
Framework for Fast Prototyping of Applications
Running on Reconfigurable System on Chip

Jan Viktorin, Pavol Korcek, Vlastimil Kosar and Jan Korenek
Brno University of Technology

Faculty of Information Technology
Bozetechova 1/2, 612 66 Brno, Czech Republic

Email: {iviktorin, ikorcek, ikosar, korenek}@fit.vutbr.cz

Abstract—Recently introduced chips with ARM based proces-
sors and programmable logic provide huge potential for digital
signal processing, networking and other applications. Many IP
cores and operating systems have been prepared for these chips to
simplify the development process. Nevertheless, the integration of
IP cores and operating system is not covered by any development
tool yet. Developers have to design, implement and debug the
communication between hardware and software part of the
application. Therefore we propose Reconfigurable System on Chip
(RSoC) Framework to support rapid prototyping of applications
running on FPGA chips with a processor. The framework consists
of FPGA logic and OS drivers to support communication between
application core in the FPGA and application software on the
host processor. Moreover, the framework allows to configure
automatically address space of components in the FPGA and
supports dynamic loading of drivers according to the FPGA
configuration. The developer can focus only on the application
software and accelerating core. For demonstration purposes, the
framework is exploited in the example of a video processing
application, where an image filter is running in the software and
than is accelerated in the FPGA.

I. INTRODUCTION

The reconfigurable System-on-Chip (RSoC) architectures
combine processors with an FPGA fabric on a single die. Such
single chip solution enables to reduce power consumption by
effective application partitioning and/or to reduce the overall
system’s price significantly. Recent representatives are Xilinx
Zynq All Programmable SoC [1] or Altera Cyclone V SoC [2].
Both chips consist of a dual-core ARM Cortex-A9 MPCore
and an FPGA fabric build upon its producer’s latest technology.
The processor part of the system is interconnected with the
FPGA part using several high and low performance ports
based on the AMBA AXI [4]. A very useful feature is also
the availability of different built-in peripherals (e. g. memory
interface, Ethernet, SPI, USB, SD/SDIO, CAN, and others)
that are usually missing in the standard FPGA as a hard-core.

There are several steps that must be taken when designing
for similar complex architectures. At least, an application
software and an FPGA accelerator (or peripheral) must be
developed. There exist a plenty of different operating systems
and toolchains for the software development on ARM-based
processors. Also many libraries and standard drivers can be
used for this part of the RSoC. FPGA firmware development
can be particularly simplified by high level synthesis process
(e. g. developing FPGA application by means of standard
programming languages – C/C++). It can also benefit from
publicly or commercially available IP cores.

For every application, accelerators and software must be
integrated together. For example, a low-level software interface
(a new Linux driver) must be written, DMA engine needs
to be instantiated and properly configured to set up trans-
fers in-between FPGA part and the processor part (memory)
of the RSoC, etc. Basic drivers and existing hardware IP
blocks can support the user in developing his application.
However, integration work can lead to many critical problems
as misconfiguration or misconnection is likely to happen.
Moreover, this surrounding infrastructure needs to be tested
and verified. To help developers with such issues, the new
RSoC Framework is introduced and demonstrated here. The
framework provides a customizable FPGA bridge (firmware
part) and a corresponding set of generic OS drivers (software
part). As a result, each application can profit from this unified
environment that covers both the integration and testing. No
such universal framework exists.

The rest of the paper is organized as follows. Section II
describes our RSoC Framework, its basic parts and function-
ality. Simple video processing demo and other use-cases build
upon this framework are shown in Sections III and IV. Finally,
Section V gives conclusions and discusses our future work.

II. RSOC FRAMEWORK

The RSoC Framework provides a middleware layer to
support easy and fast prototyping of applications. It hides
specifics of the underlying hardware platform (e. g. Xilinx
Zynq All Programmable SoC [1], Altera Cyclone V SoC [2]).
Developers are abstracted from several platform specific details
that are completely solved by the framework. There are two
main components of the framework: RSoC Bridge (firmware)
and RSoC Driver (software). Both parts are shown in Fig. 1.

P
ro

c
e
s
s
o
r

Acceleration (hardware)

Application (software)

RSoC Driver

RSoC Bridge

F
ra

m
e
w

o
rk

R
S

o
C

F
P

G
A

Fig. 1. RSoC Framework basic structure



A. Software part
The RSoC Driver is a driver for a Linux-based oper-

ating system that enables programs to exchange data with
corresponding FPGA accelerators using the well-known Linux
interfaces: open/close, write, read, mmap, and ioctl.
RTOS is currently not supported but it is planned in near
future. Each accelerator is represented by an instance of a
character driver [3] and is accessible through a device node like
/dev/acc0. A write or a read operation on such device
node executes a DMA transfer between the memory and the
corresponding accelerator in the firmware. Writing and reading
of the configuration registers is also possible (implemented by
the AXI-Lite bus [4]).

B. Firmware part
The RSoC Bridge is a highly configurable FPGA IP core.

It integrates FPGA accelerators with the rest of the system
by AXI-Stream buses and an optional AXI-Lite bus [4].
Based on its configuration, the RSoC Bridge generates an
internal bus system, DMA engines and other necessary glue
logic to connect user accelerators into the system. The RSoC
Driver determines the RSoC Bridge’s configuration at runtime
and initializes itself accordingly. Several configurations are
prepared and tested for common cases.

III. VIDEO APPLICATION DEMO

To demonstrate the RSoC Framework, a simple video
application was designed. It was implemented on the En-
clustra’s Mars Starter Evaluation Base Board [5] with Mars
ZX3 module. However, any other hardware board with the
appropriate interfaces can be used as well.

The demonstration application is a video filter implemented
as a software application with an optional acceleration in the
FPGA part. The application receives video data from an input
interface. Then it performs the filtering (median, sobel, etc.).
The result is sent to an output. The I/O interfaces can be
HDMI, filesystem, network video streams, or others (depend-
ing on the board). These interfaces can be implemented using
existing libraries and drivers on top of the operating system.

RSoC Framework

Frame Buffer

SW Filter

HW Filter

Ethernet

HDMI

File HDMI

Fig. 2. Video application based on RSoC Framework

In case of high-quality video streams, the ARM Cortex-A9
is not able to process such a big amount of data. The hardware
acceleration in the FPGA can solve this issue effectively. With
the available tools, IP cores and application notes, the FPGA
developer needs to implement the accelerator. Verification of
the accelerator must be performed. Then the accelerator can
be connected using a DMA engine to the selected memory
interface available on the chip. Both the accelerator and the
engine are connected to an available configuration bus and

an address space is assigned to them. Verification of this
complete system must be performed as well. The software
developer implements a low-level OS driver that determines the
corresponding physical addresses and controls the DMA en-
gine. This require experience and knowledge about the Linux
Kernel. The driver should be verified that it works correctly.
Note that debugging of such drivers is a difficult task in
general. Finally, the software application must be modified to
access the driver instead of performing the computation itself.

The RSoC Framework addresses the above mentioned
issues. The FPGA developer writes the accelerator and verifies
its function. This step is same as without our framework. But
then the accelerator can be connected to the RSoC Bridge. The
verification environment of the RSoC Framework can be used
to verify that the accelerator communicates in the expected
way with the bridge. The application only needs to access the
RSoC Driver instead of the actual computation. Again, the
contained testing/verification environment can be utilized to
assure that the application calls the RSoC Driver as expected.
The RSoC Driver and RSoC Bridge are already tested and
verified to work correctly together.

IV. OTHER APPLICATIONS

It is obvious that the same simplification of application
development using RSoC Framework is applicable in other ar-
eas as well. Consider, for example, reliable network wire-speed
applications or applications using cryptographic algorithms.

The RSoC Framework can provide support for application
of partial and dynamic reconfiguration out of the box. Any
accelerator connected to the RSoC Bridge (when synthesized
accordingly) can be dynamically loaded into the FPGA part.
A software controller can decide to accelerate a part of a
computation based on the current processor load.

V. CONCLUSION

This work presents new RSoC Framework for reconfig-
urable SoCs. The efficiency of rapid application prototyping
has been demonstrated by different use-cases with insight to
video application. It was shown that building different appli-
cations that utilize the RSoC Framework is straightforward.
More information can be found at www.rsoc-framework.eu.

The future work will be focused on porting our framework
and demonstration applications to other architectures. However
this process will be simplified as our RSoC Framework has
been designed to support similar architectures.

ACKNOWLEDGMENT

This work has been supported by the Sec6Net project Mod-
ern Tools for Detection and Mitigation of Cyber Criminality
on the New Generation Internet no. VG20102015022.

REFERENCES

[1] Xilinx, Inc. Zynq-7000 All Programmable SoC: Technical Reference
Manual [online]. 2012. 1707 p. UG585.

[2] Altera, Corp. Cyclone V Device Handbook [online]. 2012. 1096 p.
[3] Corbet, J.—Rubini, A.—Kroah-Hartman, G. Linux Device Drivers.

Chapter 3. Third edition. O’Reilly Media, February 2005. ISBN: 0-596-
00590-3.

[4] Xilinx, Inc. AXI Reference Guide [online]. 2012. 132 p. UG761.
[5] Enclustra, GmbH. Mars Starter Evaulation Base Board [online]. 2013.

2 p. Product Brief.


