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Abstract — The paper deals with indexing of a complex type data 
stream stored in a database. We present a novel indexing schema 
and framework referred to as ReTIn (Real-Time Indexing), the 
objective of which is to allow indexing of complex data arriving 
as  a  stream  to  a  database  with  respect  to  soft  real-time 
constraints met with some level of confidence for the maximum 
duration of insert and select operations. The idea of ReTIn is a 
combination of a sequential access to the most recent data and an 
index-based access to less recent data stored in the database. The 
collection of statistics makes balancing of indexed and unindexed 
parts  of  the  database  efficient.  We  have  implemented  ReTIn 
using  PostgreSQL  DBMS  and  its  GIN  index.  Experimental 
results presented in the paper demonstrate some properties and 
advantages of our approach.

I.  INTRODUCTION

During last three decades data stream sources and data-in-
tensive applications has appeared [1]. In contrast to traditional 
databases where data is stored in finite data sets, a data stream is 
a  continuous,  possibly  infinite  stream of  changing  and  often 
high dimensional data that must be processed under some real-
time constrains usually. Examples of such applications include 
network monitoring, financial and security, surveillance, sensor 
networks and other applications processing temporal data. Al-
though research in real-time database systems received a lot of 
attention in last two decades, the primary objective of the real-
time support in these databases was different compared to data 
streams [2]. Several basic data stream specific techniques have 
been  developed for  continuous querying  [3],  sliding window 
query processing [4], approximate query processing [5], sam-
pling, sketching and synopsis construction [6].  Most of these 
techniques rely on data stream processing in the main memory, 
however  this  might  be  unsatisfactory  for  applications  men-
tioned. 

The goal is to store the data in a database. An index is a data 
structure designed to increase the data access speed at the ex-
pense of decrease the data modification speed. B-tree, hashed or 
bitmap are not appropriate for high-dimensional data. In addi-
tion, costs of updates limit their effective use. The problem of 
index maintenance is more critical when employed advanced in-
dexing techniques for high-dimensional data as KD-tree, R-tree 
or inverted index. In such a case, it may be necessary to rebuild 
the index completely after some time. As a result, some data 
stream specific indexing methods have been developed. Multi-
granularity aggregation indexing [7] is an integrated structure 
managing summarized information of snapshots. Po-tree [8] is 
an indexing  structure  for  spatio-temporal  databases  with soft 
real  time constraints which combines two different  structures 

for spatial and temporal dimensions. However, we haven't found 
a general approach that satisfies our needs.

Our research in real-time and data stream indexing was mo-
tivated by two areas. First is the need to index metadata of mov-
ing objects produced by computer vision modules of our experi-
mental surveillance network system SUNAR [9]. The main op-
eration of SUNAR is the persistent tracking of objects moving 
in a space watched by multiple surveillance cameras. The track-
ing is based on similarity of values of moving objects character-
istics, both spatio-temporal and visual. The intelligent cameras 
produce a data stream of this kind, which is necessary to index 
to make the similarity search possible in near real-time. The sec-
ond domain that has motivated our research is computer secu-
rity, namely a data stream processed by an intelligent intrusion 
detection system (IDPS) that monitors and analyzes the com-
puter network traffic in real time. It is based on extended data 
flow protocol,  which  includes  source  and  destination  IP  ad-
dresses, timing, packet sizes and signatures of both packets and 
attacks or another data that must be logged, analyzed and re-
ported as soon as possible. 

There  are  many other  application domains that  deal  with 
streams of  spatio-temporal  data  representing  moving objects. 
For example, an air-traffic control to support  decisions about 
flight paths and the landing order based on data such as position, 
altitude, speed or fuel left. There is rarely enough time to re-in-
dex the database  under special  circumstances  – as  in  a  geo-
graphic information system presented in a case study [8] that 
stores and evaluates data issued from an array of spatially refer-
enced sensors, used to a natural disaster prevention.

In this paper we present an indexing schema and framework 
referred  to  as  ReTIn  (Real-Time INdexing),  the  objective  of 
which is to allow indexing of complex data arriving as a stream 
to a database with respect to soft real-time constraints. A con-
cept of a soft real-time constraint is similar to one known from 
real-time databases [10]. It is not a hard constraint that has to be 
always met but the number of its violations must be minimized. 
The idea of our approach is similar to a real-time index/cache 
consistency maintenance technique Codir for text retrieval sys-
tems presented in [11]. It builds a transient index for new docu-
ment updates and queries are processed using both permanent 
and transient index. To minimize performance overhead associ-
ated with document database updates, Codir integrates transient 
index with permanent index lazily using piggybacking [12] for 
statistics.

Our indexing schema consists of two main parts where data 
is stored. Values arriving in a data stream are inserted into the 
unindexed part that contains the most recent data. Less recent 
data is stored in the other part which is indexed on backgroud. 



Queries are processed accessing data in both parts. The schema 
maintenance, which includes moving data from unindexed part 
to indexed one, is controlled by two soft real-time constraints 
for query and insert processing and it uses piggybacking to col-
lect  and update statistics.  The schema maintenance runs as a 
background process for all database operations.

The content of the paper is organized as follows. The next 
section contains problem formulation and describes the structure 
of the proposed indexing schema and operations on it. Section 4 
presents experimental results and Section 5 concludes the work.

II.  RETIN INDEXING SCHEMA CONCEPTS

The ReTIn indexing schema supports the most  important 
real-time data stream operations on a single table in the data-
base, in which a portion of the stream is stored – insert and se-
lect (executes a query). There are three parameters that control 
the behavior of the indexing schema: a maximum time of insert 
operation TI MAX, a maximum time of select operation TS MAX and 
a confidence factor  R. Then the schema meets the constraints 
TI MAX and TS MAX as soft constraints with confidence R*σ where σ 
is a standard deviation of execution times distribution and  R a 
selected confidence factor as described further.

A. Problem formulation

 Let  ds be a data stream of data elements  e of a type  dt, 
which is complex in general – composite and/or multiple-val-
ued. The data stream is processed using a sliding window. As-
sume that the window is larger than it fits in the main memory. 
The content of the window is stored in a database table D, not 
necessarily normalized. The size of the window is not specified 
in advance. Instead, real-time constraints  TI MAX and  TS MAX are 
(user) specified durations of insert and select operations on the 
table D. Thus, the size of the window is dependent on the dura-
tion of these operations. It is required to minimize the number of 
violations of the timing constraints. The softness of the con-
straints is dependent on the probability of their violation. We 
can introduce estimates for maximum processing times of insert 
and select  operations (estimated maximum) on  D:  M[TI] and 
M[TS], respectively:

M [TO ]=μ (TO )+R∗σ (TO ) (1)

where OPERATION is either INSERT or SELECT. The esti-
mates are derived from the expected duration of the operation 
E[TO]. It is given by the average processing time of the opera-
tion μ(TO), and its standard deviation σ(TO). The real value R is 
a confidence factor which determines together with the standard 
deviation σ the confidence interval or the allowable probability 
of the constraint violation. For example, provided Gaussian nor-
mal distribution the value  R=3.0 results in 99.73% probability 
of not exceeding the  TO MAX.  Data modification operations are 
usually not defined on streams.

B. Proposed solution

The table  D consists of two subtables, namely  D0 and  DI 
that differ in access methods. Data in D0 is accessed by means 
of full scan whereas data in DI is indexed. All incoming data of 
the data stream  ds is inserted into  D0.  DI contains less recent 
data of the stream that were moved there from D0 during index-
ing schema maintenance operations in the past. The objective of 
the schema maintenance operation is to improve performance to 

meet the soft constraints  TI MAX and  TS MAX. There are two cases 
that result in accomplishing the schema maintenance operation: 

1) Duration  of  insert  or  select  operation  that  is  to  be  exe-
cuted would violate TI MAX or TS MAX with high probability,

2) full scan of D0 takes more time than access to data in DI.

To be able to check for these situations, some temporal sta-
tistics must be gathered during the execution of operations on 
ReTIn. In 1) reduction of the  DI part may be necessary. It is 
done by moving the less resent data, which is considered to be 
obsolete to some overflow storage, or by deleting it. This data 
will not further be available under ReTIn constraints, but may 
stay in the database. The schema maintenance operation should 
not block and significantly delay insertion of new stream data 
and querying the data in  D. We solve it such a way that the 
maintenance operation is performed asynchronously as a back-
ground process to insert and select operations. In addition, the 
maintenance operation must be atomic.

 Our approach is advantageous in at  least  two situations. 
First, when the duration of a sequential scan for a select opera-
tion on D would take much longer than a corresponding index 
scanor when it would violate the constraint TS MAX. Second, when 
updating an index would take much longer than a simple inser-
tion of data or it would violate the constraint TI MAX:

E [T SD0 ] E≫ [T SDI ] , E [T S ]>E [T SMAX ]
(2)

E [TUI ] E≫ [T I ] , E [TUI ]>E [T I MAX ]
where E[TO] stands for expected duration of a corresponding 
operation and TUI stands for index update time.

C. ReTIn Schema

The  basic  elements  of  the  ReTIn  indexing  schema  are 
shown in Figure 1. It consists of the hierarchy of three tables. 
All the tables have the same schema (t: timestamp, d: dt), where 
timestamp is an underlying DBMSs data type and dt is the type 
of an element of the data stream ds. Because the data type dt can 
be a composite and/or multiple-valued, the column d can con-
tain arrays, subtypes or nested collections.

Fig. 1.   Basic elements of the ReTIn indexing schema. The table D encapsulates 
subtables D0, which is not indexed, and indexed one DI. DI consists of partitions 

Pi. Metadata related to all partitions Pi and D0 are stored in the MD table.

D is a virtual table that encapsulates tables  D0 and  DI.  All 
clients' insert and select operations run on it (encapsulation).

D0 is a base table containing the recent data of the data stream 
ds that has been inserted into D. The data is accessed by a 
full scan.



DI is a virtual table that encapsulates one or more base tables Pi 

(i = 1, ...  k) referred to as partitions. The number of parti-
tions k changes in time. There are one or more indexes on 
DI or each Pi .

MD is a base table that contains temporal statistics concerning 
the insert and select operations on tables D, D0 and DI, as 
illustrated in Figure 1. It will be described in more details in 
the following section.

D. Operations of ReTIn

The ReTIn indexing schema provides two logical operations 
to its clients (operations of the DBMS):

1. INSERT INTO  D(d) VALUES(e) – inserts an element  e 
into table D,

2. SELECT statement – selects data from D.

 INSERT and SELECT statements are conforming the SQL 
standard and they fully rely on corresponding operations of the 
underlying DBMS (no special operations needed). The only ad-
ditional activities include logging of queries and the update of 
temporal statistics used for the decision whether the indexing 
schema maintenance operation should be performed. It is an in-
ternal operation of the ReTIn role, which changes the content of 
tables D0 and DI in such a way that the soft constraints TI MAX 
and TS MAX will be met for some period of time. The mainte-
nance is performed asynchronously to all operations. 

All operations are described more formally below. Inputs, 
outputs (data only is considered here) and preconditions used 
are specified. Algorithms are described in a pseudocode. 

Alg. 1. Operation INSERT

Input: e – a data stream element
Output: 
Precondition: INSERT INTO D(d) VALUES(e) performed
INSERT INTO D0 VALUES (current timestamp, e);
update_insert_statistics();
SIGNAL “check RT constraints”;

Algorithm 1 presents the INSERT operation. It is ensured, 
that the new value will always be inserted into the table  D0 
without the need to update any index. The database must sup-
port  (instead)  triggers.  We  use  also  table  inheritance  (since 
SQL: 1999) for partitioning. The operation update_insert_statis-
tics() updates statistics related to the insert operation. These sta-
tistics are stored in the metadata table  MD. The operation up-
dates sums that are necessary to compute the mean μ(TI) and the 
standard deviation σ(TI). The statement SIGNAL represents the 
sending of an asynchronous message to the process responsible 
for the indexing schema maintenance operation. For example 
dbms_alert in Oracle or listen/notify concept in PostgreSQL. If 
the DBMS does not support this functionality, it is necessary to 
set a sleep period for the maintenance process, the delay can be 
derived from the frequency of insertions.

Alg. 2. Operation SELECT

Input: a select statement
Output: rs – a result set, retrieves data from D
Precondition: SELECT d FROM D … query performed
rs = EXECUTE SELECT statement;
update_query_statistics(statement);

Algorithm 2 presents the SELECT operation. Its execution 
is  optimized  by DBMS's  query  processing  planner  and opti-
mizer. We suppose the optimizer uses indexes on the table DI 
(Pi) and a full scan on the table D0 to access the data from the 
table  D. Next, the update_query_statistics() operation logs the 
query in a log, which may be standard log of the DBMS. We 
use pgFouine to analyze the logs and to compute temporal sta-
tistics of of SELECT operations. For the purposes of testing, we 
perform some queries  in  the indexing_schema_maintenance() 
process and measure their duration. It calculates the mean μ(TS) 
and  standard  deviation  σ(TS)  of  the  queries  duration  on  D. 
Moreover, it calculates the mean value μ(TS DI) of the durations 
of accessing data in DI employing indexes and the mean value 
μ(TS D0) of the durations of the accessing data in D0.

Alg. 3. Process indexing_schema_maintenance()

Input: user-defined constraints, table MD
Output: schema changes
Precondition: A signal “check RT constraint”

      or a batch of INSERTs
M[TI] = μ(Ts) + n*σ(Ts);
if M[TI] > TI MAX then
   raise warning “Insufficient Hardware”;
M[TS] = μ(Ts) + R*σ(TS);
E[TS DI] = μ(Ts DI);
E[TS D0] = μ(Ts D0);
if M[TS] > TS MAX or E[TS D0] > E[TS DI] then {
   create new virtual table DI';
   if M[TS DI] > TS then
      exclude partition P1 from DI';
   if E[TS D0] > E[TS DI] then {
      data in D0 make a new partition Pk+1;
      include partition Pk+1 into DI';
   }
   create indexes for DI';
   replace DI with DI';
}

In algorithm 3, expressions E[X] and M[X], in accordance 
with  (1),  stand  for  expected  value  and  estimated  maximum 
value of  X. The first condition (if) in the algorithm checks the 
insert operation durations to meet the soft real-time constraint 
TI MAX. If it is violated, the situation is just reported, because the 
ReTIn does not use any index while inserting the data, so there 
is no related overhead that could be reduced.

The second condition checks the temporal constraints and 
defines  when  the  indexing  schema operation  should  be  per-
formed. Until the condition is met, the balancing of the execu-
tion time of the full scan on D0 and the index data access on DI 
is considered to be optimal. The indexing schema maintenance 
operation can be executed if one or both of the following condi-
tions are met – The duration of select operations on the indexed 
data part are about to break the user-defined TS MAX or sequential 
selects  last  longer  than  the  indexed  ones.  In  such  cases  the 
schema is  changed and  indexes  are  created.  The re-indexing 
process is accomplished by the atomic replacement of the dep-
recated logical index table DI with DI'.

You can download ReTIn on PostgreSQL implementation at 
http://www.fit.vutbr.cz/research/prod/index.php.en?id=129 un-
der GNU General Public License.

http://www.fit.vutbr.cz/research/prod/index.php.en?id=129


III. EXPERIMENTAL RESULTS

We used a dataset of meteorological observations em Global 
Surface Summary of Day Data (GSOD) [13] for experiments. 
GSOD is a product archived at the National Climatic Data Cen-
ter (NCDC) to make a wide range of climatic data available to 
researchers and the public. The on-line data files cover the time 
period from 1929. They contain data from more than 9,000 sta-
tions. Each record contains the global summary of day data con-
taining 18 surface  meteorological  means and maximums and 
other characteristics as temperature, dew point, sea level pres-
sure, visibility, wind speed together with precipitation amount, 
snow depth and indicators for occurrence of fog, rain or drizzle, 
snow or ice pellets, hail, thunder, and tornado/funnel cloud sum-
mary. Although this is not typical data with critical real-time 
constrains, but their huge ammount, spatio-temporal and data 
stream nature and the general availability make them ideal for 
repeatable experiments.

The GSOD data were represented by an array of integers. 
Float values in the dataset were rescaled and converted into in-
tegers due to performance and memory saving reasons. Then the 
table D into which the data is stored in the database had schema 
D(t:  timestamp,  d:  array  of  integer).  ReTIn  implementation 
based on the PostgreSQL 8.4 database management system and 
the Generalized Inverted Index (GIN) index, recommended for 
indexing of large arrays, ran on a server 2 x AMD Opteron 2435 
(6 cores, 2.6GHz), 64GB RAM and 2.5TB RAID-6.

The goal of the first experiment was to show dependency of 
the  execution  times  of  insert  and  select  operations  on  the 
amount of data in the database for given constraints  TI MAX and 
TS MAX. There were three approaches to access data used: unin-
dexed data, GIN indexed data and by means of the ReTIn in-
dexing  schema.  The  experiment  was  evaluated  on  500,000 
records of 1950's GSOD data. Size of the table  D was about 
240 MB including the GIN index structure.

The methodology of the experiment was as follows: Records 
were sequentially inserted into the data table. Average and max-
imum execution times of insertions were measured for batches 
of 100 insertions. Average and maximum durations of queries 
were measured by a set of queries for batches of 1,000 inser-
tions. The same set of queries with the contains array operator 
was used in the batches. A result set of queries contained 5 to 
50% of all records in the table. Execution times were measured 
by stored functions on the database server. They are equivalent 
to the EXPLAIN ANALYZE query. During this experiment we 
set both TI MAX and TS MAX constraints to 0.3s and R = 3σ. The ex-
periment was repeated 3 times to avoid random noise.

Figure 2 shows dependency of average and maximum exe-
cution times on the size of the table D without any index on data 
column d. This approach was very fast for insertion but execu-
tion  times  of  queries  increased  linearly  with  the  number  of 
records. The 0.3s time constraint was permanently broken for 
more  than  460,000 inserted  records  in  the  table.  This  corre-
sponds to our expectation because of the full scan access to data. 

a)

b)

Fig. 2.   Execution times of (a) insertions, (b) queries on the database table 
without an index on column d.

a)

b)

Fig. 3.   Execution times of (a) insertions, (b) queries on the database with 
the GIN index on column d.



a)

b)

Fig. 4.   Execution times of (a) insertions, (b) queries on table D of the 
ReTIn index schema.

a)

b)

Fig. 5.   Re-indexation aspects: (a) average times of queries on D0 and DI tables, 
(b) dependency of the size of the D0 table on the number of executions of the in-
dex schema maintenance operation.

Figure 3 shows the same situation as in 2, when the GIN in-
dex on data column  d was created.  The problem of this ap-
proach is shown in Figure 3 a). There are many insertion execu-
tion  time  peaks  between  110,000  and  180,000  records.  The 
cause of this phenomenon is the necessity to re-build the index 
structure. The maximum execution time of queries exceeded the 
value 0.3s of the TS MAX constraint many times.

The results for ReTIn are presented in Figure 4. They show 
the benefit of the proposed indexing schema. Maximum inser-
tion execution times in figure 4 a), were all below the value 0.3s 
of the TI MAX constraint. Execution times were slower only when 
the indexing schema maintenance operation was performed. Ex-
ecution times of queries shown in Figure 4 b) demonstrate the 
benefit of our approach - the ReTIn indexing schema combines 
a stable time of insertion with balanced query processing.

Figure 5 provides a more detailed view of the behavior of 
the ReTIn schema with respect to tables D0 and DI. Figure 5 a) 
shows the decomposition of the average execution times from 
Figure 4 b) to the times spent by partial queries accessing data 
in tables D0 and DI. Figure 5 b) shows the dependency of the 
size of the D0 table on the number of executions of the indexing 
schema maintenance operations. At the beginning, the full-scan 
search is very fast but grows linearly. As the number of records 
grow, more data is searched using the index and the total execu-
tion times grows logarithmically. It has proved our hypotheses 
stated in section 2.

The  second  experiment  was  focused  on  the  concurrency 
properties of the ReTIn. We simulated concurrent transactions 
by two groups of clients. The first one generated transactions 
containing an insert  operation,  the other  queries.  There were 
several threads running in parallel. We used the same set of data 
as in the first experiment. We evaluated the dependency of con-
straint violations on the number of parallel queries and inser-
tions performed three times a second.

Table 1 shows main results of the experiment. We expected 
maximum violation rate about 0.3% by setting the confidence 
factor  R = 3σ.  The experiment  showed that  ReTIn limit  for 
TI MAX on this hardware is about 150 transactions a second – 25 
parallel insertions and 25 parallel queries 3 times a second (the 
row picked in bold in Table 1). This value also determines the 
maximum size  of  the data stream sliding window. For more 
transactions, the window size would have to be reduced to about 
200,000 items for 300 transactions a second in our case. If we 
compare  the same experiment  with data stored only in  table 
with a GIN index – see the last row in Table 1, which corre-
sponds 150 transactions a  second,  we can see  the benefit  of 
ReTIn. It fails about twice less for querying and 10 times less 
for the data insertion.

TABLE I. THE CONCURRENCY EXPERIMENT

Threads Queries failed Inserts failed
Using ReTIN indexing schema

10+10 0.00% 0.03%
25+25 0.52% 0.31%
 50+50 1.13% 0.54%

Using simple GIN index
25+25 1.23% 3.84%



IV. CONCLUSIONS

We have proposed, implemented and evaluated a soft real-
time indexing schema called ReTIn. It makes it possible to in-
dex a portion of a data stream stored in a database effectively 
and to meet real-time constraints for insert and select operations 
with some confidence. It combines storing the most recent data 
unindexed and indexing less recent data. The former is advanta-
geous from insert operation point of view, but results in a full 
scan access for select operations. The latter provides more ef-
fective access to the rest of data. The indexing schema mainte-
nance operation optimizes the balance between unindexed and 
indexed data access with respect to the real-time constraints. It 
is performed asynchronously to clients' insert and select opera-
tions, which are standard SQL queries.

The experimental evaluation showed advantages in compari-
son with indexing all data stored in the database. We used the 
efficient PostgreSQL's GIN index both in our ReTIn implemen-
tation and as a competitive access method in the experiments. 
They showed that ReTIn behaves appropriately for insertion and 
selection operations on both indexed and unindexed data in the 
database.  Moreover,  it  changes its behavior automatically ac-
cording to the system load – it changes the width of the sliding 
window that defines the number of data stream elements stored 
in the database. 

The ReTIn framework does not specify the type of index 
used  for  indexing.  Current  DBMSs  usually  provide  several 
types,  some of  them are  suitable for  indexing complex data, 
similarity search etc., for example KD-tree or R-tree. Their dis-
advantage often is high overhead of insertions. ReTIn can cush-
ion this problem and allow indexing data streams containing 
complex data, e.g. spatio-temporal and arrays.

In the future, we intent to continue experimental evaluation 
of ReTIn with other types of indexes. In addition, we will focus 
on the ReTIn deployment and optimization for our surveillance 
network system SUNAR and the network security project, for 
which it was originally designed.
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