
October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

International Journal of Foundations of Computer Science
© World Scientific Publishing Company

Jumping Grammars

ZBYNĚK KŘIVKA

IT4Innovations Centre of Excellence, Department of Information Systems, Faculty of Information Technology,
Brno University of Technology, Božetěchova 2, Brno 612 66, Czech republic

krivka@fit.vutbr.cz
<http://www.fit.vutbr.cz/~krivka>

ALEXANDER MEDUNA

IT4Innovations Centre of Excellence, Department of Information Systems, Faculty of Information Technology,
Brno University of Technology, Božetěchova 2, Brno 612 66, Czech republic

meduna@fit.vutbr.cz

Received (Day Month Year)
Communicated by (xxxxxxxxxx)

This paper introduces and studies jumping grammars, which represent a grammatical counterpart to the
recently introduced jumping automata. These grammars are conceptualized just like classical gram-
mars except that during the applications of their productions, they can jump over symbols in either
direction within the rewritten strings. More precisely, a jumping grammar rewrites a string z accord-
ing to a rule x → y in such a way that it selects an occurrence of x in z, erases it, and inserts y

anywhere in the rewritten string, so this insertion may occur at a different position than the erasure of
x.

The paper concentrates its attention on investigating the generative power of jumping grammars.
More specifically, it compares this power with that of jumping automata and that of classical grammars.
A special attention is paid to various context-free versions of jumping grammars, such as regular,
right-linear, linear, and context-free grammars of finite index. In addition, we study the semilinearity
of context-free, context-sensitive, and monotonous jumping grammars. We also demonstrate that the
general versions of jumping grammars characterize the family of recursively enumerable languages.
In its conclusion, the paper formulates several open problems and suggests future investigation areas.

Keywords: Modified grammars; discontinuous rewriting; generative power; jumping finite automata;
semilinearity; finite index.

1991 Mathematics Subject Classification: 68Q05, 68Q10, 68Q42, 68Q45, 68Q70

1. Introduction

The introduction of this paper consists of four subsections. Section 1.1 explains the reason
why this paper modifies classical grammars. Section 1.2 informally describes this modifi-
cation and important results. Section 1.3 sketches a straightforward application of this new
concept in DNA computing. Section 1.4 gives the contents of the rest of the paper.

1

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

2 Zbyněk Křivka, Alexander Meduna

1.1. Motivation

Processing information in a largely discontinuous way represents a common computational
phenomenon today [1, 2, 7]. Indeed, consider a process p that deals with information i.
During a single computational step, p can read a piece of information x in i, erase it,
generate a new piece of information y, and insert y into i possibly far away from the original
occurrence of x, which was erased. Therefore, intuitively speaking, during its computation,
p keeps jumping across i as a whole. To explore computation like this systematically and
rigorously, computer science obviously needs formal models that reflect it in an adequate
way.

Traditionally, formal language theory has always provided computer science with
language-defining models to explore various information processors mathematically, so it
should do so for the purpose sketched above, too. However, the classical versions of these
models, such as automata and grammars, work on words strictly continuously, and as such,
they can hardly serve as appropriate models of this kind. Therefore, a proper formalization
of processors that work in the way described above necessities an adaptation of classical
automata and grammars so they work on words discontinuously. At the same time, any
adaptation of this kind should conceptually maintain the original structure of these models
as much as possible so computer science can quite naturally base its investigation upon
these newly adapted models by analogy with the standard approach based upon their clas-
sical versions. Simply put, these new models should work on words in a discontinuous way
while keeping their structural conceptualization unchanged.

As a matter of fact, finite automata, which definitely represent important language-
accepting models of computation, have been modified in this way recently. Indeed, these
modified finite automata, referred to as jumping finite automata (see [9]), work just like
classical finite automata except that they read input words discontinuously—that is, it does
not read the input string in a symbol-by-symbol left-to-right way. Instead, after reading a
symbol, they can jump over some symbols within the words and continue their computation
from there.

1.2. Grammatical Approach

As already pointed out, apart from automata, there exist grammars as the other fundamental
language-defining models in formal language theory. As a result, the recent introduction of
jumping automata obviously leads to introducing jumping grammars—the subject of this
paper.

Recall that the notion of a classical grammarG represents a language-generating rewrit-
ing system based upon an alphabet of symbols and a finite set of productions. The alphabet
of symbols is divided into two disjoint subalphabets—the alphabet of terminal symbols
and the alphabet of nonterminal symbols. Each production rule represents a pair of the
form (x, y), where x and y are strings over the alphabet ofG. Customarily, (x, y) is written
as x → y, where x and y are referred to as the left-hand side and the right-hand side of
x → y. Starting from a special start nonterminal symbol, G repeatedly rewrites strings
according to its productions until it obtains a sentence—that is, a string that solely con-

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

Jumping Grammars 3

sists of terminal symbols; the set of all sentences represents the language generated by the
grammar. In a greater detail, G rewrites a string z according to x → y so it (1) selects an
occurrence of x in z, (2) erases it, and (3) inserts y precisely at the position of this erasure.
More formally, let z = uxv, where u and v are strings. By using x → y, G rewrites uxv
as uyv.

The notion of a jumping grammar—that is, the key notion introduced in this paper—is
conceptualized just like that of a classical grammar; however, it rewrites strings in a slightly
different way. Consider G, described above, as a jumping grammar. Let z and x→ y have
the same meaning as above. G rewrites a string z according to x → y so it performs (1)
and (2) as described above, but during (3),G can jump over a portion of the rewritten string
in either direction and inserts y there. More formally, by using x → y, G rewrites ucv as
udv, where u, v, w, c, d are strings such that either (i) c = xw and d = wy or (ii) c = wx

and d = yw. Otherwise, it coincides with the standard notion of a grammar.
Regarding the general versions of jumping grammars, we demonstrate that they are as

powerful as classical general grammars. As there exist many important special versions
of these classical grammars, we discuss their jumping counterparts in the present paper as
well. Perhaps most importantly, we study the jumping versions of context-free grammars
and their special cases, including regular grammars, right-linear grammars, linear gram-
mars, and context-free grammars of finite index. Surprisingly, all of them have a different
power than their classical counterparts.

As already pointed out, the fundamental purpose of this paper is to demonstrate the
discussion of jumping grammars as a significant and up-to-date topic of modern formal
language theory, and in this sense, the present paper is primarily meant as a proposal of a
new investigation area in this theory. Of course, it cannot present a systematic and com-
pact body of rigorous knowledge that exhaustively and thoroughly represents the theory
of jumping grammars. Instead, it narrows its investigation to a key topic concerning them.
More specifically, since the determination of the power of language-defining devices has al-
ways fulfilled a central role in formal language theory, this paper pays its principle attention
to the study of the generative power of jumping grammars. First, it compares this power
with the power of jumping finite automata. More specifically, it demonstrates that regular
jumping grammars are as powerful as jumping finite automata. Furthermore, right-linear
jumping grammars are equivalent with the generalized jumping finite automata. The paper
also compares the language families resulting from jumping versions of grammars with
those resulting from standard versions of the corresponding grammars and demonstrates
that most of them differ; perhaps most surprisingly, this difference concerns the families
contained in the well-known Chomsky hierarchy.

1.3. Applications Perspectives

As follows from the beginning of this section, jumping grammars serve as grammatical
models that allow us to explore information processing performed in a discontinuous way
adequately and rigorously. Consequently, applications of these grammars are expected in
any scientific area involving this kind of information processing, ranging from applied

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

4 Zbyněk Křivka, Alexander Meduna

mathematics through computational linguistics up to biology. Taking into account the way
these grammars are conceptualized, we see that they are particularly useful and applica-
ble under the circumstances that primarily concern the number of occurrences of various
symbols or substrings rather than their mutual context. To give a more specific illustra-
tion, consider DNA computing, whose significance is indisputable in computer science at
present. Recall that a DNA is a molecule encoding genetic information by a repetition of
four basic units called nucleotides—namely, guanine, adenine, thymine, and cytosine, de-
noted by letters G, A, T , and C, respectively. In terms of formal language theory, a DNA
is described as a string over {G, A, T , C}; for instance,

GGGGAGTGGGATTGGGAGAGGGGTTTGCCCCGCTCCC

represents a string like this. Suppose that a DNA-computing-related investigation needs
to study all the strings that contain the same number of Cs and Gs and the same num-
ber of As and T s; for instance, CGGCATCCGGTA is a proper string like this, but
CGCACCGGTA is not. Consider the jumping right-linear grammar containing produc-
tions

1→ C2, 2→ G1, 1→ 3, 3→ A4, 4→ T3, 3→ ε

where 1 through 4 are nonterminal symbols with 1 being the start nonterminal, ε is the
empty string, and G, A, T , and C are, of course, terminal symbols. As obvious, this gram-
mar generates the language consisting of all the strings satisfying the above-stated require-
ments. Therefore, as this trivial example illustrates, jumping grammars may fulfill a useful
role studies related to DNA computing in the future.

1.4. Organization

The rest of the paper is organized as follows. Section 2 recalls all the terminology needed
in this paper and introduces a variety of jumping grammars including some examples.
Section 3 presents fundamental results achieved in this paper. Section 4 closes all the study
by pointing out important open problem areas.

2. Preliminaries and Definitions

For an alphabet, V , V ∗ represents the free monoid generated by V under the operation of
concatenation. The unit of V ∗ is denoted by ε. Set V + = V ∗ − {ε}. For w ∈ V ∗, |w| and
alph(w) denote the length of w and the set of symbols occurring in w, respectively. For all
i ≥ 0, the ith power of w, denoted by wi, is recursively defined as (1) w0 = ε, and (2)
wi = wwi−1, for i ≥ 1. Let N ⊆ V ; occur(N,w) denotes the number of occurrences
of symbols from N in w. Let w = a1a2 · · · an, where ai ∈ V for all i = 1, 2, . . . , n, for
some n ≥ 0 (x = ε iff n = 0). The set of all permutations of w, perm(w), is defined as
perm(w) = {b1b2 · · · bn | bi ∈ alph(w) for all i = 1, 2, . . . , n, and (b1, b2, . . . , bn) is a
permutation of (a1, a2, . . . , an)}. Let L ⊆ V ∗, perm(L) = {w | w ∈ perm(w′), w′ ∈ L}.
Let X and Y be sets; we call X and Y to be incomparable if X 6⊆ Y and Y 6⊆ X .

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

Jumping Grammars 5

Definition 1. A general grammar (GG for short) is a quadruple, G = (V, T, P, S), where
V is an alphabet, T ⊆ V , P is a finite relation from V ∗ − T ∗ to V ∗, and S ∈ V − T is
the start nonterminal. Members of T and (V − T) are called terminals and nonterminals,
respectively. Let N = V − T hereafter. Members of P are called productions; instead of
(x, y) ∈ P , we write x → y throughout the paper. For brevity, we sometimes denote a
production x → y with a unique label p as p : x → y, and instead of x → y ∈ P , we
simply write p ∈ P . For p ∈ P , lhs(p) and rhs(p) denotes the left-hand side x and the
right-hand side y of production p, respectively.

Let r be a relation over V ∗. As usual, for every n ≥ 0, the n-fold product of r is
denoted by rn. The transitive-reflexive closure and the transitive closure of r are denoted
by r∗ and r+, respectively. Let k be a positive integer. Let rk = {(x, y) | (x, y) ∈ r,
occur(N, x) ≤ k, occur(N, y) ≤ k}. Unless explicitly stated otherwise, we write xry
instead of (x, y) ∈ r in what follows.

Let G = (V, T, P, S) be a GG and r be a relation over V ∗. Set

L(G, r) = {x ∈ T ∗ | Sr∗x}.
L(G, r) is said to be the language that G generates by using r. For any X ⊆ ΓGG (as

defined below, ΓGG denotes the set of GGs) and any set R of relations over V ∗, set

L (X, R) = {L(G, r) | G ∈ X , r ∈ R}.
If R contains only one relation r, we simplify L (X, {r}) to L (X, r) for brevity.
Next, we introduce four modes of jumping derivation steps as relations over V ∗. For-

mally, for u, v ∈ V ∗, we define these relations as follows

(i) u s⇒ v in G iff there exist x→ y ∈ P and w, z ∈ V ∗ such that u = wxz and v = wyz;
(ii) u lj⇒ v in G iff there exist x → y ∈ P and w, t, z ∈ V ∗ such that u = wtxz and

v = wytz;
(iii) u rj⇒ v in G iff there exist x → y ∈ P and w, t, z ∈ V ∗ such that u = wxtz and

v = wtyz;
(iv) u j⇒ v in G iff u lj⇒ v or u rj⇒ v in G.

Sometimes, we need to explicitly specify the sequence of productions applied during
some of these four jumping derivation modes. Consider (i). To express that a GG G applies
a production p during u s⇒ v, we write u s⇒ v [p], where p ∈ P . By u s⇒∗ v [π], where
π is a sequence of productions from P , we express that G makes u s⇒∗ v by using π.
Analogously, we present this specification in terms of the other three modes (ii) through
(iv)—lj⇒, rj⇒, and j⇒.

Next, we define several special cases of GGs. Let G be a GG.

• G is a monotonous grammar (MONG for short) if every x→ y ∈ P satisfies |x| ≤ |y|.
• G is a context-sensitive grammar (CSG for short) if every x→ y ∈ P satisfies x = αAβ

and y = αγβ such that A ∈ N , α, β ∈ V ∗, and γ ∈ V +.
• G is a context-free grammar (CFG for short) if every x→ y ∈ P satisfies x ∈ N .
• G is an ε-free context-free grammar (CFG−ε for short) if G is a CFG and every x →
y ∈ P satisfies y 6= ε.

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

6 Zbyněk Křivka, Alexander Meduna

• G is a linear grammar (LG for short) if G is a CFG and every x → y ∈ P satisfies
y ∈ T ∗NT ∗ ∪ T ∗.

• G is a right-linear grammar (RLG for short) if G is a CFG and every x → y ∈ P

satisfies y ∈ T ∗N ∪ T ∗.
• G is a regular grammar (RG for short) if G is a CFG and every x → y ∈ P satisfies
y ∈ TN ∪ T .

Let ΓGG, ΓMONG, ΓCSG, ΓCFG, ΓCFG−ε , ΓLG, ΓRLG, and ΓRG denote the sets of
all GGs, MONGs, CSGs, CFGs, CFG−εs, LGs, RLGs, and RGs, respectively.

To illustrate the above-introduced notation, let G = (V, T, P, S) be a RLG; then, L(G,

j⇒) = {x ∈ T ∗ | S j⇒∗x}, and L (ΓRLG, j⇒) = {L(G, j⇒) | G ∈ ΓRLG}. To give
another example, L (ΓCFG, s⇒) denotes the family of all context-free languages.

Definition 2. Set REG = L (ΓRLG, s⇒), LIN = L (ΓLG, s⇒), CF = L (ΓCFG,

s⇒), CS = L (ΓMONG, s⇒), and RE = L (ΓGG, s⇒). Let k be a positive integer. Set
CFk = L (ΓCFG, {s⇒i | 1 ≤ i ≤ k}) and CFfin = {L | L ∈ CFi, for some i ≥ 1}.
For further details concerning finite index of grammars, see Chapter 3 in [3]. Let FIN,
REG, LIN, CF, CS, and RE denote the family of finite, regular, linear, context-free,
context-sensitive, and recursively enumerable languages, respectively.

Recall (see [10])

FIN ⊂ REG ⊂ LIN ⊂ CFfin ⊂ CF ⊂ CS ⊂ RE

Example 3. Consider the following RG

G = ({A,B,C, a, b, c},Σ = {a, b, c}, P,A)

where P = {A→ aB, B → bC, C → cA, C → c}.
L(G, s⇒) = {abc}{abc}∗

L(G, j⇒) = {w ∈ Σ∗ | occur({a}, w) = occur({b}, w) = occur({c}, w)}
Notice that although L(G, s⇒) is regular, L(G, j⇒) ∈ CS is a well-known non-

context-free language.

Example 4. Consider the following CSG G = ({S, A, B, a, b}, {a, b}, P , S) containing
the following productions

S → aABb

S → ab

AB → AABB

aA → aa

Bb → bb

Trivially, L(G, s⇒) = {anbn | n ≥ 1}. Using j⇒, we can make the following deriva-
tion sequence (the rewritten substring is underlined):

S j⇒ aABb j⇒ aAABBb j⇒2 aaABbb j⇒ aBbbaa j⇒ abbbaa

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

Jumping Grammars 7

Notice that L(G, s⇒) is context-free, but we cannot generate this language by any
CFG, CSG or even MONG in jumping derivation mode.

Lemma 5. {a}∗{b}∗ /∈ L (ΓMONG, j⇒).

Proof. Assume that there exists a MONG G = (V, T, P, S) such that L(G, j⇒) =

{a}∗{b}∗. Let p : x → y ∈ P be the last applied production during a derivation
S j⇒+ w where w ∈ L(G, j⇒); that is, S j⇒∗ uxv j⇒ w [p] where u, v, w ∈ T ∗

and y ∈ {a}+ ∪ {b}+ ∪ {a}+{b}+. In addition, assume that the sentential form uxv is
longer than x such that uv ∈ {a}+{b}+.

(i) If y contains at least one symbol b, the last jumping derivation step can place y at the
beginning of the sentence and create a string from {a, b}∗{b}{a, b}∗{a}{a, b}∗ that
does not belong to {a}∗{b}∗.

(ii) By analogy, if y contains at least one symbol a, the last jumping derivation step can
place y at the end of the sentence and therefore, place at least one a behind some bs.

This is a contradiction, so there is no MONG that generates regular language {a}∗{b}∗
using j⇒.

We re-open a discussion related to Lemma 5 in the last section of this paper.

Corollary 6. The following pairs of language families are incomparable, but not disjoint:

(i) REG and L (ΓMONG, j⇒);
(ii) CF and L (ΓMONG, j⇒);

(iii) REG and L (ΓRG, j⇒);
(iv) CF and L (ΓRG, j⇒).

Proof. Since REG ⊂ CF, it is sufficient to prove that REG − L (ΓMONG,

j⇒), L (ΓRG, j⇒) − CF, and REG ∩ L (ΓRG, j⇒) are non-empty. By Lemma 5,
{a}∗{b}∗ ∈ REG − L (ΓMONG, j⇒). In Example 3, we define a jumping RG that
generates a non-context-free language that belongs to L (ΓRG, j⇒) −CF. Observe that
regular language {a}∗ belongs to L (ΓRG, j⇒), so REG ∩L (ΓRG, j⇒) is non-empty.

As even some very simple regular language such as {a}+{b}+ cannot be generated by
jumping derivation in CSGs or even MONGs, we pinpoint the following open problem and
state a theorem comparing these families with context-sensitive languages.

Open Problem 7. Are L (ΓCFG, j⇒) ⊆ L (ΓCSG, j⇒) and L (ΓCSG, j⇒) ⊆
L (ΓMONG, j⇒) proper?

Theorem 8. L (ΓMONG, j⇒) ⊂ CS.

Proof. Clearly, a jumping MONG can be simulated by some linear bounded automata, so
L (ΓMONG, j⇒) ⊆ CS. That is, by Lemma 5 this theorem holds.

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

8 Zbyněk Křivka, Alexander Meduna

Example 9. Assume a language with arithmetic expressions with three kinds of brackets
and omitted operator symbols, literals, and identifiers. This bracket language is generated
by classical CFG G = ({E, (,), {, }, [,]}, {(,), {, }, [,]}, {E → (E)E, E → {E}E,
E → [E]E, E → ε}, E). G has no finite index. Consider jumping RLG H with the same
start nonterminal, set of nonterminals and terminals as in G. The set of productions in H
contains

E → ()E E → {}E
E → []E E → ε

Observe that L(G, s⇒) = L(H, j⇒) and, in addition, H is of index 1.

Definition 10. [9] A general jumping finite automaton, a GJFA for short, is a quintuple
M = (Q,Σ, R, s, F), where Q is finite set of states, Σ is the input alphabet, Q ∩ Σ = ∅,
R ⊆ Q × Σ∗ × Q is finite, s ∈ Q is the start state, and F ⊆ Q is a set of final states.
Members of R are referred to as rules of M and instead of (p, y, q) ∈ R, we write py →
q ∈ R. If py → q ∈ R implies that |y| ≤ 1, then M is a jumping finite automaton, a JFA
for short.

A configuration of M is any string in Σ∗QΣ∗. The binary jumping relation, symboli-
cally denoted by y, over Σ∗QΣ∗, is defined as follows. Let x, z, x′, z′ ∈ Σ∗ such that
xz = x′z′ and py → q ∈ R; then, M makes a jump from xpyz to x′qz′, symbolically
written as xpyz y x′qz′. In the standard manner, we extent y to ym, where m ≥ 0,
y+, and y∗.

The language accepted by M , denoted by L(M), is defined as L(M) = {uv | u, v ∈
Σ∗, usv y∗ f , f ∈ F}.

GJFA and JFA denote the families of languages accepted by GJFAs and JFAs, respec-
tively.

Recall that JFA ⊂ GJFA, FIN ⊂ GJFA, and FIN and JFA are incomparable,
respectively (see Theorems 16, 18, and 23 in [9]).

3. Results

In this section, the generative power of several kinds of jumping grammars is discussed and
the main results are demonstrated.

3.1. Relations between Jumping Automata and Jumping Grammars

We demonstrate that the generative power of regular and right-linear jumping grammars
is the same as accepting power of jumping finite automata and general jumping finite au-
tomata, respectively. Consequently, the following equivalence and results from [9] imply
several additional properties of languages that are generated by regular and right-linear
jumping grammars such as closure properties and decidability.

Lemma 11. GJFA ⊆ L (ΓRLG, j⇒).

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

Jumping Grammars 9

RE L (ΓGG, j⇒)

CS L (ΓMONG, j⇒)

L (ΓCSG, j⇒)

CFCF−ε

L (ΓCFG, j⇒) L (ΓCFG−ε , j⇒)

LIN

REG

FIN

L (ΓRLG, j⇒)
⋃

k≥1 L (ΓCFG, j⇒k)

L (ΓRG, j⇒)

GJFA

JFA

Fig. 1. A hierarchy of language families closely related to the language families resulting from jumping grammars
is shown. If there is a line or an arrow from family X to family Y in the figure, then X = Y or X ⊂ Y ,
respectively. If there is a dashed arrow from X to Y , then X ⊆ Y , but X ⊂ Y represents an open problem. A
crossed line represents the incomparability between connected families. (It is noteworthy that the figure describes
only some of the language-family relations that are crucially important in terms of the present paper; however, by
no means, it gives an exhaustive description of these relations.)

Proof.
Construction. For every GJFA M = (Q, Σ, R, s, F), we construct a RLG G = (Q ∪
Σ ∪ {S}, Σ, P , S), where S is a new nonterminal, S /∈ Q ∪ Σ, such that L(M) = L(G,

j⇒).
Set P = {S → f | f ∈ F} ∪ {q → xp | px→ q ∈ R} ∪ {q → x | sx→ q ∈ R}.

Basic Idea. The principle of the conversion is analogical to the conversion from classical
lazy finite automata to equivalent RLGs with sequential derivation mode (see Section 2.6.2
in [11] and Theorem 4.1 in [10]).

The states of M are used as nonterminals in G. In addition, we introduce new start
nonterminal S in G. The input symbols Σ are terminal symbols in G.

During the simulation ofM inG there is always exactly one nonterminal symbol in the
sentential form until the last jumping derivation step that produces the string of terminal
symbols. If there is a sequence of jumping moves sw y∗ pyxy′ y qyy′ y∗ f in M ,
then G simulates it by jumping derivation S j⇒ f j⇒∗ zqz′ j⇒ yxpy′ j⇒∗ w, where
yy′ = zz′. Firstly, S is nondeterministically rewritten to some f in G to simulate the en-

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

10 Zbyněk Křivka, Alexander Meduna

trance to the corresponding accepting final state of M . Then, for each rule px → q in M
that processes substring x in the input string, there is x generated by the corresponding pro-
duction of the form q → xp in G. As the last jumping derivation step in G, we simulate the
first jumping move ofM from the start state s by rewriting the only nonterminal in the sen-
tential form of G to a string of terminals and the simulation of M by G is completed.

Lemma 12. L (ΓRLG, j⇒) ⊆ GJFA.

Proof.
Construction. For every RLG G = (V , T , P , S), we construct a GJFA M = (N ∪ {σ},
T , R, σ, {S}), where σ is a new start state, σ /∈ V and N = V − T , such that L(G,

j⇒) = L(M). Set R = {Bx → A | A → xB ∈ P , A,B ∈ N , x ∈ T ∗} ∪
{σx→ A | A→ x ∈ P , x ∈ T ∗}.

Basic Idea. In the simulation of G in M we use nonterminals N as states, new state σ as
the start state, and terminals T corresponds to input symbols of M . In addition, the start
nonterminal of G corresponds to the only final state of M . Every application of a pro-
duction from P in G is simulated by a move according to the corresponding rule from R

constructed above. If there is a jumping derivation S j⇒∗ yAy′ j⇒ zxBz′ j⇒∗ w in G,
then M simulates by jumping moves σw y∗ Bzxz′ y Ayy′ y∗ S, where yy′ = zz′.

Theorem 13. GJFA = L (ΓRLG, j⇒).

Proof. This theorem holds by Lemma 11 and 12.

In the following theorem, consider jumping finite automata that processes only one
input symbol in one move. We state their equivalence with jumping RGs.

Theorem 14. JFA = L (ΓRG, j⇒).

Proof. Prove this statement by analogy with the proof of Theorem 13 with x ∈ T .

3.2. Relations between the Language Families Resulting from Various Jumping
Grammars

As its title indicates, the present section establishes results concerning relations between
language families generated by jumping versions of grammars introduced earlier in this
paper.

Theorem 15. L (ΓRLG, j⇒) = L (ΓLG, j⇒) =
⋃

k≥1 L (ΓCFG, j⇒k).

Proof. Since L (ΓRLG, j⇒) ⊆ L (ΓLG, j⇒) ⊆ ⋃
k≥1 L (ΓCFG, j⇒k) follows from

the definitions, it suffices to proof that
⋃

k≥1 L (ΓCFG, j⇒k) ⊆ L (ΓRLG, j⇒).

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

Jumping Grammars 11

Construction. Let V and T be an alphabet and an alphabet of terminals, respectively. Set
N = V − T . Let η : V → N ∪ {ε} be a homomorphism such that η(X) = X if X ∈ N ;
otherwise η(X) = ε. Let τ : V → T ∪ {ε} be a homomorphism such that τ(X) = X if
X ∈ T ; otherwise η(X) = ε. As usual, extend η and τ to strings of symbols.

For every CFG G = (VG, T , PG, S) and index k ≥ 1, we construct a RLG H = (VH ,
T , PH , 〈S〉) such that L(G, j⇒k) = L(H, j⇒). Set

VH = {〈x〉 | x ∈
k⋃

i=1

(VG − T)i} ∪ T

and set

PH = {〈αAβ〉 → τ(x)〈γ〉 | A→ x ∈ PG, α, β ∈ N∗, γ = αβη(x), 1 ≤ |γ| ≤ k}
∪ {〈A〉 → x | A→ x ∈ PG, x ∈ T ∗}

Basic Idea. CFGGworking with index k means that every sentential form contains at most
k nonterminal symbols. In jumping derivation mode, the position of nonterminal symbol
does not matter for context-free rewriting. Together with the finiteness of N , we can store
the list of nonterminals using just one nonterminal from constructed VH − T in the simu-
lating RLG.

For every jumping derivation step γAδ j⇒k γ
′xδ′ byA→ x inG, there is a simulating

jumping derivation step τ(γ̄)〈η(γAδ)〉τ(δ̄) j⇒ τ(γ̄′)τ(x)〈η(γδx)〉τ(δ̄′) in H where γδ =

γ′δ′ = γ̄δ̄ = γ̄′δ̄′. The last simulating step of jumping application of A→ w with w ∈ T ∗
replaces the only nonterminal of the form 〈A〉 by w that can be placed anywhere in the
string.

Consider the finite index restriction in the family
⋃

k≥1 L (ΓCFG, j⇒k) in Theorem
15. Dropping this restriction gives rise to the next question. Indeed, from a broader per-
spective, an investigation of finite-index-based restrictions placed upon various jumping
grammars and their effect on the resulting generative power represents a challenging open
problem area as illustrated by Example 9.

Open Problem 16. Is
⋃

k≥1 L (ΓCFG, j⇒k) ⊆ L (ΓCFG, j⇒) proper?

Theorem 17. L (ΓCFG−ε , j⇒) = L (ΓCFG, j⇒).

Proof. It is easy to prove this theorem by analogy with the theorem for CFGs in sequential
derivation mode (see Theorem 5.1.3.2.4 on page 328 in [8]).

Lemma 18. RE ⊆ L (ΓGG, j⇒).

Proof.
Construction. For every GG G = (VG, T, PG, SG), we construct another GG H = (VH =

VG ∪ {SH , $,#, b, c}, T, PH , SH) such that L(G, s⇒) = L(H, j⇒). SH , $,#, b, and c
are new nonterminal symbols in H . Set

PH = {SH → #SG, #→ b$, b c → #, #→ ε} ∪ {$α→cβ | α→ β ∈ PG}

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

12 Zbyněk Křivka, Alexander Meduna

Basic Idea. Nonterminal # has at most one occurrence in the sentential form. # is gen-
erated by the initial production SH → #SG. This symbol participates in the beginning
and end of every simulation of the application of a production from PG. Each simulation
consists of several jumping derivation steps:

(i) # is expanded to a string of two nonterminals—marker of a position (b), where the
production is applied in the sentential form, and auxiliary symbol ($) presented as a left
context symbol in the left-hand side of every simulated production from PG.

(ii) For each x → y from PG, $x →cy is applied in H . To be able to finish the simulation
properly, the right-hand side (cy) of applied production has to be placed right next to the
marker symbol b; otherwise, we cannot generate a sentence.

(iii) The end of the simulation (production b c → #) checks that the jumping derivation was
applied like in the sequential way.

(iv) In the end, # is removed to finish the generation of a string of terminal symbols.

Define the homomorphism h : VH → VG as h(X) = X for all X ∈ VG, h(SH) = SG,
and h(Y) = ε for all Y ∈ {$,#, b, c}.

Claim 19. Let y be a sentential form of H; that is, SH j⇒∗ y. For every X ∈
{#, $, b, c, SH}, occur({X}, y) ≤ 1.

Proof. The claim follows from the productions in PH constructed in the proof of the pre-
vious lemma. In addition, note that occur({#, $, b, b, SH}, y) ≤ 2 and symbol # occurs in
y exclusively with respect to $, b, c, and SH .

Claim 20. If SG s⇒k w in G, where w ∈ T ∗ and k ≥ 0, then SH j⇒∗ w in H .

Proof. First, we prove by induction on k ≥ 0 that for every SG s⇒k x in G with x ∈ V ∗G,
there is SH j⇒∗ x′ in H such that h(x′) = x.
Basis. For SG s⇒0 SG in G, there is SH j⇒#SG in H .
Induction Hypothesis. For some k ≥ 0, SG s⇒k x in G implies that SH j⇒∗ x′ in H such
that h(x′) = x.
Induction Step. Assume that SG s⇒k y s⇒ x in G. By induction hypothesis, SH j⇒∗ y′ in
H with h(y′) = y.

The derivation step y s⇒ x in G is simulated by an application of three jumping pro-
ductions from PH in H to get y′ j⇒3 x′ with h(x′) = x as follows.

y′ = u′#v′ j⇒ u′′b$αv′′ [#→ b$]

j⇒ u′′b cβv′′ [b c → #]

j⇒ u′′′#v′′′ [#→ ε] = x′

where u′v′ = u′′αv′′ and u′′βv′′ = u′′′v′′′.
In case x ∈ T ∗, there is one additional jumping derivation step during the simulation

that erases the only occurrence of #-symbol (see Claim 19) by production #→ ε.
Note that h(x) for x ∈ T ∗ is the identity. Therefore, in case x ∈ T ∗ the induction

proves the claim.

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

Jumping Grammars 13

Claim 21. If SH j⇒k w in H , where w ∈ T ∗, then SG s⇒∗ w in G.

Proof. To prove this claim, first, we prove by induction on k ≥ 0 that for every SH j⇒k x

in H with x ∈ V ∗H such that there exists a jumping derivation x j⇒∗w, where w ∈ T ∗,
then SG s⇒∗ x′ in G such that h(x) = x′.
Basis. For k = 0, we have SH j⇒0 SH j⇒∗ w in H , then there is SG s⇒0 SG in G such
that h(SH) = SG. Further, for k = 1, we have SH j⇒1 #SG j⇒∗ w in H , then again
there is SG s⇒0 SG in G such that h(#SG) = SG, so the basis holds.
Induction Hypothesis. For some k ≥ 1, SH j⇒k x j⇒∗ w in H implies that SG s⇒∗ x′ in
G such that h(x) = x′.
Induction Step. Let u, v ∈ V ∗G and ū, v̄ ∈ V ∗H . Assume that SH j⇒k y j⇒ x j⇒∗ w in
H with w ∈ T ∗. By induction hypothesis, SG s⇒∗ y′ in G such that h(y) = y′. Let us
examine the following possibilities of y j⇒ x in H:

(i) y = u#v j⇒ ūb$v̄ = x in H such that uv = ūv̄: Simply, y′ = uv s⇒0 uv in G and by
Claim 19 h(ūb$v̄) = h(ūv̄) = h(uv) = uv.

(ii) ub$αv j⇒ ūcβv̄ in H by production $α →cβ such that uv = ūv̄: In fact, to be able
to rewrite b, the symbol b needs c as its right neighbor, so u = ū and v = v̄ in this
jumping derivation step; otherwise the jumping derivation is blocked and string of ter-
minals cannot be generated. According to production α → β, uαv s⇒ uβv in G and
h(ūcβv̄) = uβv.

(iii) ub cv j⇒ ū#v̄ in H such that uv = ūv̄: In G, uv s⇒0 uv and h(ū#v̄) = h(ūv̄) =

h(uv) = uv.
(iv) u#v j⇒ uv in H by #→ ε: Trivially, uv s⇒0 uv in G and h(uv) = uv.

If x ∈ T ∗, then the induction proves the claim.

Theorem 22. L (ΓGG, j⇒) = RE.

Proof. Trivially, by Turing-Church thesis, L (ΓGG, j⇒) ⊆ RE. The opposite inclusion
holds by Lemma 18 that is proved in details by Claim 20 and Claim 21.

3.3. Properties of Jumping Derivations

We demonstrate that the order of nonterminals in a sentential form of jumping CFGs is
irrelevant. Then, in this section, we study the semilinearity of language families generated
by various jumping grammars.

As a generalization of the proof of Theorem 15, we give the following lemma demon-
strating that the order in which nonterminals occur in sentential forms is irrelevant in jump-
ing derivation mode based on context-free productions in terms of generative power.

Lemma 23. Let η and τ be the homomorphisms from the proof of Theorem 15. For every
G ∈ ΓX with X ∈ {RG, RLG, LG, CFG} and G = (V , T , P , S) with N = V − T ,
if S j⇒∗ γ j⇒k w in G, k ≥ 0, γ ∈ V ∗, w ∈ T ∗, then for every δ ∈ V ∗ such that
τ(γ) = τ(δ) and η(δ) ∈ perm(η(γ)), there is δ j⇒∗ w in G.

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

14 Zbyněk Křivka, Alexander Meduna

Proof. We prove this lemma by induction on k ≥ 0.

Basis. Let k = 0. That is, S j⇒∗ γ j⇒0 w in G, so γ = w. By τ(δ) = τ(γ), we have
γ = w = δ, so δ j⇒0 w in G.

Induction Hypothesis. Assume that the lemma holds for some k ≥ 0.

Induction Step. Assume that S j⇒∗ γ j⇒ γ′ [A → x] j⇒k w in G with k ≥ 0. Observe
that τ(δ) = τ(γ) and η(δ) ∈ perm(η(γ)). By the above-mentioned assumption, |η(γ)| ≥
1—that is |η(δ)| ≥ 1. Thus, the jumping derivation δ j⇒∗ w in G can be written as
δ j⇒ δ′ [A→ x] j⇒∗ w. Since all the productions in G are context-free, the position of A
in δ and its context is irrelevant, and the occurrence of A in δ is guaranteed by the lemma
precondition. During the application of A → x, (1) an occurrence of A is found in δ, (2)
removed, and (3) the right-hand side of the production, x, is inserted anywhere in δ instead
ofA without preserving the position of the rewritten A. Assume x is inserted into δ′ so that
τ(δ′) = τ(γ′). We also preserve that η(δ′) ∈ perm(η(γ′)); therefore, the lemma holds.

Notice that even if there is no derivation S j⇒∗ δ in G, the lemma holds.
Note that based on the proof of Lemma 23, we can turn any jumping version of a CFG

to an equivalent jumping CFG satisfying a modified Greibach normal form, in which each
production is of the form A→ αβ where α ∈ T ∗, β ∈ N∗. Observe that α /∈ T . Consider,
for instance, a context-free production p with α = a1 · · · an. By an application of p during
a derivation of a string of terminals w, we arrange that a1 appears somewhere in front of
an in w. In other words, from Theorem 13 and Corollary 14 in [9] together with Theorem
14 above, it follows for any language L, L ∈ L (ΓRG, j⇒) implies L = perm(L), which
means that the order of all terminals in w ∈ L is utterly irrelevant.

Corollary 24. For every G ∈ ΓX with X ∈ {RG, RLG, LG, CFG}, S j⇒∗ γ j⇒∗ w in
G implies an existence of a derivation of the following form

S j⇒∗ αβ j⇒∗ w in G

whereα = τ(γ), β ∈ perm(η(γ)), S is the start nonterminal, andw is a string of terminals.

Definition 25. ([4]) Let w ∈ V ∗ with V = {a1, . . . , an}. We define Parikh vector of w
by ψV (w) = (occur(a1, w), occur(a2, w), . . . , occur(an, w)). A set of vectors is called
semilinear if it can be represented as a union of a finite number of sets of the form {v0 +∑m

i=1 αivi | αi ∈ N, 1 ≤ i ≤ m} where vi for 0 ≤ i ≤ m is an n-dimensional vector.
A language L ⊆ V ∗ is called semilinear if the set ψV (L) = {ψV (w) | w ∈ L} is a
semilinear set. A language family is semilinear if all its languages are semilinear.

Lemma 26. For X ∈ {RG, RLG, LG, CFG}, L (ΓX , j⇒) is semilinear.

Proof. By Parikh’s Theorem (see Theorem 6.9.2 on page 228 in [5]), for each context-free
language L ⊆ V ∗, ψV (L) is semilinear. Let G be a CFG such that L(G, s⇒) = L. From
the definition of j⇒ and CFG it follows that ψ(L(G, s⇒)) = ψ(L(G, j⇒)) therefore
ψ(L(G, j⇒)) is semilinear as well.

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

Jumping Grammars 15

Recall that the family of context-sensitive languages is not semilinear (for instance,
Example 2.3.1 and Theorem 2.3.1 in [3] implies that {a2n | n ≥ 0} ∈ CS, but is not semi-
linear language). By no means, this result rules out that L (ΓCSG, j⇒) or L (ΓMONG,

j⇒) are semilinear. There is, however, another kind of results concerning multiset gram-
mars (see [6]) saying that a context-sensitive multiset grammar generates a non-semilinear
language. The multiset grammars work with Parikh vector of a sentential form so the order
of symbols in the sentential form is irrelevant. Then, all permutations of terminal strings
generated by the grammar belong to the generated language.

Instead of the full definition of multiset grammars (see [6]), based on notions from the
theory of macrosets, we introduce multiset derivation mode concerning the classical string
formal language theory.

Definition 27. Let u, v ∈ V ∗ and G = (V, T, P, S) be a grammar. u m⇒ v [x → y]

in G iff there exist x → y ∈ P and t, t′, z, z′ ∈ V ∗ such that txt′ ∈ perm(u) and
zyz′ ∈ perm(v).

Recall that L (ΓMONG, m⇒) is not semilinear (see [6]). As every context-sensitive
multiset grammar can be transformed into CSG that generates the same language under
jumping derivation mode, we can prove the following theorem.

Theorem 28. Both L (ΓCSG, j⇒) and L (ΓMONG, j⇒) are not semilinear.

Proof. In [6], there is a result implying that L (ΓMONG, m⇒) contains non-semilinear
languages, so to proof non-semilinearity of L (ΓCSG, j⇒) and L (ΓMONG, j⇒), it is
enough to prove that L (ΓMONG, m⇒) ⊆ L (ΓCSG, j⇒) because L (ΓCSG, j⇒) ⊆
L (ΓMONG, j⇒) by Definition 1.

Construction. For every MONG G = (VG, T, PG, S), we construct a CSG H =

(VH , T, PH , S) such that L(G, m⇒) = L(H, j⇒). Let h be a homomorphism h : VG →
VH as h(X) = X for all X ∈ VG − T and h(a) = 〈a〉 for all a ∈ T . First, set
VH = VG ∪ {〈a〉 | a ∈ T} and Pt = {〈a〉 → a | a ∈ T}. We initialize Pcf to all
context-free productions from PG such that all terminals are replaced with special nonter-
minals; that is, Pcf = {A → h(x) | A → x ∈ PG, A ∈ VG − T and x ∈ V ∗G}. Set
Pcs = ∅. For every production p : X1X2 · · ·Xn → Y1Y2 · · ·Ym ∈ PG with 2 ≤ n ≤ m,
where Xi, Yj ∈ VG, 1 ≤ i ≤ n and 1 ≤ j ≤ m, we add 2n new productions into Pcs:

p1 : h(X1X2 · · ·Xn) → h(X1,pX2 · · ·Xn)

p2 : h(X1,pX2 · · ·Xn) → h(X1,pX2,p · · ·Xn)
...

pn : h(X1,pX2,p · · ·Xn) → h(X1,pX2,p · · ·Xn,p)

pn+1 : h(X1,pX2,p · · ·Xn,p) → h(Y1X2,p · · ·Xn,p)

pn+2 : h(Y1X2,p · · ·Xn,p) → h(Y1Y2 · · ·Xn,p)
...

p2n : h(Y1Y2 · · ·Xn,p) → h(Y1Y2 · · ·YnYn+1 · · ·Ym)

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

16 Zbyněk Křivka, Alexander Meduna

and add new nonterminals Xi,p, 1 ≤ i ≤ n into VH . According to the final VH , set Pc =

{A→ A | A ∈ VH − T}. Now, set PH = Pcf ∪ Pt ∪ Pc ∪ Pcs.

Basic Idea. A CSG can rewrite only one nonterminal at once in the given unchangeable
left and right context. In addition, the adjacency of symbols to be rewritten by a production
is not required in multiset derivation mode; therefore, first, by using homomorphism h,
we introduce new nonterminals of form 〈a〉, a ∈ T , and, thereby, replace the terminals
until the final jumping derivation phase of the simulation of a multiset derivation. Then, in
any simulating sentential form, by using productions from Pc, we can change the order of
all nonterminals so the adjacency is not a restriction in H either, and we only require the
occurrence of the symbols from lhs(p) during the simulation of application of p ∈ PG.

An application of a monotonous context-sensitive production p : X1X2 · · ·Xn →
Y1Y2 · · ·Ym ∈ PG, 2 ≤ n ≤ m in u m⇒ v [p] in G is simulated in several steps in
H as follows:

u = u0 j⇒∗ α0X1X2 · · ·Xnβ0 [ρ0] j⇒ u1 [p1]

j⇒∗ α1X1,pX2 · · ·Xnβ1 [ρ1] j⇒ u2 [p2]

j⇒∗ α2X1,pX2,p · · ·Xnβ2 [ρ2] j⇒ u3 [p3]
...

j⇒∗ αn−1X1,pX2,p · · ·Xnβn−1 [ρn−1] j⇒ un [pn]

j⇒∗ αnX1,pX2,p · · ·Xn,pβn [ρn] j⇒ un+1 [pn+1]
...

j⇒∗ α2n−1Y1Y2 · · ·Xn,pβ2n−1 [ρ2n−1] j⇒ u2n [p2n]

= α2nY1Y2 · · ·Ymβ2n j⇒∗ v [ρ2n]

where ρi ∈ P ∗c , 0 ≤ i ≤ 2n.

In u0 j⇒∗ un, we verify in G that u contains all symbols from lhs(p) and we mark
them by subscript p. Then, by un j⇒∗ v we simulate the rewritting by p.

In the final phase of the simulation, the nonterminals 〈a〉 are replaced by corresponding
terminals using productions from Pt.

The technical proof of L(G, m⇒) = L(H, j⇒) is left to the reader.

4. Conclusion

In this final section, we propose several future investigation areas concerning jumping
grammars. Some of them relate to specific open questions pointed out earlier in the pa-
per; the present section, however, formulates them more generally and broadly.

I. Other Types of Grammars. The present paper has concentrated its attention to the lan-
guage families resulting from classical grammars, such as the grammars classified by
Chomsky. Apart from them, however, the formal language theory has introduced many
other types of grammars, ranging from regulated grammars through parallel grammars
up to grammar systems. Reconsider the present study in their terms.

II. Left and Right Jumping Mode. Considering the left and right jumps of JFAs and GJ-
FAs in [9], we are inspired to an introduction and discussion of left and right jumping

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

Jumping Grammars 17

derivation modes (see (ii) and (iii) in Definition 1) in terms of classical types of gram-
mars.

III. Closure Properties. Several results and some open problems concerning closure prop-
erties of JFA and GJFA are stated in [9]. Considering these results as well as The-
orems 13 and 14 above, study closure properties of language families generated in a
jumping way. Specifically, investigate these properties in terms of CFGs, CSGs, and
MONGs.

IV. Alternative Definition of Jumping Mode with Context. Assume context-sensitive pro-
ductions (CSG) of the following form

αAβ → αγβ, where A ∈ N , α, β, γ ∈ V ∗, γ 6= ε

There are three interesting ways of defining a jumping derivation step:

(a) Using the previous definition (see Definition 1) of jumping derivation; that is,
find αAβ in the current sentential form uαAβv, remove αAβ, and place αγβ
anywhere in uv. For instance,

aAbc j⇒ caxb [aAb→ axb]

(b) Do not move the context of the rewritten nonterminal; that is, find A with left
context α and right context β, remove this A from the current sentential form,
and place γ in the new sentential form, such that string γ will be again in the
context of both α and β (but it can be different occurrence of α and β). For
instance,

aAbab j′⇒ abaxb [aAb→ axb]

(c) Similarly to (b), in the third variant we do not move the context of the rewritten
nonterminal either and, in addition, γ has to be placed between the same occur-
rence of α and β. As a consequence, context-sensitive productions are applied
sequentially even in this jumping derivation mode. For instance,

aAbab j′′⇒ axbab [aAb→ axb]

Notice that this derivation mode influences only the application of context-free
productions (i.e. α = β = ε).

Example 29. Example 4 shows a CSG that generates {anbn | n ≥ 1} when the al-
ternative jumping derivation mode

j′
⇒ for CSGs is used. In context of Lemma 5, the

alternative jumping derivation mode (b) can increase the generative power of jump-
ing CSGs (a). In fact, it is an open question whether L (ΓCSG, j′

⇒) ⊆ L (ΓMONG,

j′
⇒).

V. Relationship with Formal Macroset Theory. Recently, formal language theory has in-
troduced various rewriting devices that generate different objects than classical formal
languages. Specifically, in this way, Formal Macroset Theory has investigated the gen-
eration of macrosets—that is, sets of multisets over alphabets. Notice that some of its
results resemble results achieved in the present study (c.f., for instance, Theorem 1 in

October 6, 2014 14:15 WSPC/INSTRUCTION FILE jumping˙grammars

18 Zbyněk Křivka, Alexander Meduna

[6] and Theorem 15 and Open Problem 16 above). Explain this resemblance mathe-
matically.

Acknowledgments

This work was supported by the European Regional Development Fund in the
IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), the TAČR grant
TE01010415, and the BUT FIT FIT-S-11-2 grant.

References
[1] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval: The Concepts and Tech-

nology behind Search, (Addison-Wesley, Boston, 2nd edition, 2011).
[2] S. Buettcher, C. L. A. Clarke, and G. V. Cormack, Information Retrieval: Implementing and

Evaluating Search Engines, (The MIT Press, Cambridge, 2010).
[3] J. Dassow and Gh. Păun, Regulated Rewriting in Formal Language Theory (Springer, Berlin,

1989).
[4] S. Ginsburg, The Mathematical Theory of Context-free Languages (McGraw Hill, New York,

1966).
[5] M. A. Harrison, Introduction to Formal Language Theory (Addison-Wesley, Boston, 1978).
[6] M. Kudlek, C. Martı́n-Vide, and Gh. Păun, Toward FMT (Formal Macroset Theory), In: Pre-

proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000),
pages 149-158.

[7] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval, (Cam-
bridge University Press, New York, 2008).

[8] A. Meduna, Automata and Languages (Springer, London, 2000).
[9] A. Meduna and P. Zemek, Jumping Automata. Int. J. Found. Comput. Sci. 23(2012) 1555–1578.

doi:10.1142/S0129054112500244.
[10] A. Salomaa, Formal Languages (Academic Press, 1973).
[11] D. Wood, Theory of Computation: A Primer (Addison-Wesley, Boston, 1987).

