . . . , (pk, ck)) where pi is a position of a node withing its siblings
and ci is a total count of siblings including that node. i is an index designating a level of
DOM tree from its root, i.e. how many nodes deep in the structure is the selected node and
its siblings.

This indexing approach is based on the premise stated in section 5.1 that order of DOM
nodes within DOM tree has to be preserved to preserve the content layout on the web
page. Therefore if a certain node in Cluster Representative was on position 3/5 within
its siblings, its corresponding DOM nodes from other pages in that cluster will again be
positioned as 3/5. This condition will be always true when traversing the part of DOM
tree that corresponds to template. Once out of the template scope, thus in a particular data
region, the condition might not be true but the assumption is that interesting visual areas
don’t have root outside of the template scope. To add at least some level of error detection

14 J. Zeleny et al.

in case DOM nodes of Cluster Representative and inspected page don’t correspond, there
is the ci parameter which is used as a simple failsafe mechanism – if ci differs for Cluster
Representative and inspected web page, two things could have caused this. Either the page
has been incorrectly matched to the Cluster Representative or the node identified on level i
is already outside the template and within one of its data regions. In any case, the algorithm
stops at that moment, as the result would be wrong anyway.

With the indexing approach described above, the algorithm using it will need to store
these distinguished paths somewhere or they have to be constructed on the fly. If they are
stored as part of DOM nodes or visual areas of Cluster Representatives, the algorithm for
finding the DOM node within inspected page can be used directly.

Algorithm 2 Finding a node within given DOM tree
def find_dom_node(distinguished_path, root_node):

node = root_node
for (position, count) in distinguished_path:

if node == None or count != len(node.C):
return None

node = node.C[position]
return node

If distinguished paths are not stored as a part of Cluster Representatives, we need to use
algorithm 3 for their construction first. After construction of each path, algorithm 2 can be
be used again for finding corresponding DOM node within inspected web page using the
path.

Algorithm 3 Construction of the path from root to the given node
def get_path(node):

if node.p == None:
path = () # empty tuple

else:
path = get_path(node.p)
sibling_count = len(node.p.C)
node_pos = 0
for n in node.p.C:

if n == node:
break

node_pos += 1
path.prepend((node_pos, sibling_count))

return path

Accelerating the process of web page segmentation via template clustering 15

7 Experimental evaluation

An experimental implementation has been designed and realized as a proof of concept.
We used our Java implementation of all three algorithms in question. The Box
Clustering segmentation and Burget’s segmentaion algorithm are both original. Our VIPS
implementation gives comparable results as the original with slightly worse performance.
We use this implementation so the all three algorithms are based on the same rendering core
and are thus comparable.

Implemented scenario

The following scenario is considered: we have a simple crawler program, which is given
a web site to process in a form of starting URL. It is processing the site page by page and
extracting an interesting content from that page. If the page contains multiple areas with
the interesting content, the algorithm extracts all of them.

For each algorithm we selected a different content type to be designated as interesting.
The selection was based on capabilities of the algorithm – because the content classification
is not our primary concern, we selected what was easiest for the algorithm to detect. For
Box Clustering segmentation it was a body of an article - basically all the areas significantly
bigger than the mean size of areas on the page. Within results of VIPS and Burget’s algorithm
we detect headlines – areas with font size significantly bigger than then average size on the
page. When common web page design is considered, there is usually one heading for one
article body, thus the number of selected areas should be similar for all the algorithms.

The crawling algorithm takes a very simple breadth-first-search approach. We need a
global list of all links which are planned to be inspected. The crawler always takes the
first URL in this list that has not yet been visited and loads the page on this URL for
further processing. The second list contains visited links so we can quickly filter out already
visited pages and not visit them again. Not performing this would cause deviations in our
measurement. The last list contains links that lead out of the site(usually recognized by the
same second-level domain) that is currently processed.

If a link leads to different site than the one that is currently inspected, instead of
processing it is just stored for later usage. The crawling mechanism doesn’t start parsing
new site before the entire site it is currently parsing is processed. At that point, we stop
our inspection but the program has capability to continue to the other site by clearing the
Extracted list, adding the first link from Outgoing list into it and continue crawling on the
new site.

The reason for the program to process one site at a time is simple: there is only a very
limited number of templates for each site. Our measurements show us that the number of
templates on a single site is quite low (see table 1 for details). Since the number of Cluster
Representatives is equal to the number of templates used on the web site, having this number
small makes it simple to store all the Cluster Representatives in memory while inspecting
the web site they belong to. Such approach is highly convenient because we want fast access
to these Cluster Representatives when processing the site. However storing them only in
memory would mean that all Cluster Representatives of the site are dropped once inspection
of that site finishes. That’s not something we want because it would mean longer processing
of the site the next time. Rather than that we store all Cluster Representatives in persistent
storage. Once a site is selected for processing, all its Cluster Representatives are loaded
from database and after the processing finished, the database is updated if necessary.

16 J. Zeleny et al.

site clusters hit ratio
iDnes.cz 42 91.6%
e15.cz 27 94.6%
telegraph.co.uk 32 93.6%
slashdot.org 18 96.4%
businessinsider.com 16 96.8%
gizmodo.com 11 97.8%

Table 1 Cluster counts for different sites

Implementation details

We used in-memory database in form of a simple list of Cluster Representatives. This
list is retrieved from persistent storage managed by OrientDB object-oriented database
engine before processing any pages on the site. When matching DOM trees, we made one
modification in the implementation for the sake of simplicity – section 6 suggests that the
algorithm is working on the tree structureD, however the implementation works with string
representation of all paths. A set of paths of a DOM tree is constructed when the DOM tree
is prepared for matching and in case the DOM tree is used for a Cluster Representative, this
set of paths is used along with it. The algorithm just iterates over all Cluster Representatives
from the web site and compares the path set of the input DOM tree with their respective
path sets one-by-one. After the DOM tree is matched, its segmented counterpart is fetched
and desired content is extracted.

Testing and measurements

The implementation has been tested on several Czech and world-wide web sites. Three of
them are quite extensive news sites (iDnes.cz, novinky.cz, telegraph.co.uk) and two of them
are highly focused CMS-based portals. Each testing set contained 500 pages recursively
fetched from index page of that site. Test were performed on following hardware: Intel
Core2Duo P8700 2.53GHz, 4GB RAM, HDD 5400RPM.

Table 1 illustrates how many clusters were detected per site. The column clusters gives
the actual number of clusters on the site, while hit ratio illustrates how many percent of
pages were matched when 500 pages were inspected. Note that matched page doesn’t have
to be segmented therefore the higher the hit ratio is the more time saving is achieved. One
important observation has been made during the testing and that is that during the first
inspection of a site, the majority of clusters is usually detected early in the process. If the
number of total processed web pages has been doubled, the number of detected templates
has risen for at most 33%. This demonstrates logarithmic growth of cluster set size, leading
to confirmation that the number of clusters is low compared to number of the web pages
on the site. Figure 3 demonstrates graphically that the number of templates on a single site
converges fast to a relatively small number.

Tables 2, 3 and 4 demonstrate time difference between standard segmentation methods
and Cluster-based Page Segmentation for each web site. The plain column tells the
time necessary to segment inspected 500 pages within the site. The time includes only
segmentation and retrieval of all desired data. The CPS column contains the time necessary
to retrieve the same data with Cluster-based Page Segmentation. The time includes
segmentation of pages when creating a new cluster, comparison of incoming pages against

Accelerating the process of web page segmentation via template clustering 17

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400 500 600 700 800 900 1000

T
em

pl
at

es
 fo

un
d

Pages processed

businessinsider.com
e15.cz

gizmodo.com
idnes.cz

slashdot.org
telegraph.co.uk

Figure 3 Dependency of cluster count on page count

existing Cluster Representatives and retrieval of desired content from the page through node
mapping. The time represents the worst case scenario for CPS, i.e. the first processing of
the site. This scenario is the worst case because if the site is already processed and the
corresponding Cluster Representatives are retrieved from database, the time to do this is
orders of magnitude better than the time necessary to create Cluster Representatives by
segmentation, even if the cluster set to create is very small. The time saved intuitively
demonstrates how many percent of the time necessary for each segmentation algorithm
to process the page set is saved when using Cluster-based Page segmentation. Both plain
and CPS times are measured as a sum of times necessary to retrieve the data from all 500
processed pages.

site plain CPS time saved
iDnes.cz 1 158 s 145 s 87.5%
e15.cz 661 s 55 s 91.7%
telegraph.co.uk 2 719 s 841 s 69.1%
slashdot.org 1 925 s 89 s 95.4%
businessinsider.com 766 s 38 s 95.0%
gizmodo.com 560 s 39 s 93.0%

Table 2 Performance measurements of the VIPS

18 J. Zeleny et al.

site plain CPS time saved
iDnes.cz 4 019 s 282 s 93.0%
e15.cz 420 s 34 s 91.9%
telegraph.co.uk 1 569 s 97 s 93.8%
slashdot.org 946 s 30 s 96.8%
businessinsider.com 587 s 29 s 95.1%
gizmodo.com 832 s 38 s 95.4%

Table 3 Performance measurements of the Burget’s algorithm

site plain CPS time saved
iDnes.cz 1 423 s 195 s 86.3%
e15.cz 411 s 42 s 89.7%
telegraph.co.uk 1 521 s 603 s 60.3%
slashdot.org 597 s 50 s 91.6%
businessinsider.com 530 s 34 s 93.6%
gizmodo.com 771 s 49 s 93.6%

Table 4 Performance measurements of the BCS

Our results clearly prove that Cluster-based Page Segmentation offers high performance
boost. This is confirmed by another result not visible in table 3. The time necessary for
retrieving data from page belonging to existing cluster is lower by one to three orders of
magnitude compared to the time necessary for retrieving the data from page not belonging
to any cluster. The accuracy of the Cluster-based Page Segmentation is the same as accuracy
of the used algorithm because that is the element performing the segmentation itself, no
further modifications of returned results are performed. Moreover it is not purpose of this
paper to evaluate accuracy, as it is depending solely on the used segmentation algorithm
and selection of the algorithm is virtually not limited.

8 Conclusion

In this paper we presented a new way how to deal with performance shortcomings of vision-
base page segmentation algorithms. Templates, one of fundamental concepts of modern
web, have been used for significant performance boost of these algorithms. By combining
precision of vision-based segmentation algorithms with performance superiority of template
detection algorithms, it is possible to create an algorithm both precise and fast while keeping
its universality.

We showed that Cluster-based Page Segmentation significantly improves performance
of vision-based page segmentation when used on large sites and it therefore compensates
for the greatest disadvantage of plain vision-based page segmentation algorithms.

We have also shown an alternative segmentation method called Box Clustering
Segmentation and its possible usage in the Cluster-based Page Segmentation. When
combined to perform the segmentation on entire web sites, these two algorithms vastly
outperform any known segmentation method.

Accelerating the process of web page segmentation via template clustering 19

This research laid down solid base for future research. That might include improved
adaptation of the Cluster-based Page Segmentation to potential post-processing algorithms
and further integration with the Box Clustering Segmentation.

Acknowledgement

This paper is a revised and expanded version of a paper entitled Cluster-based Page
Segmentation - a fast and precise method for web page pre-processing presented at WIMS
’13, June 12-14 2013, Madrid, Spain. This work was supported by the BUT FIT grant
FIT-S-11-2 and the IT4Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070.

References

[1] Shipeng Yu, Deng Cai, Ji-Rong Wen, and Wei-Ying Ma. Improving pseudo-relevance
feedback in web information retrieval using web page segmentation. In Proceedings
of the 12th international conference on World Wide Web, WWW ’03, pages 11–18,
New York, NY, USA, 2003. ACM.

[2] Eduardo Sany Laber, Críston Pereira de Souza, Iam Vita Jabour, Evelin Carvalho Freire
de Amorim, Eduardo Teixeira Cardoso, Raúl Pierre Rentería, Lúcio Cunha Tinoco,
and Caio Dias Valentim. A fast and simple method for extracting relevant content
from news webpages. In Proceedings of the 18th ACM conference on Information and
knowledge management, CIKM ’09, pages 1685–1688, New York, NY, USA, 2009.
ACM.

[3] Jer Lang Hong, Eu-Gene Siew, and Simon Egerton. Information extraction for search
engines using fast heuristic techniques. Data Knowl. Eng., 69(2):169–196, February
2010.

[4] Bing Liu, Robert Grossman, and Yanhong Zhai. Mining data records in web pages.
In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’03, pages 601–606, New York, NY, USA, 2003.
ACM.

[5] Miroslav Spousta, Michal Marek, and Pavel Pecina. Victor: the Web-Page Cleaning
Tool. In Proceedings of the 4th Web as Corpus Workshop, LREC, 2008.

[6] R. Burget. Layout based information extraction from HTML documents. In
Proceedings of the Ninth International Conference on Document Analysis and
Recognition - Volume 02, ICDAR ’07, pages 624–628, Washington, DC, USA, 2007.
IEEE Computer Society.

[7] Deng Cai, Shipeng Yu, Ji rong Wen, and Wei ying Ma. VIPS: a vision-based page
segmentation algorithm. Microsoft technical report MSR-TR-2003-79, November
2003.

[8] Petasis G., P. Fragkou, A. Theodorakos, V. Karkaletsis, and C. D. Spyropoulos.
Segmenting HTML pages using visual and semantic information. In Proceedings of the
4th Web as a Corpus Workshop, 6th Language Resources and Evaluation Conference.,
LREC 2008, pages 18–25, June 2008.

20 J. Zeleny et al.

[9] Wei Liu, Xiaofeng Meng, and Weiyi Meng. ViDE: A vision-based approach for deep
web data extraction. IEEE Trans. on Knowl. and Data Eng., 22(3):447–460, March
2010.

[10] David Gibson, Kunal Punera, and Andrew Tomkins. The volume and evolution of
web page templates. In Special interest tracks and posters of the 14th international
conference on World Wide Web, WWW ’05, pages 830–839, New York, NY, USA,
2005. ACM.

[11] D. C. Reis, P. B. Golgher, A. S. Silva, and A. F. Laender. Automatic web news extraction
using tree edit distance. In Proceedings of the 13th international conference on World
Wide Web, WWW ’04, pages 502–511, New York, NY, USA, 2004. ACM.

[12] Lan Yi, Bing Liu, and Xiaoli Li. Eliminating noisy information in web pages for
data mining. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’03, pages 296–305, New York, NY,
USA, 2003. ACM.

[13] Thomas Gottron. Bridging the gap: from multi document template detection to single
document content extraction. In Proceedings of the IASTED International Conference
on Internet and Multimedia Systems and Applications, EuroIMSA ’08, pages 66–71,
Anaheim, CA, USA, 2008. ACTA Press.

[14] Karane Vieira, André Luiz Costa Carvalho, Klessius Berlt, Edleno S. Moura,
Altigran S. Silva, and Juliana Freire. On finding templates on web collections. World
Wide Web, 12(2):171–211, June 2009.

[15] Karane Vieira, Altigran S. da Silva, Nick Pinto, Edleno S. de Moura, João M. B.
Cavalcanti, and Juliana Freire. A fast and robust method for web page template
detection and removal. In Proceedings of the 15th ACM international conference on
Information and knowledge management, CIKM ’06, pages 258–267, New York, NY,
USA, 2006. ACM.

[16] Ziv Bar-Yossef and Sridhar Rajagopalan. Template detection via data mining and its
applications. In Proceedings of the 11th international conference on World Wide Web,
WWW ’02, pages 580–591, New York, NY, USA, 2002. ACM.

[17] Gabriel Valiente. An efficient bottom-up distance between trees. In Proceedings of the
8th International Symposium of String Processing and Information Retrieval, pages
212–219. Press, 2001.

[18] Arnaud Le Hors, Philippe Le Hegaret, Lauren Wood, Gavin Nicol, Jonathan Robie,
Mike Champion, and Steve Byrne. Document object model (DOM) level 3 document
object model core. W3C Recommendation, April 2004.

[19] Johnny Stenback, Philippe Le Hegaret, and Arnaud Le Hors. Document object model
(DOM) level 2 document object model html. W3C Recommendation, January 2003.

[20] Jan Zeleny and Radek Burget. Isomorphic mapping of dom trees for cluster-based page
segmentation. In Proceedings of the Twelfth International Conference on Informatics
INFORMATICS’2013, INFORMATICS ’13, 2013.

