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1 Introduction

The research in almost all natural sciences is facing
the 'data avalanche' represented by exponential growth of
information produced by big digital detectors and large-
scale multi-dimensional computer simulations. The e�ec-
tive retrieval of a scienti�c knowledge from petabyte-scale
databases requires the qualitatively new kind of scienti�c
discipline called e-Science, allowing the global collaboration
of virtual communities sharing the enormous resources and
power of supercomputing grids (e.g. ? ] and ? ]).
The emerging new kind of research methodology of con-

temporary astronomy � the Astroinformatics � is based
on systematic application of modern informatics and ad-
vanced statistics on huge astronomical data sets. Such
an approach, involving the machine learning, classi�cation,
clustering and data mining yields the new discoveries and
better understanding of nature of astronomical objects. It
is sometimes presented as new way of doing astronomy[?
], representing the example of working e-Science in astron-
omy. The application of methods of Astroinformatics at
some common astronomical tasks may lead to new interest-
ing results and di�erent view of the investigated problem.
We present a project tackling the problem of variability of
emission line pro�les of Be and B[e] stars using the large
archives of Virtual Observatory.

1.1 Emission Line Stars

There is a lot of stellar objects that may show some im-
portant spectral lines in emission. The physical parame-
ters may di�er considerable, however, there seems to be the
common origin of their emission � the gaseous circumstel-
lar envelope in the shape of sphere or rotating disk. Among
the most common types belong Be stars, B[e] stars, pre-
main-sequence stars (e.g. T Tau and Herbig stars), Stars
with strong stellar winds (like P Cyg or eta Carinae), Wolf-
Rayet stars, Novae and Symbiotic stars

1.2 Be and B[e] Stars

The classical Be stars [? ] are non-supergiant B type
stars whose spectra have or have had at some time, one
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or more emission lines in the Balmer series. In particular
the Hα emission is the dominant feature in spectra of these
objects. The emission lines are commonly understood to
originate in the �attened circumstellar disk, probably of
decretion origin (i.e. created from material of central star),
however the exact mechanism is still unsolved. The Be stars
are not rare in the Universe: they represent nearly one �fth
of all B stars and almost one third of B1 stars [? ].
The emission and absorption pro�les of Be stars vary on

di�erent time scales from years to fraction of a day and
there seem to switch between emission state and the state
of pure absorption spectrum indistinguishable from normal
B stars. This variability may be caused by the evolution
and disappearing of disk [? ].
Similar strong emission features in Hα show the B[e] stars

[? ], however they present as well forbidden lines of low ex-
citation elements (e.g. Iron, Carbon, Oxygen, Nitrogen)
and infrared excess (pointing to the presence of dusty en-
velope). The B[e] stars are very rare, mostly unclassi�ed,
so the new yet unknown members of this interesting group
are highly desirable.

1.3 Be Stars Spectra Archives

The spectra of Be and B[e] stars are dispersed world-wide
and most of them are still not yet made available for pub-
lic. The largest collection of about sixty thousand spectra
of 675 di�erent stars represents the BeSS database1, which
is as well accessible with VO protocols. Some individual
spectra of Be stars are found in ESO archives, Multimis-
sion Archives of NASA (MAST) containing IUE spectra,
HST spectra or in DAO archives. Sample of Be stars is
also included in ELODIE and SOPHIE archives of OHP
observatory. Most of these archives are or are expected to
be soon included in VO infrastructure. The rich homoge-
neous sample of Be and B[e] stars spectra was collected as
well by Ond°ejov 2m telescope � using the 700mm camera
of its coudè spectrograph. It contains about ten thousand
spectra of more than 300 Be stars, including one thousand
in RVS region. This archive was recently converted to VO-
compatible format and is accessible through Simple Spectra
Access (SSA) protocol of VO allowing the easy visualization

1http://basebe.obspm.fr

http://basebe.obspm.fr
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and analysis of all spectra in VO tools. However access re-
striction to most of Be stars spectra are applied.

1.4 Motivation

The goal of this application is the exploitation of meth-
ods of Astroinformatics in the complex study of variability
of emission observed in some types of emission line stars
helping to reveal the physical nature of their behaviour and
obtain rigorous constrains of their physical parameters use-
ful for their modelling. We will use our long-term experience
with research of this class of objects, namely Be and B[e]
stars, in scienti�c analysis of data. We will use the power
and e�ciency of VO infrastructure to accomplish the ex-
tensive multi-wavelength data-mining.
By de�ning a typical property of a spectra (shape of con-

tinuum or presence of a type-speci�c spectral line), we will
be able to classify the observed sample. The appropriate
choice of classi�cation criterion will give us a powerful tool
for searching of new candidates of interesting kind. In case
of data mining of new Be and B[e] stars candidates the dif-
ferences in intensities in various photometric �lters may be
used as well as known shape of spectra (e.g. particular type
of emission in certain spectral lines). The good source of
massive set of stellar spectra seems to be e.g. the SEGUE
survey, the extension of SDSS towards brighter galactic ob-
jects [? ].
As the Be stars show a number of di�erent shapes of

emission lines like double-peaked pro�les with or without
narrow absorption (called shell line) or single peak pro�les
with various wing deformations like e.g. �wine-bottle� (for
detailed review see ? ]), it is very di�cult to construct
a simple criteria to identify the Be lines in an automatic
manner as required by the amount of spectra considered for
processing. However, even simple criteria of combination
of three attributes (width, height of Gaussian �t through
spectral line and the medium absolute deviation of noise)
were su�cient to identify interesting emission line objects
in the 187 000 of SDSS SEGUE spectra as shown by ? ].
An example of such an object is given in Fig. ??.
To distinguish di�erent types of emission line pro�les

(which was impossible using only Gaussian �t) we propose
a completely new methodology, that seems to be not yet
used (according to our knowledge) in astronomy, although
it has been successfully applied in recent �ve years to many
similar problems like e.g. detection of particular EEG ac-
tivity. It is based on supervised machine learning of the set
of positively identi�ed objects. This will give some kind of
classi�er rules, which are then applied on a larger investi-
gated sample of unclassi�ed objects. In fact it is kind of
transformation of data from the basis of observed variables
to another basis in a di�erent parameter space, hoping that
in this new space the di�erent classes will be easily distin-
guishable. As the number of independent input parameters
has to be kept low, we cannot use directly all points of each
spectrum but we have to �nd a concise description of the
spectral features, however conserving most of the original
information content.
One of the quite common approaches is to make the

Principal Components Analysis (PCA) to get small basis
of input vectors for machine training. However, the most
promising method is the wavelet decomposition (or multi-

resolution analysis) using the pre�ltered set of largest co-
e�cients or power spectrum of the wavelet transformation
of input stellar spectra in the role of feature vectors. This
method has been already successfully applied to many prob-
lems related to recognition of given patterns in input signal
as is identi�cation of epilepsy in EEG data [? ]. The wavelet
transformation is often used for general knowledge mining
[? ] or a number of other applications. A nice review
was given by ? ]. In astronomy the wavelet transformation
was used recently for estimating stellar physical parameters
from Gaia RVS simulated spectra with low SNR [? ]. How-
ever, they have classi�ed stellar spectra of all ordinary types
of stars, while we need to concentrate on di�erent shapes
of several emission lines which requires the extraction of
feature vectors �rst.

2 Experiment 1: Comparison of

Wavelet Types

This section is based on [? ].
In DWT, the type of wavelet must be determined. The

goal of this experiment is to compare the e�ect of using
di�erent types of wavelet on the results of clustering. Ex-
tensive literature exists on wavelets and their applications,
e.g. [? ? ? ? ? ].
We tried to �nd the wavelet best describing the character

of our data, based on its similarity with the shape of emis-
sion lines. We were choosing from the set of wavelets avail-
able for DWT in Matlab, i.e. daubechies, symlets, coi�ets,
biorthogonal, and reverse biorthogonal wavelets family. We
choosed two types of di�erent order from each family:

• daubechies (db): order 1, 4

• symlets (sym): order 6, 8

• coi�ets (coif): order 2, 3

• biorthogonal (bior): order 2.6, 6.8

• reverse biorthogonal (rbio): order 2.6, 5.5

2.1 Data

The experiment was performed on simulated spectra gen-
erated by computer. A collection of 1000 spectra was cre-
ated trying to cover as many emission lines shapes as pos-
sible. Each spectrum was created using a combination of
3 gaussian functions with parameters generated randomly
within appropriately de�ned ranges, and complemented by
a random noise. The length of a spectrum is 128 points
which approximately corresponds to the length of a spec-
trum segment used for emission lines analysis. Each spec-
trum was then convolved with a gaussian function, which
simulates an appropriate resolution of the spectrograph.

2.2 Feature Extraction

The DWT was performed in Matlab using the embedded
functions. The feature vector is composed of the wavelet
power spectrum computed from the wavelet coe�cients.
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Wavelet power spectrum The power spectrum mea-
sures the power of the transformed signal at each scale of
the employed wavelet transform. The bias of this power
spectrum was futher recti�ed [? ] by division by corre-
sponding scale. The spectrum Pj for the scale j can be
described by (1).

Pj = 2−j
∑
n

|Wj,n|2 (1)

2.3 Clustering

Clustering was performed using k-means algorithm into
3-6 clusters. The silhouette method [? ] was used for the
evaluation. Clustering was performed in 50 iterations and
the average silhouette values are presented as the results.

2.4 Results
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Figure 1 Correctness of clustering for 3, 4, 5, and 6 clusters using
di�erent types of wavelet

On Fig. 1 we can see that there are minimal di�er-
ences in correctness of clustering using di�erent types of
wavelet (hundredths of units), which suggests that the type
of wavelet has not a big e�ect on the clustering results.

3 Experiment 2: Comparison of Fea-

ture Vectors Using Clustering

This section is based on [? ].
In this experiment, we present a feature extraction

method based on the wavelet transform and its power spec-
trum, and an additional value indicating the orientation of
the spectral line. Both the discrete and continuous wavelet
transform are used. Di�erent feature vectors are created
and compared on clustering of Be stars spectra from the
archive of the Astronomical Institute of the Academy of Sci-
ences of the Czech Republic. The clustering is performed
using the k-means algorithm.

3.1 Data Selection

The data set consists of 656 samples of stellar spectra of
Be stars and also normal stars divided into 4 classes (66,

150, 164, and 276 samples) based on the shape of the emis-
sion line. From the input data, a segment with the Hα
spectral line is analyzed. The segment length of 256-taps
is chosen with regard to the width of the emission line and
to the dyadic decomposition used in DWT. Examples of
selected data samples typical for each of 4 classes are illus-
trated in Fig. 2. The source of the data is the archive of
the Astronomical Institute of the Academy of Sciences of
the Czech Republic.
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Figure 2 Examples of selected data samples typical for each of 4
classes. Figures (a), (b), and (c) are spectra of Be stars, Fig. (d)
is a normal star. In (a) there is a pure emission on Hα spectral
line, (b) contains a small absorption part (less than 1/3 of the
height), (c) contains larger absorption part (more than 1/3 of
the height). The spectrum of a normal star (d) consists of a pure
absorption.

3.2 Feature Extraction

The feature vector is composed of two parts:

1. set of features computed from wavelet coe�cients,

2. value indicating the orientation of the spectral line
(this information is lost in the wavelet power spec-
trum).

In this experiment, the wavelet transform was performed
in Matlab using the embedded functions, with the wavelet
"symlet 4".

Orientation of Spectral Line The information about
the orientation of a spectral line is lost in the wavelet power
spectrum. Due to the power of coe�cients, two data sam-
ples with the same shape but opposite orientation of the
spectral line would yield the equal wavelet power spectrum.
Therefore this information must be added into the feature
vector. We want to distinguish whether a spectral line is
oriented up (emission line) or down (absorption line), so
we use one positive and one negative value. The question is
which absolute value to choose. In this experiment, we have
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tried three values: 1, 0.1, and the amplitude of a spectral
line, measured from the continuum of value 1.

N largest coe�cients As we do not have any reference
method of feature extraction from Be stars for comparison,
we compare our results with a common method of feature
extraction from time series using wavelets, which keeps N
largest coe�cients of wavelet transform and the rest of the
coe�cients are set to zero [? ]. In experiments, N = 10 was
used. In this feature extraction technique, the orientation
of a spectral line is not added to the feature vector, as the
wavelet coe�cients do contain the information about the
orientation and the amplitude of a spectral line.

Feature Vectors Di�erent kinds of feature vectors were
created from resulting coe�cients of the wavelet transform
and used for comparison:

1. Spectrum: original spectrum values, normalized to
range [0,1]. (In this case the DWT coe�cients are not
used.)

2. Approximation: DWT approximation coe�cients,
normalized to range [0,1].

3. Approximation + detail: DWT approximation and
detail coe�cients of the last level, normalized to range
[0,1].

4. 10 largest coefs: 10 largest absolute values of coe�-
cients, normalized to range [-1,1].

5. 20 largest coefs: 20 largest absolute values of coe�-
cients, normalized to range [-1,1].

6. DWPS + orientation 1: one part of a feature vector
is the wavelet power spectrum of DWT, normalized so
that its total energy equals to 1. Second part of a
feature vector is a value indicating the orientation of a
spectral line � lines oriented up have the value 1, lines
oriented down have the value −1.

7. DWPS + orientation 0.1: the same as the previous
one, except the absolute value of orientation 0.1.

8. DWPS + amplitude: one part of a feature vector is
normalized wavelet power spectrum as in the previous
case. The second part is the amplitude of the spectral
line measured from the continuum of value 1.

9. CWPS 16 + orientation 1: wavelet power spec-
trum (normalized) of CWT performed with 16 scales.
The same orientation as in the previous cases with
DWPS.

10. CWPS 8 + orientation 1: wavelet power spectrum
(normalized) of CWT performed with 8 scales. The
same orientation as in the previous case.

3.3 Clustering

The k-means algorithm in Matlab was used for clustering.
Squared Euclidean distance was used as a distance measure.
Clustering was repeated 30 times, each iteration with a new
set of initial cluster centroid positions. K-means returns
the solution with the lowest within-cluster sums of point-
to-centroid distances.

3.4 Evaluation

We proposed an evaluation method utilizing our knowl-
edge of ideal classi�cation of spectra based on a manual
categorizing.
The principle is simply to count the number of correctly

classi�ed samples. We have 4 target classes and 4 output
classes, but the problem is we do not know which output
class corresponds to which target class. So �rst we need to
map the output classes to the target classes, i.e. to assign
each output class a target class. This is achieved by creating
the correspondence matrix, which is a square matrix of a
size of a number of classes, and where the element on a
position (i, j) corresponds to the number of samples with
an output class i and a target class j. In a case of a perfect
clustering, all values besides the main diagonal would be
egual to zero.
Now we �nd the mapping by searching for the maximum

value in the matrix. The row and the column of the maxi-
mum element will constitute the corresponding pair of out-
put and target class. We set this row and column to zero
and again �nd the maximum element. By repeating this
process we �nd all corresponding pairs of classes. The max-
imum values correspond to correctly classi�ed samples. So
now we simply count the number of correctly classi�ed sam-
ples by summing all maximum values we used for mapping
the classes. By dividing by the total number of samples we
get the percentual match of clustering which is used as a
�nal evaluation.

3.5 Results

Fig. 3 shows the percentual match of the clustering for
di�erent kinds of feature vectors. The numbers of feature
vectors in the �gure correspond to the numbers in the num-
bered list in 3.2.
The best results are given by the last feature vector con-

sisting of the continuous wavelet power spectrum calculated
from 8 scales of CWT coe�cients, and the value represent-
ing the orientation of the Hα line with absolute value of 1.
The match is 14% higher than the best result of a feature
vector without WPS. Also the results of all other feature
vectors containing WPS are better than the feature vectors
without WPS.

4 Experiment 3: Comparison of Fea-

ture Vectors Using Classi�cation

This section is based on [? ].
In this experiment, we propose several feature extraction

methods based on the discrete wavelet transform (DWT).
The data set is the same as in the previous experiment. A
small segment containing the Hα line is selected for feature
extraction. Classi�cation is performed using the support
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Figure 3 The match of the clustering using di�erent feature vec-
tors

vector machines (SVM). The results are given by the accu-
racy of classi�cation.

4.1 Feature Extraction

In this experiment, the wavelet transform was performed
using A Cross-platform Discrete Wavelet Transform Library
2

The selected data samples were decomposed into J scales
using the discrete wavelet transform with CDF 9/7 [? ]
wavelet as in (2). This wavelet is employed for lossy com-
pression in JPEG 2000 and Dirac compression standards.
Responses of this wavelet can be computed by a convolu-
tion with two FIR �lters, one with 7 and the other with 9
coe�cients.

Wj,n = 〈x, ψj,n〉 (2)

On each obtained subband, the following descriptor was
calculated forming the resulting feature vector as (3). The
individual methods are further explained in detail.

v = {vj}1≤j<J (3)

Wavelet power spectrum Described in 2.2.

Euclidean norm The Euclidean or `2 norm is the intu-
itive notion of length of a vector. The norm for the speci�c
subband j can be calculated as ‖Wj‖2 by (4).

‖Wj‖2 =

(∑
n

|Wj,n|2
)1/2

(4)

Maximum norm Similarly, the maximum or in�nity
norm can be de�ned as maximal value of DWT magnitudes
(5).

2A Cross-platform Discrete Wavelet Transform Library:
http://www.�t.vutbr.cz/research/view_product.php?id=211

‖Wj‖∞ = max
n
|Wj,n| (5)

Arithmetic mean The mean (6) is the sum of a wavelet
coe�cientsWj at the speci�c scale j divided by the number
of coe�cients there. In this paper, the mean is de�ned as
the expected value with respect to the method bellow.

µj = E [Wj ] (6)

Standard deviation The standard deviation (7) is the
square root of the variance of the speci�c wavelet subband
at the scale j. It indicates how much variation exists from
the arithmetic mean.

σj =
(
E
[
(Wj − µj)2

])1/2
(7)

4.2 Classi�cation

Classi�cation of resulting feature vectors was performed
using the support vector machines (SVM) [? ]. The library
LIBSVM [? ] was employed. The radial basis function
(RBF) was used as the kernel function.
There are two parameters for a RBF kernel: C and γ. It

is not known beforehand which C and γ are best for a given
problem, therefore some kind of model selection (parameter
search) must be done. A strategy known as �grid-search�
was used to �nd the parameters C and γ for each feature
extraction method. In grid-search, various pairs of C and γ
values are tried, each combination of parameter choices is
checked using cross-validation, and the parameters with the
best cross-validation accuracy are picked. We have tried
exponentially growing sequences of C = 2−5, 2−3, . . . , 215

and γ = 2−15, 2−13, . . . , 23). Finally, values C = 32 and
γ = 2 had the best accuracy. For cross-validation, 5 folds
were used.
Before classi�cation, scaling of feature vectors (before

adding the orientation) was performed to the interval [0, 1].

4.3 Results

The results are obtained for di�erent feature extraction
techniques by the accuracy of classi�cation. For compari-
son, a feature vector consisting of the original values of the
stellar spectrum without the feature extraction was also
used for classi�cation. The results are given in Fig. 4.
The results of all feature extraction methods are com-

parable with satisfying accuracy approaching the accuracy
of a feature vector consisting of the original values of the
stellar spectrum without the feature extraction. Moreover,
the results are signi�cantly better than in the case of the
common method of feature extraction from time series us-
ing wavelets � keeping N largest coe�cients of the wavelet
transform, which has been chosen for comparison.
The best results are given by the feature extraction using

the wavelet power spectrum, where the accuracy is even
higher than in the case of the original data without the
feature extraction.

http://www.fit.vutbr.cz/research/view_product.php?id=211
http://www.fit.vutbr.cz/research/view_product.php?id=211
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Figure 4 Accuracy of classi�cation for di�erent feature extraction
methods

5 Experiment 4: Classi�cation With-

out Feature Extraction

The aim of this experiment is to test if it is possible to
train machine learning algorithm (Support Vector Machine
(svm) in this case) to discriminate between manually se-
lected groups of Be stars spectra.

5.1 Data Selection

Training set consists of 2164 spectra from Ondrejov
archive 3 divided into 4 distinct categories based on the
region around Balmer H-alpha line (which is interesting re-
gion for that type of stars). The spectra were normalized
and trimmed to 100Åaround H-alpha. Numbers of spectra
in individual categories are following:

category count
1 408
2 289
3 1366
4 129

For better understanding of the categories characteristics
there is a plot of 25 random samples in the Fig. 5 and
characteristics spectrum of individual categories created as
a sum of all spectra in corresponding category in the Fig.
6.
PCA (Principal component analysis) was also performed

to visually check if there is a separation (and therefore a
chance) to discriminate between individual classes. See the
Fig. 7.

5.2 Classi�cation

Classi�cation was performed using the support vector
machines (SVM) [? ] with the library scikit-learn [? ] and

3Ondrejov archive: http://physics.muni.cz/ ssa/archive/

idx: 449, Class: 2 idx: 3, Class: 1 idx: 1386, Class: 3 idx: 173, Class: 1 idx: 1447, Class: 3

idx: 711, Class: 4 idx: 983, Class: 3 idx: 1716, Class: 3 idx: 1146, Class: 3 idx: 1904, Class: 3

idx: 131, Class: 1 idx: 190, Class: 1 idx: 426, Class: 2 idx: 2011, Class: 3 idx: 1105, Class: 3

idx: 1872, Class: 3 idx: 578, Class: 2 idx: 1721, Class: 3 idx: 1541, Class: 3 idx: 2070, Class: 3

idx: 1591, Class: 3 idx: 686, Class: 2 idx: 83, Class: 1 idx: 216, Class: 1 idx: 627, Class: 2

Figure 5 25 random samples from all categories
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Figure 6 Characteristic spectrum of individual categories created
as a sum of all spectra in corresponding category

IPython-interactive shell. The radial basis function (RBF)
was used as the kernel function.
To �nd optimum values of parameters C and γ, the grid-

search was performed with 10-fold cross-validation with
samples size = 0.1. The results are in Table 1.
Based on this result, values C = 100.0 and γ = 0.01 were

used in following experiments.

5.3 Results

Mean score was 0.988 (+/-0.002). There is a detailed
report (now based on test sample=0.25) in Table 2.

Learning curve is an important tool which help us un-
derstand the behavior of the selected model. As you can
see on Fig. 8 from about 1000 samples there is not big
improvement and there is probably not necessary to have
more than 1300 samples. Of course this is valid only for

http://physics.muni.cz/~ssa/archive/
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parameters score
C=100.0, gamma=0.01: 0.985 (+/-0.003) *
C=10.0, gamma=0.1: 0.978 (+/-0.003) *
C=100.0, gamma=0.1: 0.977 (+/-0.004) *
C=10.0, gamma=0.01: 0.973 (+/-0.002)
C=1.0, gamma=0.1: 0.970 (+/-0.003)
C=100.0, gamma=0.001: 0.969 (+/-0.002)
C=1.0, gamma=1.0: 0.966 (+/-0.003)
C=10.0, gamma=1.0: 0.965 (+/-0.004)
C=100.0, gamma=1.0: 0.965 (+/-0.004)
C=1.0, gamma=0.01: 0.958 (+/-0.002)
C=10.0, gamma=0.001: 0.956 (+/-0.003)
C=100.0, gamma=0.0001: 0.953 (+/-0.003)
C=0.1, gamma=0.1: 0.929 (+/-0.005)
C=10.0, gamma=0.0001: 0.915 (+/-0.004)
C=1.0, gamma=0.001: 0.914 (+/-0.003)
C=0.1, gamma=0.01: 0.908 (+/-0.003)
C=0.1, gamma=1.0: 0.885 (+/-0.004)
C=1.0, gamma=0.0001: 0.811 (+/-0.003)
C=0.1, gamma=0.001: 0.811 (+/-0.003)
C=0.1, gamma=0.0001: 0.785 (+/-0.003)

Table 1 Results of the grid-search

class precision recall f1-score support
1 0.98 0.96 0.97 100
2 0.95 0.97 0.96 72
3 1.00 1.00 1.00 341
4 0.96 0.96 0.96 28

avg/total 0.99 0.99 0.99 541

Table 2 Results of classi�cation
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Figure 7 PCA separation of individual classes

this model and data.
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Figure 8 Learning curve

Miss-clasi�cation There were 29 miss-classi�ed cases
(based on testsize= 0.25). The Fig. 9 shows that spectra.
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True: 2 Pred: 1 True: 4 Pred: 3 True: 2 Pred: 1 True: 1 Pred: 2 True: 2 Pred: 1

True: 1 Pred: 2 True: 2 Pred: 1 True: 4 Pred: 3 True: 2 Pred: 1 True: 2 Pred: 1

True: 2 Pred: 1 True: 4 Pred: 3 True: 2 Pred: 1 True: 3 Pred: 4 True: 4 Pred: 2

True: 1 Pred: 2 True: 2 Pred: 1 True: 2 Pred: 1 True: 1 Pred: 2 True: 1 Pred: 2

True: 3 Pred: 4 True: 2 Pred: 1 True: 3 Pred: 4 True: 3 Pred: 4 True: 2 Pred: 1

Figure 9 The miss-classi�ed samples

6 Conclusion

This paper presents the results of classi�cation of Be stars
using di�erent feature extraction methods based on the
discrete wavelet transform. The support vector machines
(SVM) is used for classi�cation. The results are given by
the accuracy of classi�cation.
The results of all �ve tested feature extraction methods

are comparable with satisfying accuracy approaching the
accuracy of a feature vector consisting of the original val-
ues of the stellar spectrum without the feature extraction.
Moreover, the results are signi�cantly better than in the
case of the common method of feature extraction from time
series using wavelets, which has been chosen for comparison.
The best results are given by the feature extraction using

the wavelet power spectrum, where the accuracy is even
higher than in the case of the original data without the
feature extraction.
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