
Information Extraction from Web Sources based
on Multi-aspect Content Analysis

Martin Milicka and Radek Burget

Faculty of Information Technology, IT4Innovations Centre of Excellence
Brno University of Technology, Bozetechova 2, 612 66 Brno, Czech Republic

{imilicka,burgetr}@fit.vutbr.cz

Abstract. Information extraction from web pages is often recognized as
a difficult task mainly due to the loose structure and insufficient seman-
tic annotation of their HTML code. Since the web pages are primarily
created for being viewed by human readers, their authors usually do not
pay much attention to the structure and even validity of the HTML code
itself. The CEUR Workshop Proceedings pages are a good illustration of
this. Their code varies from an invalid HTML markup to fully valid and
semantically annotated documents while preserving a kind of unified vi-
sual presentation of the contents. In this paper, as a contribution to the
ESWC 2015 Semantic Publishing Challenge, we present an information
extraction approach based on analyzing the rendered pages rather than
their code. The documents are represented by an RDF-based model that
allows to combine the results of different page analysis methods such
as layout analysis and the visual and textual feature classification. This
allows to specify a set of generic rules for extracting a particular infor-
mation from the page independently on its code.

Keywords: document modeling, information extraction, page segmen-
tation, content classification, ontology, RDF

1 Introduction

The documents available on the web present a large and ever growing source
of information. However, extracting information from the HTML documents
remains a challenging tasks mainly because of the high variability of the markup,
loose structure of the documents and very rare use of any kind of semantic
annotations that could be used for recognizing a particular information in the
document.

The research in this area includes many different approaches including a
direct HTML code analysis by different methods [7, 8], DOM analysis [6], page
layout [2] or other visual feature analysis [10]. As the research results show, the
web documents are too variable for the a simple and straightforward solution.
The document processing cannot be based only on single aspect such as the text
content, visual features or document structure because each approach is suitable
for a different kind of documents. Therefore, we propose an approach that can
combine multiple aspects of the document.



2 Martin Milicka and Radek Burget

The documents may be described on different levels of abstraction starting
with the code through the rendered page layout and visual features of the con-
tents to a logical structure as it is expected to be interpreted by a human reader.
We propose an ontology-based document model that is able to capture all the
mentioned kinds of information. For each level of the description, we use a spe-
cific ontology. The highest abstraction level represents the target domain of the
extracted information.

In this paper, we apply this approach to the processing of the CEUR Work-
shop proceedings as a part of the ESWC 2015 Semantic Publishing Challenge.
We employ a combination of algorithms such as page segmentation or content
classification for building the proposed model from source documents. Based on
a combination of different features, we propose the way of extracting the logical
structure of the document. This structure is finally transformed to the specific
domain ontology. This approach allows to abstract from the HTML implemen-
tation details and increase the robustness of the extraction.

2 System Architecture

The presented information extraction system is based on our recently developed
FITLayout1 framework [9] – a generic framework for web page segmentation
and its further analysis. The complete architecture overview is shown in Fig. 1.
Implementation details specific for the Semantic Publishing Challenge 2015 are
described later in section 4.

ESWC
SPARQL
queries

HTMLIbICSS

vypdf

DocumentIINPUT

Rendering
Extracted

LinkedIData

DomainIindependent

Vizualization
visualIbrowser

Box
model

Text
classification

CEURIentity
classification

Logical
structure

construction

VisualIarea
detection

Output
formating

ResultingICSV

Document
modelIzRDFl

Transformation
toIdomainIontology

FITLayoutIframework

DomainIspecific

ModelIbuilding

CSSBoxIrenderer

Fig. 1. Extraction System Architecture

1 http://www.fit.vutbr.cz/˜burgetr/FITLayout/



Information Extraction from Web Sources 3

Unlike most existing information extraction systems, our system does not
analyze the HTML or CSS code of the input documents directly. Instead, it
operates on the rendered page trying to use the same information as the user
who is actually browsing the page. This allows to abstract from the HTML-
related problems such as irregular code structure, invalid markup, etc.

The individual documents (CEUR pages) are processed independently on
each other. The processing consists of several steps. The results of each step are
stored to an internal RDF repository; each step adds more information to the
model of the processed document. First, source pages are rendered using a built-
in rendering engine that provides the information about the layout and visual
features of the individual pieces of the contents. Additionally, basic text analysis
steps are applied on the document in order to recognize important entities in the
text such as dates, times, capitalized sequences or personal names. Subsequently,
the obtained model is analyzed and the desired information such as editors, paper
titles, authors, etc. is recognized using a set of quite simple rules based on the
actual presentation of the individual content parts. Based on the recognized
parts of the contained information, we build a logical structure of the document
that represents the semantic relationships. Finally, this structure is transformed
to the resulting linked data set.

2.1 Page Rendering

The rendering engine processes the input HTML and the linked CSS files and
produces the information about the content layout in the page. The layout is
represented by a box model generally defined in the CSS specification [1]. This
model describes the positions of the individual pieces of content in the resulting
page and their further visual properties (fonts, colors, etc.) Each box corresponds
to a rectangular area in the rendered page. The boxes are organized in a hierar-
chical structure called a box tree that roughly corresponds to the source DOM
structure.

The obtained box tree is transformed to RDF data using the FITLayout
box model ontology described in section 3.1. In the subsequent steps of the
model building, more information is added to the page model as the result of
the individual analysis methods.

2.2 Model Building

The model building phase consists of four analysis steps. The first two of them
are domain-independent; they are not specific for the SemPub2015 task. The
other two steps are specific for the target domain. The details of the individual
steps are described later in section 4.

1. Visual area detection. We identify all the boxes in the box tree that are
visually distinguishable in the resulting pages. These boxes form the basic
visual areas. We construct a tree of visual areas based on their visual nesting



4 Martin Milicka and Radek Burget

in the rendered page. The resulting area tree is described using the corre-
sponding FITLayout segmentation ontology (see section 3.2). Later, each
area may be assigned any number of text tags that represent the expected
meaning of the area at different levels.

2. Text classification. We go through the leaf areas of the visual area tree
and we identify important generic entities in the text such as dates, times
or personal numbers. Based on the discovered entities, we assign tags to the
areas that indicate the type of their content.

3. CEUR entity classification. Based on the previous two steps, i.e. the lay-
out model and the properties of the text, we identify the CEUR entities such
as the workshop title, editor names, paper titles and authors, etc. Their dis-
covery is based on mutual positions of the corresponding areas and regular
patterns in the presentation styles. The areas that correspond to the individ-
ual CEUR entities are again marked by the appropriate tags. For example,
a visual area that obtained a persons tag in the previous text classification
step (i.e. it contains some personal names) is likely to obtain the editors or
authors tag depending on where the area is placed within the page.

4. Logical structure construction. The purpose of the logical structure is
to represent the relationships among the CEUR entities tagged in the pre-
vious steps. For example, the title, authors and page numbers that belong
to a single paper, papers that belong to a single section, etc. In a domain-
dependent way, we transform the tagged area tree to the logical structure
tree where the logical nodes correspond to particular text strings (e.g. the
names themselves) and the parent-child relationships correspond to the se-
mantic subordination of the entities (e.g. the title, authors and pages are
child nodes of a paper node). Each node is marked with a single tag that
specifies its semantic.

The whole process corresponds to the transition from the rendered page
model (the box tree) through the page layout model (the visual area tree) to
its semantic interpretation (the logical area tree). In the next step, the resulting
logical model can be transformed to the target domain ontology.

2.3 Output Dataset Generation

The resulting logical structure tree that is obtained from the model building
phase and stored in the intrenal RDF repository contains the complete infor-
mation extracted from the source page together with its structure. The output
dataset generation only consists of transforming the data represented using the
FITLayout internal visual area ontology to the target domain ontology described
in section 3.5. This is implemented as a single SPARQL query2 on the internal
RDF repository.

2 https://github.com/FitLayout/ToolsEswc/blob/master/

sparql/logicalTree2domain.sparql



Information Extraction from Web Sources 5

3 Ontological Model

The ontological model describes the processed document at multiple levels of
abstraction. We have defined five abstraction levels of document description
where each higher level adds specific knowledge to the previous one. Each level
of description is characterized by its ontology. The hierarchy of levels is shown
in Fig. 2. We can see that all the levels can be divided in two groups: domain-
independent and domain-specific. The tagging level in the middle joins the two
parts together.

Domain ontology

Logical tree ontology

Area tree ontology

Box tree ontology

CEUR mapping

Logical
tree building

Segmentation

Rendered page

~

~

Generic text tags

~

~

~
Domain
specific

Domain
independent

Domain-specific tags

domain independent

domain specific

Tagging

Fig. 2. Ontological model

3.1 Rendered Page Level

At the level of the rendered page, the ontology-based model corresponds to the
document box model where its rendering is based on the source data presented
in the HTML document and visual features defined by Cascading Style Sheets
(CSS).

The schema of the presented Box model ontology is on Fig. 3 A). Every class
is based on the Rectangle class which defines characteristic size, position and
visual features. A Box denotes a base displayed document element. It follows the
definition from the CSS formatting model [1]. The boxes may be nested, which
creates a hierarchical structure similar to the Document Object Model (DOM).
The Page class represents the whole rendered page. The belongsTo property
denotes the relationship between the Page and some rectangular objects (boxes)
that create the contents of the page. The Box can be further specialized into
the ContainerBox or ContentBox classes where the ContainerBox may contain
other boxes (allows nesting). The ContentBox represents a Box that contains
a connections of content objects like images, textual information or common
objects like Flash, video, etc.

3 b: http://fitlayout.github.io/ontology/render.owl#
4 a: http://fitlayout.github.io/ontology/segmentation.owl#



6 Martin Milicka and Radek Burget

Rectangle

fontSize

fontStyle

fontVariant

fontWeight

Page

b:belongsToheight widthpositionX

positionY

underline

Box

rdfs:subClassOf

ContainerBox ContentBox

rdfs:subClassOf rdfs:subClassOf

sourceUrl

backgroundColor

b:isChildOf

Border

Area

a:isChildOf

Image

ContentObject

rdfs:subClassOf

b:containsObject

imageUrl

color

A) B)

text

Tagb:hasLeftBorder
b:hasRightBorder
b:hasTopBorder

b:hasBottomBorderlineThrough

name

type

support

a:hasTag

a:establishes

rdfs:subClassOf

objectInformation

fontFamily

LogicalArea text

a:consistsOf
a:hasTag

a:isSubordinateTo

Fig. 3. A) Box tree ontology3 B) Area based ontology4

3.2 Segmentation Level

Page segmentation generally detects the visually distinguished segments in the
rendered page (we call them visual areas in this paper). There exist many page
segmentation algorithms; one of the most popular ones is called VIPS [4].

The segmentation model extends the Box model by a possibility of repre-
senting the visual areas. In the figure 3 B) we can see a part of segmentation
ontology design. The basic Area class is defined as a specialization of the Rect-
angle class from the Box model ontology. It represents the visual areas detected
during the page segmentation. A visual area is usually created by a collection of
boxes contained in this visual segment. Visual areas may be nested and create
a hierarchy based on their visual nesting similarly to boxes.

3.3 Tagging Level

The tags are represented by the Tag class (in Fig. 3 B) ); multiple tags may be
assigned to a single visual area. Each tag is represented by its name and type
where the type represents a set of tags with the same purpose (e.g. the tags
obtained from text classification) and the name corresponds to the actual tag
value.

In section 4, we give an overview of the tags used for the given domain.
Some of them are domain-independent (Table 1), some are domain-dependent
(Table 2).



Information Extraction from Web Sources 7

3.4 Logical Tree Level

The logical structure represents the actual interpretation of the tagged visual
areas in the target domain. Each logical area corresponds to a semantic entity
identified as a text string contained in some visual areas (e.g. an author name).
It is represented by the LogicalArea class in (Fig. 3). Each logical area has a
single tag assigned that denotes its meaning in the target domain (e.g. a paper
title).

The logical areas are organized to a hierarchical structure again (using the
isSubordinateTo property). However, unlike the visual areas, where the hierar-
chy represents the visual nesting, for logical areas, the hierarchy corresponds to
the logical relationships among the entities – e.g. a paper and its title or page
numbers.

The resulting logical area tree provides a generic representation of the ex-
tracted information and its structure and it can be directly mapped to the target
domain ontology.

3.5 Domain Level

The domain ontology defines the entities and their properties in the target do-
main. It is used for the resulting data set produced by our extraction tool. For
the the CEUR proceedings domain, we use a combination of existing ontologies
shown in Fig. 4 that is greatly inspired by [8] with some simplifications.

bibo:place

Fig. 4. Domain ontology - ESWC proceedings

4 System Implementation

The FITLayout framework used as a base for our system implements a variety of
general tasks such as page rendering, page segmentation and text feature anal-



8 Martin Milicka and Radek Burget

ysis. Moreover, it allows to implement custom extensions and add them to the
page processing chain. For the purpose of the CEUR proceedings processing, we
have implemented several domain-specific extensions that include the CEUR en-
tity recognition and a custom logical structure builder specific for this particular
task5.

We made several experiments with using the microformats available in some
of the CEUR volume pages for training a visual feature classifier that would
be later used for the remaining volumes. However, the presentation style of
the individual volumes is quite variable in terms of the used fonts, layout or
information ordering. Therefore, we have decided to process the individual pages
independently. In the final version of our tools, we do not use any kind of classifier
training (apart from the pre-trained Stanford NER classifier used for recognizing
the personal names as described in section 4.2). Instead of this, we just gather
statistic about the frequently used presentation patterns and styles used in the
currently processed page and we assume the most frequent one to be consistently
used in the page as described in section 4.3. The microformats are not used at
all in the end because their availability is not guaranteed.

In the following sections, we explain the most important details of the whole
information extraction process.

4.1 Layout Analysis

The FITLayout framework assumes a usage of a page segmentation method for
the construction of the visual area tree. However, due to the relatively simple
layout of the CEUR proceedings, we decided not to use a full-featured page
segmentation algorithm. Instead, we just use a basic visual area recognition al-
gorithm that corresponds to the initial step of our previously published page seg-
mentation algorithm [3]. From the box tree obtained from rendering, we choose
the boxes that are visually distinguishable in the page: they directly represent
a piece of text or image content or they have some visible visual separator: a
separating background color or a border around the box.

For the CEUR proceedings, the resulting layout model is usually very flat:
Most of the content areas are directly the child nodes of the root node because
there is usually no visual nesting used in the layout. The only exception is the
title of some of the proceedings that is visually framed.

4.2 Generic Text Tagging

Area tagging is used to roughly classify the visual areas that contain certain
kind of information. The FITLayout framework provides a set of general purpose
taggers that assign tags of the FitLayout.TextTag type to the visual areas by
a simple analysis of the contained text mainly using regular expressions. Table 1
describes the text tags we have used for the given task and the way of their
assignment to the visual areas.

5 https://github.com/FitLayout/ToolsEswc



Information Extraction from Web Sources 9

Table 1. Tags added during the text feature analysis (tag type FitLayout.TextTag)

Tag Meaning Way of recognition

dates A date in recognizable format Regular expressions and specific
keywords (months)

pages Page span specification Regular expression
persons Personal names Stanford NER classifier [5]
title Paper title Regular expression

The used regular expressions are quite general (especially for the paper titles),
and the used generic NER classifier is not 100% accurate neither. Therefore, the
tag assignment obtained in this phase provides just a rough and approximate
classification of the areas. Further refining is performed in the following CEUR
entity recognition phase.

4.3 CEUR Entity Recognition

The CEUR entity recognition consists of assigning another set of tags to the
discovered visual areas. These tags correspond to the individual types of infor-
mation that we want to extract from the source document. The complete list of
the assigned tags (with the type ESWC) and their meaning is in Table 2.

Table 2. Tags used for the CEUR entity annotation (tag type ESWC)

Tag Meaning

vtitle Volume title
vcountry Workshop location (country)
veditor Editor name
vdate Date(s) of the workshop

Tag Meaning

subtitle Volume subtitle (proceedings)
title Paper title
authors Paper author(s)
pages Paper pages

The transition from the general text tags listed in Table 1 to the semantic
tags listed in Table 2 corresponds to the disambiguation and refining of the rough
text classification. We assume that some text tags may be missing or may have
been assigned incorrectly. Some tags are ambiguous, e.g. the persons tag may
indicate author or editor names depending on context.

For assigning the semantic tags, our refining algorithms take into account
the following aspects:

– Common visual presentation rules – there exist some commonly used rules
for visual formatting of the presented information in a document. E.g. a title
or subtitle is written in larger font or at least bolder than a normal text.

– Regularity in presentation style – we assume that all the information of the
same meaning (e.g. all paper titles) is presented with the same visual style
(fonts, colors, etc.) in a single proceedings page.



10 Martin Milicka and Radek Burget

– Regularity in layout – some proceedings put author names before the paper
title, some put them below or on the same line. However, this layout is again
consistent through the whole proceedings page.

– Locality of the information – information of the same kind is presented in
one area of the page. We can identify an area containing editors, papers, etc.
The order of these area remains the same in all the proceedings pages.

– Textual hints – some key phrases such as “Edited by” or “Table of Contents”
are commonly used in most of the proceedings. When they are found in
the page, they can be used to refine the expected area where a particular
information is located within the page.

Our algorithm works in the following steps:

1. We discover the position of the workshop title and the repeating layout
and style patterns that (together with the assigned text tags from Table 1)
correspond to the published papers and their authors and similarly for editors
and their affiliations.

2. Based on the discovered patterns, we guess approximate areas in the rendered
page that are likely to contain a particular information: the workshop title,
subtitle (proceedings information), editors, papers and submission details.
If the text hints such as “Edited by” are present in the pages, the expected
area bounds are adjusted appropriately.

3. In these areas, we find the most frequent font style used for each type of in-
formation (e.g. author names) and the most frequent layout pattern (authors
before or after the title, etc.) Then, we assign the appropriate semantic tags
from Table 2 to all the visual areas using the same font style that correspond
to the discovered layout pattern. This solves the possible inaccuracy of the
text tag assignment.

The workshop title is discovered by its font size (it’s always written with the
largest font size used in the page). The editor area is guessed by searching per-
sonal names between the workshop title and the papers (the “Table of contents”
text may be used as a hint when present) and the subtitle is located between
the title and the editors.

As the result, we obtain a refined tagging of the visual areas that indicates
their semantics.

4.4 Logical Structure Construction

The last logical structure construction phase has two main goals:

– Extract the text data from the tagged visual areas. The area may contain
multiple kinds of information (e.g. several author names, several editors or
some additional text that should be omitted).

– Put together the information that belongs to a single entity: the name and
affiliation of a single editor or the title, authors and pages of a single paper.



Information Extraction from Web Sources 11

These goals correspond to the construction of a tree of logical areas as defined
in section 3.4. The text extraction corresponds to the identification of the logical
areas and the relationships among the areas (denoted using the a:isChildOf prop-
erty) are used for creating a tree of logical areas where the child nodes specify
the properties of its parent node.

We have implemented a custom logical tree builder that goes through the
visual area tree and creates the logical areas organized in subtrees depending
on the assigned semantic tags. For this, some more text processing is usually
required: splitting the author area to several author names by separators, com-
pleting the editor affiliations by matching the different kinds of symbols and
bullets and extracting the data such as workshop date from longer text lines.

The countries in the editor affiliations are recognized by a simple matching
with a fixed list of countries and their DBPedia resource IRIs (a CSV extracted
from DBPedia).

The workshop and conference acronym extraction is based on a simple text
parser that recognizes all the acronyms and the ordinals in the text. In order
to distinguish between the workshop and the conference acronyms, we try to
locate the particular keywords (e.g. “colocated with”) in the subtitle and we
also compare the sets of acronyms found in the title and the subtitle since the
conference acronym is very rarely present in the main title.

Some information such as the paper IRIs must be obtained from the underly-
ing code from the id or href attributes. Therefore, in our stored rendered page
model, we maintain the information about the source DOM nodes that produce
the given box displayed in the page.

The resulting logical structure description is added to the FITLayout internal
RDF repository and it can be directly transformed to the output linked data set
by mapping to the target ontology.

4.5 CEUR Index Page Processing

The CEUR proceedings index page is a specific source of information. We use this
page for locating the related workshops (the see also) information, the date of
publication. We also use the volume title from the index page in the final output
because the title in the individual pages is slightly different in some cases.

Since the index page is just a single HTML document with a specific style
and quite a regular structure, we have just used a simple “old school” Unix
awk script for extracting this data directly from the HTML code. This script
produces a CSV output that is used by the logical tree builder to complete the
logical structure.

5 Conclusions

In this paper, we have presented a web information extraction approach based
on a complex modelling of different aspects of the processed document. Our
system analyzes the rendered document and in multiple steps, it guesses and



12 Martin Milicka and Radek Burget

later disambiguates the semantics of the individual text parts by combining
the page segmentation and text classification methods with specific extraction
rules based on visual presentation of the content. This approach allows to avoid
HTML-related implementation details. The extraction task is specified on quite
a high level of abstraction that ensures the tolerance of the method to different
variations in the processed documents.

Acknowledgments

This work was supported by the BUT FIT grant FIT-S-14-2299 and
the IT4Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070.

References

1. Bos, B., Lie, H.W., Lilley, C., Jacobs, I.: Cascading Style Sheets, level 2, CSS2
Specification. The World Wide Web Consortium (1998)

2. Burget, R.: Layout based information extraction from HTML documents. In: IC-
DAR 2007. pp. 624–629. IEEE Computer Society (2007)

3. Burget, R., Rudolfová, I.: Web page element classification based on visual features.
In: 1st Asian Conference on Intelligent Information and Database Systems ACIIDS
2009. pp. 67–72. IEEE Computer Society (2009)

4. Cai, D., Yu, S., Wen, J.R., Ma, W.Y.: VIPS: a Vision-based Page Segmentation
Algorithm. Microsoft Research (2003)

5. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics. pp. 363–370. ACL
’05 (2005)

6. Hong, J.L., Siew, E.G., Egerton, S.: Information extraction for search engines using
fast heuristic techniques. Data Knowl. Eng. 69(2), 169–196 (Feb 2010), http://
dx.doi.org/10.1016/j.datak.2009.10.002

7. Hong, T.W., Clark, K.L.: Using grammatical inference to automate information
extraction from the Web. Lecture Notes in Computer Science 2168, 216+ (2001)

8. Kolchin, M., Kozlov, F.: A template-based information extraction from web sites
with unstable markup. In: Presutti, V., Stankovic, M., Cambria, E., Cantador,
I., Di Iorio, A., Di Noia, T., Lange, C., Reforgiato Recupero, D., Tordai, A.
(eds.) Semantic Web Evaluation Challenge, Communications in Computer and
Information Science, vol. 475, pp. 89–94. Springer International Publishing (2014),
http://dx.doi.org/10.1007/978-3-319-12024-9_11

9. Milicka, M., Burget, R.: Multi-aspect document content analysis using ontological
modelling. In: Proceedings of 9th Workshop on Intelligent and Knowledge Oriented
Technologies (WIKT 2014). pp. 9–12. Vydavatélstvo STU (2014)

10. You, Y., Xu, G., Cao, J., Zhang, Y., Huang, G.: Leveraging visual features and
hierarchical dependencies for conference information extraction. In: Ishikawa, Y.,
Li, J., Wang, W., Zhang, R., Zhang, W. (eds.) Web Technologies and Applica-
tions, Lecture Notes in Computer Science, vol. 7808, pp. 404–416. Springer Berlin
Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-37401-2_41


